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A model for orientation effects in electron-transfer reactions 
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A method for solving the single-particle SchrOdinger equation with an oblate spheroidal potential 
of finite depth is presented. The wave functions are then used to calculate the matrix element T. 

h'h ~ w lC appears in theories of nonadiabatic electron transfer. The results illustrate the effects of 
mutual orientation and separation of the two centers on T BA • Trends in these results are discussed 
in terms of geometrical and nodal structure effects. Analytical expressions related to TBA for 
states of spherical wells are presented and used to analyze the nodal structure effects for 1', for 
h h 

. BA 
t e sp erOldal wells. 

I. INTRODUCTION 

The mutual orientation of the donor and acceptor in an 
electron transfer reaction may have observable effects on the 
electron transfer rate in certain systems. For example, the 
primary photoinduced electron transfer in photosynthetic 
reaction centers may be influenced by the orientation of the 
reactants. In plant photosystem II the electron acceptor is 
probably a pheophytin 1,2 and the donor may be a substituted 
chlorophyll a monomer. 2,3 Both of these molecules are large 
and nonspherical suggesting that there may be one or more 
preferred orientations for electron transfer. Another biologi­
cally important electron transfer, that between hemes in cy­
tochromes, may also depend on the mutual orientation of the 
porphyrin rings of the hemes.4 

Orientation effects are beginning to be examined ex­
perimentally in model systems. For example, electron trans­
fer between cofacial porphyrins has been studied and was 
observed to be rapid.5

,6 Systems involving porphyrins held in 
other orientations are under study.7 In these systems the 
electron transfer is between sites that are chemically linked. 
When the pi-type orbitals at the donor and acceptor sites are 
largely electronically independent, the electron transfers 
may be treated using the usual outer-sphere formalism. It is 
with systems such as these in mind that we have set out to 
develop a model theoretical system within which to examine 
the nature and magnitude of orientation effects on electron­
transfer rates. 

The rate constant for nonadiabatic electron transfer 
between reactants A and B at fixed separation and orienta­
tion has been examined within the Golden Rule formalism 
e.g.,8-1O ' 

(1) 

The Franck-Condon sum (here denoted FC) has been dis­
cussed in detail elsewhere, for example. 10--12 In this paper we 
consider the dependence, within the theoretical model de­
scribed below, of the electronic matrix element TBA on the 
mutual orientation and separation distance of A and B. 

The matrix element TBA depends on the electronic 
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wave functions localized on sites A and B. An isolated elec­
tronic site A or B (at infinite separation say) is modeled in 
this paper as an oblate spheroid, and the potential for the 
electron is set equal to a negative constant inside the well and 
zero outside. It may be recalled that an oblate spheroid can 
be obtained by rotating an ellipse about its minor axis. 

The volume of the spheroidal potential well is supposed 
to enclose the carbon skeleton of an aromatic system. The 
circle of revolution generated by the major axis when the 
spheroid is rotated about its minor axis is imagined to lie in 
the plane of the carbon skeleton. Other models have similar­
ly exploited the delocalized character of the pi electrons in 
aromatic systems. In the free electron molecular orbital 
model, 13 e.g., the electron is free to move in one dimension 
on a ring or intersecting rings, but has zero probability den­
sity off of the ring. In another model introduced by 
Schmidt14 and developed by Platt15 to calculate electron 
densities and electronic spectra of aromatics, the electron is 
free to move in a plane in a region bounded by infinite poten­
tial walls. In contrast, in the present paper the electronic 
wave function is three dimensional and is not confined to a 
well, because the potential used is finite. The wave functions 
therefore have long range tails which are important in de­
scribing electron transfer. 

The present model yields a predominately exponential 
dependence of the rate on separation distance, a dependence 
used or found in various experimental studies. 16 The molec­
ular basis of this model may actually be an exchange mecha­
nism involving orbitals of adjacent molecules or atoms. 17 

There have been previous discussions of orientation ef­
fects in the context of the tunneling of trapped electrons in 
glassy matrices. Rice et al. 18 considered orientation effects in 
a qualitative way, and concluded that orientation depen­
dence in the electron tunneling rate would be equivalent to a 
reduced concentration of electron acceptors, and thereby re­
duce the tunneling relative to an analogous system with no 
orientation dependence, Brocklehurst 19 examined the orien­
tation dependence of the overlap of electronic wave func­
tions for spherically symmetric sites. He considered both 
hydrogenic and spherical-well potentials. The electronic 
matrix element was assumed by Brocklehurst to be propor­
tional to the overlap of the wave functions, an approxima­
tion ~hich we consider using states of spherical wells in Ap­
pendiX B. He concluded that the orientation effect on the 
electron-transfer rate constant can be as large as 103

• Dok-
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torov et al.20 considered an angular factor, cosn e, in the 
unimolecular rate constant for electron tunneling between 
spherical sites. For n<4, the effect of this angular depen­
dence was to reduce the overall rate constant. The present 
paper considers sites that are asymmetric and therefore geo­
metrically orientable and which presumably better represent 
the aromatic systems toward which this study is aimed. 

Spectral properties of porphyrin compounds have been 
examined by numerous workers using semiempirical elec­
tronic structure methods. 21 Ab initio techniques have also 
been used to examine porphyrin electronic structure. 22,23 
Calculations on diporphyrin systems and their low-lying 
charge transfer states have been recently reported. 24 Elec­
tronic structure techniques have been used to study orienta­
tion and distance effects for a model transition metal redox 
pair25 as well as for face-to-face porphyrins at small separa­
tion distances using both semiempirical and ab initio meth­
ods. 26,27 For porphyrin electron transfers ab initio calcula­
tions of the electronic matrix element are extremely lengthy. 
Moreover, ab initio techniques which employ Gaussian basis 
functions are better suited to describe wave functions inside 
molecules than to depict the long-range tails of the wave 
functions. While our model is significantly less detailed than 
that on which these wave functions are based, the present 
aim is to include the general features of the problem. In fact, 
it is the simplicity of the model which facilitates the calcula­
tions presented here. 

The paper is organized as follows. In Sec. II the model 
for the potential and the wave functions used are briefly de­
scribed, the calculation of the electron transfer matrix ele­
ment is outlined, and results from calculations of the matrix 
element are presented. In Sec. III a more detailed description 
of the calculation of the single-site wave functions is given. 
The results for the electron transfer matrix element calcula­
tions are discussed in Sec. IV. Concluding remarks are given 
in Sec. V. The relation between the Golden Rule rate expres­
sion and the matrix element is given in Appendix A. Expres­
sions for the matrix element for states of spherical wells are 

derived in Appendix B. Applications to molecules of experi­
mental interest will be presented in a subsequent article. 

