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Thue (1909) and Siegel (1929)

Let

Ax = 0 (1)

be an M × N linear system of rank M < N

with integer entries. Define the height of a
vector x ∈ ZN to be

|x| = max
1≤i≤N

|xi|,

and similarly let the height of the matrix

A = (aij)1≤i≤M,1≤j≤N

be

|A| = max{|aij| : 1 ≤ i ≤M,1 ≤ j ≤ N}.

Siegel’s Lemma: There exists a non-trivial
integral solution x to (1) with

|x| ≤ (1 +N |A|)
M

N−M , (2)

and the exponent M
N−M in (2) is sharp.

This principle can be generalized and extended
over global fields.
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Notation and heights

Throughout this talk, K will be either a num-

ber field, a function field, or algebraic closure

of one or the other; in any case, we write K

for the algebraic closure of K, so it may be

that K = K. In fact, until further notice

assume that K 6= K.

By a function field we will always mean a fi-

nite algebraic extension of the field K = K0(t)

of rational functions in one variable over a

field K0, where K0 can be any field.

In the number field case, we write d = [K : Q]

for the global degree of K over Q; in the

function field case, the degree is d = [K : K].

Let M(K) be the set of places of K. For each

place v ∈M(K), write Kv for the completion

of K at v and let dv be the local degree of K

at v, which is [Kv : Qv] in the number field

case, and [Kv : Kv] in the function field case.
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For each place u of the ground field, be it Q
or K, we have ∑

v∈M(K),v|u
dv = d. (3)

If K is a number field, then for each place

v ∈ M(K) we define the absolute value | |v
to be the unique absolute value on Kv that

extends either the usual absolute value on R
or C if v|∞, or the usual p-adic absolute value

on Qp if v|p, where p is a prime.

If K is a function field, then all absolute val-

ues on K are non-archimedean. For each

v ∈ M(K), let Ov be the valuation ring of

v in Kv and Mv the unique maximal ideal in

Ov. We choose the unique corresponding ab-

solute value | |v such that:

(i) if 1/t ∈Mv, then |t|v = e,

(ii) if an irreducible polynomial p(t) ∈ Mv,

then |p(t)|v = e−deg(p).
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In both cases, for each non-zero a ∈ K the
product formula reads∏

v∈M(K)

|a|dvv = 1. (4)

We can now define local norms on each KN
v :

|x|v = max
1≤i≤N

|xi|v,

and for all archimedean places v also define

‖x‖v =

 N∑
i=1

|xi|2v

1/2

,

for each x = (x1, ..., xN) ∈ KN
v . Then define

a projective height function on KN by

H(x) =
∏

v∈M(K)

|x|dv/dv

for each x ∈ KN . The normalizing exponent
1/d in the definition ensures that H is ab-
solute, i.e. does not depend on the field
of definition. H is defined on the projective
space PN−1(K):

H(ax) = H(x), ∀ 0 6= a ∈ K, x ∈ KN ,

which is true by the product formula.
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We also define the inhomogeneous height
on KN by

h(x) = H(1,x),

for all x ∈ KN , N ≥ 1. It is easy to see that

h(x) ≥ H(x) ≥ 1,

for all non-zero x ∈ KN .

While the advantage of H is its projective na-
ture, h is more sensitive when measuring the
”arithmetic complexity” of a specific vector,
not just the corresponding projective point.

We also define height on subspaces of KN .
Let V ⊆ KN be an L-dimensional subspace,
and let x1, ...,xL be a basis for V . Then

y := x1 ∧ ... ∧ xL ∈ K(NL)

under the standard embedding. Define

H(V ) :=
∏
v-∞
|y|dv/dv ×

∏
v|∞
‖y‖dv/dv .

This definition is legitimate, i.e. does not
depend on the choice of the basis. Hence we
have defined a height on points of a Grass-
manian over K.
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Generalized Siegel’s lemma

The following general version of Siegel’s lemma

was proved by Bombieri and Vaaler (1983) if

K is a number field, by Thunder (1995) if K

is a function field, and by Roy and Thunder

(1996) if K is the algebraic closure of one or

the other.

Theorem 1. Let K be a number field, a func-

tion field, or the algebraic closure of one or

the other. Let V ⊆ KN be an L-dimensional

subspace, 1 ≤ L ≤ N . Then there exists a

basis v1, ..., vL for V over K such that

L∏
i=1

H(vi) ≤ CK(L)H(V ), (5)

where CK(L) is an explicit field constant. In

fact, if K is a number field or Q, then even

more is true: there exists such a basis with

L∏
i=1

H(vi) ≤
L∏
i=1

h(vi) ≤ CK(L)H(V ). (6)
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It is interesting to note that the transition
from projective height H to inhomogeneous
height h in Theorem 1 is quite straightfor-
ward over number fields (in other words, (6)
is a fairly direct corollary of (5) in the num-
ber field case and over Q). In the function
field case, however, such a transition is quite
non-trivial. In fact, it seems unlikely that a
direct analogue of (6) would hold over an
arbitrary function field. On the other hand,
it is possible to produce such a bound over
function fields of genus 0 or 1.

