
Claremont Colleges
Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2010

Optimizing Restaurant Reservation Scheduling
Jacob Feldman
Harvey Mudd College

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Feldman, Jacob, "Optimizing Restaurant Reservation Scheduling" (2010). HMC Senior Theses. 22.
https://scholarship.claremont.edu/hmc_theses/22

https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

Optimizing Restaurant Reservation Scheduling

Jake Feldman

Susan E. Martonosi, Advisor

John M. Bossert, Reader

May, 2010

Department of Mathematics

Copyright c© 2010 Jake Feldman.

The author grants Harvey Mudd College the nonexclusive right to make this work
available for noncommercial, educational purposes, provided that this copyright
statement appears on the reproduced materials and notice is given that the copy-
ing is by permission of the author. To disseminate otherwise or to republish re-
quires written permission from the author.

Abstract

We consider a yield-management approach to determine whether a restau-
rant should accept or reject a pending reservation request. This approach
was examined by Bossert (2009), where the decision for each request is eval-
uated by an approximate dynamic program (ADP) that bases its decision
on a realization of future demand. This model only considers assigning
requests to their desired time slot. We expand Bossert’s ADP model to in-
corporate an element of flexibility that allows requests to be assigned to a
time slot that differs from the customer’s initially requested time. To esti-
mate the future seat utilization given a particular decision, a new heuristic
is presented which evaluates time-slot/table assignments based on the ex-
pected number of unused seats likely to result from a given assignment.
When compared against naive seating models, the proposed model pro-
duced average gains in seat utilization of 25%.

Contents

Abstract iii

1 Introduction 1

2 Background on Restaurant Revenue Management 5
2.1 Literature Review . 5
2.2 The Dynamic Accept/Reject Model for Reservations 7

3 Extending the Accept/Reject Model 13
3.1 The Flexibility Model . 13
3.2 Incorporating Time Flexibility in the Heuristic 16
3.3 The Expected Gap Heuristic 16

4 Simulations and Results 21
4.1 Describing Input Parameters for Simulations 21
4.2 Results . 24

5 Future Work and Conclusions 29
5.1 Future Work . 29
5.2 Conclusions . 30

Bibliography 31

Chapter 1

Introduction

The restaurant business is a cut-throat industry where profit margins are
thin for most restaurants. Restaurateurs might have savvy business part-
ners who can manage the money, but what they lack is a mathematician’s
insight into optimizing restaurant operations. Restaurants make numer-
ous day-to-day decisions regarding the scheduling and timing of events.
Examples of such decisions include the assignment of customers to specific
tables, how quickly to clear tables once diners have finished, and how long
a waiter or waitress should wait before delivering the check. Each of these
examples is comprised of a set of decisions, and thus techniques from oper-
ations research are useful in modeling these problems and finding the most
profitable solution.

Bossert (2009) notes that the profit margins of many fine dining estab-
lishments are between only one and three percent of their revenue. As a
result, it is essential that restaurants operate their business with the utmost
efficiency. The ability to run a highly efficient restaurant is dependent on
how the restaurant manages two key elements of demand around the cur-
rent occupancy of the restaurant. The first element of demand that must
be managed is represented by the density of walk-in traffic. Walk-in cus-
tomers are parties that come to the restaurant without a reservation. The
restaurant must consider the timing and magnitude of its walk-in traffic.
The second element of demand is represented by reservation requests that
are called in. Bossert believes that this element of demand is very important
for most restaurants that take call-in reservations, as he thinks there is a di-
rect link between reservations and revenue. While most restaurants must
manage both elements of demand, there are some that only take walk-in
customers and others that only accept reservations. Among the restaurants

2 Introduction

that only schedule reservations, the restaurants with consistent streams of
daily reservation requests generally have the largest revenues.

Research within this field is strongly influenced by the theories of rev-
enue management: the application of information systems and pricing strate-
gies to allocate the right capacity to the right customer at the right place
at the right time (Kimes et al., 1998). Netessine and Shumsky (1999) de-
scribe five defining features of problems that can be solved from a revenue-
management perspective:

1. It is expensive or impossible to store excess resources;

2. Commitments need to be made when future demand is uncertain;

3. The firm can differentiate among customer segments;

4. The same unit of storage can be used to deliver many different prod-
ucts and services; and

5. Producers are profit-oriented and have broad freedom of action.

The restaurant-reservation problem fits the mold perfectly, as each of
the five characteristics are satisfied. The resource in this context refers to
the occupancy of the seats in the restaurant at a specific time. It is im-
possible to store excess resources because if a seat is not filled during a
specific time, the chance to fill this time-slot/table combination is lost for-
ever. The second feature is relevant because the restaurant must make an
accept/reject decision while future demand remains uncertain. The restau-
rant can never predict exactly how many reservation requests it will receive
in the future, nor can it predict the party size of each request. With regards
to the third feature, a restaurant is able to differentiate between customer
segments based on party sizes. The fourth feature is satisfied because a
given seat at a particular time can be assigned to any customer. Finally, the
restaurant has a broad freedom of action because it is allowed to reject ser-
vice to any customer. Such practices would be questionable, for example,
in the context of hospital operations. Further, revenue-management tech-
niques are also useful when variable costs (costs to produce the food) are
low, and the capacity (number of seats in the restaurant) is fixed. When this
is the case, there is a strong positive correlation between revenue and profit
and thus both are equal measures of success for a restaurant.

When revenue-management techniques are applied with regards to the
restaurant-reservation scheduling problem, the capacity refers to the table
size, the customer becomes the party inquiring about a reservation, and the

3

time represents all possible dining hours. Upon the arrival of a reservation
request, the restaurant must ask: Is seating this party at this specific table at
this time going to maximize revenue? To answer this question accurately,
a restaurant must use tools for forecasting future demand as well as for
managing a perishable resource.

This thesis provides an analysis of how restaurant reservations can be
studied and forecasted to maximize revenue. An approximate dynamic
program was developed to decide whether it is more profitable to accept or
reject a given pending request. While accepting a pending request leads to
immediate realized revenue, it is possible that this acceptance will diminish
future seat utilization. Future seat utilization refers simply to how many
people the restaurant will seat in the future.