II. WAVE FUNCTIONS AND RESULTS 

A. The model 

The model involves the interaction of two sites, labeled 
A and B (e.g., molecules or electronically isolated chromo­
phores). The single-site wave functions are taken to be one­
electron wave functions, i.e., only the transferable electron is 
considered explicitly. The potential in which the electron 
moves is modeled as an oblate spheroidal well. A cross sec­
tion of the potential is sketched in Fig. 1. The potential is 
independent of qJ, the angle of rotation about the z axis. The 
cross section is an ellipse having semimajor axis a, semi­

minor axis b, and eccentricity e=~1 - b 2/a2. The potential 
V is zero outside the well and has a constant negative value 
inside. Actually, there will also be a Coulombic term when 
the molecule is charged,28 but it is assumed, for the present, 
that in a medium with some polarity this contribution is 
small relative to the values of Vo used below. 

z 

v=o 

FIG. I. Potential well for a single site. There is cylindrical symmetry about 
the z axis. 

It is convenient to use oblate spheroidal coordinates 
(S,1J,qJ), defined by 

x = ~d [(1 + S2)(1 _1J2Jr12 cos qJ, 
Y =!d [(1 + S2)(1 _1J2)] 1/2 sin qJ, 

z = ~dS1J, (2) 

whereO<S, - 1 <1J< 1, 0<qJ<21T. The scale factord has been 
chosen so that the surface of the potential well is described by 

the single radial-like coordinate S. With d = 2~a2 - b 2, Vis 
defined as 

V= {- Vo; S<So=2b/d. 
0; S> So 

(3) 

Contours of the coordinate system are presented in Fig. 2. 
(The angular coordinate qJ, not shown, is defined as for 
spherical coordinates.) The surface S = 0 is a disk of diame­
ter d. The surface 1J = 0 is the xy plane minus this disk. 

Spherical coordinates rand (j are given in terms of ob­
late spheroidal coordinates: 

r =.!!.- (1 + S2 _1J2)112, 
2 

cos (j = S1J( 1 + S 2 - 1J2) - 112 

I 
I 

7')= -I 

-7')=o-.. x,Y 

, 
\ " \ '? 

.:3 " \\ , 
\ C 
CO 0.s-
~ ~ 
~ --- ~ 
~ 

(4) 

FIG. 2. Oblate-spheroidal coordinate system. Contours of constant 5 are 
indicated by solid lines. The dashed lines are contours of constant 7]. The 
contours of constant 7] on the right are for rp = 0, on the left for rp = 1T. 
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It is clear that the oblate spheroidal coordinates become 
spherical coordinates at asymptotically large distances from 
the potential, in the sense that s-2r/d and 1]--+Cos () as 
r-oo. 

The single-site wave functions sought are bound-state 
solutions to the Schrodinger equation with the potential of 
Eq. (3). The Schrodinger equation may be written as a pair of 
Helmholtz's equations, one satisfied inside the well and one 
outside, i.e., 

(5) 

with k 2 = 2me(E + Vo)/If when 5<'50 and k 2 = 2meE /If 
when 5> So, me being the electronic mass. The value of Vo 
affects the eigenvalue E and hence controls the rate of decay 
of the wave function with distance and ultimately the decay 
of the thermal matrix element. 

In Sec. III it is shown that the wave function may be 
written as 

= r=O (6) 
{

4/li",IU(5,1],rp )==Amlu i: C~ t{!i",n; 5<'50' 
4/1 mlu 00 

4/I"""u (S,1],rp )==Amlu r~o C~ ¢':..n; 5">50' 

n =2r+m +s. 

The value of s determines the parity of the wave function 
relative to the xy plane of the potential, 4/1 mlu being even 
when s = 0 and odd when s = 1. The superscript i or 0 de­
notes the wave function inside or outside the well, respective­
ly. 

The functions t{!i",n and ¢':..n are solutions of the Schro­
dinger equation in oblate spheroidal coordinates when the 
potential is a constant over all space and is equal to its inner 
or outer value, respectively. Quantization in the case of a 
finite depth well is accomplished by requiring continuity of 
the wave function 4/1 mlu and its derivative at the boundary, 
i.e., at 5 = So. 

The functions t{!~n are separable in oblate spheroidal 
coordinates and may be written as 

I 
I , 

I 
I 
I 
I 
I 

" 
/,5 

............ 
,"' ...... 

z 

FIG. 3. Contours of IJI for a state with (m,t,u) = (0,0,1), Vo = 10 eV, 
E = - 7.98 eV, a = 4.85 A, b = 2.55 A. The heavy line is the well bound­
ary. The contours are labeled with values ofiog 10 1 IJI I. This state is referred 
to later as a (O,u) state. 
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\ 
\ 

-5 
/ 

\ 
\ 
", 

'" 

z 

FIG. 4. Contours of IJI for a state with (m,t,u) = (0,1,1). a,b, and Voare as in 
Fig. 3. E = - 4.70 eV. The heavy line is the well boundary. The contours 
are labeled with values ofloglOllJIl. Dashed contours indicate IJI <0. Solid 
contours are for IJI> o. This state is referred to later as a (0,17") state. 

tfImn (S,1],rp) = R i",n(S;k ~)Si",n(1];k ~)<1>rn (rp), 5<'50' 
¢':..n (S,1],rp ) = R "",n (s;k ~)S "",n (1];k ~)<1> rn (rp ), 5">50' 

(7a) 

(7b) 

<1> m (rp ) may be written as a linear combination of sin mrp and 
cos mrp and the number of nodes in <1> m (rp) is equal to 2m. 
The index n has been chosen to have the possible values 
n = m,m + I,m + 2 .... 

The quantum numbers t and u in Eq. (6) will be de­
scribed as follows: t is the number of nodal lines in the two 
dimensional 51] subspace and u orders states of equal t by 
energy(u = 1,2, ... ). At fixed Vo,a,andb,awavefunctioncan 
usually be specified using m, t, and u. (Near an avoided cross­
ing the nodal lines become increasingly complicated, how­
ever. When the nodal structure is not too distinct one could 
simply use m and a parameter which orders states of the 
given m by energy.) 

