
Claremont Colleges
Scholarship @ Claremont

WM Keck Science Faculty Papers W.M. Keck Science Department

2-1-2000

Biochemical and Genetic Conservation of Fission
Yeast DSK1 and Human SRPK1
Zhaohua Irene Tang
Claremont McKenna College; Pitzer College; Scripps College

Tiffany Kuo

Jenny Shen

Ren-Jang Lin
Beckman Research Institute

This Article is brought to you for free and open access by the W.M. Keck Science Department at Scholarship @ Claremont. It has been accepted for
inclusion in WM Keck Science Faculty Papers by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Tang, Zhaohua, Tiffany Kuo, Jenny Shen, and Ren-Jang Lin. "Biochemical and Genetic Conservation of Fission Yeast Dsk1 and
Human SRPK1." Molecular and Cellular Biology 20.3 (2000): 816-824. DOI: 0.1128/MCB.20.3.816-824.2000

http://scholarship.claremont.edu
http://scholarship.claremont.edu/wmkeckscience
http://scholarship.claremont.edu/wmkecksci
mailto:scholarship@cuc.claremont.edu


MOLECULAR AND CELLULAR BIOLOGY,
0270-7306/00/$04.0010

Feb. 2000, p. 816–824 Vol. 20, No. 3

Copyright © 2000, American Society for Microbiology. All Rights Reserved.

Biochemical and Genetic Conservation of Fission Yeast Dsk1
and Human SR Protein-Specific Kinase 1

ZHAOHUA TANG, TIFFANY KUO, JENNY SHEN, AND REN-JANG LIN*

Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010

Received 6 August 1999/Returned for modification 28 September 1999/Accepted 25 October 1999

Arginine/serine-rich (RS) domain-containing proteins and their phosphorylation by specific protein kinases
constitute control circuits to regulate pre-mRNA splicing and coordinate splicing with transcription in mam-
malian cells. We present here the finding that similar SR networks exist in Schizosaccharomyces pombe. We
previously showed that Dsk1 protein, originally described as a mitotic regulator, displays high activity in
phosphorylating S. pombe Prp2 protein (spU2AF59), a homologue of human U2AF65. We now demonstrate that
Dsk1 also phosphorylates two recently identified fission yeast proteins with RS repeats, Srp1 and Srp2, in vitro.
The phosphorylated proteins bear the same phosphoepitope found in mammalian SR proteins. Consistent with
its substrate specificity, Dsk1 forms kinase-competent complexes with those proteins. Furthermore, dsk11 gene
determines the phenotype of prp21 overexpression, providing in vivo evidence that Prp2 is a target for Dsk1.
The dsk1-null mutant strain became severely sick with the additional deletion of a related kinase gene.
Significantly, human SR protein-specific kinase 1 (SRPK1) complements the growth defect of the double-
deletion mutant. In conjunction with the resemblance of dsk11 and SRPK1 in sequence homology, biochemical
properties, and overexpression phenotypes, the complementation result indicates that SRPK1 is a functional
homologue of Dsk1. Collectively, our studies illustrate the conserved SR networks in S. pombe consisting of RS
domain-containing proteins and SR protein-specific kinases and thus establish the importance of the networks
in eucaryotic organisms.

Arginine/serine-rich (RS) domain-containing proteins are
among the best-characterized non-snRNP proteins participat-
ing in pre-mRNA splicing (for reviews, see references 8 and
19). Members of the protein superfamily are involved in con-
stitutive splicing and are specific modulators of alternative
splicing (15, 19). Mammalian serine/arginine-rich (SR) pro-
teins are featured by one or more RNA recognition motifs at
the NH2 terminus and by an RS domain at the COOH termi-
nus. Other RS domain-containing proteins are relatively less
defined with respect to the arrangement of the two structural
elements in a protein (8, 11, 19, 35).

SR proteins are heavily phosphorylated, predominantly in
the RS domain (4, 5, 12, 41). Several kinases have been re-
ported to phosphorylate RS domain-containing splicing factors
(5, 12, 30, 39, 50, 53), including SR protein-specific kinase
(SRPK) and Cdc28/Cdc2-like kinase (Clk/Sty). Based on stud-
ies in mammalian nuclear extracts, both phosphorylation and
dephosphorylation of SR proteins are required for pre-mRNA
splicing. Phosphorylation of SR proteins may promote spliceo-
some assembly by facilitating specific protein interactions while
preventing SR proteins from binding randomly to RNA (54).
Once a functional spliceosome has formed, dephosphorylation
of SR proteins is necessary to allow the transesterification
reaction to occur (3, 23). Recently, human type 2C Ser/Thr
phosphatase PP2Cg was reported to be required during early
stages of spliceosome assembly and to be physically associated
with the spliceosome in vitro (29). Therefore, the sequential
phosphorylation and dephosphorylation of SR proteins may
mark the transition between stages in one round of splicing
reaction.

The phosphorylation state of SR proteins not only regulates

their functional properties in splicing reaction but also modu-
lates their subnuclear distribution in vivo (5, 12, 26, 50). The
phosphorylation of the serine residues in the RS domain is a
prerequisite for the release of splicing factors from the storage
loci, nuclear speckles, to the sites of transcription and splicing,
suggesting that protein phosphorylation functions as a control
switch for spatially linking transcription with splicing in vivo
(24). In a simplified scenario, the ability of the splicing ma-
chinery to respond to mRNA synthesis in the cell may be
conferred by the differential phosphorylation of SR proteins,
so that sufficient splicing factors can be recruited to the sites of
transcription as gene expression is activated.

In addition to transcription, pre-mRNA splicing is closely
coordinated in space and time with other nuclear events, in-
cluding 59 capping, and the 39 processing of RNA (25). Gene
expression is also synchronized with the cell division cycle, such
that it is active during interphase and repressed upon entry into
mitosis (9). Therefore, intricate interplay exists among pre-
mRNA splicing, transcription, and cell cycle. RS domain-con-
taining proteins and SR protein-specific kinases may constitute
a protein relay or networks to regulate the coupling of splicing,
transcription, and cell cycle in mammalian cells (6, 25).