The rest of this paper is structured as follows. Chapter 2 provides a
summary of all relevant research and introduces the accept/reject model
proposed by Bossert. Chapter 3 details an extension to the accept/reject
model; an element of flexibility is incorporated that allows requests to be
assigned to a time slot that differs from their initial request. Chapter 4
describes the restaurant reservation simulation process and the results from
these simulations. Finally, Chapter 5 offers avenues for future work and
provides a concluding summary of the results.

Chapter 2

Background on Restaurant
Revenue Management

Previous research relevant to the restaurant-reservation scheduling prob-
lem is summarized in this section. After this brief literature review, the
model presented in Bossert (2009) is outlined. This model forms the basis
for the dynamic program proposed later in this thesis.

2.1 Literature Review

The problem of managing restaurant reservation requests is only a sub-
field within a more general field of revenue management. Netessine and
Shumsky (1999) note that a variety of industries (hotel, car rental, and air-
lines) have implemented revenue management techniques in an attempt
to answer the overarching question of how a firm should market and dis-
tribute goods to multiple customer segments. McGill and Van Ryzin (1999)
review the forty-year history of research within the field of revenue man-
agement. They cover developments in forecasting, overbooking, seat in-
ventory control, and pricing as they relate to the airline industry. Relevant
to the restaurant-reservation scheduling problem, McGill and Van Ryzin
believe that the fundamental revenue management decision to be made is
whether to accept or reject a booking. They note that a request should be
satisfied only if the fare value of the requested itinerary equals or exceeds
the expected displacement cost.

Kimes et al. (1998) focus on the general overview of revenue manage-
ment and how it relates to the restaurant industry. They analyze all as-
pects of the dining service from table turnover time to meal durations. In-

6 Background on Restaurant Revenue Management

stead of using only revenue, they propose that the measure of success for
a restaurant should be revenue per available seat hour (RevPASH). This
metric is calculated by dividing the total revenue generated over a specific
time by the sum of the number of hours each table is available to accommo-
date customers. Tables that are available for assignment but go unused for
prolonged periods of time therefore contribute very little to the RevPASH
value. Kimes et al. (1999) analyze the effects of implementing these strate-
gies at a 100-seat restaurant. They develop a three-step process intended to
increase revenue. The process involves collecting data, identifying the un-
derlying causes of operational problems, and then developing a revenue-
management strategy to make service more efficient.

Thompson (2002) begins his research by looking at the impact of com-
binability in restaurants that only have walk-in customers . Combinability,
for example, refers to the ability of a restaurant to combine two two-tops
(two tables that can seat up to two people each) in order to accommodate
a four-person party. Thompson and Kimes (2005) build on this idea of op-
timal combinability by describing how to find the optimal table mix. They
use three heuristics based on integer programs and two variants of simu-
lated annealing heuristics to find the optimal mix of two-, four-, six-, and
eight-tops at restaurants that have constant demand, and at restaurants that
have varying demand based on the day of the week.

Thompson and Kwortnik (2008) examine whether restaurant reserva-
tions should be locked to specific tables at the time the reservation is made,
or whether the reservations should be pooled and assigned to tables in real
time.

The reservation-inventory question that is the focus of this paper is first
addressed by Shioda (2002). She develops an integer-programming model
that determines how many reservations to accept in days prior to a par-
ticular day in the future. While this model is effective in determining the
number of reservations to accept, it fails to incorporate any details of the
table layout. This model does not assign reservations to specific tables and
it does not consider the possibility of reconfiguring the current table layout
in an effort to accept more reservations. Vidotto et al. (2007) also investigate
the relevant reservation inventory problem but do so in a manner that does
not focus primarily on yield-management. They provide a model that can
effectively manage a stream of reservation requests, but this model makes
no attempt to identify and select the most profitable requests.

Bossert (2009) has also focused on the scheduling of reservations. He
uses an approximate dynamic program to determine whether or not to
accept a given reservation requests. He does so by implementing Monte

The Dynamic Accept/Reject Model for Reservations 7

Carlo simulations where the effective worth of both the accept and reject
options is evaluated through a two-pass heuristic that manages a theoret-
ical stream of future demand. Within his simulations, he considers vari-
ous table mixes for restaurants of varying sizes. A major shortcoming of
Bossert’s model is that it does not consider the profitability of offering a
customer a reservation at a time that differs from their initial request. Sec-
tion 2.2 gives a detailed account of the current model proposed by Bossert,
as it forms the foundation for this thesis.

2.2 The Dynamic Accept/Reject Model for Reservations

‘
This section includes a summary of the model proposed in Bossert (2009).

The interested reader can refer to the original paper for details.
The time during which the restaurant is available to accept reservation

requests before the given service date is broken into T distinct time periods,
which are assumed to be narrow enough that at most one reservation is
requested in each period. The restaurant can only receive requests in a
period k, where k < T. During each period k there is a set probability that
a customer will call in for a reservation. Dummy reservations of all zeros
are placed in the time periods that do not receive reservation requests. The
actual meal service is discretized into M slots. A given request, if accepted,
will occupy a certain number of slots, this quantity is referred to the meal
duration of a party. This model assumes a constant meal duration over all
party sizes.

Bossert uses a dynamic programming framework to weigh the bene-
fits of accepting versus rejecting a pending reservation request. Accepting
the reservation will lead to immediate revenue, but it is possible that this
acceptance will diminish future seat utilization. The restaurant can thus
decide to reject a reservation request for two reasons: an assignment can
result in unused seats, or an assignment can result in a large reduction of
the turn count of a table. Bossert defines the turn count of a table to be
the maximum number of requests that could be assigned to a given table
throughout the entire service period. To elucidate the notion of turn count,
consider a restaurant that only has one two-top and six dining slots. As-
sume that the meal duration is two. The turn count for the single table is
three; ideally, the restaurant would like to assign reservations to slots 1 and
2, 3 and 4, and 5 and 6. If the restaurant begins by accepting a reservation
for slots 2 and 3, then requests can only be feasibly assigned to slots 4 and 5
or 5 and 6. This assignment would thus reduce the turn count of this table

8 Background on Restaurant Revenue Management

from three to one.
The accept/reject model makes a few simplifying assumptions with re-

gards to the characteristics of the restaurant. The table mix (number of
tables of size two, four, six, etc...) is predetermined. Most restaurants have
a set table mix, but do not have the space to use all the available tables
at once. Restaurants thus use subsets of the complete set of tables where
the union of each of these subsets forms the complete list of tables. The
restaurant then switches between these subsets during the dining service
in order to accommodate requests of various party sizes. One such subset
is referred to as a feasible table configuration. There is a predetermined set
of feasible table configurations that is assumed to be smaller than the set of
all possible configurations to maintain computational tractability.