Contour plots of wave functions for several states hav­
ing m = 0 are shown in Figs. 3-5. Energy levels29 for several 
states are shown in Fig. 6 as a function of eccentricity at 
constant volume for the infinite potential case [Fig. 6(a)] and 

z 

FIG. 5. Contours of IJI for a state with (m,t,u) = (0,1,2). a, b, and Voareas in 
Fig. 3, E = - 4.44 eV. The various lines are as in Fig. 4. 
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1.0 0.5 00 
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FIG. 6. Energies relative to the bottom of the potential well vs eccentricity. 
In both (a) and (b) the wells have a constant volume of251.25 J...3. The effec­
tive spherical radius Relf [==(a2b )'/3) for these results is 3.9145 A. Energy 
levels are labeled with I on the right-hand side of the figure and m above 
individual curves, where I and m are the total angular momentum and its z 
projection of the state of the spherical well to which a given spheroidal state 
correlates. The m and I quantum numbers of the states in Figs. 3-5 are 
(m,l) = (0,0), (0,1), and (0,2), respectively. An asterisk indicates the presence 
of a radial nodal surface in the spherical wave function. Va equals 00 in (a) 
and 10 eV in (b). In both cases only those spheroidal states which correlate to 
the four lowest distinct spherical energy eigenvalues are shown. 

for Vo = 10 eV [Fig. 6(b)]. Energy levels are shown as a func­
tion of Vo in Fig. 7. 

For calculations of TBA most of the states we have stud­
ied have one nodal line in the 5'/] subspace (i.e., t = 1) and 
s = 1. Such wave functions provide the closest analog to 2P1T 
electron systems, s = 1 being appropriate to 1T-like symme­
try, since these functions are odd with respect to the xy 
plane. For simplicity we will use the notation (m,1T) to denote 
a state with t = 1 and s = 1 for a given m for the rest of the 
article, 1T denoting odd symmetry with respect to reflection 
in thexy plane. The 1T-like nature of the (0,1T) state is apparent 
in Fig. 4. For comparison with experimental systems de­
signed to assess orientation and distance effects we note that 
a (1,1T) state has the same nodal structure as the HOMO in 
benzene. A (4,1T) state has the same nodal structure as the 
HOMO in porphine, as determined in ab initio calcula­
tionsY To illustrate a particular geometrical effect we have 

mL 
03 
23 
44 

13 
12 
33 
01 
02 
2 2 

I I 

00 

aa 

FIG. 7. Energies relative to the bottom of the well vs well depth. a and b as in 
Fig. 3, volume = 251.25 J... 3• m and I are indicated on the right-hand side of 
the figure and are defined as for Fig. 6. 

also given some results for states with zero nodes. We will 
refer to them as (0,0') states, since m is zero and, like 0' states, 
they are even with respect to reflection in the xy plane of the 
potential. 

B. Electron transfer between sites 

The system used to model electron transfer between a 
pair of molecules A and B consists of two wells (site A and 
site B), each of the type described previously, and one elec­
tron (the "transferable" electron). The rate constant for the 
electron transfer reaction 

(8) 

is given by Eq. (1), using the Golden Rule and Condon ap­
proximations. That rate constant is for transfer between sites 
having specific and fixed mutual orientations and fixed rela­
tive separation distance. In order to use Eq. (1), nuclear co­
ordinates and an associated set of vibrational states have 
been assumed to be present in the wells and in the interven­
ing medium (along with solvent orientational states), but will 
not be dealt with explicitly in this paper. Recent reviews on 
this aspect of the electron transfer problem are given in Ref. 
30. 

The zeroth-order problem is that in which the two wells 
do not interact (e.g., the infinite-separation limit). The fol­
lowing two zeroth-order states are considered: 

(1) The electronic state at site A, uninfluenced by site B: 
The wave function for this state, denoted by IJI ~cu' is given 
by Eq. (6), with the origin of the coordinates at the center of 
well A and with So defining the boundary of well A. The Vo 
appearing in Eq. (3) and appropriate to site A is denoted by 
V~. 

(2) The electronic state at site B, uninfluenced by site A, 
which has as its wave function 1JI!,c'u" given by Eq. (6), but 
centered now on site B, and having Vo = V~. 

The electronic matrix element TBA , described in Ap­
pendix A for the present model, is 

TEA = (HBA - SABHAA)/(l -ISAB 1

2
), (9) 

where 

HBA = - V~ f 1JI!~c'u' lJI~tud7B' 
HAA = - V~ f 1JI~;u lJI~cud7B' 
SAB = f 1JI~;u 1JI!'c'u,d7. 

(lOa) 

(lOb) 

The integrals in Eq, (lOa) are over well B, and that in Eq. 
(1Ob) is over all space, 

C. Results of calculations of the electron transfer 
matrix element 

Calculations of the electron transfer matrix element 
were performed with various eigenstates of each of the two 
separated wells with specific fixed mutual orientations. The 
states and orientations chosen illustrate some general effects 
of the shape of the potential well and orientation on the ma­
trix element. 

Mutual orientations of the two wells are defined using 
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10 

~-----¥~--lI----II-+O X (A) 

FIG. 8. Coordinate system used to specify the mutual orientation of well A 
and well B. The x axes of the wells are assumed parallel and lie in the plane 
of the figure in all geometries. e = O· corresponds to the z axes of the wells 
being superimposed. 

the coordinate system in Fig. 8. Well A was assumed fixed 
and well B was positioned at various values of Rand e. In 
the calculations given here the x axes of the wells are parallel, 
as are the y axes. e = O· corresponds to the wells being dis­
placed along the z axis, and so being in a "face-to-face" con­
figuration. e = 90· corresponds to displacement along the x 
axis, i.e., in an "end-to-end" arrangement. 

The values of a and b used (apart from those in Fig. 6) 
were chosen as follows: a was an estimate of the in-plane 
radius of porphine, and is the same a as that used by Platt 15 

to treat porphine as a 2a X 2a square using the Schmidt box 
model. The value of b was chosen so that the average thick­
ness of the well ( = 4b /3) corresponded to the interplane 

-3.-------,--------,-------, 

-7 
<i: 

III 
I 
~ 
'I 

-II 

-15 L-______ --'--______ --'-______ --'" 

10 15 20 25 
R(A) 

FIG. 9. InlHoA I as a function of center-to-center separation for a pair of 

(0,0')[ = (0,0)) states in each well and for a pair of (0,17')[ = (0,1)) states. a and 
b are as in Fig. 3. E = - 1.1525 eV; Vo is 2.5937 eV for the (0,0') states and 
5.6540 e V for the (0,17') states. Solid lines arefor e = 90" and dashed lines for 
e = 0". 

spacing in graphite, 3.4 A.31 Other values of b are of course 
possible. The general features of the orientation dependence 
are not qualitatively affected by the choice of b. 

