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Chapter 1

Introduction

The fuzzball model of a black hole is an attempt to resolve the many paradoxes and

puzzles of black hole physics that have revealed themselves over the last century.

These badly behaved solutions of general relativity have given physicists one of the

few laboratories to test candidate quantum theories of gravity. Though little is known

about exactly what lies beyond the event horizon, and what the ultimate fate of matter

that falls in to a black hole is, we know a few intriguing and elegant semi-classical

results that have kept physicists occupied. Among these are the known black hole

entropy and the Hawking radiation process.

In chapter 2, we provide background on an assortment of topics that will be used

to describe the fuzzball model. Since this model is based on string theory, these

topics include some of the basic ideas of string theory and its various subfields like

non-commutative field theory. In chapter 3, we describe some results regarding the

actual formation process of a fuzzy black hole. We argue for a phase transition of

infalling matter when the horizon is approached. Some characterstics of the new

phase are described and the stability of such a system is argued for. In chapter 4, a

brief description of the interaction of two fuzzy membranes is given.
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Chapter 2

Background

2.1 String Theory And Her Mothers, Sisters and

Daughters

String theory is an attempt at a unified quantum theory of all known interactions

including gravity. The basic assumptions of the theory are that the fundamental

degrees of freedom are quantum strings. These strings can be closed or open, i.e.

they can be loops or have free endpoints. Different modes of the string are identified

with different elementary particles. For example, the graviton is a mode of the closed

string while electrons and quarks are modes of open strings.

Starting with these ideas and requiring mathematical consistency has taken string

theorists a long way in understanding the structure of the theory. To begin with, string

theory requires that the number of space-time dimensions is 10. To connect with our

observed 4 dimensional universe, it is assumed that 6 of the spatial dimensions will

have to be made compact and small and hence presently undetectable. Secondly, since

there are an infinite number of modes for a string, there are infinite towers of as-yet-

undetected elementary particles. Presumably, only the lightest ones are accessible to
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our accelerators. Besides these predictions, string theory also requires the presence

of a new symmetry that relates fermions and bosons. This is called supersymmetry

and is absent in our observed universe, calling for explanations of how this symmetry

is broken.

Initially, there were five different consistent superstring theories that had been

constructed by physicists based on different choices of symmetries and characteristics

of the strings. These were labelled Type I, IIA, IIB, Heterotic SO(32) and Heterotic

E8 × E8. In the mid-nineties, it was realized that these five theories were actually

related to each other by dualities that provided a dictionary to translate statements

and objects in each theory to the others. Moreover, all the five theories were now

seen as different limits of one unique 11-dimensional theory, called M-theory.

Also, the significance of higher dimensional objects, called branes, to the theory

was realized. D-branes were initially introduced in string theory as objects that open

string endpoints are constrained to. The world volume of these branes then provided

the ideal stage to generate realistic gauge theories. The behavior of open strings

constrained to N coincident D3-branes, for instance, produces a U(N) Yang-Mills

theory on the 4-dimensional world volume of the branes at low energies.

The low energy limit of the different string theories produces supergravity where

only the graviton and a few other particles survive. In this limit, D-branes become

black holes. Thus, a D0-brane, which is a pointlike object, becomes a point black

hole, while a D2-brane becomes a black sheet and so on. Using D-branes, the entropy

of certain black holes has been calculated and found to agree precisely with the

Bekenstein-Hawking prescription (see [1]). This is one of the most significant results

of string theory.

Though none of the predictions of string theory have any direct experimental sup-

port today, interest in string theory has been sustained over the years due to periodic

advances in the mathematical understanding of the theory that have produced un-
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expected and elegant ideas that stand independent of the veracity of string theory

itself. One of these is the holographic duality (see [12]) which builds a surprising

bridge between quantum field theory and gravity, saying that they are in fact dif-

ferent descriptions of the same physics. This duality will be a principal tool in our

analysis. For a more detailed introduction to string theory, see [2], [3].