2.2.1 Approximate Dynamic Programming Model

Bossert (2009) uses an approximate dynamic program where the decision
at each stage is whether to accept or reject the pending reservation request.
The vector (nk,~sk,~tk, s∗k , t∗k) details the current state of the restaurant. The
first three components of this vector describe the already accepted requests,
whereas the latter two correspond to the details of the pending request that
is being considered. In his paper, Bossert defines the variables as follows:

nk : the number of requests accepted over periods 1 to k− 1;

~sk : vector of length nk, corresponds to the party sizes of the accepted re-
quests;

~tk : vector of length nk, corresponds to the arrival time slots of the accepted
requests;

s∗k : size of the pending reservation request; and

t∗k : requested arrival slot of the pending reservation request.

If the pending reservation request is rejected, the restaurant then con-
siders the next request. This new request will have a party size, s∗k+1, and an
arrival time, t∗k+1. Equation 2.1 shows the changes made to the vector when
the pending request is rejected. If the pending request is accepted, updates
must be made to each variable. Notice that nk becomes nk + 1 because the
restaurant has accepted an additional request. We also must update ~sk, as
we must store the party size of the newly accepted request: ~sk becomes
~sk ∪ s∗k . The arrival-slots vector is updated in a similar way. Finally, a new

The Dynamic Accept/Reject Model for Reservations 9

pending request must be considered with party size s∗k+1 and arrival time
t∗k+1. The dynamics for the accept case are shown in Equation 2.2.

(nk,~sk,~tk, s∗k , t∗k)→ (nk,~sk,~tk, s∗k+1, t∗k+1). (2.1)

(nk,~sk,~tk, s∗k , t∗k)→ (nk + 1,~sk ∪ s∗k ,~tk ∪ t∗k , s∗k+1, t∗k+1). (2.2)

The decision to accept or reject the pending request is based on a re-
alization of future demand. At each step, a specific reservation request is
considered and a preliminary capacity check is made. Since the previously
accepted requests are not assigned to specific tables, the capacity calcula-
tion involves shifting the accepted requests to accommodate the current
pending request. This capacity calculation is approximate due to the fact
that every possible arrangement of the accepted requests cannot be consid-
ered. A pending request can only be accepted if there is sufficient room
to accommodate the pending request as well as all previously accepted re-
quests. If there is not sufficient space, the reservation is rejected. If the
restaurant has the potential to accommodate the pending request, then the
benefits of accepting versus rejecting this request must be considered. The
benefits in this scenario refer to the potential future seat utilization. This
future seat utilization will almost always be higher when the reject option
is considered, although it is important to remember that both the future
seat utilization and the immediate revenue contribute to the value of the
accept option.

The dynamic program considers the two options one at a time. First, the
pending request is tentatively rejected and the potential future seat utiliza-
tion (seats-to-go value) is calculated. This seats-to-go value is estimated
through a two-pass heuristic that attempts to optimally pack a randomly
generated theoretical stream of future requests into the remaining open
time-slot/table combinations. This same stream of future demand is then
used to calculate the expected seats-to-go value assuming the pending re-
quest has been tentatively accepted. This process is then repeated. With
each repetition, a different randomly generated stream of future requests is
inputted into the heuristic in what is called Monte Carlo simulations. The
final seats-to-go values for the reject and accept options are averaged over
all the Monte Carlo simulations. If the expected seats-to-go for the case
where the reservation is tentatively rejected cannot make up for the imme-
diate gains of accepting the reservation, then a final decision is made to
accept the request. Otherwise, the pending request is rejected.

10 Background on Restaurant Revenue Management

Each pending request is received in a period k, where k < T, and thus
it is known that there are T − k remaining time periods before the service
date, each with a preset probability that a customer will request a reserva-
tion during this slot. The number of theoretical future requests to generate
for the heuristic is thus determined by the number of remaining time peri-
ods before the service day and the probability of a nontrivial request during
a time period k.

The value of Jk(nk,~sk,~tk, s∗k , t∗k), henceforth referred to as the seats-to-go
function, is the maximum expected number of additional seats booked over
the remaining time periods k to T.

The dynamic programming recursion is as follows:

JT(nT, ~sT, ~tT) = 0, (2.3)

Jk(nk,~sk,~tk, s∗k , t∗k) =

E[Jk+1(nk,~sk,~tk, s∗k+1, t∗k+1)],
if cannot accommodate request.
max{s∗k + E[Jk+1(nk + 1,~sk ∪ s∗k ,~tk ∪ t∗k , s∗k+1, t∗k+1)],
E[Jk+1(nk,~sk,~tk, s∗k+1, t∗k+1)]}, otherwise ∀ k<T.