The fission yeast Schizosaccharomyces pombe, as a geneti-
cally tractable system, has been widely used to investigate cell
cycle control (14, 31). S. pombe also bears resemblance to
mammalian systems with respect to the high content and struc-
ture of introns in protein-encoding genes (13, 36, 48). An
increasing body of evidence suggests the interplay between
pre-mRNA splicing and cell cycle in fission yeast. A splicing
defect is coupled with a cdc phenotype at a restrictive temper-
ature in 10 of 14 prp ts mutants identified in fission yeast, i.e.,
prp1, prp2, prp5 through prp8, and prp11 through prp14 (33, 45,
48, 49). Defects in nuclear division, cytokinesis, and particu-
larly G2/M transition were observed in those 10 prp mutants.
These cell cycle defects are not simply a result of malfunction
in splicing since not all prp mutants impose a block on mitotic
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progression. Since reorganization of nuclear architecture, in-
cluding splicing machinery, occurs at the onset and the exit of
mitosis (25), it is possible that defects in some splicing factors
may affect the proper reorganization of nuclear architecture
and cell cycle progression.

Protein components similar to elements of the mammalian
SR networks exist in S. pombe. First, several RS domain-con-
taining proteins have been identified. The Prp2 protein, also
named spU2AF59 due to its homology to the large subunit of
human U2AF (35), is essential for pre-mRNA splicing in vivo
(34, 35). Another prp2 mutant allele, mis11-453, affects chro-
mosome segregation and leads to minichromosome loss (45).
In addition to Prp2/Mis11 protein, Srp1 and Srp2 are two
proteins containing RS repeats recently found in S. pombe
(11). The srp21 gene is essential for viability, while the srp11

gene is not. Overexpression of Srp1 protein with a mutant RS
domain or the RNA-binding domain alone inhibits splicing in
fission yeast, suggesting a role for Srp1 in pre-mRNA splicing
(11). Second, kinases that phosphorylate RS domain-contain-
ing proteins have been discovered. Dsk1 is an S. pombe protein
kinase that specifically phosphorylates Prp2 in vitro (47). Al-
though initially described as a mitotic regulator (46), Dsk1 has
also been implicated in pre-mRNA splicing according to its
sequence homology to human SRPK1 (12). Another protein
kinase, Prp4 (38), is reported to phosphorylate human SF2/
ASF protein in vitro (10).

In further investigating the kinase activity of Dsk1 and its
interaction with RS domain-containing proteins, we show here
for the first time that phosphorylation of S. pombe RS domain-
containing proteins by Dsk1 produces the same phospho-
epitope found in mammalian SR proteins. We also obtained in
vivo evidence to support the kinase-substrate relationship be-
tween Dsk1 and Prp2. The dsk1-null mutant became severely
sick with additional deletion of a related kinase. Significantly,
human SRPK1 protein expressed in fission yeast is capable of
compensating for the loss of Dsk1 in vivo. Consistent with the
notion that SRPK1 is a functional homologue of Dsk1, the
overexpression phenotype of SRPK1 resembles that of dsk11

in S. pombe. Taken together, our studies document the con-
servation of the SR protein-specific kinases through evolution
and the importance of the SR networks in eucaryotic organisms.

MATERIALS AND METHODS

S. pombe strains. The following haploid strains of S. pombe were used: 1913
(h2 leu1), B8 (h2 leu1 ura4 dsk1::ura41) (46), 2A5 (h2 leu1 ura4 kic1::ura41

his2), 2D4 (h2 leu1 ura4 kic1::ura41 dsk1::ura41 his2). Standard genetic proce-
dures and media for growing S. pombe strains are described elsewhere (1, 27).

Plasmid construction. Fission yeast srp11 gene was obtained by PCR (42)
from the S. pombe cDNA library (Clontech) by using two primers complemen-
tary to the 59 and 39 sequence of the gene, respectively: 59-GCGCGCGGATC
CATGAGTCGCAGAAGCCTTCGT-39, including a BamHI site, and 59-GCC
GGATAGTCGACATTAACTGTGTTACGG-39, including a SalI site. The
BamHI-SalI fragment of ;900 bp was then inserted into pET-28a (Novagen) to
generate pET-28a srp11. To construct pET-28bGST-srp11, a BamHI-SalI frag-
ment was produced by PCR by using plasmid pET-28a srp11 as a template with
two primers: 59-GGTCGGGATCCGATGAGTCGCAGAAGC-39, including a
BamHI site, and 59-GCTTGTCGACATTAACTGTGTTACG-39, including a
SalI site. Plasmids pET-28bGST, pET-28adsk11, and pET-28bGST-prp21 have
been described (47). Plasmid pGADGH srp21 DNA was isolated from the S.
pombe cDNA library by using srp11 gene as bait (unpublished data). An EcoRI
fragment containing the coding sequence of the srp21 gene was ligated to vector
pET-28b and pET-28bGST to produce pET-28bsrp21 and pET-28bGSTsrp21.
To generate pREP1prp21, a 1.4-kb NdeI-BamHI DNA fragment encoding the
Prp2 protein was inserted into pREP1 vector (20, 21). The pREP1SRPK1 plas-
mid was constructed by inserting a SalI-BamHI fragment containing the open
reading frame of human SRPK1 into the same sites of pREP1. The SRPK1
SalI-BamHI fragment was synthesized by PCR by using pcDNA3-FLAG-SRPK1
(from X. D. Fu University of California at San Diego) as template and two
oligonucleotides (59-AGCTGCCTGTCGACAATGGACTACAAAGACGA
T-39 and 59-TGTGGGATCCCTGCTGTGGTGCTG-39) as primers.

Production of recombinant proteins. Recombinant proteins GST-Srp1, Srp1,
GST-Srp2, Srp2, GST-Prp2, GST-SF2/ASF, and Dsk1 were expressed in Esch-
erichia coli BL21(DE3)pLysS as described earlier (47). Isopropyl-b-D-thiogalac-
topyranoside (IPTG) was added to a final concentration of 1 mM, instead of 0.4
mM, to assure a full induction of a T7lac promoter (Novagen) in bacteria.
Bacterial lysate preparations and histidine-tagged Dsk1 protein purification have
been described (47). The relative amounts of recombinant proteins in lysates
were estimated based on Coomassie blue-stained gel by using bovine serum
albumin as a standard, or the intensity of protein bands was visualized on
immunoblots.

