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Thue (1909) and Siegel (1929)

Let
Ax =0 (1)

be an M x N linear system of rank M < N
with integer entries. Define the height of a
vector x € Z to be

| = max |z,
1<i< N

and similarly let the height of the matrix

A= (a;j)1<i<M1<j<N
be

Al = max{|a;j| 11 <i< M, 1<j <N}

Siegel’s Lemma: There exists a non-trivial
integral solution  to (1) with

M
x| < (1+ N|A[)N-M, (2)

and the exponent 22 in (2) is sharp.
This principle can be generalized and extended

over global fields.



Notation and heights

Throughout this talk, K will be either a num-
ber field, a function field, or algebraic closure
of one or the other; in any case, we write K
for the algebraic closure of K, so it may be
that K = K. In fact, until further notice
assume that K # K.

By a function field we will always mean a fi-
nite algebraic extension of the field & = Kg(t)
of rational functions in one variable over a
field Ko, where K can be any field.

In the number field case, we write d = [K : Q]
for the global degree of K over Q; in the
function field case, the degree is d = [K : R].

Let M(K) be the set of places of K. For each

place v € M(K), write K, for the completion

of K at v and let d, be the local degree of K

at v, which is [Ky : Q] in the number field

case, and [Ky : K] in the function field case.
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For each place u of the ground field, be it Q
or K, we have

S dy=d. (3)

veEM(K),v|u

If K is a number field, then for each place
v € M(K) we define the absolute value | |
to be the unique absolute value on K, that
extends either the usual absolute value on R
or C if v|oo, or the usual p-adic absolute value
on Qyp if v|p, where p is a prime.

If K is a function field, then all absolute val-
ues on K are non-archimedean. For each
v € M(K), let O, be the valuation ring of
v in Ky and 9, the unigue maximal ideal in
. We choose the unique corresponding ab-
solute value | |, such that:

(i) if 1/t € My, then [t|y = e,

(ii) if an irreducible polynomial p(t) € My,
then |p(t)]y = e~ 9e9(),



In both cases, for each non-zero a € K the
product formula reads

I Jlalzv=1. (4)

veM(K)

We can now define local norms on each K.V:

|a’:|v = mMmaxXx |$i|'v,
1<i<N

and for all archimedean places v also define

N ] 1/2
lz]lo = (Z Iwz'lv) :
i=1

for each & = (z1,...,zyx) € K. Then define
a projective height function on KV by

Hxz)= [[ |z
veM(K)

for each € K&. The normalizing exponent
1/d in the definition ensures that H is ab-
solute, i.e. does not depend on the field
of definition. H is defined on the projective
space PV -1(K):

H(ax) =H(z), VO#ace K, ze KV,
which is true by the product formula.



We also define the inhomogeneous height
on KN py

h(x) = H(1,z),
for all z € K&, N > 1. It is easy to see that

h(x) > H(x) > 1,
for all non-zero = € KV,

While the advantage of H is its projective na-
ture, h is more sensitive when measuring the
"arithmetic complexity” of a specific vector,
not just the corresponding projective point.

We also define height on subspaces of K.
Let V C KV be an L-dimensional subspace,
and let x1,...,xy, be a basis for V. Then

N
Yy . =x1 N... NI, € K(L)
under the standard embedding. Define

H(V) = T lyle* < T lwlle’®.

v{oo v]oo
This definition is legitimate, i.e. does not
depend on the choice of the basis. Hence we

have defined a height on points of a Grass-
manian over K.



Generalized Siegel’s lemma

The following general version of Siegel’'s lemma
was proved by Bombieri and Vaaler (1983) if
K is a number field, by Thunder (1995) if K
is a function field, and by Roy and Thunder
(1996) if K is the algebraic closure of one or
the other.

Theorem 1. Let K be a number field, a func-
tion field, or the algebraic closure of one or
the other. Let V C K&V be an L-dimensional
subspace, 1 < L < N. Then there exists a
basis v1,...,v; for V over K such that

L
1 H(v;) < Cx(LYHV), (5)
i=1

where Ci (L) is an explicit field constant. In
fact, if K is a number field or Q, then even
more is true: there exists such a basis with

L L
[I H(v) < 1] h(v)) < Cr(LYH(V).  (6)
i=1 i=1



It is interesting to note that the transition
from projective height H to inhomogeneous
height A in Theorem 1 is quite straightfor-
ward over number fields (in other words, (6)
is a fairly direct corollary of (5) in the num-
ber field case and over Q). In the function
field case, however, such a transition is quite
non-trivial. In fact, it seems unlikely that a
direct analogue of (6) would hold over an
arbitrary function field. On the other hand,
it is possible to produce such a bound over
function fields of genus O or 1.