(2.4)
Equation 2.3 shows the value of the seats-to-go function at the end state.
At period T, when the day of service finally arrives, no more seats can be
assigned, so the seats-to-go from that time onward is 0. The first case of
Equation 2.4 corresponds to the requirement to reject the reservation re-
quest, and consider the next request, if the restaurant cannot accommodate
the request. The second case of Equation 2.4 is only relevant if the request
can be accommodated. It concerns the decision to accept or reject the pend-
ing reservation based on which choice returns a greater expected seats-
to-go value. The expression s∗k + E[Jk+1(nk + 1,~sk ∪ s∗k ,~tk ∪ t∗k , s∗k+1, t∗k+1)]
describes the scenario where the restaurant considers accepting the pend-
ing request. The restaurant acquires the immediate proceeds from the cur-
rent request, s∗k , and the expected future seat utilization, E[Jk+1(nk + 1,~sk ∪
s∗k ,~tk ∪ t∗k , s∗k+1, t∗k+1)]. This case is weighed against the reject option where it
is only necessary to consider the expected future seat utilization, E[Jk+1(nk
,~sk,~tk, s∗k+1, t∗k+1)], after rejecting the pending request. The solution to the
dynamic programming problem is summarized as a threshold policy in
which a request is accepted only if its immediate gains make up for the
potential future decrease in the seats-to-go value,

s∗k ≥ E[Jk+1(nk,~sk,~tk, s∗k+1, t∗k+1)]− E[Jk+1(nk + 1,~sk ∪ s∗k ,~tk ∪ t∗k , s∗k+1, t∗k+1)].
(2.5)

The Dynamic Accept/Reject Model for Reservations 11

The reservation will be accepted if there is sufficient space left in the restau-
rant, and the inequality in Equation 2.5 holds.

The state space grows very quickly as the number of seats in the restau-
rant is increased. Calculating the exact value of Jk would be computa-
tionally very burdensome as it would involve simulating over all possible
streams of future demand. Also, although the accuracy of the seats-to-go
value increases as the number of Monte Carlo simulations increases, so too
does the computational efficiency. The model’s computation time is essen-
tial as a customer is not likely to wait long for a decision to be made on
his or her request. Therefore, it is necessary to develop a heuristic that
is fast and efficient in approximating the value of the seats-to-go function
each time a new reservation request is received. The heuristic proposed
in Bossert (2009), described below, takes two passes through a theoretical
stream of future requests in order to quickly estimate the seats-to-go value.

2.2.2 Two-Pass Heuristic

On the first pass, the heuristic effectively accepts only reservation requests
that are defined to be an exact fit. In order to be characterized as an exact fit,
a request’s party size must equal the size of the table. Further, the assign-
ment of the given reservation to the requested time slot must not reduce
the turn count of the table by more than one. Once all exact fit reserva-
tions have been placed, the heuristic moves on to the second pass which
considers the requests not satisfied on the first pass. On the second pass,
the restaurant accepts any request where the table size is sufficiently large
(party size ≤ table size) and where the requested time slot is open.

2.2.3 Results of Accept/Reject Model

Bossert (2009) tests the performance of his proposed reservation-scheduling
model through simulations at five real restaurants located in the Eastern
United States. The table layouts and configurations of each restaurant were
estimated. A series of 40 simulations compared the proposed model to a ba-
sic scheduling system. This basic scheduling system greedily accepts any
reservation request that the restaurant can accommodate. For every simu-
lation, each request from a randomly generated stream of reservations was
passed to the dynamic program to make the corresponding accept/reject
decision. A parameter was also created to allow for varying degrees of de-
mand. The demand density parameter is the ratio of the number of pend-
ing requests to the maximum number of reservations that a restaurant can
accept.

12 Background on Restaurant Revenue Management

The implementation of Bossert’s scheduling model produced signifi-
cant increases in revenue for each of the five restaurants. The increases
were as high as 11.3 percent at the highest level of demand.

Chapter 3

Extending the Accept/Reject
Model

This chapter explains how an element of flexibility is added to both the
overarching dynamic program and the heuristic that is used to estimate
the seats-to-go value.

3.1 The Flexibility Model

The new model incorporates an element of flexibility that is absent in the
accept/reject model proposed by Bossert (2009). The flexibility element al-
lows requests to be assigned to a time slot that differs from the initially re-
quested time. This is a realistic addition to a restaurant reservation model
as there are very few restaurants, if any, that will not attempt to accom-
modate a request at a different time if the one that has been requested is
taken. In adding this flexibility element to the model, the likelihood that a
party will accept an arrival time differing from the one they have requested
must be considered. The most accurate estimation of these likelihoods in-
volves a probability distribution that is inversely related to the absolute dif-
ference between the requested and proposed arrival times, but this vector
will change depending on the restaurant. A restaurant that is in very high
demand will most likely have very lenient customers who are willing to
take any reservation they can get. For example, three star Michelin restau-
rants often require reservations to be made three months in advance, and
in this case, customers will accept any time they can get. Before introduc-
ing the new dynamic programming recursion, it is necessary to introduce
a few new variables that help incorporate the element of flexibility. Let ~P

14 Extending the Accept/Reject Model

be the vector containing the probabilities of customer acceptance indexed
by the absolute difference in requested versus proposed arrival time. The
dth element of ~P, denoted pd, is the probability that a customer will accept
a reservation d slots earlier or later than the requested time. It is impor-
tant to note that p0 will always be one because a customer will never re-
ject a restaurant’s offer to be seated at the time they have requested. The
exact relationship relating the difference between proposed and requested
times and probability of customer acceptance has yet to be determined. As
a result, for the current simulations, these probabilities are estimated and
sensitivity analysis has been performed.

Let the set Ak compromise the set of assignments, one for each table of
sufficient size, at the open time slot closest to the customer’s request. Let a
be an arbitrary element of the set Ak where each a has a specific time and
table associated with it. In this model, accepted reservations are assigned to
a specific table and not allowed to float, so we introduce two new variables,
~qk and q∗k , which are defined below.

~qk : vector of length nk, indicates the table assigned to accepted request k;

q∗k (a) : the table that is a part of the element a ∈ Ak. (t∗(a) is the arrival
time that is a part of element a ∈ Ak).

We still must store the variable t∗k , which represents the requested ar-
rival slot of the pending reservation request. It is possible that t∗(a) = t∗k ;
this will occur when the restaurant offers the the customer their requested
time slot.

The dynamics of the reject case can be seen in Equation 3.1. These dy-
namics mimic those of Bossert’s model except that the specific table as-
signments contained in the vector ~qk must be passed along from request
to request. The dynamics of the accept case can be seen in Equation 3.2.
The vector ~tk must be updated with the time that the new request has been
assigned. Recall that this time, t∗(a), is now allowed to be different from
the time the customer has initially requested. Further, the table assignment
of the pending request, q∗k (a), must be added to the vector ~qk of previously
assigned tables.