GST pulldown assay. Bacterial lysates containing glutathione S-transferase
(GST) or GST fusion proteins were incubated with or without various non-GST-
tagged proteins in lysates to allow complex formation at 23°C for 30 min. The
mixture was then incubated with glutathione beads at 4°C for 1 h with constant
agitation. After pulldown by microcentrifugation at 7,000 rpm for 1 min at room
temperature, the beads were washed in TBS (10 mM Tris-HCl, pH 7.4; 150 mM
NaCl) two to three times with 0.1% NP-40 and four times without NP-40. The
beads were resuspended in TBS as a 50% suspension, aliquoted, frozen in liquid
nitrogen, and stored at 280°C until use. All steps were performed in the pres-
ence of protease inhibitors: 5 mg of pepstatin, 5 mg of chymostatin, and 5 mg of
leupeptin per ml plus 1 mM phenylmethylsulfonyl fluoride.

Kinase assay. Purified or bead-bound Dsk1 was incubated at 23°C for 30 min
with RS domain-containing proteins in bacterial lysates, purified, or bound to
glutathione beads in a total volume of 20 to 60 ml in a kinase buffer (50 mM
Tris-HCl, pH 7.4; 10 mM MgCl2; 1 mM dithiothreitol) with 50 mM ATP and 0.1
mCi of [g-32P]ATP per ml. When a bead-bound protein was present in a kinase
reaction, an end-to-end rotor was used to mix the sample during incubation. The
kinase reaction was terminated by boiling in sodium dodecyl sulfate (SDS)
sample buffer, and the samples were resolved on an SDS–10% polyacrylamide
gel. Protein phosphorylation was detected by autoradiography. For Western blot
analysis, the kinase reaction was performed by employing an ATP-regenerating
system (10 mM creatine phosphate, 1 mM ATP, and 0.1 mg of creatine phos-
phokinase per ml) without radioisotopes. Immunoblotting in most experiments
was performed as previously described (47). When 3C5 monoclonal antibody was
used, 25 mM NaF and 1 mM NaVO3 were present as phosphatase inhibitors to
prevent dephosphorylation.

Antibodies. The anti-Dsk1 peptide polyclonal antibodies were generated and
affinity purified as described earlier (47). Monoclonal antibody (MAb) 3C5 was
obtained from mouse ascites and was used in a 3500 dilution. Anti-GST poly-
clonal antibodies were from Santa Cruz Biotechnology. Anti-T7-Tag monoclonal
antibody was purchased from Novagen.

Transformation of S. pombe. Transformation of fission yeast was accomplished
by using the lithium acetate method (1) with modifications. A 3- to 5-ml culture
in YES medium (27) was grown at 33°C for about 5 h with shaking at 225 rpm.
A 100- to 200-ml culture was then started by adding a calculated amount of cells
from the small culture so that cell density would reach 0.5 3 107 to 1.5 3 107

cells/ml overnight. Cells were harvested and resuspended at a density of approx-
imately 109 cells/ml in 0.1 M lithium acetate in TE buffer. After 1 h of incubation
at 30°C with shaking at 170 to 200 rpm, 1 mg of plasmid DNA in 15 ml of TE was
mixed with 100 ml of the cell resuspension, followed by the addition of 290 ml of
50% polyethylene glycol. Samples were incubated for 1 h with occasional gentle
vortexing. After heat shock at 42°C for 15 min, cells were incubated at room
temperature for 10 min. Cells were then collected, washed, and resuspended in
200 ml of EMM2 (minimal medium) (1). Finally those transformed cells were
spread on EMM2 plates in the presence of 2 mM thiamine and incubated at 33°C
until colonies appeared.

Expression of fission yeast prp21 gene and human SRPK1 gene in S. pombe.
The plasmid pREP1prp21 was transformed into fission yeast wild-type (strain
1913), dsk1-null (Ddsk1), and kic1-null (Dkic1) strains. The human SRPK1 gene
was introduced as plasmid pREP1SRPK1 into wild-type (strain 1913) and dsk1
kic1 double-null (Ddsk1Dkic1) strains of S. pombe. The expression of prp21 gene
and human SRPK1 gene under the control of nmt1 promoter was induced
according to procedures described elsewhere (46).

DAPI staining. Methods for DAPI (49,69-diamidino-2-phenylindole) staining
were modified from Alfa et al. (1) and the Fission Yeast Handbook (www.bio
.uva.nl/pombe/handbook/). Cells were fixed on a slide at 70°C for 1 min on a hot
plate. Then, 3 to 4 ml of a freshly diluted 13 DAPI solution (1 mg of DAPI per
ml, 1 mg of antifade per ml, 45% glycerol) was added to the fixed cells. Slides
were kept in the dark to prevent fading before they were observed under a
microscope.

RESULTS

Dsk1-mediated phosphorylation of fission yeast Srp1, Srp2,
and Prp2 proteins generates the same phosphoepitope as in
mammalian SR proteins. We showed previously that Dsk1
protein specifically phosphorylates fission yeast Prp2/Mis11, a
U2AF65 homologue, in vitro (47). To extend our studies of the
SR networks in S. pombe we investigated whether Srp1 and
Srp2 proteins are also substrates for Dsk1 in vitro. Full-length
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Srp1 and Srp2 proteins fused at the NH2 terminus to GST,
designated GST-Srp1 and GST-Srp2, were isolated on gluta-
thione-agarose beads and incubated with or without purified
Dsk1 in the presence of [g-32P]ATP. As shown in Fig. 1, 32P-
labeled proteins with apparent molecular sizes of ;56 kDa
(lane 4) and ;66 kDa (lane 6) were detected, matching the
predicted sizes of GST-Srp1 and GST-Srp2 proteins, respec-
tively. These bands were not detected in the samples without
Dsk1 protein (Fig. 1, lanes 3 and 5). The lower-molecular-size
band observed in lane 4 of Fig. 1 was probably a degradation
product of GST-Srp1. The GST portion of the fusion proteins
did not contribute to the phosphorylation by Dsk1, since GST
alone was not phosphorylated by Dsk1 (Fig. 1, lane 2). There-
fore, in addition to Prp2, Dsk1 phosphorylates Srp1 and Srp2
proteins in vitro.

