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The sphere packing problem

The sphere packing problem in RN , N ≥ 2,
is the question of how large a proportion of
the entire space RN can be filled by non-
overlapping spheres (= balls) of equal ra-
dius, and which particular arrangement of
spheres provides this maximal proportion (=
density)?

More precisely, if CN(a) is a cube of side-
length a centered at the origin in RN , then
density of a sphere packing is

δ = lim
a→∞

volume of the balls in CN(a)

volume of CN(a)
,

and the sphere packing problem is to find
an arrangement of spheres in RN that maxi-
mizes δ.

In order to define a sphere packing, it is
sufficient to define an infinite arrangement
of points in RN , and then use these points
as centers of the spheres of radius equal to
one half of the minimal distance between two
such points.
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Lattice packing

A lattice in RN is a free Z-module of rank

N ; equivalently, it is a discrete co-compact

subgroup of RN .

Every lattice Λ in RN has a basis x1, . . . , xN ∈
RN , so that

Λ =


N∑

i=1

aixi : a1, . . . , an ∈ Z

 = XZN ,

where X = (x1 . . . xN) is the corresponding

N×N basis matrix, whose columns are these

basis vectors.

A sphere packing in RN is called a lattice

packing if the set of centers of spheres is a

lattice.
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Kepler’s conjecture

The maximal possible sphere packing den-

sity in R3 is that of the face-centered cubic

(fcc) lattice

Λfcc =

−1 1 0
−1 −1 1
0 0 −1

Z3,

which is

δfcc =
π√
18

= 0.7405 . . .

This packing density is also achieved by the

hexagonal close-packing in R3, which is not

a lattice packing: it is the union of a lattice

and its translate. In fact, there are infinitely

many nonlattice packings in R3 which achieve

the same density as Λfcc.
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Face-centered cubic lattice packing:

mathPAD Online, vol. 15 (2006)
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Historical note

From Wikipedia:

The conjecture is named after Johannes Ke-

pler, who stated the conjecture in 1611 in

Strena sue de nive sexangula (On the Six-

Cornered Snowflake). Kepler had started to

study arrangements of spheres as a result of

his correspondence with the English mathe-

matician and astronomer Thomas Harriot

in 1606. Harriot was a friend and assistant

of Sir Walter Raleigh, who had set Har-

riot the problem of determining how best to

stack cannon balls on the decks of his ships.

Harriot published a study of various stacking

patterns in 1591, and went on to develop an

early version of atomic theory.
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• In 1831, C. F. Gauss proved that Λfcc gives
optimal packing density among lattices, i.e.
best lattice packing in R3

• In 1953, L. F. Toth proved that the proof of
Kepler’s conjecture can be reduced to a finite
(albeit very large) number of computations

• “Symmetric Bilinear Forms” by J. Mil-
nor and D. Husemoller, 1973, p. 35:

... according to [C. A.] Rogers, “many math-
ematicians believe and all physicists know that
the density cannot exceed π√

18
”

(from Wikipedia)
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• In 1998, T. C. Hales announced the proof,

which was checked by a team of mathemati-

cians, and finally published in 2005/2006 in

the Annals of Mathematics (overview: 120

pages) and Discrete and Computational Ge-

ometry (full version: 265 pages); a part of it

was done in collaboration with (Hales’ grad-

uate student at the time) S. P. Ferguson

• The two-dimensional analogue of Kepler’s

conjecture states that the best circle packing

is given by the hexagonal lattice

Λh =

1 1
2

0
√

3
2

Z2,

which gives density δh = π√
12

= 0.9069 . . . .

The optimality of Λh among all lattice pack-

ings in R2 was proved by C. F. Gauss, and

among all packings in R2 - by Thue in 1910

(a different proof was also given by L. F.