2.2 Black Holes And Their Properties

Black holes are solutions to general relativity that have a curvature singularity. The

most well-known black hole is the 4-dimensional Schwarzschild solution. This solution

is spherically symmetric and has a singularity at the center, which is shielded by an

event horizon from the external space-time. In D dimensions, the metric is

ds2 = −fdt2 + f−1dr2 + r2dΩ2 (2.1)

f = 1 −
(r0

r

)D−3

. (2.2)

The mass M of the black hole is related to the horizon radius r0 by

rD−3
0 = 2M (2.3)

where the D dimensional Newton constant and the speed of light have been set to

one. The horizon is a closed null surface, which classically acts as a one way gate

to the singularity. Anything that passes the horizon is bound to hit the singularity

in finite proper time while nothing, not even light, can reach the external space-time

from within the horizon.

Physicists assume that the singularity in the solution is a sign that general rela-

tivity breaks down at such high curvatures, presumably the Planck scale. A quantum

theory of gravity would be needed to describe physics beyond such scales. The hori-

zon, however, is not a region of strong gravity and we would expect that general

relativity can be applied here without fear.
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Some classical results about black holes suggest that the area of the horizon of

a black hole never decreases during processes like the merger of two black holes. It

was also noticed that the relationship between the energy and area of horizon had

a very similar form to the thermodynamic relationship between energy and entropy

(see [4]). For example, the horizon radius of a charged and spinning black hole with

charge Q and angular momentum J is given by

r0 = M +

√
M2 − (Q2 +

J2

M2
). (2.4)

Putting this in differential form,

dM =
κ

8π
dA + ΩdJ + ΦdQ (2.5)

where

κ =
1

4M
(2.6)

is the surface gravity at the horizon, Ω is the angular velocity, and Φ is the electrostatic

potential at the horizon. Note the similarity to the familiar thermodynamic relation

dU = τdS − pdV + µdN. (2.7)

These admittedly weak hints prompted Bekenstein to identify the area of the

horizon (or a multiple of it) with the entropy of the black hole and the surface gravity

with the temperature.

This is an intriguing proposal since classically the black hole has only one state.

It is completely characterized by its mass, angular momentum and charge. Hence the

entropy we would associate with it is zero. However, Hawking (see [5]) showed that

the behavior of quantum fields in the vicinity of the horizon results in radiation that

is precisely thermal from the black hole. He calculated the temperature and entropy
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to be

T =
κ

2π
(2.8)

S =
A

4
(2.9)

in units where the gravitational constant is one. The black hole thus radiates away

its energy and eventually disappears.

These results are strikingly elegant and hence demand an explanation. The source

of this entropy, i.e. the explicit microstates, need to be identified. Additionally,

the Hawking radiation process also poses a few puzzles. If we assume that general

relativity is valid near the horizon due to the low gravity there, Hawking’s derivation

produces perfectly thermal radiation that cannot carry away information about the

matter that formed the black hole, leading to a loss of information. The conservation

of information however is a fundamental principle of physics. This leads us to believe

that the horizon may not be as innocent as it seems. The fuzzball model to be

discussed later builds on this idea.

2.3 Holography

Gravity is a geometric theory, dealing with concepts like the metric and curvature.

Quantum Field Theory (QFT), on the other hand, describes the behavior of matter

fields on flat space-times, successfully accounting for elementary particles like the

electron, quarks and the gauge bosons. Attempts to make a quantum field theory

out of gravity have failed due to the non-renormalizability of the theory. However,

recently, a surprising connection between gravity and quantum field theories has been

uncovered by string theorists. This is the AdS/CFT correspondence.

Imagine a D-brane with open strings living on it. In the surrounding bulk space,

closed strings generate gravity among other fields. These two sectors interact by
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processes like the emission of strings from the brane into the bulk and vice versa. We

wish to focus on a low energy regime where the two sectors are decoupled. That is,

the closed strings and the open strings no longer interact and we are left with two

independent theories. The limit is a delicate one which is done by sending the string

scale ls to zero while enforcing the correct scaling of various physical quantities. When

the decoupling limit is taken, we are left with a QFT on the brane and supergravity

in the bulk.