To assess the specificity of phosphorylation, we probed the
Dsk1-phosphorylated proteins with SR protein-specific MAbs.
Mammalian SR proteins share common phosphoepitopes,
which specifically react to two MAbs, MAb 104 (40) and MAb
3C5 (2). Since MAb 3C5 is more sensitive and specific for
detecting phosphorylated SR proteins than MAb 104 in some
studies (2), we included MAb 3C5 in our experiments. Bacte-
rial lysates containing recombinant Srp1, Srp2, or GST-Srp2
were incubated with purified Dsk1 protein in the presence of
an ATP regenerating system. Samples were split, resolved on
SDS–10% polyacrylamide gels, and transferred to Immobilon
membrane to generate duplicate blots. One blot was used to
monitor the amount of the recombinant proteins in each sam-
ple (Fig. 2, top panel), while the other blot was probed with
MAb 3C5 for the phosphorylation of those proteins (bottom
panel). Srp1, Srp2, and GST-Srp2, as well as Dsk1, were de-
tected by anti-T7-Tag MAb, since they possessed a T7-Tag
(Fig. 2, top panel, lanes 2 to 9). The mobility of Srp1, Srp2, and
GST-Srp2 observed in samples with Dsk1 was slower (Fig. 2,
top panel, lanes 5, 7, and 9) than that of those same proteins in
samples without Dsk1 (lanes 4, 6, and 8), suggesting that the
proteins were phosphorylated. Consistent with the mobility
changes the slower-migrating bands were recognized by MAb

3C5 (Fig. 2, bottom panel, lanes 5, 7, and 9). Thus, phosphor-
ylation of Srp1 and Srp2 by Dsk1 produced 3C5-reactive
epitope, regardless of whether the substrate was fused with
GST or not. Purified GST-Prp2 and GST-SF2/ASF were ana-
lyzed similarly (Fig. 2, top panel, lanes 10 to 13). Both proteins
were detected by anti-GST polyclonal antibodies (Fig. 2, top
panel, lanes 10 to 13), and after phosphorylation by Dsk1, they
were recognized by MAb 3C5 (bottom panel, lanes 11 and 13).
In these samples Dsk1 protein was monitored by anti-Dsk1
polyclonal antibodies (top panel, lanes 11 and 13). As shown in
this experiment, all three RS domain-containing proteins,
Srp1, Srp2, and Prp2, were recognized by MAb 3C5 after Dsk1
action, reflecting a general feature of Dsk1-mediated phos-
phorylation. The weaker signal of Prp2 is likely due to the
lower amount of Prp2 protein present in the reaction mixture
as well as the presence of fewer RS repeats in Prp2 than in the
other proteins. The results provide the first biochemical evidence
that fission yeast RS domain-containing proteins phosphorylated
by Dsk1 share the same phosphoepitope with the mammalian SR
proteins. Therefore, Dsk1 behaves similarly to its mammalian
counterparts at the molecular level. The conserved phosphoryla-
tion of RS domain-containing proteins from distinctive organisms
implicates its importance in eucaryotic systems.

Dsk1 forms kinase-competent complexes with RS domain-
containing proteins. As kinase-substrate pairs, physical associ-
ation of Dsk1 with the RS domain-containing proteins must
take place during the phosphorylation process. If these inter-

FIG. 1. Dsk1 phosphorylates fission yeast Srp1 and Srp2 proteins in vitro.
GST fusion proteins were isolated from bacterial lysates by binding to glutathi-
one beads. After a washing, the bound GST (lanes 1 and 2), GST-Srp1 (lanes 3
and 4), and GST-Srp2 (lanes 5 and 6) were individually incubated with purified
Dsk1 (lanes 2, 4 and 6) in the presence of [g-32P]ATP at 23°C for 30 min.
Samples were resolved on an SDS–10% polyacrylamide gel and visualized with
X-ray film. The expected positions of GST, GST-Srp1, and GST-Srp2 proteins on
the gel are indicated on the right. Truncated forms of GST-Srp1 protein were
observed as a lower-molecular-size band (lane 4).

FIG. 2. Dsk1-mediated phosphorylation of Srp1, Srp2, and Prp2 proteins
generates a phosphoepitope specifically recognized by MAb 3C5. Purified GST-
Prp2 (lanes 10 and 11), purified GST-SF2/ASF (lanes 12 and 13), or a bacterial
lysate containing individual recombinant proteins (lanes 4 to 9) as indicated at
the top of each lane was incubated with (lanes 5, 7, 9, 11, and 13) or without
(lanes, 4, 6, 8, 10, and 12) purified Dsk1 protein in the presence of an ATP
regenerating system for 30 min at 23°C. Buffer (lanes 1 and 2) and lysate from
bacteria with the pET28a vector alone (lane 3) were used as negative controls.
The samples were then processed for immunoblotting with anti-T7-Tag MAb
(top panel, lanes 1 to 9) or anti-GST and anti-Dsk1 polyclonal antibodies in
successive order (top panel, lanes 10 to 13) or MAb 3C5 monoclonal antibody
(bottom panel). Alkaline phosphatase-conjugated goat anti-mouse immunoglob-
ulin G (IgG) and goat anti-rabbit (top panel) or goat anti-mouse (bottom panel)
IgM antibodies were used as secondary antibodies. The identity of the proteins
is marked above each band with numbers 1 to 6 representing Dsk1, Srp1, Srp2,
GST-Srp2, GST-Prp2, and GST-SF2, respectively, as indicated on the right side
of the figure. The same amount of Srp1 and Srp2 was used, while GST-Srp2 at
1/4 of the amount and GST-Prp2 and GST-SF2/ASF at ,1/10 of the amount
were added to the indicated samples.
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actions are stable, Dsk1 protein should coisolate with GST
fusion substrates in a GST pulldown assay. Lysates containing
similar amounts of GST fusion proteins were incubated with a
lysate containing Dsk1 protein. Glutathione-agarose beads
were then added to bind the GST fusions. Portions of the
mixed lysates, unbound fractions, and bound fractions from
each sample were analyzed by Western blots by using anti-T7-
Tag MAb (for detecting GST-Srp1, GST-Srp2, and Dsk1),
anti-GST (for detecting GST-Prp2), and anti-Dsk1 polyclonal
antibodies (Fig. 3). The different appearance of protein bands
in lanes 10 to 12 from that in lanes 1 to 9 may reflect the
different sensitivities of the antibodies used in these experi-
ments. As displayed in Fig. 3, Dsk1 protein was brought down
with GST-Srp1, GST-Srp2, or GST-Prp2 (Fig. 3, lanes 6, 9, and
12). GST-Srp1 protein has a molecular mass very similar to
that of Dsk1 and was distinguished from Dsk1 as a protein with
a slightly slower mobility on the gel (Fig. 3, lane 6). The
interaction observed was specific between Dsk1 and the yeast
RS domain-containing proteins, since Dsk1 did not bind GST
in this assay (Fig. 3, lane 3). Therefore, Dsk1 protein forms a
complex with its substrates.