Theorem 2 (F., 2008). Let Ry be any per-
fect field and let' Y be a smooth projective
curve over Ko of genus g = 0 or 1, i.e. Y
is either a rational or an elliptic curve. Let
K = Ro(Y) be the field of rational functions
on'Y over R, and let V. C K& be an L-
dimensional subspace, 1 < L < N. Then
there exists a basis uwy,...,u;, for V. over K
such that

L L
[T H(u;) < [[ h(w;) < 9O (LYH(V). (7)

where Ci (L) is as above.



The proof of Theorem 2 involves an applica-
tion of Theorem 1, a weak form of Riemann-
Roch theorem, and a special representation
for degree zero divisors, which is the under-
lying reason for the existence of group struc-
ture on elliptic curves.

The bounds of (5) - (7) are sharp in the
sense that the exponents on H(V') are small-
est possible.

For many applications it is also important
to have refinements of Siegel’'s lemma with
some additional algebraic conditions. One
such example is the so called Faltings’ ver-
sion of Siegel’'s lemma, which guarantees
the existence of a point of bounded norm in
a vector space V C RN outside of a subspace
U C V. It was proved by Gerd Faltings (1992)
and applied in his famous work on Diophan-
tine approximation on abelian varieties.



New refinements

Let us say that a field K is admissible if it
is a number field, Q, or the field of ratio-
nal functions on a smooth projective curve
of genus O or 1 over a perfect field.

Theorem 3 (F., 2008). Let K be an admis-
sible field. Let N > 2 be an integer, and
let V. be an L-dimensional subspace of KN,
1< L<N. Let Zy be a union of algebraic
varieties defined over K such that V ¢ Zj,
and let M be sum of degrees of these vari-
eties. Then there exists a point x € V \ Zg
such that

H(x) < h(x) < Ag (L, M)H(V),  (8)

where A (L, M) is an explicit field constant.

The exponent 1 on H(V) in the bound of (8)
is best possible.
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Sketch of the proof of Theorem 3

e Reduction to the case of one polynomial
e Combinatorial Nullstellensatz on a subspace
e Siegel's lemma (Theorems 1 and 2)

e Inhomogeneous height inequality:

L L
h (Z &%‘) < L°H(E) ] h(=), (9)
i=1 —1

1=

where £ € Kt vq,...,v; € K&, and

1 if K is a number field or Q
o = )
O otherwise.

It should be remarked that the inequality (9)
no longer holds if the inhomogeneous height
h in the upper bound is replaced with the
projective height H.

e Assuming we have a bound on H(§), we can
combine (9) with Siegel’s lemma to finish the
proof.
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We want to construct a set S C K with |S| >
M so that H(&) is small for every & € SL.

If K is a number field with the number of
roots of unity wx > M, Q, or function field
with either an infinite field of constants or
a finite field of constants F, so that ¢ > M,
then there exists such a set S with H(¢) =1
for every € € SL.

The main difficulty arises if K is a number
field with wgxr < M or if K is a function field
over a finite field I, with ¢ < M.

In both cases the construction of S comes
from a certain lattice in Euclidean space. In
the number field case, this lattice is the im-
age of the ring of algebraic integers Og under
the standard embedding of K into RY.

In the function field case, this lattice is the
image of the ring of rational functions with
all zeros and poles on the curve over which
K is defined under the principal divisor map.

Lattice point counting estimates are then used
to construct S.
12



Algebraic integers of small height

As a corollary of the proof of Theorem 3, we
produce a uniform lower bound on the num-
ber of algebraic integers of bounded height
in @ number field K. The subject of count-
ing algebraic numbers of bounded height has
been started by the famous asymptotic for-
mula of Schanuel. Some explicit upper and
lower bounds have also been produced later,
for instance by Schmidt. Recently a new
sharp upper bound has been given by Loher
and Masser. We produce the following es-
timate for the number of algebraic integers.

Corollary 4 (F., 2008). Let K be a number
field of degree d over Q with discriminant Dy
and rq1 real embeddings. Let Oy be its ring
of integers. For all R > (2"1|Dg|)Y/?,

("D YV2 R < {x € O : h(z) < R}.
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