We now step down the energy ladder. The string theory in the bulk becomes

supergravity in the bulk while the brane becomes a black hole. In this scenario, we

can again take a corresponding decoupling limit that separates the bulk from the

black hole. As a result, we are left with supergravity in the bulk and supergravity

in the near horizon region. To be more specific, in the best understood example of

holography, the near horizon geometry of the black hole is an Anti-deSitter (AdS)

space which is a space of uniform negative curvature. Thus, we have two independent,

non-interacting gravitational theories.

Looking at the theories that we are left with upon taking the decoupling limit

at the two energy scales, we see that supergravity in AdS space is a low energy

approximation of QFT on the brane. Remembering that supergravity is a low energy

approximation of string theory, Maldacena and others (see [12], [13]) conjectured that

the QFT, which in this case is a Conformal Field Theory (CFT), is exactly equivalent

to the full blown string theory in AdS space.

This conjecture has been extensively tested in certain cases and the circumstantial

evidence for its validity is great. The reason it is called the holographic duality is that

the brane world volume can be considered to be the boundary of the bulk geometry.

Thus string theory (or supergravity) in the bulk space is equivalent to a QFT on

the boundary of this space. This comprehensive encoding of information on a lower

dimensional space from the bulk is reminiscent of a hologram.
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Part of the magic of the holographic duality lies in the way it maps strongly

coupled QFTs to weakly coupled string theory and vice versa. The coupling strength

of a theory decides the strength of interaction of the objects in the theory. Since

calculations at strong coupling are virtually impossible in both theories, the duality

allows us to perform the corresponding calculations in the weakly coupled dual and

translate the results back to our theory of interest. Thus besides being an elegant

and remarkable mathematical fact, it is a powerful computational tool.

As stated earlier, the entropy of a black hole scales with the area of its horizon.

This somewhat odd dependence seems less perplexing in the light of the holographic

principle. The information contained within the horizon can presumably be coded on

the horizon.

2.4 NCSYMs

We will be looking at a particular class of Quantum Field Theories in the next chapter

called Non-Commutative Super Yang-Mills (NCSYM) theories. A Yang-Mills theory

or a gauge theory is a field theory whose action is dictated by invariance under a

particular group of symmetries. The gauge field itself transforms as an affine repre-

sentation, i.e. a non-linear representation, of the gauge group.

The simplest Yang-Mills theory is electromagnetism. The gauge group in this case

is U(1) and the familiar gauge transformations leave the action invariant. Explicitly,

the action is

S = −1

4

∫
F µνFµν (2.10)

where

F = dA (2.11)

⇒ Fµν = Aµ,ν − Aν,µ (2.12)
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is the exterior derivative of the real valued gauge field A. A gauge transformation of

A can be written as

A → A + dλ (2.13)

where λ is a scalar. Remembering that d2 = 0, we see that F is invariant since

F → dA + d2λ = dA. (2.14)

Since U(1) is abelian, this is a particularly simple theory. For more complex

groups, where the group elements don’t commute, the gauge field takes its values

in the Lie algebra of the gauge group and is represented by matrices. The general

Yang-Mills action is given by

S = −1

4

∫
TrF µνFµν (2.15)

where the trace is taken over the gauge index.

For conceptual purposes, it is best to simply think of these theories as more

complicated versions of electromagnetism. The strong and the weak interactions are

both described by gauge theories. The gauge groups in these cases are SU(3) and

SU(2) respectively.

In string theory, Yang-Mills theories occur as the low energy description of open

strings that live on coincident D-branes. Since the Standard Model is entirely based

on Yang-Mills theories, attempts to reproduce it from string theory have centered on

such systems.

A non-commutative field theory (see [11]) is one where the space-time coordinates

do not commute. That is, the coordinates satisfy an algebra of the form

[xµ, xν ] = iθµν (2.16)

where θµν are numbers that decide the scale of non-commutativity.
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The reason for interest in such structures is that they occur in string theory under

certain conditions. When a D-brane has a magnetic field on it, generated by closed

strings, the coordinates of the end points of the open strings that live on the brane

no longer commute and satisfy the above algebra. The resulting field theory that

describes the low energy behavior of these open strings is then a NCSYM.