We next examined the kinase activity of the bound Dsk1 on
its associated substrates. The GST-Srp1/Dsk1 and GST-Srp2/
Dsk1 complexes isolated by the GST pulldown procedure were
incubated with [g-32P]ATP (Fig. 4A). GST-Srp1 (Fig. 4A, lane
1) or GST-Srp2 (lane 3) protein became phosphorylated in the
complex containing Dsk1, whereas no phosphorylation was
detected in the GST control (lane 5). Dsk1 protein added
exogenously did not substantially increase the phosphorylation

of GST-Srp1 (Fig. 4A, compare lanes 1 and 2) or GST-Srp2
(compare lanes 3 and 4). The result indicates that the bound
Dsk1 protein was active and sufficient to phosphorylate the
substrate in each complex. Therefore, Dsk1 binds Srp1 or Srp2
protein in a kinase-competent conformation.

Does the binding of Dsk1 with its substrates change upon
phosphorylation by Dsk1? To address this question, GST-Srp1/
Dsk1 and GST-Srp2/Dsk1 protein complexes bound to gluta-
thione-agarose beads were incubated with an ATP regenerat-
ing system. Following the kinase reaction, samples were
centrifuged to pellet the beads, and proteins released from the
complexes should be retained in the supernatant. Both the

FIG. 3. Srp1, Srp2, and Prp2 proteins individually form a complex with Dsk1
in vitro. A bacterial lysate containing Dsk1 protein was incubated with a lysate
containing GST (lanes 1 to 3) or GST fusion (lanes 4 to 12) proteins as indicated
at the top of each lane to allow complex formation at 23°C for 30 min. Gluta-
thione beads were then added to pulldown bound proteins at 4°C as described in
Materials and Methods. Portions of mixed lysates, unbound fractions, and bound
fractions from each sample were analyzed by SDS-polyacrylamide gel electro-
phoresis. Some samples were processed for immunoblotting by using anti-T7-Tag
MAb (lanes 1 to 9), which detects GST, GST-Srp1, GST-Srp2, and Dsk1. Other
samples were processed for immunoblotting first with anti-GST and subse-
quently with anti-Dsk1 polyclonal antibodies (lanes 10 to 12). Dsk1 protein was
pulled down by each of the four RS domain-containing proteins (lanes 6, 9, and
12) but not by GST protein (lane 3). Numbers 1 to 5 on the left of the protein
bands in the bound fraction of each sample represent Dsk1, GST-Srp1, GST-
Srp2, GST-Prp2, and GST, respectively, as indicated on the right side of the
figure.

FIG. 4. Dsk1 is dissociated from the complex after phosphorylation of Srp1
or Srp2 protein. (A) The bound Dsk1 phosphorylates Srp1 and Srp2 in the
complex in the presence of ATP. The pulldown complexes GST-Srp1/Dsk1
(lanes 1 and 2) and GST-Srp2/Dsk1 (lanes 3 and 4), as described in Fig. 3, were
incubated with (lanes 2 and 4) or without (lanes 1 and 3) purified Dsk1 protein
in the presence of [g-32P]ATP. GST protein was also used in place of the GST
fusion proteins as a negative control (lanes 5 and 6). Samples were resolved on
an SDS–10% polyacrylamide gel and visualized by autoradiography. The bound
Dsk1 phosphorylated Srp1 and Srp2 in the complex (lanes 1 and 3). (B) After the
kinase reaction, Dsk1 is released from the Srp1/Dsk1 and Srp2/Dsk1 complexes.
GST-Srp1/Dsk1 and GST-Srp2/Dsk1 protein complexes were incubated individ-
ually with (lanes 3, 4, 7, and 8) or without (lanes 1, 2, 5, and 6) an ATP
regenerating system for 30 min at 23°C. Following the kinase reaction, protein-
bound beads were pelleted by centrifugation. The supernatant (S) and bead (P)
portions of each sample were resolved on an SDS–10% polyacrylamide gel and
subsequently processed for immunoblotting with anti-T7-Tag MAb. Dsk1 was
released from the complex to the supernatant in the presence of ATP (lanes 4
and 8), but it is not dissociated from the complex in the absence of ATP (lanes
2 and 6). Note the phosphorylated Srp proteins (indicated with a circled P) have
slower mobility than that of their nonphosphorylated forms.
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bound (P) and the released (S) fractions were analyzed by
immunoblotting (Fig. 4B). Dsk1 was released from the com-
plex to the supernatant after incubation with ATP (Fig. 4B,
lanes 4 and 8), while no Dsk1 was released in the absence of
ATP (Fig. 4B, lanes 2 and 6). Note that GST-Srp1 (Fig. 4B,
lane 3) and GST-Srp2 (lane 7) migrated more slowly on the gel
upon phosphorylation. Therefore, Dsk1 was dissociated from
the complex after phosphorylating the GST-Srp1 or GST-Srp2
protein. Some Dsk1 protein was retained in the pellet fraction
of the samples with ATP (Fig. 4B, lanes 3 and 7). This may be
due to trapping of some released Dsk1 molecules in the pellet
fraction since, once separated from the supernatant, the beads
were not washed following the kinase reaction. Based on these
results the Dsk1 reaction is dissected into three distinct steps:
substrate binding, substrate phosphorylation, and release of
the kinase from the product. Quantitative measurement for the
percentage and rate of Dsk1 release from the complex has not
been carried out.

