Claremont Colleges

Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2010

Arithmetic on Specializable Continued Fractions

Ross C. Merriam
Harvey Mudd College

Recommended Citation

Merriam, Ross C., "Arithmetic on Specializable Continued Fractions" (2010). HMC Senior Theses. 17.
https://scholarship.claremont.edu/hmc_theses/17

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact

scholarship@cuc.claremont.edu.


https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

Arithmetic on Specializable Continued
Fractions

Ross Merriam

Nicholas Pippenger, Advisor

Christopher Towse, Reader

April, 2010

HARVEY MUDD

C O L L E G E

Department of Mathematics



Copyright (© 2010 Ross Merriam.

The author grants Harvey Mudd College the nonexclusive right to make this work
available for noncommercial, educational purposes, provided that this copyright
statement appears on the reproduced materials and notice is given that the copy-
ing is by permission of the author. To disseminate otherwise or to republish re-
quires written permission from the author.



Contents

(I Introduction|

2 Research in Specializable Continued Fractions|

[3 Preliminary Results|

4 Gosper’s Algorithm|

B Conf [Frachi ror T P Serics)
6 Further Researchl

A Mail 2 S Codd

Bibliography|

11

13

15

17






Chapter 1

Introduction

Let a continued fraction be an object given by the sequence

1

{ﬂi} = [ag,al,az,...] =ag+
a; +
a +

1
a3_|_...

where a; € Z for all i > 0. We call the continued fraction simple if
a; > 0fori > 0.

The elements of the sequence {a;} are referred to as the partial quotients or
partial denominators of the continued fraction.

Well-known theory of simple continued fractions Hardy and Wright
(1979) shows that if the sequence of partial quotients is finite, then the frac-
tion corresponds to a rational number while infinite sequences correspond
exactly to irrationals. Thus, we may view simple continued fractions as an-
other representation of points on the real line. This notion is enhanced by
the fact that the convergents

{ai}n = [a()/ ai,az,... /an]

for an infinite continued fraction A = {a;} correspond to the best rational
approximations of the irrational A. Thus it is clear that as partial quotients
are added to the sequence, they make successively finer and finer adjust-
ments to the approximation. From this result the study of such objects be-
comes quite interesting. Since they represent real numbers in a radically
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different way, it stands to reason that a proper theory of continued frac-
tions will provide insight into the real numbers that conventional repre-
sentations cannot. For example, sufficient conditions on the convergents of
a continued fraction will show the number it represents is transcendental.
However, the task of finding a simple continued fraction representa-
tion for a given real number has proven to be difficult in the general case.
Very few examples exist for an irrational with predictable patterns in its
sequence of partial quotients. The most notable of these examples are
quadratic irrationals, that is numbers of the form ”J“Zﬁ, where a, b, ¢, d rep-
resent integers, which by Euler and Lagrange are known to have eventu-
ally periodic simple continued fractions. To obtain more general results,
it is natural to try to extend the partial quotients into the polynomial ring
Z[X]. Any result proved for such a continued fraction would provide in-
sight into an infinite class of simple continued fractions, corresponding to
specific, integer values of X. Formalizing this notion, define a specializable
continued fraction van der Poorten and Shallit| (1993) to be of the form

1

{3;(X)} = [a0(X),a1(X),a2(X),...] = ap(X) +

a1 (X) + ]

LZZ(X) + W

where
a; € Z[X]Vi.

Also, we stipulate that
deg(a;) > 0 fori > 0.

Unless otherwise stated, we take all continued fractions in this paper as
being specializable in this sense. Note that the convergents of these frac-
tions are rational functions of X rather than rational numbers, so it will be
prudent to consider specializable continued fractions as the limiting case
for the sequence of functions defined by its convergents. Natural questions
then arise about the nature of specializable continued fractions. Of these,
the following are considered in this paper:

e When is the sum or product of specializable continued fractions itself
specializable?

e Under what conditions will a formal power series have a specializ-
able continued fraction expansion?