Theorem 2 (F., 2008). Let K0 be any per-
fect field and let Y be a smooth projective
curve over K0 of genus g = 0 or 1, i.e. Y
is either a rational or an elliptic curve. Let
K = K0(Y ) be the field of rational functions
on Y over K0, and let V ⊆ KN be an L-
dimensional subspace, 1 ≤ L ≤ N . Then
there exists a basis u1, ...,uL for V over K
such that

L∏
i=1

H(ui) ≤
L∏
i=1

h(ui) ≤ egLCK(L)H(V ). (7)

where CK(L) is as above.
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The proof of Theorem 2 involves an applica-

tion of Theorem 1, a weak form of Riemann-

Roch theorem, and a special representation

for degree zero divisors, which is the under-

lying reason for the existence of group struc-

ture on elliptic curves.

The bounds of (5) - (7) are sharp in the

sense that the exponents on H(V ) are small-

est possible.

For many applications it is also important

to have refinements of Siegel’s lemma with

some additional algebraic conditions. One

such example is the so called Faltings’ ver-

sion of Siegel’s lemma, which guarantees

the existence of a point of bounded norm in

a vector space V ⊆ RN outside of a subspace

U ( V . It was proved by Gerd Faltings (1992)

and applied in his famous work on Diophan-

tine approximation on abelian varieties.
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New refinements

Let us say that a field K is admissible if it

is a number field, Q, or the field of ratio-

nal functions on a smooth projective curve

of genus 0 or 1 over a perfect field.

Theorem 3 (F., 2008). Let K be an admis-

sible field. Let N ≥ 2 be an integer, and

let V be an L-dimensional subspace of KN ,

1 ≤ L ≤ N . Let ZK be a union of algebraic

varieties defined over K such that V * ZK,

and let M be sum of degrees of these vari-

eties. Then there exists a point x ∈ V \ ZK
such that

H(x) ≤ h(x) ≤ AK(L,M)H(V ), (8)

where AK(L,M) is an explicit field constant.

The exponent 1 on H(V ) in the bound of (8)

is best possible.
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Sketch of the proof of Theorem 3

• Reduction to the case of one polynomial

• Combinatorial Nullstellensatz on a subspace

• Siegel’s lemma (Theorems 1 and 2)

• Inhomogeneous height inequality:

h

 L∑
i=1

ξivi

 ≤ LδH(ξ)
L∏
i=1

h(xi), (9)

where ξ ∈ KL, v1, . . . ,vL ∈ KN , and

δ =

{
1 if K is a number field or Q
0 otherwise.

It should be remarked that the inequality (9)
no longer holds if the inhomogeneous height
h in the upper bound is replaced with the
projective height H.

• Assuming we have a bound on H(ξ), we can
combine (9) with Siegel’s lemma to finish the
proof.
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We want to construct a set S ⊆ K with |S| >
M so that H(ξ) is small for every ξ ∈ SL.

If K is a number field with the number of
roots of unity ωK > M , Q, or function field
with either an infinite field of constants or
a finite field of constants Fq so that q > M ,
then there exists such a set S with H(ξ) = 1
for every ξ ∈ SL.

The main difficulty arises if K is a number
field with ωK ≤ M or if K is a function field
over a finite field Fq with q ≤M .

In both cases the construction of S comes
from a certain lattice in Euclidean space. In
the number field case, this lattice is the im-
age of the ring of algebraic integers OK under
the standard embedding of K into Rd.

In the function field case, this lattice is the
image of the ring of rational functions with
all zeros and poles on the curve over which
K is defined under the principal divisor map.

Lattice point counting estimates are then used
to construct S.
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Algebraic integers of small height

As a corollary of the proof of Theorem 3, we

produce a uniform lower bound on the num-

ber of algebraic integers of bounded height

in a number field K. The subject of count-

ing algebraic numbers of bounded height has

been started by the famous asymptotic for-

mula of Schanuel. Some explicit upper and

lower bounds have also been produced later,

for instance by Schmidt. Recently a new

sharp upper bound has been given by Loher

and Masser. We produce the following es-

timate for the number of algebraic integers.

Corollary 4 (F., 2008). Let K be a number

field of degree d over Q with discriminant DK
and r1 real embeddings. Let OK be its ring

of integers. For all R ≥ (2r1|DK|)1/2,

(2r1|DK|)−1/2Rd < |{x ∈ OK : h(x) ≤ R}| .
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