Genetic interaction between prp21 and dsk11. To under-
stand the biological functions of Dsk1 protein kinase, it is
necessary to investigate interactions of Dsk1 with the RS do-
main-containing proteins in vivo. For example, if Prp2 protein
is an in vivo target of Dsk1, overexpression of prp21 may
confer a phenotype, which is only apparent in the strain with
the dsk11 gene. To test this, we placed prp21 gene under the
control of a thiamine-repressible nmt11 (no message in thia-
mine) promoter of S. pombe (20, 21), so that Prp2 protein
could be produced at a high level by growing cells in medium
without thiamine. Consistent with a recent report (37), induc-

tion of prp21 expression from the nmt11-driven plasmid,
pREP1prp21, in wild-type cells leads to smaller colonies than
those transformed with the vector pREP1 alone (data not
shown). Exponentially growing cells in liquid culture were
transferred to thiamine-depleted medium and grown for 21 h.
The cells were then stained with DAPI and examined by phase-
contrast (Fig. 5, top panels) and fluorescence (bottom panels)
microscopy. Elongated cells were observed when the expres-
sion of the plasmid-borne prp21 gene was induced in the wild-
type strain 1913; the average cell length increased about 60%
(from 8.8 to 14.2 mm) compared to that of the cells harboring
the vector pREP1 (Table 1). In addition, more than 40% of the
cells had a cell length exceeding the regular range for 1913/
pREP1 cells (Fig. 6). Although multiple nuclei were observed
in some cells, many elongated cells seemed to have a single
nucleus (Fig. 5, second column, bottom panel). In contrast,
overexpression of prp21 gene in a dsk1-null strain (Ddsk1), B8,
did not display any elongation phenotype (Fig. 5, third column)
under the same condition; the average size of the cells (9.2 mm)

FIG. 5. The cell elongation phenotype resulting from Prp2 overproduction is dependent on the dsk11 gene. Strains 1913 (wild type), B8 (Ddsk1), and 2A5 (Dkic1)
were transformed with pREP1prp21. Strain 1913 containing pREP1 vector was also generated as a negative control. Cells were first grown at 32°C to midlogarithmic
phase in minimal medium (EMM2) with thiamine, and Prp2 overproduction was then induced for 21 h in the absence of thiamine. Cells were fixed by heating them
on slides, and they were then stained with DAPI. Cell images obtained by phase-contrast (top panel) and fluorescence (bottom panel) microscopy were indicated.
Magnification is 3400 in all panels. The elongated cells were observed in strain 1913 (wild type, second column) and 2A5 (Dkic1, fourth column) but not in strain B8
(Ddsk1, third column). The scale bar represents 10 mm.

TABLE 1. Measurements of cell length

Strain No. of cells Avg (mm) (range)

1913/pREP1 29 8.82 (5.70–13.57)
1913/pREP1prp21 200 14.21 (5.28–32.56)
B8/pREP1prp21 29 9.16 (5.44–15.60)
2A5/pREP1prp21 34 16.81 (7.01–33.20)
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remained similar to that of the wild-type strain, i.e., 1913/
pREP1 (8.8 mm) (Table 1). Moreover, the “elongated” popu-
lation as seen in 1913/pREP1prp21 disappeared in strain B8/
pREP1prp21 (Fig. 6). Therefore, the elongation characteristic
of prp21 overexpression requires the presence of dsk11 gene.

To address the specificity of the genetic interaction between
dsk11 and prp21, we examined the prp21 overexpression phe-
notype in another kinase-deletion strain. The S. pombe katb1

gene (GenBank accession number Q10156) encodes a protein
closely related in sequence to mammalian Clk/Sty. Interest-
ingly, overexpression of the katb1 gene in S. pombe leads to
branched cells with multiple septa and nuclei, which was dif-
ferent from the phenotype conferred by dsk11 overexpression
(unpublished data). Since the name katb1 is not conventional
nomenclature for a S. pombe gene, we changed it to kic11 for
“kinase in Clk” family. The kic11 gene was disrupted, and a
haploid strain with a null allele was found to be viable (unpub-

lished data). The pREP1prp21 plasmid was transformed into a
kic1-null mutant strain (Dkic1), 2A5. Similar to wild type, over-
expression of prp21 gene in the kic1-null mutant strain, 2A5
(Dkic1), resulted in elongated cells (Fig. 5, fourth column). The
average size of the cells in 2A5/pREP1 prp21 was 16.8 mm,
increased approximately 90% compared to 8.8 mm in 1913/
pREP1 (Table 1). An “elongated” population representing
more than 40% of the cells was again observed (Fig. 6). Thus,
cell elongation caused by Prp2 overproduction is specifically
dependent on the presence of the dsk11 gene but does not
require the kic11 gene. These in vivo results substantially sup-
port the notion that Prp2 protein is a target of Dsk1 action in
fission yeast and reinforce the in vitro data demonstrating the
binding of the two proteins and phosphorylation of Prp2 pro-
tein by Dsk1.

The prp21 overexpression phenotype in strains 1913 and
2A5 displayed two distinct populations, one with normal length
distribution and the other elongated. This is perhaps due to the
leakiness of the prp21 overexpression phenotype. This is con-
sistent with the observation that overexpressing prp21 did not
kill the cell but instead produced smaller colonies. The dual
population phenomenon indicates that the prp21 overexpres-
sion may block cell cycle progression only part of the time.
Alternatively or additionally, it suggests that the prp21 over-
expression may affect multiple steps of the cell cycle. Since
plasmid in S. pombe is not stable, cells that lost the pREP1-
prp21 plasmid might also contribute to the population with
apparently normal cell sizes. Finally, because the prp21 over-
expression was induced in an asynchronous cell population, a
portion of the cells may already pass the elongation phase and
resume the normal cell cycle.