This non-commutativity can be understood qualitatively using the following anal-

ogy. Consider the ordinary non-relativistic quantum mechanics of a charged point

particle in a uniform magnetic field (in the ẑ direction, say). The vector potential in

this case is

~A ∼ −~r × ~B (2.17)

∼ (−yB, xB, 0) (2.18)

As is well known, the commutation relations for a point particle in the presence

of an electromagnetic field are given by

[xµ, pµ − eAµ] = i~δµν (2.19)

where pµ = −i~ ∂
∂xµ is the momentum operator. When the magnetic field is very

strong, the p term can be dropped in comparison to the eA term. Substituting the

known vector potential, we get

[x, eyB] = i~ (2.20)

⇒ [x, y] =
i~
eB

. (2.21)

Thus the x and y coordinates of a charged particle in a uniform magnetic field do

not commute. Something very similar happens to open strings on a D-brane with a

B field.
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Chapter 3

Fuzzy Black Holes

The fuzzball model posits that the horizon is a region of non-traditional physics.

Samir Mathur and others (see [7], [8], [9]) suggest that stringy degrees of freedom

start displaying their personality in this region. To provide evidence for this, string-

inspired families of solutions of general relativity have been found that match the

Schwarzschild metric far away from the horizon, but end in a smooth cap within the

horizon instead of featuring a singularity at the center. These solutions are sourced

by string theory objects like strings and branes and their excitations. The entropy of

such stringy black holes has also been calculated and match the Bekenstein-Hawking

prescription (see [1]).

3.1 Formation of the Fuzzy Horizon

Consider a shell of N strongly interacting D0-branes in D space-time dimensions

starting from rest with initial radius R0 much greater than the horizon radius, r0,

associated with the (ADM) mass of the shell M . We wish to examine the evolution

of this shell as it collapses due to gravity. We expect that the final result of such a
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collapse is a finite temperature D0 black hole.

The properties of the matter in the shell are governed by a strongly coupled

quantum field theory to be described below. To understand the phase structure of

this matter, we use the holographic duality to move to weakly coupled gravity where

a phase transition is easily deduced. This information is then translated back as a

thermodynamic statement about the D0-branes. The details of the following section

can be found in [16].

3.2 The NCSYM

The behavior of a D0-D2 brane (fuzzy membrane) is described by a 2+1 dimensional

Non-Commutative Super Yang-Mills theory (NCSYM) at strong coupling, derived

from type IIA string theory. The presence of D0-branes is indicated by a magnetic

field on the D2-brane world volume. If N2 is the number of D2-branes, the resulting

Yang-Mills theory is a U(N2) theory. Let the world volume coordinates be x0, x1, x2.

The coupling of the theory is given by (see [11])

g2
Y M =

Gs

ls
(3.1)

with

Gs =
gsBx1x2

gx1x1

, Gx1x1 = Gx2x2 =
B2

x1x2

gx1x1

, θx1x2 =
2πα′

Bx1x2

. (3.2)

Here ls is the string scale,
√

Gs is the open string coupling of the parent theory,

gs is the closed string coupling, Bx1x2 is the magnetic field, gab is the closed string

metric (in the bulk), Gab is the world volume metric on the brane and θx1x2 is the

non-commutativity scale. The brane is assumed to be in the shape of a sphere, so

the coordinates x1, x2 are compact. Let the surface area of the brane be V2.
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The effective coupling of the theory is a function of the temperature, T , and is

given by the dimensionless quantity

g2
eff =

g2
Y M

T
. (3.3)

We are interested in the regime where the coupling is strong, i.e. g2
eff � 1. In this

regime, calculations in the Yang-Mills theory are impossible using perturbative meth-

ods and hence we need to use the holographic duality and shift to the gravitational

theory in the background.

3.3 The Gravitational Dual

The gravitational dual of the above NCSYM is the background geometry around the

same D0-D2 system. A spherical D0-D2 brane, however, is not stable gravitation-

ally and collapses as we would expect. Hence, we instead look at the background

cast by D0-D2 branes wrapped around a torus which is a stable configuration. The

thermodynamic conclusions drawn from this toroidal setup are then extended to the

spherical case. We first do the analysis in 10 dimensions.