Toth in 1940).
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Here is a picture of the circle packing, given

by the hexagonal lattice:

Lattices, Linear Codes, and Invariants, Part

I, N. D. Elkies, AMS Notices, vol. 47 no. 10
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Back to lattice packings

The sphere packing problem has not been

solved in any dimension > 3. However, the

optimal lattice packing is known in dimen-

sions ≤ 8 and dimension 24 (the famous Leech

lattice - recent result by H. Cohn and A. Ku-

mar (2004)).

For the rest of this talk we will restrict to

lattice packings only.

Given a lattice Λ, define its minimum to be

|Λ| = min{‖x‖ : x ∈ Λ, x 6= 0}.

This is precisely the diameter of a sphere in

the corresponding packing.

Also, determinant of Λ = AZN , where A is

a basis matrix, is

det(Λ) = |det(A)|.

This is the volume of a fundamental domain

of Λ.
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Density of a packing associated with Λ is

equal to the volume of one ball of radius |Λ|
2

divided by the volume of a fundamental do-

main of Λ, i.e.

δ(Λ) =
(
√

π |Λ|)N

2NΓ
(

N
2 + 1

)
det(A)

.

Maximization problem: Find lattices at which

δ achieves local maxima.

Question: How does one search for such

lattices in a given dimension? In particular,

which properties should a lattice have to be

a potential candidate for maximizer of the

density function?
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Similarity

All the properties that we will discuss below

(unless stated otherwise) are preserved under

similarity: Λ1 ∼ Λ2 if

Λ1 = αAΛ2,

for some α ∈ R and A ∈ ON(R). This is an

equivalence relation. In particular, it is easy

to see that δ(Λ1) = δ(Λ2), so we can talk

about packing density of a similarity class,

and search for a similarity class of lattices

with optimal packing density.

From now on when we say that some lattice

has a given property, we will usually mean

that its entire similarity class has this prop-

erty.
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Epstein zeta function: a related problem

For a lattice Λ in RN , define

ζΛ(s) =
∑

x∈Λ\{0}

1

‖x‖2s
,

where s ∈ R>0. This function has a mero-

morphic continuation to the entire complex

plane with only a simple pole at s = N
2 .

Minimization problem: Find unimodular lat-

tices (i.e. with determinant = 1) which min-

imize ζΛ(s) for all s > 0.

The maximization problem for the packing

density function is closely related to the min-

imization problem for the Epstein zeta func-

tion.

Theorem 1 (Ryshkov, 1973).A lattice in RN

that maximizes the packing density is a sta-

tionary point of ζΛ(s) as s →∞ if and only if

it is the absolute minimum of ζΛ(s) as s →∞.
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Remarks

Notice that when we say that a lattice “maxi-

mizes packing density”, we mean that its en-

tire similarity class does that; when we say

that a lattice “minimizes Epstein zeta func-

tion” for some value(s) of s, we mean that

a unimodular lattice from its similarity class

does that.

Although these two problems are closely re-

lated, they do not imply each other. For

instance, in R2 it is known that Λh solves

both of these problems, but in R3 the pack-

ing density maximizer Λfcc does not minimize

the Epstein zeta function for all s > 0 (Sar-

nak, Strömbergsson (2005)). Nevertheless,

developments in the direction of one of these

problems usually lead to progress toward the

other.
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It should also be remarked that the notion

of local extrema for packing density function

and for Epstein zeta function makes sense,

since the space of similarity classes of lattices

in a given dimension, as well as the space of

similarity classes of unimodular lattices (i.e.

intersections of similarity classes with the set

of unimodular lattices), can be endowed with

a metric; we give an example of such a metric

in dimension two further below.

The minimizer of Epstein zeta function for

all s > 0 in RN is known in dimensions N =

2,4,8,24, the last three being recent work

(2005) of Sarnak and Strömbergsson.
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Special classes of lattices

Well-rounded (WR): A lattice Λ in RN is
called well-rounded if its set of minimal vec-
tors

S(Λ) = {x ∈ Λ : ‖x‖ = |Λ|}
spans RN .

Fact 2. The maximization problem for pack-
ing density can be restricted to WR lattices
without loss of generality.