Chapter 2

Research in Specializable
Continued Fractions

Recently, several interesting specializable continued fraction expansions
have been found describing infinite series and products. Interestingly, the
series given by

oo

y L

FH ’

n=0 X
where F, denotes the n!" Fibonacci number with Fy = 0,F; = 1, has a spe-
cializable continued fraction expansion. Using this as the primary result, it
is shown in van der Poorten and Shallit (1993) as a corollary that the sum

2742724273 4270 4

converges to a transcendental number. These results are particularly inter-
esting as they appear to generalize nicely to statements about any increas-
ing sequence of nonnegative integers satisfying a sufficient recurrence re-
lation and not simply the Fibonacci sequence. Van der Poorten and Shallit
conjecture to this possibility and such generalizations which will be dis-
cussed later in the paper with other possibilities for continuing research.
Continuing, we consider |Cohn! (1996), in which Cohn notices that the

following series

=1

Z 22"

n=0

=10,1,4,2,4,4,6,4,...]

is merely a single specialization of the continued fraction investigated by
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Shallit| (1979, |1982) given by

<1
x2"

=[0,x—1,x+2,xx,x—2,x,x+2,...]

n=0

Further generalizing this result, Cohn classifies all f(x) for which the

series

i 1

n=0 f " (x) ’
where f" denotes the n’ iterate of f, has a specializable continued fraction
expansion. It is also found in the literature that there exist many infinite
products with easily understood specializable continued fraction expan-
sions. Mc Laughlin| (2007) shows that the infinite product

© 1
[0+ 5y

has a specializable continued fraction expansion for various families of
polynomials f. He is also able to show transcendence of the irrationals
gained by specializing a given expansion under some simple conditions.

These results illustrate the power of specializable continued fractions,
allowing one to prove useful results on larger families of numbers than
working with simple continued fractions. This increased efficiency helps
mitigate the difficulty of finding specific continued fraction expansions for
real numbers but does not eliminate it. We are still left with the dilemma
of finding specializable continued fractions, for which the computations
are much more grueling. It would thus be useful to obtain other special-
izable continued fractions from known ones, essentially discovering these
new continued fractions for free. Cohn leaves as an open question in Cohn
(1996) the conditions under which a sum of specializable continued frac-
tions is itself specializable and it is my purpose to seek an answer to this
question and generalizations thereof. It is my hope to then extend the prop-
erties for arithmetic on specializable continued fractions to obtain similar
results to those discussed in this section.



Chapter 3

Preliminary Results

Recall that the nth convergent to an infinite continued fraction is formed
by truncating the sequence after n + 1 terms, including the Oth. This finite
sequence corresponds as a continued fraction to a rational number, denoted
pn/ qn. With this notation, we take the following well-known properties of
continued fractions to be true:

Theorem 1. (Fundamental Results) Let % = lag,a1,...,an]. Then
pn=anpn-1+pu—2 (m>1) p1=1,py=ao

Gn = Andn—1+qn—2 (M >1) g1 =0,90=1
Prn—1— Pn1qn = (=1)""!

[ﬂn,...,HQ,[ll] = o
In—1
[...,a,0,b,...]=[...,a+Db,...]
L..,a,—b,...]=..,8,0,-1,1-1,0,8] = [...,a—1,1,b—1].

Proofs of these results can be found in most number theory texts, such
asHardy and Wright (1979). These results easily generalize to specializable
continued fractions, as seen in van der Poorten| (1998). Note that the first
three of these results follow from the matrix identity

a 1 a1 a, 1 _ (Pn Pna
1 0/\1 0/ \1 0 Gn Gn-1)
Lastly we take without proof a result known as the Folding Lemma. A

proof and generalization of the idea can be found in Cohn (1996). Further
discussion of the lemma can be found invan der Poorten and Shallit (1992).
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Lemma 1 (Folding Lemma). Define the word w,,” by w;,, = [a1,a2,a3, . ..,a,).
Similarly, let w,” = [an,ay—1,...,a1] and —w, = [—ay, —ay, ..., —ay,]. Then
it follows that

no, (=1)"
Py (1)
In X

This lemma takes advantage of a symmetry present in many continued
fractions and allows for the application of induction principles in proving
a supposed continued fraction expansion is correct for all convergents. We
can then conclude the validity of a continued fraction expansion for the
infinite case, making this lemma invaluable to the study of specializable
continued fractions.