(nk,~sk,~tk, ~qk, s∗k , t∗k)→ (nk,~sk,~tk, ~qk, s∗k+1, t∗k+1). (3.1)

(nk,~sk,~tk, ~qk, s∗k , t∗k)→ (nk + 1,~sk ∪ s∗k ,~tk ∪ t∗(a), ~qk ∪ q∗k (a), s∗k+1, t∗k+1). (3.2)

The Flexibility Model 15

The dynamic programming recursion is thus as follows:

JT(nT, ~sT, ~tT, ~qk) = 0, (3.3)

Jk(nk,~sk,~tk, ~qk, s∗k , t∗k) =

E[Jk+1(nk,~sk,~tk, ~qk, s∗k+1, t∗k+1)],
if restaurant cannot accommodate request

max
{

max∀a∈Ak{(s∗k + E[Jk+1(nk + 1,~sk ∪ s∗k ,~tk ∪ t∗(a), ~qk ∪ q∗k (a), s∗k+1,

t∗k+1)])(p|t∗k−t∗(a)|) + (E[Jk+1(nk,~sk,~tk, ~qk, s∗k+1, t∗k+1)](1− p|t∗k−t∗(a)|))},
E[Jk+1(nk,~sk,~tk, ~qk, s∗k+1, t∗k+1)]

}
, otherwise ∀ k<T.

(3.4)
The dynamic program presented in Equations 3.3 and 3.4 differs in two

respects from the dynamic program proposed in Bossert (2009). First, with
the addition of flexibility, the reject option now must be weighed against
the benefits of accepting the request in all the time-slot/table combinations
that make up Ak. The dynamic recursion also must reflect the possibility
that the customer could accept or reject the restaurant’s offer. The first case
of Equation 3.4 accounts for this possibility by scaling the seats-to-go value
of the accept decision by the relevant pd value, and the reject decision by
1− pd. Recall that d is the difference between the requested and proposed
arrival times. The criteria for accepting the request, seen in Equation 3.5, is
very similar to that of Bossert’s model.

s∗k ≥ E[Jk+1(nk,~sk,~tk, ~qk, s∗k+1, t∗k+1)]− E[Jk+1(nk + 1,~sk ∪ s∗k ,~tk ∪ t∗(a), ~qk ∪ q∗k (a), s∗k+1,

t∗k+1)](p|t∗k−t∗(a)|) + E[Jk+1(nk,~sk,~tk, ~qk, s∗k+1, t∗k+1)](1− p|t∗k−t∗(a)|)).
(3.5)

We consider only placing each request at a single time slot per table,
namely the time slot that is closest to the requested time. The main reason
for this limitation is computational complexity; checking every time-slot
at every table would would be computationally very expensive. This ap-
proach is also an attempt to seat as many customers as possible in the time
slots closest to their request, while at the same time maximizing the total
people seated throughout the dining period. If placing a given request in
their desired time slot is unprofitable, then the heuristic will acknowledge
this with a low seats-to-go value, and the restaurant will reject the reser-
vation. If a restaurant is in high demand, it is likely that this method will
result in the restaurant rejecting many of the early requests with the hope

16 Extending the Accept/Reject Model

that the later requests will be more profitable. Although when the restau-
rant eventually does start making offers, it is likely that most customers
will be offered times close to their request.

A different model could consider the consequences of placing the pend-
ing request in every open time slot at every table. This model would intu-
itively seat more people and have fewer cases where the restaurant would
flat out reject the customer, but at a greater computational expense.

Flexibility must also be incorporated in the approximation of the heuris-
tic that is used to estimate the potential future seat utilization . In the next
section, a heuristic is described that incorporates this added flexibility ele-
ment.

3.2 Incorporating Time Flexibility in the Heuristic

The restaurant must decide between offering the customer a table that is an
exact fit at a time differing from their request, or a table that is oversized
at their requested time. In offering the former, the restaurant risks having
their request rejected by the customer. In the latter case, the restaurant
risks losing revenue from unused seats. In order to effectively assess the
benefits of each of these two cases, the restaurant must consider the level
of future demand. For a restaurant that does not anticipate much demand,
the heuristic should pick the lower-risk option that guarantees revenue, the
exact time fit. A restaurant that is very busy will risk rejection for an exact
table fit because they know there will be other opportunities to fill the table
if the customer rejects their offer.

The next section describes the heuristic that was developed to incorpo-
rate flexibility.

3.3 The Expected Gap Heuristic

The expected number of unused seats for a given time-slot/table assign-
ment, we decide to refer to this value as the expected gap, is calculate using
Equation 3.6:

E[Gap]ijkl = TableSizej − (PartySizei ∗ p|k−l|). (3.6)

Each request i is characterized by a party size, PartySizei, and some re-
quested arrival time k. The restaurant looks to fit request i into some table j
at some starting time l. TableSizej represents the size of table j, and |k− l| is

The Expected Gap Heuristic 17

the absolute difference between the requested and proposed arrival times.
The expected gap is minimized by simultaneously minimizing the differ-
ence between table size and party size and maximizing the value of pd, the
probability that the customer will accept an arrival time differing by d slots
from their requested time. A time-slot/table assignment that results in a
perfect fitting table is profitable, but the restaurant must assess how likely
the customer is to accept this assignment. In picking the time-slot/table
combinations that have the lowest expected gap, the restaurant balances
the risk that a customer might reject the restaurant’s offer with the goal of
having as few unused seats as possible.

The Expected Gap (EG) heuristic is characterized by two-passes through
the theoretical stream of randomly generated future requests. The passes
are executed sequentially such that a later pass cannot begin until all pre-
ceding passes have finished. The first pass of the EG heuristic only makes
time-slot/table assignments where the expected gap is zero and the turn of
the table is only reduced by one. Requests that were accepted by the first
pass are already assigned to tables and thus the second pass does not con-
sider them. The second pass considers each of the remaining requests one
at a time. For each request, the open time-slot closest to the customer’s re-
quest is found at each table. This is done to mimic the structure of the over-
arching dynamic program. Once this expected gap has been calculated for
each time slot/table combination of a given request, the restaurant offers
the customer the option with the lowest expected gap. With probability pd,
the customer accepts the restaurant’s proposed change. If the request is ac-
cepted, the value of the seats-to-go function is updated. If the reservation is
rejected, the heuristic moves on to the next request and no change is made
to the seats-to-go value.