TBA and BBA are compared for the wells at contact for 
various states and various angles e in Table I. It can be seen 
that typically TBA and BBA agree to within 5%. The agree­
ment becomes even better with increased separation. The 
calculation of BBA is much less time consuming than TBA , 

and only values of H BA are given in the rest of the article. The 
trends seen are unaffected. 

Results as a function of distance and orientation are 
plotted in Figs. 9-11 for pairs of (0,0') and (0,1T) states. In 
Figs. 9-12 Vo was chosen so that each state, independently of 
m and of the parity, has an energy E = - 1.1525 eV. This 

TABLE I. Comparison of H OA and TOA at selected angles e for potential wells at contact .•. b 

State e(deg) HOA (eV) HOA/ToA 

(0,0') 0 -0.263 1.000 
30 - 0.229 1.000 
45 -0.182 1.006 
60 - 0.121 1.008 
90 - 0.045 1.004 

(0,17') 0 0.666 1.084 
30 0.474 1.092 
45 0.267 1.074 
60 0.077 1.025 
90 - 0.015 1.000 

(2,17') 0 0.481 1.007 
30 0.040 1.069 
45 0.109 1.029 
60 0.299 1.035 
90 -0.062 1.002 

(4,17') 0 0.246 1.001 
30 -0.079 1.012 
45 0.113 1.013 
60 0.279 1.019 
90 -0.066 1.002 

a The wells have a = 4.85 A, b = 2.55 A, and Vo such that E = - 1.1525 eV. For (0,0'), (0,17'), (2,17'), and (4,17'), 
states, Vo = 2.5937, 5.6540, 10.6541, and 17.3530 eV, respectively. In the worst case HOA is converged to 
within 2% ofthe exact value. In general, the convergence is much better. 

b <I> on (ip ) = cos mip. Similar agreement of H OA and TOA is seen for <I> on (ip) = sin mip or any linear combination 
of sin mip and cos mip. 

J. Chem. Phys., Vol. 81, No. 12, Pt. I, 15 December 1984 

Downloaded 02 Mar 2011 to 134.173.131.83. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



5618 

3 
center- to-center 

"'0 
x 2 

1iJ 
~ ro 
I edge - to-edge 

0 
0 30 60 

e (degrees) 

Siders, Cave, and Marcus: Electron-transfer reactions 

90 

N 

o 
x 

1D 
<! 
ro 

I 

--I 

center-to-
/ center 

edge-to-edge" 
//'// 

o 30 60 
e (degrees) 

90 

FIG. 1O.IHoA I asafunctionof@ for a pair of (O,u) states. a, b, Vo, and Eare 
as in Fig. 9 for the (O,u) states. Shown are results for a constant center-to­
center distance of 10 A and for a constant edge-to-edge distance of 5 1>... 

FI G. II. H BA as a function of@ for (O,lT) states. a, b, Vo, and E are as in Fig. 9 
for the (O,lT) states. Shown are results for a constant center-to-center dis­
tance of 10 A and for a constant edge-to-edge distance of 5 1>... 

value of E yields states which cause IHBA 12 to have an (ap­
proximately) exponential decay whose slope of a In IH BA 12 vs 
R plot is from 1.4 to 1.7 depending on the states involved. 
These are in the range of some experimental estimates for the 
decay of the electronic matrix element with distance for aro­
matic molecule-aromatic anion systems. 16 [The rate in Ref. 
16(a) is proportional to exp( - 2aR ), where 2a is roughly 1.1 
A -I.] 

12 as a root mean square average ofHBA overYA andYB' the 
angles of rotation of IJI ~tu and IJI '!"u relative to a fixed set of 
axes located in well A or well B, respectively,32 

[ 
1 (21T (21T ] 112 

(HBA)av = 4~ Jo Jo H~A(YA'YB)dYAdYB 

= ~ (IH"tfA 12 + IH~A 12)1/2. (11) 

In Table II HBA is given as a function of distance for 
e = O· and 90· for the (1,1T), (2,1T), and (4,1T) states. Each 
eigenvalue of states with m > 0 is twofold degenerate. The 
functions cos mfP or sin mfP or any linear combination of 
them are eigenfunctions of the fP portion of the Schrodinger 
equation and HBA will in general depend on which of these 
functions is chosen, as well as on the relative orientation of 
the wells. In actual molecules of current interest, deviations 
from cylindrical symmetry can remove this degeneracy. The 
value of HBA for any arbitrary cJ>m (i.e., any linear combina­
tion of cos mfP and sin mfP) for parallel xy planes may be 
obtained from the H"tfA and H~A in Table II using a stan­
dard formula. 32 For brevity of graphical presentation the 
dependence on distance for states with m #0 is given in Fig. 

Nonaveraged HBA 's are also given in Table Hor spheroids in 
contact. 

III. QUANTIZATION AND SINGLE-SITE WAVE 
FUNCTIONS 

The method used to obtain the wave functions of Sec. II 
is described next. 

A. Expansion for the separated wave functions 

The functions sought are solutions to Eq. (5), valid both 
inside and outside the spheroidal well. Neglecting the 
boundary conditions at 5 = 50 the wave function inside the 
well can be separated as in Eq. (7a), yielding 

TABLE II. HOA as a function of center-to-center distance for various (m,lT) states at @ = 0° and 90°. a 

State R(A) H ~A"(@ = OO)b H~A(@= 90°) H~A(@=900) 

(J,lT) 10 1.02( - 2) 4.16( - 2) -4.78( - 3) 
15 2.69( - 4) 6.89( - 4) - 6.33( - 5) 
20 9.16( - 6) 1.97( - 5) - 1.46( - 6) 
25 3.60( - 7) 7.06( - 7) - 4.39( - 8) 

(2,lT) 10 3.81( - 3) - 4.49( - 2) 1.76( - 2) 
15 6.08( - 5) -4.76( - 4) 1.61( - 4) 
20 1.45( - 6) - I.IO( - 5) 3.1O( - 6) 
25 4.36( - 8) - 3.49( - 7) 8.35( - 8) 

(4,lT) 10 3.77( - 4) -4.29( - 2) 3.68( - 2) 
15 2.02( - 6) - 1.29( - 4) 1.09( - 4) 
20 2.24( - 8) - 1.48( - 6) 1.l7( - 6) 
25 3.76( - 10) - 3.00( - 8) 2.19( - 8) 

"The states and wells used are the same as those in Table I. H~A is HOA calculated using 4>m(tp) = sin mtp in 
each well. H~A is for 4>m(tp) = cos mtp in each well. The number in parentheses is the power of 10 to be 
multiplied by the number preceding it. 

b In the @ = 0" orientation H ~A = H ~A • 
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-23~ ______ ~ ______ ~ ______ ~ 
10 15 20 25 

R(A) 

FIG. 12. In(HBA )av as a function of center-to-center distance for a pair of 
(1,1T)[ = (1,1)] states in each well and for a pair of(4,1T)[ = (4, I)] states. In all 
cases a, b, and Eare as in Fig. 9. Vo for the (1,1T) states is 7.9296 and for the 
(4,1T) states is 17.3530 eV. Solid lines are for e = 90" and dashed lines for 
e = 0". 

d 2 . 