Perfect: Let S(Λ) be the set of minimal vec-
tors of Λ, as before, written as column vec-
tors. Λ is perfect if the set of N×N matrices

{xxt : x ∈ S(Λ)}
spans the group SN(R) of all N×N symmetric
real matrices in the sense that

SN(R) =
∑

x∈S(Λ)

Rxxt.

Fact 3. Perfect lattices are WR, and perfec-
tion is a necessary condition for a lattice to
maximize packing density.
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Spherical designs

A finite subset X of a sphere (not a ball)
ΣN−1(r) of radius r centered at the origin
in RN is called a spherical t-design, where
t ∈ Z>0 if for every polynomial f(x1, . . . , xN) ∈
R[x1, . . . , xN ] of degree ≤ t∫

ΣN−1(r)
f(x)dx =

1

|X|
∑

x∈X

f(x).

We will say that a lattice Λ in RN holds a
spherical t-design if its set of minimal vec-
tors S(Λ) is a spherical t-design. A lattice is
called strongly perfect if it holds a spherical
4-design; this implies perfection.

Theorem 4 (Venkov, 2001). If a lattice Λ
in RN is strongly perfect, then the packing
density function δ has a local maximum at Λ.

There usually are only finitely many strongly
perfect (or even perfect) lattices in a given
dimension. However, the number of strongly
perfect ones is much smaller: in dimension 8
there is one (up to similarity) strongly perfect
lattice, but nearly 11,000 perfect lattices.
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Layers of a lattice

We now discuss a condition in terms of spher-

ical designs, analogous to Venkov’s theorem,

which ensures that a lattice minimizes Ep-

stein zeta-function in a given dimension.

Define the k-th layer of a lattice Λ in RN as

Sk(Λ) = {x ∈ Λ : ‖x‖ = ak},

where ak is the k-th smallest non-zero value

of Euclidean norm assumed by vectors on Λ.

So, for instance, the set of minimal vectors

S(Λ) = S1(Λ).

Theorem 5 (Coulangeon, 2006). If a uni-

modular lattice Λ in RN is such that Sk(Λ)

is a spherical 4-design for all k ≥ 1, then the

Epstein zeta function has a strict local mini-

mum at Λ.
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The hexagonal lattice Λh

We will now concentrate on the situation

in R2, which is well understood. Here the

hexagonal lattice

Λh =

1 1
2

0
√

3
2

Z2

solves both, the maximization problem for

the packing density and minimization prob-

lem for the Epstein zeta function for all s >

0 (this was proved by Rankin (1953), Cas-

sels (1959), Diananda (1964), and Ennola

(1964)).

It is easy to see that |Λh| = 1, det(Λh) =
√

3
2 ,

and

S(Λh) = {±x1,±x2,±x3} ,

where

x1 =

(
1
0

)
, x2 =

 1
2√
3

2

 , x3 =

−1
2√
3

2

 .
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In particular Λh is WR. Moreover, it is the

only lattice in R2 (up to similarity) which has

6 minimal vectors: the rest have 4 or 2. This

is the reason why it is also the only strongly

perfect, and the only perfect, lattice in R2

(up to similarity, again). Indeed, let

A = x1xt
1 =

(
1 0
0 0

)
,

B =
2

3
(x2xt

2 + x3xt
3)−

1

3
x1xt

1 =

(
0 0
0 1

)
,

C =
2√
3
(x2xt

2 − x3xt
3) =

(
0 1
1 0

)
,

then any real symmetric 2×2 matrix is of the

form

M =

(
a c
c b

)
= aA + bB + cC,

which means that x1xt
1, x2xt

2, and x3xt
3 gen-

erate the group S2(R) as a real vector space,

and so Λh is perfect.
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Theorem 6 (Venkov (2001)). A lattice Λ in

RN supports a spherical t-design if and only if

for every a ∈ RN , there exists a real constant

c such that ∑
x∈S(Λ)

(a � x)t = c‖a‖t.