Simple Example: Finding the Value of the Seats-to-Go Function with the
EG Heuristic

Consider a hypothetical restaurant with two six-tops, table A and table B,
and four dining slots. Assume a constant meal duration of two periods
and an initially empty restaurant. The generated stream of future demand
is summarized in Table 3.1 and the acceptance probabilities are given in
Table 3.2.

The EG heuristic first employs Bossert’s first pass; requests will only be
accepted if they are an exact fit. Only request 2 has the party size exactly
matching the table size, and we notice that placing it at either table in slots
1 and 2 will only reduce the turn count by one. Thus, only request 2 is ac-

18 Extending the Accept/Reject Model

Request Party Size Arrival Time End Time

1 4 2 3
2 6 1 2
3 5 2 3
4 2 1 2

Table 3.1: The stream of future requests used in the example for the EG
heuristic.

Absolute Difference in Arrival Slot Probability of Acceptance

0 1
1 0.5
2 0.25

Table 3.2: The acceptance probabilities used in the example for the EG
heuristic.

cepted on the first pass and without loss of generality it is placed at table A.
The table statuses are updated and the result is shown in Table 3.3. The sec-
ond pass considers each request one at a time and calculates the expected
gap at each feasible table for the time slot closest to the customer’s initial
request. The first request is for slots 2 and 3 which is only open at table B.
The EG for table A must be calculated assuming that request 1 is placed in
slots 3 and 4. The expected gap is calculated for each assignment and can
be seen in Table 3.4.

The time-slot/table combination with the lowest expected gap is of-
fered to the customers. For Request 1, the customer will be offered their
requested slots of 2 and 3 at table B. In this case, the customer is offered
their requested time slot so pd is one and thus it is guaranteed that the cus-

Slots Table A Table B

1 X O
2 X O
3 O O
4 O O

Table 3.3: The table statuses after Request 1 has been satisfied.

The Expected Gap Heuristic 19

Request Table Arrival Time Expected Gap

1 A 3 (6− (4 ∗ 0.5)) = 4
1 B 2 (6− (4 ∗ 1)) = 2

Table 3.4: The expected gap for Request 1.

Slots Table A Table B

1 X O
2 X X
3 O X
4 O O

Table 3.5: The table statuses after Request 1 and 2 have been satisfied.

tomers will accept the offer. The table statuses are updated, as shown in
Table 3.5, and now the heuristic moves on to Request 3.

Request 3 is for a party of five. Since Table B does not have two consec-
utive open time slots it no longer needs to be considered. Notice that Re-
quest 3 has requested an arrival time of time slot 2 which is open nowhere
and thus we consider moving it to slots 3 and 4. The calculations for the
expected gap are seen in Table 3.6. Request 3 is thus offered slots 3 and
4 at table. Since p1 = 0.5, if the randomly generated number is less than
0.5, the customer will accept this reassignment. Assume that the randomly
generated number is 0.42 and thus customer 3 accepts this reassignment.
Table 3.7 shows the updated table statuses.

Because there are not two consecutive open time slots, it will be impos-
sible to accept any more reservations. The value of the seats-to-go function
for this example is 15.

Request Table Arrival Time Expected Gap

3 A 3 (6− (6 ∗ 0.5)) = 3

Table 3.6: The expected gap for Request 2.

20 Extending the Accept/Reject Model

Slots Table A Table B

1 X O
2 X X
3 X X
4 X O

Table 3.7: The table statuses after Request 1, 2, and 3 have been satisfied.

Chapter 4

Simulations and Results

The efficacy of the Flexibility Model was tested through simulations at a
small Italian restaurant in Boston. The results of these simulations are pre-
sented in this chapter.

4.1 Describing Input Parameters for Simulations

To test the proposed model, a set of simulations was conducted at Trattoria
Toscana, a small Italian restaurant in the Boston Fenway neighborhood.
Trattoria Toscana has 30 different tables, and subsets of these tables are
grouped to form eight configurations. Each of the configurations has at
most 10 tables, and the restaurant can accommodate at most 90 people per
day.

The restaurant was assumed to have 12 dining slots, and a constant
meal duration of four slots. Bossert (2009) mentions that if each slot corre-
sponds to a half an hour, then this timing scheme accurately models restau-
rant operations. For the current simulations, each possible arrival time had
an equal probability of being requested. In future simulations, it would be
appropriate to assume some kind of peak dining time interval. It is also as-
sumed that there is no correlation between the party size of a given request
and the arrival time they ask for. The likelihood that a given party size will
call in was taken from the probability distribution given in Bossert (2009).
This distribution can be seen in Table 4.1. It should be noted that the largest
party size that Trattoria Toscana can accommodate is eight.

The model was simulated on four different types of customers distin-
guished by how willing they are to accept a reservation that differs from
their initial request. A “lenient” customer will accept any proposed change

22 Simulations and Results

Party Size Probability of Receiving Requests

1 0
2 0.4
3 0.1
4 0.3
5 0.05
6 0.1
7 0
8 0.05

Table 4.1: The probabilities of a given party size requesting a reservation.

in reservation time and thus the acceptance probabilities for this type of
customer will contain only ones. This type of customer is likely at a restau-
rant that is in very high demand. The model was simulated on two differ-
ent “medium” customers. The first “medium” customer is very likely to
accept requests that only differ by one or two time slots, but the probability
of customer acceptance decreases quickly as d, the difference in requested
and proposed arrival times, increases. The second “medium” customer is
guaranteed to accept changes of only one dining slot from their requested
slot. Finally, the “strict” customer only accepts offers that are exactly at
their requested time-slot. This last customer is used to compare the model
proposed in Bossert (2009) to the new model. The vector ~P of acceptance
probabilities for each of the four customers can be seen in Table 4.2.