(,f>:" 2 i ---2-+m (,f>m =0, 
dlp 

(12) 

~ {(I _1J2) dS~n} 
d1J d1J 

{ 
d 2 22m2 i} i + -1J k i - ---2 + A. mn S mn = 0, 
4 1 -1J 

(13) 

~{(1 +52) dR~n} 
d5 d5 

{ 
d2 22m2 i} i + - 5 k i + ----2 - A. mn R mn = 0 
4 1 +5 

(14) 

for the separated equations. 
Any choice of k f (i.e., of energy for fixed Vol yields a 

sequence of discrete eigenvalues A. ~n' The sUbscript m de­
scribes the eigenvalue in Eq. (12). The subscript n orders the 
eigenvalues A. ~n and was defined in Sec. II. The tfJ7::n are odd 
or even with respect to reflection in the xy plane as n - m is 
odd or even. 

Equations (12) through (14) for a given k f yield a parti­
cular set of solutions tflmn of the form shown in Eq. (7a). The 
function tP':nn, neglecting the boundary conditions at 5 = 50' 
can similarly be separated as in Eq. (7b). The related separat­
ed differential equations are identical to Eqs. (12)-{14), with i 
replaced by o. The angle function (,f> m (lp) is the same both 
inside and outside the well so the superscripts i and 0 are 
suppressed in Eq. (7). 

The inner and outer radial functions R ~I! (S;k f) and 
R :'nn (5;k ~) were evaluated through their expansions in 
spherical and modified spherical Bessel functionsjn(dk i5 12) 
and kn(d Iko 15/2), respectively. The angular functions 
S~n(1J;k f) and S:'nn (1J;k~) were evaluated through their ex­
pansions in the associated Legendre functions P;:'( 1J). The 
radial and angular functions Rml! and Smn in Eq. (7), their 
expansion coefficients, and the eigenvalues AmI! are dis­
cussed by Flammer,33 who presents tables of both. Hodge34 

has given an algorithm for obtaining them which was easily 
programmed and was used for the calculations in the present 
paper.35 The radial and angular functions were converged to 
at least four significant figures in all cases.36 

B. Quantization In the limit Vo--+oo 

In this case the sum for lJI in Eq. (6) reduces to a single 
term and the allowed energy levels are those for which k ~ 
yields 

R ~n(So;kf) = 0, (15) 

since the wave function must vanish for 5>50' In the spheri­
cal limit (b-a) the energy eigenvalues given in Fig. 6(a), are 
simply those for which bki is a zero of the nth-order spheri­
cal Bessel function. An oblate spheroidal square well has 
been used as a model for the potential in which a nucleon 
moves in the nucleus.37 In this context the energy levels have 
been calculated previously in the limit Vo = 00.

38 

C. Quanitzation for finite Vo 

The wave functions in this case must be written as a sum 
of inner or outer functions because both the angular and 
radial parts of the wave functions depend on the energy. 
Quantization is accomplished by requiring that the wave 
function and its normal derivative be continuous at 5 = 50' 
i.e., 

lim lJI~tu(5,1J,lp;k~) = lim lJI:'ntu(5,'T/,lp;k~), (16) 
S-S,~ S-SD+ 

. alJl~tu 2' alJl:'ntu 2 
hm --(5,1J,qJ;k i ) = hm --(5,1J,qJ;k o).(17) 

s-s 0- a5 s-s.+ a5 

Continuity of alJl la1J at the boundary 5 = 50 is ensured by 
Eq. (16). 

The following method was used to determine the energy 
eigenvalues Emtu for which Eqs. (16) and (17) are satisfied. 
Each outer angular function S:'nn ('T/;k ~) was expanded in the 
complete set of inner angular functions S ~n (1J;k ~), thereby 
yielding lJI mtu as an expansion in S ~n (1J;k ~) for both 5<'50 
and for 5>50' Equating the two expansions term by term at 
5 = 50 yields 

Ci = MC'. (18) 

In Eq. (18) e denotes the column vector with elements 

(C~+s,C~+S+2"") and C' denotes (C:'n+s,C:'n+s+2"")' 
the C~'s and the C~'s being the coefficients appearing in Eq. 
(6). Both vectors are of infinite dimension but are truncated 
in practice. The elements of the matrix M depend on the 
energy and on the quantum number m, and are given by 

M _ <S~qIS:'np)R:'np(So;k~) 
kj - <S~qIS~q)R~q(So;k~) 

where 

p=m+2U-l)+s, j>l; 
q = m + 2(k - 1) + s, k> 1. 

(19a) 

(19b) 

Similarly, continuity of the normal derivative at 5 = 50 
yields the matrix equation 

Ci=M'C', 
where 

M' _ <S~q IS:'np)dR :'np(50;k~)ld50 
kj - <S~qIS~q)dR~q(50;kf)/d50 

(20) 

(21) 

andp and q are again given by Eq. (19b). Equations (18) and 
(20) yield 
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(22) 

Thus, Co is an eigenvector of the matrix M-1M' having 
a unit eigenvalue. An energy eigenvalue and eigenvector Co 
is found by iterating the energy in Eq. (22) to obtain an eigen­
vector with unit eigenvalue. The inner expansion coefficients 
C' are then obtained using Eq. (18) and this CO. The wave 
functions are normalized by the factor A mtu in Eq. (6), A mtu 

being (I[! ~tu II[! ~tu ) -1/2, where I[! ~tu is the unnormalized 
solution. 

IV. DISCUSSION 

In this section the dependence of HBA on distance and 
the factors affecting the orientation dependence of H BA are 
discussed. 