The metric around the D0-D2 brane is given by (see [15])

ds2
str = H−1/2

(
−hdt2 + D

(
dx2

1 + dx2
2

))
+ H1/2

(
h−1dr2 + r2dΩ2

6

)
, (3.4)

with

H = 1 +
q5

r5
, h = 1 − r5

0

r5
, D =

Q2
0 + Q2

2

H−1Q2
0 + Q2

2

. (3.5)

Assuming N0 and N2 are the number of D0 and D2 branes respectively, the D0 and

D2 charges are

Q0 = N0T0 =
N0

gsls
, Q2 = N2T2V2 =

N2V2

gs (2π)2 l3s
; (3.6)
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with q5 defined through

Q =
√

Q2
0 + Q2

2 =
5V2Ω6

2κ2
r
5/2
0 q5/2

√
1 +

q5

r5
0

; (3.7)

and

2κ2 = (2π)7 g2
sα

′4 , Ω6 =
16

15
π3 . (3.8)

The directions parallel to the two dimensional torus are described by x1 and x2.

The compact nature of these coordinates implies that

x1 ' x1 +
√

V2 , x2 ' x2 +
√

V2 . (3.9)

Besides the metric, the closed strings generate a dilaton field, φ, and the NSNS B

field given by

e2φ = g2
sH

1/2D , Bx1x2 =
Q0

Q2

D

H
. (3.10)

The D0 and D2 branes also generate RR fields

At = −r
5/2
0

q5/2

(
1 +

q5

r5
0

)1/2
Q0

QH
(3.11)

Atx1x2 = −r
5/2
0

q5/2

(
1 +

q5

r5
0

)1/2
D

H

Q

Q2
. (3.12)

The ADM mass of the metric is calculated to be

M =
V2Ω6

2κ2

(
6r5

0 + 5q5
)

(3.13)

and the Hawking-Bekenstein entropy, calculated from the area of the horizon, is

S =
4πV2Ω6

2κ2
r6
0

√
1 +

q5

r5
0

. (3.14)

The asymptotic values of gx1x2 and Bx1x2 as r → ∞ in the bulk geometry are the

ones that appear in the NCSYM described earlier. Explicitly, their values are

g∞
x1x1 → 1 , B∞

x1x2
= −(2π)2α′ N0

N2V2
. (3.15)
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From this we can calculate the other parameters of the NCSYM like the world

volume metric Gab and the non-commutativity parameter θx1x2.

Gx1x1 = Gx2x2 = (2π)4N2
0

N2
2

α′2

V 2
2

, θx1x2 =
1

2π

N2

N0
V2 , Gs = (2π)2 gs

V2

N0

N2
α′ .

(3.16)

Hence the effective coupling of the theory is

g2
eff ≡ g2

Y

T
=

Gs

lsT
=

N0

N2
(2π)2 gsls

V2T
. (3.17)

3.4 The Decoupling Limit

To use the holographic duality, we have to take the decoupling limit where the closed

and open string sectors decouple. This is done by sending the string scale α′(= l2s) → 0

while ensuring that certain quantities scale the right way. We need

gs ∼ l3s , eφ ∼ finite , ds2
str ∼ α′ , B12 ∼ 1/α′ (3.18)

The scaling of the closed string coupling, gs, ensures that the effective Yang-Mills

coupling is finite in the limit. The metric is kept proportional to α′ to decouple

gravity from the NCSYM, and the B field scaling ensures non-commutativity of x1

and x2 in the NCSYM.