Human SRPK1 protein is a functional homologue of fission
yeast Dsk1 protein in vivo. Sequence analysis and kinase assays
indicate that S. pombe Dsk1 is homologous to human SRPK1
(12). We here tested the functional similarity between Dsk1
and SRPK1 in vivo. When the dsk11 gene is overexpressed, it
results in highly elongated cells with a delay in the progression
from G2 to M phase (46). Thus, we first examined whether
overexpression of the human SRPK1 gene in fission yeast
would produce a phenotype similar to that of dsk11 overex-
pression. Plasmid pREP1SRPK1 was introduced into a wild-
type S. pombe strain, and the expression of the SRPK1 gene
was induced in the absence of thiamine. The majority of the
SRPK1-overproducing cells became elongated (Fig. 7A, right
panel) compared to cells containing only the pREP1 vector
(left panel). Therefore, like dsk11 overexpression, overexpres-
sion of the human SRPK1 gene in S. pombe leads to elongated
cells that are indicative of a delay at the G2/M-phase transition.

One stringent evaluation for functional homology is comple-
mentation of the loss of one gene by another gene. We antic-
ipated that if human SRPK1 is a true functional homologue of
Dsk1, it should compensate for the loss of Dsk1 in the cell. The
genetic complementation test had not been accomplished be-
cause dsk11 is not essential for the viability of the cell. Inter-
estingly, dsk1-null mutant yeast cells became very sick when a
related kinase gene in the cell, kic11, was also disrupted. With
the double deletions, cells grew extremely slowly and formed
microcolonies (see Fig. 7B). Taking advantage of this recent
finding, we transformed the dsk1 kic1 double-null mutant, 2D4
(Ddsk1Dkic1), with either pREP1 or pREP1SRPK1. Since the
nmt11 promoter is leaky, a considerable amount of expression
occurs even in the presence of thiamine (28). Transformants
were first selected and subsequently restreaked for growth
analysis on thiamine-containing plates (repressed condition).
Cells carrying pREP1SRPK1 formed healthy colonies (Fig. 7B,
right panel), whereas cells containing the pREP1 vector alone

FIG. 6. Size distribution of cell population in strains with prp21 gene over-
expressed. The cell length of the four samples in Fig. 5 was measured. The cell
populations with a size range as indicated for 1913/pREP1, 1913/pREP1prp21,
B8/pREP1prp21, and 2A5/pREP1prp21 are displayed as histograms. A popula-
tion of cells longer than 16 mm was observed in 1913/pREP1prp21 and 2A5/
pREP1prp21. The distribution pattern of 2A5/pREP1prp21 is similar to that
1913/pREP1prp21, while the pattern of B8/pREP1prp21 resembles that of the
negative control, 1913/pREP1.
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did not grow (left panel). Therefore, expression of human
SRPK1 gene complemented the growth defect of the double-
null mutant. In conjunction with the results that SRPK1 has
sequence homology closer to Dsk1 than Kic1 and that the
SRPK1 overexpression produces elongated but not branched
cells, SRPK1 is more likely to compensate for the loss of dsk11

than that of kic11 in S. pombe. These data indicate that human
SRPK1 protein is an in vivo functional homologue of fission
yeast Dsk1 protein and further demonstrate the conservation
of the SR protein-specific kinases from fission yeast to human.

DISCUSSION

Together with our previous studies (47), we show in this
report that Dsk1 protein specifically phosphorylates S. pombe

RS domain-containing proteins Prp2, Srp1, and Srp2 in vitro.
Consistent with its substrate specificity, Dsk1 forms kinase-
competent complexes with those RS domain-containing pro-
teins. The kinase-substrate interaction is supported by the in
vivo evidence for the dependency of prp21 overexpression phe-
notype on dsk11 gene. Despite the evolutionary gap separating
fission yeast and human, SRPK1 not only shares similar bio-
chemical properties with Dsk1 but also compensates for the
loss of Dsk1 in fission yeast cells. The functional conservation
of these kinases at the molecular and cellular level illustrates
the importance of the SR protein-specific kinases in eucaryotic
systems.

The evidence accumulated in recent years indicates that SR
networks exist in the fission yeast S. pombe which consist of RS
domain-containing proteins and their kinases. Our studies sug-
gest that the phosphorylation patterns and interactions of the
SR networks are conserved from fission yeast to mammals. We
have shown for the first time that all four S. pombe RS domain-
containing proteins, including Prp2, Srp1, Srp2, and Rsd1
(T.-L. Tseng and A. R. Krainer, personal communication), are
phosphorylated by Dsk1 in vitro, and these phosphorylated
proteins are recognized by 3C5 MAb (this report; Z. Tang,
R.-J. Lin, T.-L. Tseng and A. R. Krainer, unpublished data),
indicating that the kinase reaction generates a phosphoepitope
identical to that found in mammalian SR proteins. In agree-
ment with the in vitro observation, Rsd1 isolated from wild-
type fission yeast is also recognized by MAb 3C5 (T.-L. Tseng
and A. R. Krainer, personal communication), providing in vivo
evidence for the conservation of phosphorylation specificity.

Here we dissected the Dsk1-mediated kinase reaction in
vitro into three discrete steps: substrate binding, substrate
phosphorylation, and release of the Dsk1 from the complex
after phosphorylating its substrate. Thus, Dsk1 forms transient
complexes with RS domain-containing proteins in the presence
of ATP. Similar kinase-substrate complexes were recently ob-
served between human SRPKs and SR proteins. Both SRPK1
and SRPK2 bind and subsequently phosphorylate GST-SF2/
ASF. The expression of a kinase-deficient mutant SRPK2 leads
to trapping SF2/ASF in the cytoplasm, possibly by forming a
stable complex between the two proteins (16).