= [ag, w,, , x, —w, .



Chapter 4

Gosper’s Algorithm

We first examine the question of arithmetic on simple continued fractions,
with the desire to generalize any results to the realm of specializable con-
tinued fractions. However, due to their unique structure, there exists no
natural way of performing arithmetic on these objects. Despite this, it has
been shown in Gosper| (1972) that continued fractions are amenable to the
basic arithmetic operations. As the algorithm developed in |Gosper| (1972)
is invaluable to the purpose of this thesis, an analysis of how it operates is
provided. Those wishing a more detailed discussion of the algorithm may
consult the original source. Consider two simple continued fractions

A =lap,m,ay,...]

and
B = [by, by, by, ...].

To calculate the ratio

_ aAB+bA+cB+d
~ eAB+ fA+gB+h’

where a,b,c,d, ¢, f,g, h are constants, note that for all A,B € R, X varies
between between the ratios ¢, %’ §, %. Expressions such as X are called bi-
homographic functions in the language of (Gosper| (1972). If the integral
parts of these ratios are equal, we may conclude that value is the integral
part of X. To achieve this condition, the algorithm uses the following iden-
tity:

1

[Llo,lll,EIQ,...] =ag+ —.
[a1,az,...]
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Applying this iteratively to either A or B will manipulate the four quo-
tients until they have equal integral parts. For example, once a value for
ap is input into the algorithm, ag 41/ A is substituted back into the expres-
sion for X, where it is understood that the placeholder A is now given by
A = [ay,ay,...]. Notably, this substitution yields

a(ag+ 5)B+b(ag+ %) +cB+d  (apa+c)AB+ (aph+d)A+aB+b
e(ag+ L)B+ flag+ L) +gB+h (e +g)AB+ (aof +h)A+eB+ f’

which is another bihomographic function. Substituting for B yields similar

results, reversing the roles of b and f with those of ¢ and g, respectively.

Once the ratios agree in their integral parts, applying the same identity to

X = [x0,x1, X2, ...]| we see that the next output term, x1, is the integral part
L FXO] which is equivalent to

[x0,%1,%2,...
1 B eAB+ fA+g¢B+h
73?}?1??1;%% —x9 (a—x0e)AB+ (b—xof)A+ (c — x0g)B+ (d — xoh)’

The algorithm may then be applied again to find the next partial quo-
tient for X. Since this method may be applied for any bihomographic func-
tion X, we see that surprisingly, addition, subtraction, multiplication, and
division can be performed using the same algorithm, varying only the val-
ues of the constants 4,b, ¢, ..., h. To obtain the basic arithmetic operations,
let C = (a,b,c,d,e, f,g,h) take on the following values:

A+B:C=(0,1,1,0,0,0,0,1)

A—B:C=(0,1,-1,0,0,0,0,1)
AxB:C=(1,0,0,0,0,0,0,1)
A/B:C=(0,1,0,0,0,0,1,0).

Using this algorithm, I have created a program for determining X from
its constants. A discussion of and link to the source code (in Mathematica)
for this program is provided in Appendix[Al

To better understand the given algorithm, consider the known simple
continued fractions for B = v/6 = 2,2,4,2,4,2,4,...] and A = coth1 =

[1,3,5,7,9,...]. To calculate F(A,B) = 22x§:é4’ we begin with the following




two-dimensional array:

1 0
0 0
2 0 2
1 1
2
4

In this array the initial matrix in the upper-right corner represents the
values of the constants a, b, c, . . ., h for the bihomographic function F. Using
this array it is trivial to notice that substituting ag + & for A is equivalent
to first multiplying the four coefficients 2 { = % ‘1) by a9 = 1 and adding the
result to the matrix 4% = J9. The resultant matrix is then placed to the left
of the previous matrix for ¥ f. The new matrix of coefficients is obtained
by ignoring the previous values for ¢ g, and considering only the left-most
eight digits in the array.