Figures 9 and 12 give plots of In IH BA I or In(H BA )av vs 
distance and it is seen that HBA decreases, as expected, pre­
dominantly exponentially with distance for all the states 
considered. In Appendix B analytical expressions for HBA as 
a function of distance are derived for certain states of spheri­
cal wells.39 For spherical states analogous to the (0,0") states 
of spheroidal wells, we find [Eq. (B 10)] 

-If A 2 

HBA = - ~ exp( - aR), (23) 
2mea R 

where Ao is the radial normalization constant, given in Ap­
pendix B, for single-well wave functions. R is the distance 
between the well centers, and a = ( - 2meE I-If)1I2. It can 
be seen explicitly that the large-R asymptotic distance de­
pendence oflnlHBA I is linear. 

For spherical states analogous to the spheroidal (0,1T) 
states one has [Eqs. (Bll) and (BI2)] 

HBA = - ~ (_1_2 + _1-3) exp( - aR) (e = 900
) (24) 

a (aR) (aR) 

and 

HBA = ~ (_1_ + _2_ + _2_) exp( _ aR) (e = 00
). 

a aR (aR f (aR f 
(25) 

The constant C is defined by comparing with Eqs. (B 11) and 
(BI2) and using Eq. (B3). 

In both orientations it is seen that In IH BA I depends pre­
dominantly linearly on distance. The exponential depen­
dence arises from the overlap of the radial part of I[! A, a 
modified spherical Bessel function, with I[! B. Since the outer 
spheroidal wave functions are composed of sums of modified 
spherical Bessel functions a similar distance dependence of 
H BA is expected and is found. 

In general, the functional form of the preexponential 
part of the distance dependence of HBA is dependent on the 
potential functions at the two centers. For one-dimensional 
square wells H BA is proportional to an exponential function 
of R. 40 For transfer of an electron between two protons H BA 
is a polynomial in powers of R multiplied by an exponen­
tial. 41 The dominant part of H BA in all these cases is a decay­
ing exponential but the potential shape and nodal structure 
of the wave functions cause slowly varying deviations from 
purely exponential behavior. 

In analyzing the orientation effects exhibited in Figs. 9 

to 12, there are two principal factors to be considered, the 
well shape and the nodal structure. They are discussed be­
low, initially for fixed center-to-center and then for fixed 
edge-to-edge distance: 

(1) In the (0,0") case (Fig. 9) there are no nodal complica­
tions, and the shape of the spheroidal well favors a larger 
IHBA I in the e = 900 orientation than in the e = 00 at fixed 
center-to-center distance. 

(2) [The following results are intended to refer only to 
(m,1T) states.] For a fixed center-to-center distance, as the 
number of nodes in the ({J portion of the wave function in­
creases (i.e., as m increases) the ratio IHBA (e = 900 )11 
IHBA (e = 00 )1 increases (cf. Figs. 9 and 12). The pairs of (0,1T) 
states have larger IHBA I's at e = 00 than at e = 900

, while 
all other (m,1T) states have larger IHBA I'sat e = 900

• [Cf. Fig. 
12, including the (2,1T) case of Table II.] 

Result (1) is due to the smaller edge-to-edge distance 
occurring in the e = 900 configuration at a fixed center-to­
center distance, and illustrates one geometrical shape effect. 
We have also observed result (2) for HBA for spherical-well 
potentials. 42 To understand these results we consider the 
form of HBA in the spherical case (cf. Appendix B). In es­
sence, with increasing m the wave functions tend increasing­
ly rapidly to zero along their z axes, and so the face-to-face 
configuration becomes decreasingly favored. We have 

HBA = - ( V~I[!B"I[!Ad1'B 
Jwell B 

a: ( j[,(j3BrB)P'r'(cos ()B)cP!'(({JB) 
JweIl B 

X V~klrpArA)P'!'(cOs {)A)cPm (({JA)d1'B' 

where the subscripts A and B denote variables appropriate to 
the functions at site A and B, respectively. l is the total angu­
lar momentum quantum number. Spherical states which 
have similar nodal structures to the (m,1T) spheroidal states 
considered have l = m + 1, The variables (r A'{) A ,({J A) de­
pend implicitly on (rB '{)B ,({JB)' Since the integration is over 
well B the predominant angular dependence of H BA on e for 
the orientations examined in this paper (xy planes of each 
well parallel) arises from the function P '!'(cos () A) which is of 
the form: 

P'!'(cos ()A)a: sinm {)A cos {)A' l = m + 1, m;;<>O. 

In the e = 00 orientation, the relevant () A approach zero as 
R -+ 00, for all values of r B' {)B' and ({JB in well B, and so 
sinm 

() A goes to zero increasingly rapidly with increasing m 
in the vicinity of well B. In the e = 900 orientation, () A ap­
proaches 900 as R -+ 00 and cos () A tends to zero in the vicini­
ty of well B, but for all (m,l) spherical states considered 
cos () A is always raised to the first power, Therefore, as m 
increases the e = 900 orientation is increasingly favored 
over the e = 00 orientation. For the (m,l ) = (0,1) state, only 
the cos () A term occurs, and so the e = 00 configuration is 
favored. Since the spheroidal wave functions are composed 
of sums of Legendre polynomials P ,!" dominated by a few of 
them, and because of the correspondence between 1/ and 
cos (), this explanation is the anticipated one for this orienta­
tion dependence in the spheroidal case. Results (1) and (2) are 
thus at least qualitatively explained. 
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TABLE III. Nonnalized projections p~ of the (m,t,u) = (0,1,2) state in the limit r-+oo.· 

n e=O.1 e=0.5 e=0.9 

0 0.0003 0.2153 0.4045 
2 0.9997 0.7825 0.5637 
4 0.0000 0.0022 0.0315 
6 0.0000 0.0000 0.0004 

a The quantity P! is defined in Eq. (28); e is the eccentricity of the well at a constant volume of251.25 A? For 
these calculations, Vo = 10 eV. Because n - m is even, P! "",0 for all odd n. The eccentricity of the wells in 
Figs. 3-5 and 9-12 is -0.85. 