The phosphorylation by Dsk1 may affect the interactions
between and/or the activity of these proteins in splicing. In
agreement, pre-mRNA splicing is partially impaired in dsk1
deletion strain of S. pombe (unpublished data), and the inter-
action of Srp1 and Srp2 proteins is inhibited by Dsk1-mediated
phosphorylation in vitro (2; Tang et al., unpublished data). It
has been shown that the phosphorylation status of SF2-ASF
exerts distinct effects on its association with various protein
targets in vitro (55). Additionally, changes in SR protein phos-
phorylation play a role in the activation of pre-mRNA splicing
during early development in the nematode (43). It was also
established in Drosophila that SR protein phosphorylation is
essential for developmentally regulated alternative splicing (7).
Dsk1 influences the activity of Prp2 in vivo. Overexpression of
prp21 in different strains of S. pombe demonstrated that the
ability of Prp2 to cause cell elongation is Dsk1-dependent (Fig.
5 and 6). Moreover, the observation that kic11 gene does not
have obvious effect on the phenotype of prp21 overexpression
substantiates the specific interaction between Dsk1 and Prp2.
The effect on Prp2 probably is through phosphorylation of
Prp2 by Dsk1, especially that Dsk1 displays high activity in
phosphorylating Prp2 in vitro (47). It will be very interesting to
investigate whether Dsk1 is indeed required for the phosphor-
ylation of Prp2, Srp1, and Srp2 in vivo. The phosphorylation
levels of these target proteins can be determined by in vivo 32P
labeling of wild-type and dsk1-null mutant cells followed by

FIG. 7. Human SRPK1 is a functional homologue of fission yeast Dsk1. (A)
Overexpression of human SRPK1 gene in S. pombe results in elongated cells
similar to the cells with dsk11 overexpression. Strain 1913 (wild type) was
transformed with either pREP1 or pREP1SRPK1. Exponentially grown cells
were induced for 16 to 18 h in the absence of thiamine and fixed for microscopy.
Left panel and right panel show at a magnification of 3400 the phase-contrast
micrographs of cells harboring pREP1 and pREP1SRPK1, respectively. Fission
yeast cells with human SRPK1 gene overexpressed were elongated (right panel)
compared to those carrying pREP1 vector alone (left panel) under the same
condition. (B) Expression of human SRPK1 gene complements the growth defect
of Ddsk1Dkic1 double-deletion strain (2D4). Strain 2D4 (Ddsk1Dkic1) was trans-
formed with either pREP1 or pREP1SRPK1. The transformants were subse-
quently analyzed on minimal medium plates in the presence of thiamine and
incubated for 4 days at 33°C. Cells carrying pREP1SRPK1 formed healthy col-
onies (right panel), whereas cells harboring pREP1 hardly grew (left panel)
under the same condition.
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immunoprecipitation of individual proteins with antibodies
specifically against each protein. Alternatively or additionally,
it can be done by using 3C5 MAb, which is specific to the
SR-phosphoepitope, to probe these target proteins isolated
from wild-type and dsk1-null mutant cells. We plan to address
this important issue in the future.

It was reported that SRPK1 and Clk/Sty also phosphorylate
human U2AF65 protein in vitro (4), although the consequence
of the phosphorylation on the function of U2AF65 is not
known. Perhaps Dsk1-mediated phosphorylation changes the
ability of Prp2/Mis11 protein to interact with other splicing
factors, such as the fission yeast homologue of human
U2AF35, spU2AF23 (51). Therefore, as in mammalian sys-
tems, phosphorylation and/or dephosphorylation of RS do-
main-containing proteins may regulate the properties of these
proteins and the organization of the protein relay in fission
yeast.

We performed the first cross-species test for viability
complementation of SR protein-specific kinases. Since the dis-
covery of human SRPK1 (12), members of SRPK and Clk/Sty
families were identified from various eucaryotic organisms,
including mammals, Drosophila, and yeasts, based on sequence
analysis and kinase specificity (4, 5, 18, 44, 47, 50, 57). Re-
cently, the SRPK homologue in Saccharomyces cerevisiae,
Sky1, was shown to phosphorylate Npl3, a budding yeast RNA
binding protein containing SR/RS dipeptide repeats (44) and
several mammalian SR proteins in vivo (56). The phosphory-
lation by Sky1 affects the cellular localization and protein in-
teractions of these mammalian SR proteins in yeast cells (56).
Interestingly, mammalian SRPK1 and Clk/Sty specifically sub-
stitute the activity of Sky1 in mediating RS domain interactions
in vivo (56). However, the viability complementation strategy
had not been applied to measure the functional similarity of
these protein kinases prior to this study, perhaps partly due to
their redundancy in cells, so that single mutation in one protein
kinase lacks the apparent phenotype. Our genetic result exhib-
ited that human SRPK1 compensates for the loss of the S.
pombe Dsk1 in vivo and thus is a functional homologue of
Dsk1. Collectively, these data provide both in vitro and in vivo
evidence for the conservation of the SR networks through
evolution.

A common feature shared between Dsk1 and Prp2 is their
dual functional potential. Dsk1 protein plays a role in mitotic
control (46) and is an SR protein-specific kinase involved in
pre-mRNA splicing (12, 47). Prp2 is essential for pre-mRNA
splicing (34, 35) and also affects chromosome segregation (45).
A similar type of dual functional feature is also found in other
proteins such as Ran, a small guanosine triphosphatase. It was
recently shown that Ran functions to trigger the formation of
the mitotic spindle, in addition to its well-characterized role in
nuclear trafficking (32, 52). Another example is fission yeast
Cdc5 protein, which is required for G2/M transition and is a
component of a 40S snRNP-containing complex essential for
pre-mRNA splicing (22). The putative dual functions of Dsk1
and Prp2 in both splicing and the cell cycle may be fulfilled
through the action of Dsk1 on Prp2/Mis11, since we demon-
strated that Dsk1 and Prp2/Mis11 proteins genetically interact
with each other. It is conceivable that differential phosphory-
lation of Prp2/Mis11 may regulate its ability to either partici-
pate in chromosome segregation or to be engaged in splicing.
Phosphorylation by Dsk1 may also modulate the activity of
Prp2/Mis11 through altering its cellular or subnuclear localiza-
tion. In agreement with its connection to the cell cycle, the
phosphorylation state, cellular localization, and kinase activity
of Dsk1 all change in a cell-cycle-dependent fashion (46). Sup-
porting the model in the differential effects of phosphorylation,

distinct phosphorylation sites on budding yeast transcription
factor Pho4 play separable roles in altering its subcellular lo-
calization and interaction with another transcription factor,
providing multiple levels of regulation to control the activity of
Pho4 (17). Thus, studying the S. pombe RS domain-containing
proteins and their kinases may help determine the regulatory
pathways that link pre-mRNA splicing with the cell division
cycle.

Our studies provide novel information about the fission
yeast SR networks. The functional conservation of SRPKs
from fission yeast to human makes S. pombe a valuable system
for studying the biological roles of the kinase family. The
powerful genetics of S. pombe will facilitate the elucidation of
functions of the SR networks in eucaryotic gene expression.
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