Simulations were conducted on five different streams of 60 requests.
The probability that a request was generated in each of the time periods
before the service date was assumed to be one for each simulation. This
means that when considering a given pending request, the model knows
exactly how many requests will come in the future. While this assump-
tion may not be entirely realistic, it does not prevent us from assessing the
efficacy of the model. For the five streams of 60 requests, 10 simulations
was run on each of the four customer types. For each simulation, 10 Monte
Carlo simulations were used within the proposed two-pass heuristic. The
results were then compared to those yielded by Bossert’s model and three
naı̈ve seating models. The three naı̈ve seating models are described in the
next section.

Describing Input Parameters for Simulations 23

Probability of Customer Acceptance

Absolute Difference in Arrival Slot Lenient Medium Medium (One Slot) Strict

0 1 1 1 1
1 1 0.95 1 0
2 1 0.7 0 0
3 1 0.5 0 0
4 1 0.2 0 0
5 1 0.1 0 0
6 1 0.05 0 0
7 1 0.05 0 0
8 1 0.05 0 0

Table 4.2: The acceptance probabilities for Lenient, Medium, Medium (One
Slot), and Strict customers.

4.1.1 Naı̈ve Seating Models

To compare our model to actual restaurant operations, we examine three
naı̈ve seating models. In most restaurants it is unlikely that the hostess
or maı̂tre d’ uses any sort of mathematical analysis to assess the value of
a reservation request. These reservation schedulers generally have some
method where they try to place the request at their desired time slot with-
out having too many unused seats.

The first naı̈ve model attempts to fit a given pending request at a ta-
ble that will result in the fewest unused seats. If two table assignments
result in the same number of unused seats, the restaurant will offer the
customer the time-slot that is closest to their desired time-slot. This model
simulates a situation where the maı̂tre d’ or hostess is under pressure from
the restaurant to fill every table. This model is henceforth referred to as
the Naı̈ve Table Model. The second model is similar but instead empha-
sizes seating customers at their desired time-slot. This second naı̈ve model
attempts to fit a pending request to the time-slot that is closest to the re-
quested time. In this case, the tiebreaker is the number of unused seats
of a given table assignment. This model simulates the scenario where the
maı̂tre d’ is under pressure from the customers. This model is henceforth
referred to as the Naı̈ve Time Model. The third and final naı̈ve model em-
ploys the second pass of the EG Heuristic and is thus later referred to as the

24 Simulations and Results

Average Number of People Seated Over Ten Simulations

Pending Requests Flexibility Model Bossert’s Model Naı̈ve EG Naı̈ve Table Naı̈ve Time

Lenient Customer

Stream 1 84.2 69.3 62 67 57
Stream 2 86.3 64.8 61 55 55
Stream 3 88.8 66.7 57 49 49
Stream 4 86.9 65.8 72 54 54
Stream 5 86.7 61.3 65 55 52

Table 4.3: The results over the ten simulations for the Lenient customer.

Average Number of People Seated Over Ten Simulations

Pending Requests Flexibility Model Bossert’s Model Naı̈ve EG Naı̈ve Table Naı̈ve Time

Medium Customer

Stream 1 83.2 69.3 59.8 66.8 57
Stream 2 82.5 60.5 61 54.4 54.6
Stream 3 81.8 66.7 65.6 50.4 49.6
Stream 4 84.1 65.8 67.6 63.7 62.5
Stream 5 82 61.3 59.2 57.5 52.7

Table 4.4: The results over the ten simulations for the Medium customer.

Naı̈ve EG Model. For each request, the restaurant offers the customer the
time-slot/table combination that has the lowest expected gap, based on the
customer’s flexibility of accepting time slots other than that requested.

4.2 Results

The proposed model was coded in Visual Basic for Applications (VBA)
with an Excel interface. The longest response time for a single request
was no longer than one second, although it should be noted that Tratto-
ria Toscana is a fairly small restaurant. The speed of the algorithm has not
yet been tested on larger restaurants.

The results from the simulations can be seen in Tables 4.3–4.6. The num-
bers presented in these tables are the average number of people seated over
10 simulations run on five different streams of reservation requests, with

Results 25

Average Number of People Seated Over Ten Simulations

Pending Requests Flexibility Model Bossert’s Model Naı̈ve EG Naı̈ve Table Naı̈ve Time

Medium (One Slot) Customer

Stream 1 83.2 69.3 56 62 57
Stream 2 77.2 60.5 60 56 54
Stream 3 79.8 66.7 58 51 50
Stream 4 84 65.8 66 65 63
Stream 5 74.8 61.3 59 56 53

Table 4.5: The results over the ten simulations for the Medium (One Slot)
customer.

Average Number of People Seated Over Ten Simulations

Pending Requests Flexibility Model Bossert’s Model Naı̈ve EG Naı̈ve Table Naı̈ve Time

Strict Customer

Stream 1 69.8 69.3 56 58 57
Stream 2 66.3 60.5 60 51 52
Stream 3 69.8 66.7 59 51 50
Stream 4 66 65.8 63 51 50
Stream 5 56.8 61.3 61 57 53

Table 4.6: The results over the ten simulations for the Strict customer.

each table showing the results for a different customer type. Even though
Bossert’s model can only be run with strict customers, the results of these
trials are presented in the results of every type of customer for means of
comparison. A visual comparison of the percentage gains in seat utlization
is presented in Figure 4.1.

Although a limited number of simulations were conducted, it appears
that the model is successful. The Flexibility Model outperformed each of
the naı̈ve models in every simulation except one. It is clear that an element
of flexibility improves the model. The percentage gains in seat utilization
for the Medium and Medium (One Slot) customer simulations over the
naı̈ve models ranged from 19 percent to 30 percent and 16 percent to 27
percent respectively. Further, it appears that the addition of any element of
flexibility improves the model. The percentage gains for the trials with the
Lenient Customer are 19 percent to 23 percent higher than the gains made

26 Simulations and Results

Figure 4.1: The percentage gains in seat utilization of the flexibility model
compared to Bossert’s model and the three naı̈ve models.

with the Strict customer, but the differences shrink significantly when the
simulations on the Lenient Customer are compared to those of the Medium
(One Slot) customer. The percentage gains for in this case are only higher
by 3 percent to 10 percent. Finally it is important to note the improvements
of the new model over Bossert’s model; these improvements range from 16
percent to 23 percent.