Let a =

(
a1
a2

)
∈ R2, then it is not difficult to

compute that∑
x∈S(Λh)

(a �x)4 =
9

4
(a4

1+a4
2+2a2

1a2
2) =

9

4
‖a‖4.

Therefore, by Theorem 6, Λh is strongly per-

fect.

The statement that Λh is the only perfect

and strongly perfect lattice in R2, up to sim-

ilarity, can be proved with some more work,

although we will not do it here.
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Approximating the hexagonal lattice

Notice that

Λfcc =

−1 1 0
−1 −1 1
0 0 −1

Z3,

which is the maximizer of packing density in

R3, is a WR lattice with an integral basis.

On the other hand, it is not difficult to notice

that no lattice in the similarity class of Λh has

an integral (or rational) basis.

Question: How “well” can Λh be approx-

imated by WR lattices with rational bases

in R2?
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To make this question rigorous, we will need

some notation. For a lattice Λ in R2, we will

write 〈Λ〉 for its similarity class, that is

〈Λ〉 = {αUΛ : α ∈ R>0, U ∈ O2(R)}.

Also define

θ(Λ) = min
{

arcsin

(
|xty|
‖x‖‖y‖

)
: x, y

is a shortest basis for Λ
}
.

By a shortest basis x, y of Λ we mean here

that x is a minimal vector of Λ, and y is a

vector of smallest Euclidean norm such that

x, y is a basis for Λ.

Theorem 7 (Gauss). θ(Λ) ∈
[
π
3, π

2

]
.

It is easy to notice that θ(Λ) remains con-

stant on 〈Λ〉. If x, y is a shortest basis for

Λ with the angle between x and y equal to

θ(Λ), then

det(Λ) = ‖x‖‖y‖ sin θ(Λ).

23



Hence if Λ is WR, then ‖x‖ = ‖y‖ = |Λ|, and

so

det(Λ) = |Λ|2 sin θ(Λ).

Let Sim(R2) be the set of all similarity classes

of WR lattices in R2, then

sin θ(Λ) : Sim(R2) → sin
[
π

3
,
π

2

]
=

[√
3

2
,1

]
is a bijection. For every two 〈Λ1〉 and 〈Λ2〉 in

Sim(R2), define

ds(Λ1,Λ2) = |sin θ(Λ1)− sin θ(Λ2)| .

It is easy to see that ds is a metric on Sim(R2).

If Λ is a WR lattice in R2, then the density

of circle packing given by Λ is

δ(Λ) =
π|Λ|2

4det(Λ)
=

π

4 sin θ(Λ)
.

This implies that the smaller is sin θ(Λ) the

bigger is δ(Λ), which again explains why Λh

maximizes δ: it represents the only similarity

class with sin θ(Λ) =
√

3
2 , the smallest possi-

ble value.
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Theorem 8 (F. (2007)). There exists an in-

finite sequence of non-similar WR sublattices

of Z2, {Λk}∞k=1, such that

〈Λk〉 −→ 〈Λh〉 , as k →∞,

with respect to the metric ds on Sim(R2).

The rate of this convergence for all k > 1

can be expressed by

1

3
√

3 |Λk|2
< ds(Λh,Λk) <

1

2
√

3 |Λk|2
,

where |Λk|2 = O(14k) as k → ∞. Moreover,

this inequality is sharp in the sense that

1

3
√

3 |Λ|2
< ds(Λh,Λ),

for every WR sublattice Λ ( Z2. For the

case of Λ = Z2, which is precisely Λ1 in our

sequence, we clearly have ds(Λh, Z2) = 2−
√

3
2 .
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Corollary 9.Each similarity class 〈Λk〉 of The-

orem 8 gives circle packing density δ(Λk) such

that

δ(Λh)

 1

1 + 1
723×(13.928)k−1


< δ(Λk)

< δ(Λh)

 1

1 + 0.92
723×(13.947)k−1

 ,

where δ(Λh) = π√
12

= 0.9069... is the circle

packing density of Λh.
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