Substitutions for B can be handled similarly, this time working down
the array by first multiplying ¢ ¢ by by, adding the result to j)r 4, and placing
the new matrix below the previous array. In this case we then ignore all but
the bottom eight digits of the array.

For the given example, note that f = h = 0, so the quotients %,% must

be shifted out of the array by substituting for B. This yields the new array:

7 5 3 1
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The constants of F now take on the values § ? ; Z = g % (2)

9. Since ¢ and
? have equal integer part, we next shift left by substituting for A. After two

such substitutions the following array is generated:

7 5 3 1

20 5 5 0 2
14 4 2 2

The resultant matrix gives immediately that |2 ] = L%j =gl = 14] =

1,50 F(A, B) has 0" partial quotient equal to 1. After substituting 1+ ﬁ

is staggered as above with the

resultant matrix to demonstrate the new constant values ¢ Jli g d - 1742

Continuing in this manner, we find that F(A,B) = [1,2,1,2,1,1,...].

This algorithm will apply as long as the manipulations are carried out
in a Euclidean Domain. Thus we can consider the case when A and B
have partial quotients in Q(X), the ring of polynomials with rational co-
efficients. This domain encompasses all specializable continued fractions,
since Z(X) C Q(X). However, this shows that F(A, B) may have partial
quotients in Q(X) even if both A and B are specializable. Thus, while a
generalized Gosper algorithm will determine the specializability of F for
given A, B, it is ill-equipped to answer this question in the general case.

for F(A, B), the new matrix of values for £ Z,



Chapter 5

Continued Fractions for Formal
Power Series

As infinite specializable continued fractions correspond to the limit of ra-
tional functions, it is reasonable to attempt to represent specializable con-
tinued fractions as formal power series, that is objects of the form:

o X",cpn € R Vi >0.

Here, {c, } is called the sequence of coefficients, and For a general back-
ground on the ring of formal power series, consult|Wilf (2006).

Within this ring, addition and multiplication are well-defined, so given
some relationship between the partial quotients of A = {4;(X)} charac-
terizing when sums and products of specializable continued fractions are
still specializable is reduced to finding such sums and products that re-
tain the desired relationship. However, for these formal power series to be
well-defined, they should also be realizable as the limit of the power se-
ries which correspond to the convergents of A. Convergence in this sense
means that the sequence of coefficients for the i convergent of A, denoted

A; = [a0(X),a1(X),...,a;(X)], agrees to more and more terms with the se-
ries for A as i is incremented. Equating A; to the power series X7 ¢, X",

we find that ¢y = [a0(0),a1(0), ..., a;(0)]. This statement shows that A; has
as a constant term in the corresponding formal power series a finite sim-
ple continued fraction, that is, a rational number. However, as i increases,
more and more terms are added to this fraction, so the sequence of con-
stant terms for the A; represent convergents of a simple continued fraction,
which will not in general agree for any two indices. Thus the sequence of
convergents for A does not converge as a formal power series.
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Without convergence in this sense, it becomes necessary to examine a
given series and attempt to extrapolate a specializable continued fraction.
To this end, consider the ratio of power series given by

X X2 4 ...
€10 + C11 X + C12 2—|— ,ci]-e]R Vi, j.
C00+C01X+C02X + -

f(X) =

Following the method of Viskovatov (Jones et al., 2008), we find that

F(X) = cotenX+epXi4- 1 B c10
T+ X X2+ w1 cotenX+enXet o con + XFi(X
weX @i a0 PG
ot X+ X+

1(X) =
AX) cl0+ e X +cpX? 4 -
Cij = Ci—1,0Ci—2,j+1 — Ci20Ci-1,j+1, i=>2 j=>0.

Using the given relationship between the cgjs, one may iterate this pro-
cess to find

_ Cn+10F Cnp11 X + Cppo1 X2 4+ - _ Cn+1,0 0> 1
Cn0+cn1X+Cn2X2+ cee Cn0+an+1(X), -

fu(X)
This sequence readily gives the result

€10
CzoX

f(X) =

Coo +
C30X

o+ ——F———
C20+"'

Setting coo = 1, coj = 0 Vj > 1 yields a continued fraction expansion for
the power series f(X) = c19 + c11 X + cp X2+ ..