Although distances in experiments are often quoted as 
center-to-center distances it is useful, because of the expo­
nential decay of the wave functions, to examine the results at 
constant edge-to-edge distances. The data presented are suf­
ficient to make comparisons of HBA for fixed edge-to-edge 
separation. Equal edge-to-edge separations in the two orien­
tations are obtained by comparing H BA for which the center­
to-center separation is 4.6 A [= 2(a - b)] larger in the 
e = 90· orientation. For the systems examined in this paper, 
H BA was always larger at e = O· than at e = 90· for m < 4 
and was roughly equal for m = 4 at the two e 'so 

The explanation presumably lies in a geometrical shape 
effect: In the e = O· configuration the spheroids present a 
larger cross section and smaller thickness to each other, 
thereby favoring a higher overlap. However, the difference 
in IHBA I's decreases with increasing m for the reason dis­
cussed above, and still larger m's may reverse the favored 
e = O· result. 

While we have largely considered the orientations 
e = 90· and e = O· in this article for purposes of illustra­
tion, other orientations are also of considerable interest. In 
fact, as m increases, maxima will occur in H BA at e's other 
than e = o· [cf. (2,JT) and (4,JT) results in Table I]. The angles 
at which these maxima occur are near the maxima in the 
angular function P 7'(cos B) of the spherical state which has 
similar nodal structure to the spheroidal state in question 
[- 55· for the (2,JT) states and - 63· for the (4,JT) states]. It can 
be seen in Fig. 6 that B A equals e and BB equals JT - e, 
where B A and BB are the spherical polar angles in each well, 
so the maxima of H BA as a function of e are related to maxi­
ma in P 7'(cos B A) and P 7'(cos BB)' This analogy with spheri­
cal functions is adequate for the reasons stated previously. 

We have also examined the angular dependence of the 
spheroidal wave functions at R = 00. At a large radial dis­
tance each of the outer radial functions has the same asymp­
totic form, independently of m or n: 

R 0 (I:- k 2) 1 - ar mn:,; 0 ,-....-e , r~oo, (26) 
ar 

where a=lkol = (2m. IE IIIP)1/2. Hence, the wave function 
1[1 mtu at a fixed large r and fixed cp varies as 

I[Imtu - Lto C~Smn(7J;k~) J e-ar/ar (r~oo), (27) 

where in Eq. (27) we set 7J = cos B. 
To exhibit the angular dependence of 1[1 mtu at large r, 

1[1 mtu in Eq. (27) was projected onto the associated Legendre 

polynomials P ;;'(cos B). If the angular probability distribu­
tion at large r were insensitive to the nonzero eccentricity of 
the spheroidal well one would find I (P;;' 11[1 mtu ) 12 equal to 
zero except for a single value of n. Calculated projections, 
defined as 

p 2 
n 

(28) 

are given in Table III for wells of three eccentricities, all with 
a volume of251.25 A3. The data clearly indicate that even at 
r = 00 the electron "sees" the nonsphericity of the potential 
well. 

v. CONCLUSION 

A model electron transfer system involving nonspheri­
cal (oblate spheroidal) donor and acceptor sites and a trans­
ferable electron has been presented. The wave functions for 
the isolated donor and acceptor sites and the matrix element 
for electron transfer have been described and the results of 
several calculations presented. Thus, a machinery has been 
developed for the calculation of orientation effects, especial­
ly for electron transfer between large aromatic molecules. 

The sample calculations illustrate the effects of well 
shape and nodal structure on the orientation and distance 
dependence of the electron transfer matrix element. They 
indicate to a first approximation for the system and states 
studied, that the geometrical shape effect, for a constant 
edge-to-edge distance, causes IHBA I to be larger for e = O· 
(face-to-face configuration) than for e = 90· (end-to-end ar­
rangement). This effect is reduced with increasing m, a result 
explained by examining the long-range behavior of a pair of 
spherical wells. This increasing m effect is expected to apply 
to states similar to the HOMO or LUMO oflarge aromatic 
molecules. 

When the results are presented instead at a given cen­
ter-to-center separation they are significantly influenced by 
the greater edge-to-edge distance for the e = O· configura­
tion (face-to-face), so that now IHBA I is largest at e = 90· for 
most of the states considered. 
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APPENDIX A: GOLDEN RULE RATE EXPRESSION AND 
MATRIX ELEMENTS 

The rate expression used to characterize electron trans­
fer in this paper is a Golden Rule rate constant obtained by 
using a Born-Oppenheimer analysis by Holstein43 and has 
been presented in a paper by Kestner et al. 10 Another presen­
tation of the derivation which corrects some typographical 
errors there is found in Ref. 44. The pertinent results are 
particularized below to the present model. 

We define 

H BA = J tJlBOVBtJlAdr, SAB = J tJlA°tJIBdr, 

H AA= J tJlAOVBtJlAdr. (A3) 

For the type of potential used in this study, the integrals H BA 

and H AA over all space are reduced to integrals over well B, 
since VB is zero outside well B. One thus obtains Eq. (9). 

APPENDIX B: SPHERICAL WAVE FUNCTIONS AND 
THEIR ELECTRON TRANSFER MATRIX ELEMENTS 

1. Spherical wave functions 

In the spherical limit a-+b, the wave function ofEq. (6) 
assumes the simpler form given in Eq. (Bl), where I is the 
total angular momentum quantum number. 

tJI ml (r,B,fIY;E) 

b is the radius of the spherical well, 
{3 = [2m. (VO + E)] 1/2 Iii, a = [ - 2m.E ] 1/2 Iii, and 
<Pm (flY) is any linear combination of cos mfIY and sin mfIY with 
the absolute square of the coefficients equal to 1. The angular 
function P I' is an associated Legendre polynomial. We have 
used the definition of PI' given by Artken.45 The constants 
A I and N ml are normalization constants for the radial part of 
the wave function and for the (m,l) spherical harmonic, re­
spectively: 

Al = ~ j j({3r)r dr + k j(ar)r dr {
k 2( b) ib 1'" } -1/2 

j?({3b) 0 b 

_ { 2 (I + m)! } - 112 
N , ---- V, 

m 2/+ 1 (/-m)! 

(B2) 

(B3) 

The rate expression for transfer of an electron from site 
A to site B when only a single electronic state is assumed on 
either site may be written in the Golden Rule and Condon 
approximations as 

(AI) 

In Eq. (A 1) v A denotes one of a set of nuclear wave functions 
appropriate to the electron being localized at site A, VB de­
notes a similar set for the electron localized at site B, and QA 
is the nuclear partition function appropriate to the electron 
being localized on site A. For the case of nonorthogonal elec­
tronic basis states, TBA is equal to 

(A2) 

I 
where V is 21T if m = ° and 1T for m #0. The tJI ml given by Eq. 
(B 1) is clearly continuous at the boundary r = b. The value of 
E in a and{3 was determined by making JtJI mil Jr continuous 
there.39 To compare the spherical (m,l ) states with the spher­
oidal (m,1T) states having similar nodal structure we use the 
relation 1= m + 1. Spherical (m,1 ) = (0,0) states correspond 
to the (0,0") states used in Sec. II. 