The reason that the flexibility element seems to be such a profitable ad-
dition is that it is now easier for the restaurant to assign requests to time
slots that only reduce the turn count of a table by one. Considering that
the simulations were run on a restaurant with 12 dining slots and a meal
duration of four, the most profitable arrival times are 1, 5, and 9. Since the
model only considers the time-slot within each table that is closest to the
customer’s requested time, the model relies on the heuristic to determine
how an assignment to a certain time slot will affect the turn count of a given
table. The results clearly indicate that the model is successful in identifying
the unprofitable time slot assignment and thus it appears that the heuristic
successfully communicates with the outer shell of the dynamic program.

Results 27

The heuristic also was successful in identifying assignments that lead to
the fewest number of unused seats, as there were few assignments made to
tables that were too large.

Chapter 5

Future Work and Conclusions

This chapter presents the future directions of this thesis as well as a few
concluding remarks.

5.1 Future Work

Bossert (2009) mentions that seat utilization gains of only 5 percent would
likely double the profits of the restaurant. The current model produces seat
utilization gains up to approximately 35 percent. It is clear that the current
model needs to be explored further, as the results indicate that its use could
lead to large increases in revenue for restaurants.

5.1.1 Short-Term Extensions

While it appears that the heuristic works well, there is still room for im-
provement. For the EG heuristic, the requests are processed in the order
that they come, this method underestimates the number of people that can
be seated. The restaurant risks seating a small party in lieu of a larger one
because it is an earlier request. This problem could be remedied by sorting
the requests from largest to smallest party size.

While the model was successful in the five simulations, additional sim-
ulations are necessary to prove the efficacy of the model. The current model
has only been simulated on Trattoria Toscana, a small Italian restaurant.
Future simulations could be used to test the model at larger restaurants
with more complex configuration characteristics. Further, the current sim-
ulations only use one level of demand; 60 reservation requests. The model
needs to be tested at varying degrees of demand. Finally, the current model

30 Future Work and Conclusions

assumes a constant meal duration across all party sizes. Not only is it plau-
sible that this meal duration differs among party size, but it is also likely
subject to some degree of randomness.

The dynamic program could also be reworked so that for each pend-
ing request, every feasible time-slot/table combination is considered. This
model might seat more people, but it is unclear whether the additional
computational expense is worthwhile.

5.1.2 Long-Term Extensions

Elements of flexibility have been incorporated with respect to dining times,
but it also might be useful to consider an element of flexibility with regards
to the table sizes. In very busy restaurants, it is common for the restau-
rant to offer to squeeze a party of four into a three-top when there are no
larger tables available. Similar to the acceptance probabilities, another vec-
tor could be developed detailing the probability of customer acceptance
when the restaurant offers to squeeze customers into tables that are slightly
too small.

Finally, overbooking strategies and walk-in customers could also be in-
corporated into the model.

5.2 Conclusions

The proposed Flexibility Model appears to be a successful approach to
optimizing restaurant-reservation scheduling. While Bossert’s reservation
scheduling model showed significant improvements over naı̈ve seating mod-
els, the fact that it fails to incorporate a customer’s flexibility in accepting
time slots other than those requested is a significant shortcoming. Not only
is this element of flexibility important for an accurate representation of the
restaurant-reservation scheduling process, but its addition also allows the
restaurant to seat more people throughout the dining service. It is clear
that the flexibility element is an essential addition to the model based on
the recorded seat utilization gains ranging from 15 to 35 percent.

Bibliography

John M. Bossert. Yield Management of Configurable Restaurants. unpub-
lished manuscript, 2009.

Sheryl E. Kimes, Richard B. Chase, Summee Choi, Philip Y. Lee, and Eliza-
beth N. Ngonzi. Restaurant Revenue Management: Applying Yield Man-
agement to the Restaurant Industry. Cornell Hotel and Restaurant Adminis-
tration Quarterly, 39:32–39, June 1998.

Sheryl E. Kimes, Deborrah I. Barrash, and John E. Alexander. Developing
a Restaurant Revenue-Management Strategy. Cornell Hotel and Restaurant
Administration Quarterly, 40:18–29, October 1999.

Jeffrey I. McGill and Garrett J. Van Ryzin. Revenue Management: Research
Overview and Prospects. Transportation Science, 33:233–256, May 1999.

Serguei Netessine and Robert Shumsky. Introduction to the Theory and
Practice of Yield Management. INFORMS Transactions on Education, 3(1):
335–347, January 1999.

Romy Shioda. Restaurant Revenue Management. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA 02139, May 2002.

Barry C. Smith, John F. Leimkuhler, and Ross M. Darrow. Yield Manage-
ment at American Airlines. Interfaces, 22:8–31, February 1992.

Gary M. Thompson. Optimizing a Restaurant’s Seating Capacity: Use
Dedicated or Combinable Tables? Cornell Hotel and Restaurant Administra-
tion Quarterly, 43(3):48–57, August 2002.

Gary M. Thompson and Sheryl E. Kimes. An Evaluation of Heuristic
Methods for Determining the Best Table Mix in Full-Service Restaurants.
Journal of Operations Management, 23(2):599–617, 2005.

32 Bibliography

Gary M. Thompson and Robert J. Kwortnik, Jr. Pooling Restaurant Reser-
vations to Increase Service Efficiency. Journal of Service Research, 10(4):335–
346, March 2008.

Alfio Vidotto, Kenneth N. Brown, and J.C. Beck. Managing Restaurant
Tables Using Constraints. Knowledge-Based Systems, 20:160–169, 2007.

	Claremont Colleges
	Scholarship @ Claremont
	2010

	Optimizing Restaurant Reservation Scheduling
	Jacob Feldman
	Recommended Citation

	Abstract
	Introduction
	Background on Restaurant Revenue Management
	Literature Review
	The Dynamic Accept/Reject Model for Reservations

	Extending the Accept/Reject Model
	The Flexibility Model
	Incorporating Time Flexibility in the Heuristic
	The Expected Gap Heuristic

	Simulations and Results
	Describing Input Parameters for Simulations
	Results

	Future Work and Conclusions
	Future Work
	Conclusions

	Bibliography