€10
— C11X
2
(cr0c12 — c7p) X

f(X) =
1+

€10

From this we see that in general, a formal power series has a continued
fraction expansion that is not specializable, and in fact carries the indeter-
minate X in the partial numerators of the fraction, not the partial denomi-
nators.



Chapter 6

Further Research

While we have not explicitly answered the initial question of when sums
and products of specializable continued fractions are themselves specializ-
able, the results of the previous chapters suggest various avenues for fur-
ther research into the problem. Bringing this question into the realm of for-
mal power series appears to be a fruitful method for solving the problem,
as there is a wealth of literature on finding continued fraction expansions
of all forms for various series including Cohn (1996), Mc Laughlin| (2007),
Jones et al|(2008), van der Poorten (1998), and Wall (1948). Specifically, one
may try to find an equivalence relation that takes a continued fractions of
the form

€10

- C11X
(c10c12 — ¢3;) X

—Ccyp 4+
and equates it with a specializable continued fraction. Are there certain
values of the constants ¢;; that admit such an equivalence relation?
Moreover, it is shown in [Jones et al.| (2008) that continued fractions of

the form

f(X) =

1+

€10

a1
[
Pt X+ : «3
X -
Pt Xt g
w,pieC Vi

correspond precisely to power series of the variable %, as long as the con-
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dition
o € Ck
c c c
det( 1 2 k+1 )#0
Ck  Ck+1 --- C2k

holds for all k > 0, where {c;}{’ represents the sequence of coefficients for
the series. Continued fractions of this form are known as J-Fractions and
were historically used to solve the moment problem among other applica-
tions. Note that setting a; = 1, Vi yields a specializable J-Fraction, so there
must be specializable continued fractions for some power series in +. With
an easily verifiable condition for such a fraction to exist for a given series,
sums and products of specializable J-Fractions should be easily character-
ized as specializable given sufficient conditions on the sequence of coef-
ficients for the corresponding series. Further information on these series
representations as well as many others can be found in Jones et al.|(2008) as
well as|Wall| (1948))

Throughout the history of mathematics, continued fractions have been
used in countless applications from approximation theory to probability so
a continued effort to understand these objects in their most general form
may have far-reaching implications for mathematicians in nearly any field.
The unique structure of these objects leaves them positioned to provide
unique insight into the numbers and functions they represent.



Appendix A

Mathematica Source Code

Mathematica source code for some of the work in this thesis is available
from

http://www.math.hmc.edu/seniorthesis/rmerriam/
rmerriam-2010-thesis-source—-code.nb.

Note that the first two programs simply perform the transformation be-
tween bihomographic functions shown above. The main function is the
third, titled CFArith. This function first checks if any of the denominators
e, f,8,h are zero since it is a common problem one must work through in
the algorithm, as evidenced by the input values given for the four basic
arithmetic operations.

It is clear that the coefficients f and & are shifted out of the picture by a
vertical move while i and g are shifted out through horizontal moves, and
as such we check for the cases e = 0 and f = 0 first, performing a horizontal
move in all other cases. The hardest case to work through is when e = 0, as
one must perform two moves to remove the coefficient entirely.

Once we obtain nonzero denominators, CFArith checks if the integer
parts of %, ]Q(, é%, % are equal, outputting a term and continuing the algorithm
as described above. Otherwise, various pairs of ratios are examined. As

¢ and % remain after a horizontal move, their equality forces a horizontal

move from CFArith. Similarly, if £ = § a vertical move is performed to

retain these two ratios. These checks in the algorithm disregard the ratio
% since it is shifted from the picture under either move. CFArith of course
recursively calls at every possible exit from the series of nested if loops, to
keep the algorithm running indefinitely if need be. The given code can be

made to apply to specializable continued fractions by simply performing


http://www.math.hmc.edu/seniorthesis/2010/rmerriam/rmerriam-2010-thesis-source-code.nb
http://www.math.hmc.edu/seniorthesis/2010/rmerriam/rmerriam-2010-thesis-source-code.nb
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the same operations on the partial quotients, but in the more general class
of polynomials over Z.
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