The integrals in Eq. (B2) can be evaluated in closed form 
to yield 

Al = ! k,_ I (ab )k, + dab) - [kj(ab )lj,2({3b)] 

Xjl_ I ({3b lil + I ({3b )] -1/2(2Ib 3)1/2. (B4) 

2. Analytical matrix elements for spherical wave 
functions 

It is possible to transform the matrix element H BA' 

which is defined as a three-dimensional volume integral in 
Eq. (A3), to a two-dimensional surface integral. A method 
due to Bardeen46 is used to effect the transformation. 

For simplicity, the following discussion is restricted to 
the special case in which the same wave function is used in 
each well. That is, both wells have equal radius and depth, 
and (m,!) is the same for both tJI';,l and tJI!I' For this case, 
HBA is defined as in Eq. (BS), 

H BA - - Vo ( tJlAtJlBOdrB· (BS) 
JwellB 

In well B, - VotJI BO equals (E - T)tJlB* and hence Eq. (BS) 
becomes 

HBA = ( tJlA(E - T)tJlBOdrB' 
JwellB 

(B6) 

The SUbscripts ml on tJI ';,1 and tJI!1 have been suppressed. 
Here T is the kinetic energy operator - IJ2V2/2m •. It is as­
sumed in what follows that the centers of the wells lie along 
the z axis of a right circular cylindrical coordinate system, 
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well B at z = + R 12, and well A at z = - R 12. The region 
of integration may be extended beyond the boundary of well 
B since (E - T)tJlB* vanishes outside well B. In particular, 
the regionz;;;,O, will be used. Also, tJlAE equals TtJl A in any 
region that does not include well A, so Eq. (B6) yields 

RBA = - fi2 i (tJlB*V2 tJ1A - tJl AV 2 tJ1B*)dr. 
2me z>o 

Gauss' theorem applied to Eq. (B7) yields 

(B7) 

(BS) 

Gauss' theorem is applicable to Eq. (B7) because the discon­
tinuity in V2 tJ1B is merely a step discontinuity on the bound­
ary of well B. The integral in Eq. (BS) is written in right 
circular cylindrical coordinates (r,ip,z). The surface of inte­
gration is the plane z = 0, located midway between the two 
wells. 

Equation (BS) can be further simplified by making use 
of the symmetry of the wave functions. In particular, tJlA 
=(_I)I-mtJIB and atJIAlaz=(-I)I-m+latJIB/az at 

z=O. We have 

RBA =~l21T ('" (_I)l-m 
2me '1'=0).=0 

X (tJl A atJI
A

* + tJlA* atJI
A

) r dr dip. (B9) 
az az 

We have used Eq. (B9) to evaluate RBA for three parti­
cular cases: (m,1 ) = (0,0), (0,1), and (1,1). Explicit expressions 
are given in Eqs. (BlO)-(BI2), wells B and A centered at 
z = ± R /2, on the line x = y = 0, 

1j2A 2 

RBA = - ~ exp( - aR), m = 0, 1=0. 
2mea R 

(BlO) 

RBA = m~:~13 (1 +aR + a
2
: 2) 

xexp( - aR), m = 0, 1=1, (Bll) 

fi23A 2 

RBA = - 4
1 

3 (1 + aR ) 
2mea R 

xexp( - aR), m = I, 1=1. (BI2) 

These choices for (m,!) correspond for 19 = D· to spher­
oidal states (0,0'), (0,1T), and (1,0'), respectively. (l9 is defined in 
Fig. 6.) For 19 = 90·, with parallely axes, parallelz axes, and 
superimposed x axes in the two wells, Eq. (BlO) corresponds 
to (0,0') states and Eq. (BI2) to (0,1T) states. For 19 = 90· and 
(1,0') states, Eq. (Bll) applies if 4'm(ip) = cos mip, and Eq. 
(BI2) applies if 4'm = sin mip. It is possible, in principle, to 
obtain analytical expressions for RBA for states of higher m 
values. However, exact numerical results can be easily ob­
tained for spherical wells and it was considered unnecessary 
to derive exact analytical ones for the present purposes. Ap­
proximate analytic ones will be given elsewhere. 
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FIG. 13. Dependence of - 2SBA /VoHBA for spherical wells on thesepara­
tion distance R between the well centers. The well radius is 3.9145 A and 
E = - 1.1525 eV for all states. The spherical states are labeled as (m,l). 
(Va = 2.489 73 eV for (m,l) = (0,0), and Va = 4.199 03 eV for (m,l) = (0,1).] 

3. Comparison of electronic matrix elements to overlap 
integrals for spherical wells 

In an earlier theoretical study of orientation effects 19 it 
was assumed that the matrix element RBA is approximately 
proportional to the overlap integral SBA' For (m,!) = (0,0) 
states (i.e., states for which I = m = ° with spherical wells of 
radius b ) the overlap is given by 

A~exp(-aR) 
SBA (I = 0) = 2a4R 

X [ 4a
2 

+ 1 _ e - 2ab + aiR - 2b )] . 
a 2 + [32 

(B13) 

UsingEq. (BlO) for R BA , one finds the ratio ofSBA tORBA is 
given by 

_ VoSBA = 1 + ~ [1 _ e - 2ab + aiR - 2b )], 
2HBA 41EI 

m = 1=0. (BI4) 

For spherical (m,/) = (0,1) states at orientations 19 = D· 
andl9 = 90·,RBA is given by Eqs. (Bll) and (BI2). No closed 
form expressions for SBA are available, but these overlap 
integrals are readily evaluated numerically. The results are 
shown in Fig. 13. 

Since R BA is the overlap of the two functions in well B 
multiplied by V~ the quantity plotted would be approxi­
mately constant if SBA were proportional to R BA . It is seen 
that the ratio grows linearly with distance and depends on 
orientation. Over short variations of distance proportional­
ity may be an adequate approximation but for large varia­
tions it clearly breaks down. 

On the basis of the spheroidal results in Table I we again 
expect TBA ZRBA to within 10%, at least for the results in 
Fig. 13, for which R;;;.lO A. On this basis, Fig. 13 also repre­
sents a plot of the ratio - VoSBA 12TBA . 
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