H1/2Dg2
s ∼ 1 , H1/2r2 ∼ α′ , H−1/2DV2 ∼ α′ (3.19)

These set of conditions have one solution of interest given by

gs ∼ l3s , r ∼ α′ , V2 ∼ α′2 . (3.20)
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We define the following rescaled parameters that are finite in the decoupling limit.

g ≡ gs

l3s
, v2 ≡

V2

α′2 , u ≡ r

α′ (3.21)

The quantities of interest describing the background are then expressed in terms

of these new finite parameters.

q5 =
3

2
(2π)4N0g

v2
α′3 (3.22)

H =
6Q0

5E
=

6N0

5gE

1

α′2 (3.23)

The energy above extremality E ≡ M − MBPS is

E =
4

5(2π)4

v2

g2
u5

0 (3.24)

with u0 ≡ r0/α
′. Note also that in the decoupling limit MBPS of the D0-D2 system

is dominated by the BPS mass of the D0 branes

MBPS =
√

M2
D0 + M2

D2 → MD0 =
1

α′2
N0

g
→ ∞ . (3.25)

The entropy is given by

S2 =
8

75(2π)2

v2N0

g3
u7

0 (3.26)

Eliminating u0 between equations 3.26 and 3.24,we get the equation of state for

a D0-D2 system.

ED0D2 '
v

2/7
2 g1/7

N
5/7
0

S10/7 (3.27)

The equation of state of the D0 matter, derived from the D0-brane black hole

metric, is given by

ED0 ' N−7/9g1/3S14/9. (3.28)
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3.5 Phase Structure

We now argue that in the gravitational dual, a phase transition, known as the Gregory-

Laflamme transition (see [14], [15]), occurs when the volume of the torus is decreased

and becomes comparable to the horizon radius squared.

To understand the Gregory-Laflamme transition, let us look at it in the case of a

simpler black hole. Consider a point black hole with horizon radius r0 in a compact

dimension of size R and a ‘smeared’ black string. When R is large, the entropy of the

point black hole is proportional to rD−2
0 and hence as a function of its energy M , is

Sp ∝ M
D−2
D−3 (3.29)

where D = 10 is the total number of space-time dimensions. For the black string,

however, the horizon area is proportional to rD−3
0 R which means that

Sstr ∝ M
D−3
D−4 (3.30)

Clearly the point black hole has greater entropy and is more stable in the large R

regime. Conversely, when R is decreased and becomes comparable to the horizon

radius r0, we can imagine the horizon fusing with its images to form a smeared

toroidal horizon, transitioning to the black string.

In our case, we start with a certain number of D0-branes which translate in the

gravitational side to point black holes. As the volume of the torus decreases the

horizons of the point black holes fuse to form a D0-D2 toroidal black hole. This is

translated back to the matter side as a D0-D2 brane. Thus the gravitational Gregory-

Laflamme transition indicates that the collapsing D0-brane shell undergoes a phase

transition where the D0-branes condense into D0-D2 branes.

Since the transition occurs when the size of the torus becomes comparable to the

horizon radius, we find the condition to be

gx1x1v2 < gΩ6r
2
0. (3.31)
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Simplifying, we find that

v2 ' g4/7E
2/7
D0D2. (3.32)

Since this is stated in terms of the energy of the resulting phase rather than the

initial phase, we rewrite it in terms of entropy using the equation of state (3.27) to

get

v2 ' N
−2/9
0 g2/3S4/9. (3.33)

Note that this is precisely the scaling relation between the entropy and energy of

a black hole in 10 dimensions. Using the equation of state of D0 matter, we can write

the condition in terms of the energy of the D0 matter. We find

v2 ' g4/7E
2/7
D0 (3.34)

which is also the right scaling of horizon area with energy for a black hole. Thus the

phase transition occurs at the same time as when the horizon radius is approached by

the collapsing shell. And the entropy and the energy of the resulting phase (D0-D2

branes) scales with volume as it should for a black hole.

The above results can be easily generalized to d non-compact dimensions by smear-

ing the metric along the compact ones. The results are still found to be valid (see

[16]). The scaling laws for d-dimensional black holes are obeyed by the transition

point and the resulting phase.

For a detailed derivation of the phase structure, see [16].

3.6 Stabilization

We have argued that when the shell of D0 branes approaches the horizon radius, it

undergoes a phase transition and forms D0-D2 membranes, called fuzzy spheres. It is
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reasonable to assume that these fuzzy spheres are evenly spread over the D − d − 2-

dimensional sphere which would be the classical horizon. The actual dynamics of

this system is very complicated but we can make an argument for the stability of the

same.

The Myers dielectric effect (see [10]) is a well known mechanism by which a D0-D2

brane is stabilized in the presence of an external F (4) field, i.e. the 4-form RR field

produced by D2 brane charge. The Myers effect is analogous to the effect of an electric

field on a molecule or atom. The molecule is polarized and a dipole moment develops.

Similarly, under the F field, a multipole D2 brane charge is created, represented by

a spherical D2 brane, and is stable.

If the strength of the field is f , and N0 is the number of D0-branes, the size of the

stabilized D2 brane is

b ' α′fN0 (3.35)

and the non-commutativity scale on the brane is

[x1, x2] ∼ iα′fx3. (3.36)

Since a number of fuzzy membranes are formed in our case, we expect that each

of them produces an F (4) field and is affected by the field of all the other membranes.

In [16], it is argued using some dimensional analysis that the mean field produced by

the membranes is of the right order to satisfy the above relations.

More detailed study of the stabilization process is needed to make a convincing

argument. In this direction, we computed the F (4) field of a single fuzzy membrane

along its axes of symmetry to be

F 0123 =
4πr3c2

3c1Ω8(r2 + xixi)9/2
(3.37)

where c1 and c2 are the coefficients of the Yang-Mills self-term and the interaction-

through-the-potential term in the action of the brane.
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Chapter 4

Brane Interaction

4.1 Setup of Problem

We wish to investigate the interaction of 2 D0-D2 branes. To do this, we determine

the background due to one of them and analyze the dynamics of the other brane

in this background. Again, since a spherical D0-D2 brane is not stable, we use the

toroidal case as a laboratory.

The action of the probe has two terms - the Dirac-Born-Infeld (DBI) term and

the Chern-Simons (CS) term. Explicitly,

SDBI = −T2

∫
d3x

(
e−φ

√
−det(P [G + B]ab + 2πl2sFab)

)
(4.1)

and

SCS = µ2

∫
P [C1 ∧ B + C3] + λP [C1] ∧ F. (4.2)

We look at three different configurations of the branes. They can be parallel to

each other, meaning both their extended dimensions are parallel, or only one of them

can be parallel while the other is perpendicular, or both can be perpendicular. Only

for the parallel case is the CS term non-zero.
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Figure 4.1: A plot of the potential V (r) versus r for the mixed case. The bump is

near the horizon which is at r = 200.

4.2 Analysis

After setting up appropriate coordinate systems, the action and the background were

fed into Mathematica and the equation of motion of the probe brane was evaluated

and written in the form

ṙ2 + V (r) = 0 (4.3)

where r describes the separation between the probe and the source in a spherical

coordinate system.

The potential was then plotted by Mathematica for various cases. A sample plot

for the mixed alignment case is shown in figure 4.1. There is a bump in the potential

near the horizon radius. The same qualitative behavior is seen for the parallel case

and the perpendicular case in certain regimes of the parameter space. More detailed

study of the parameter space is needed before any definite conclusions can be drawn.

This is an area for future work.
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Chapter 5

Conclusions

The fuzzball model of a black hole has many appealing features, and it promises

to resolve many apparent paradoxes in the traditional view of black holes. If this

model is taken seriously, the horizon is no longer a region where general relativity is

applicable despite the fact that gravity is weak here. The fuzzy membranes would

sustain themselves at the horizon radius and demand stringy physics to be applied.

We have looked at the collapse of a shell of D0-branes and identified a phase

transition near the horizon. The D0-branes apparently bind together to form fuzzy

membranes. This was deduced using the holographic duality to translate the Gregory-

Laflamme transition of black holes into the binding of D0-branes.

The stability of such a system was also argued for using the Myers dielectric effect.

The mean F field produced by the membranes is of the right order of magnitude to

stabilize the individual membranes. The exact details of the interaction of fuzzy

membranes are difficult to work out. More analysis is necessary before a convincing

argument can be made for the model (see [17]).
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