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Abstract

In this thesis, we construct an algebraic framework for analyzing com-
mittee elections. In this framework, module homomorphisms are used to
model positional voting procedures. Using the action of the wreath product
group S2[Sn] on these modules, we obtain module decompositions which
help us to gain an understanding of the module homomorphism. We use
these decompositions to construct some interesting voting paradoxes.
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Chapter 1

Introduction

Extensive work has been done to expose and analyze the flaws in common
single-candidate election procedures. Perhaps most pertinent to this the-
sis, significant work on voting theory has been done by Saari (1999), and
an algebraic interpretation of Saari’s work has been done by Daugherty
et al. (2009). Saari’s work has exposed disturbing flaws in common voting
systems which potentially allow for unintended election results or manip-
ulation of election results. The problem of electing committees in a fair and
representative procedure is even more complex to develop and analyze.
For example, voters may have preferences regarding the relationships be-
tween committee members, and it may be appropriate to develop a vot-
ing procedure that respects those preferences. Various committee election
procedures have been proposed by Ratliff (2003a, b), Fishburn and Pekeč
(2009), Brams et al. (2007), and others. In particular, an election procedure
investigated by Ratliff (2003a) is the prime motivation for this thesis; other
works on committee elections are summarized in order to present a sample
of the ideas which surround this problem.

1.1 Ratliff and Wheaton College

Ratliff (2003a) discusses an intriguing example of a committee election that
failed to respect the voter’s preferences regarding the committee as a whole.
In 1992, the faculty at Wheaton College in Massachusetts conducted an
election to compose a Presidential search committee. To represent the col-
lege as best as possible, the search committee was to be comprised of three
candidates, one from each of the three academic divisions of the college:
Arts & Humanities, Natural Sciences, and Social Sciences. The voting pro-
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cedure was simple and accessible. An initial ballot was distributed to first
reduce the number of potential candidates to two from each division; next,
the final ballot required voters to select their preferred candidate from each
division. From each division, the candidate who received the most votes
was then placed on the search committee.

The results produced by the election received a nearly unanimous dis-
approval from the college. Until four years before the election, Wheaton
had been a women’s college; despite this, their newly elected Presiden-
tial search committee consisted of three men. In 2003, another Presidential
search was needed, and Wheaton realized the errors of the previous elec-
tion and used a new voting procedure. After reducing the pool of initial
candidates down to two members from each division, the ballot asked vot-
ers to rank from first to eighth all of the eight possible committees that
could be constructed. The votes were then scored using a Borda count, in
which for each vote, the first-place committee received seven points, the
second-place committee received six points, and so on.

Ratliff analyzes the outcome this election produced (a committee with
two women and one man), arguing that the election procedure had an ex-
cellent representation of voters’ preferences. Ratliff then extends his analy-
sis to ask questions about committee elections of larger size. This particular
election at Wheaton worked smoothly because there were only eight possi-
ble committees to fully rank. However, for example, if a ballot for an elec-
tion was produced to elect a committee from five departments with each
department putting forth three candidates, the number of possible commit-
tees would be 243. Firstly, asking voters to fully rank all 243 possibilities is
unreasonable. Secondly, even if these rankings were produced, the signifi-
cance of the rankings is questionable; voters may have a good idea of their
most and least preferred committees, but given 243 possibilities it may be
difficult for a voter to list the middle-ranked committees with any confi-
dence. The differences between the 1992 and 2003 elections at Wheaton
College suggest that the method of fully ranking committees is better for
representing voters’ opinions. Unfortunately, when the number of possible
committees increases, this strong voting procedure becomes impractical.

1.2 Two More Methods

To get a sense of the scope of the committee election problem, we briefly in-
troduce two other voting methods that have been developed. These meth-
ods are known as nonpositional voting methods, as they do not require vot-
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ers to position the committees in any kind of ranking.
One voting procedure is proposed by Fishburn and Pekeč, and their

procedure, like Ratliff’s, is based on the notion that it is insufficient to only
obtain voter preferences on individual candidates. The procedure is de-
signed to be simple for voters, avoiding the manageability problems that
can arise in large committee elections; all that voters are required to do
is identify a single subset of candidates that they would approve of hav-
ing on the committee. These votes are then aggregated using a threshold
function—for each voter, this function identifies a possible committee as
approved by the voter if it contains a sufficiently large intersection with
the voter’s approved group of candidates (the size of this intersection is
known as the threshold). For example, if the threshold is two and a voter
approves of the candidate group {A,B}, then the threshold function will as-
sume that the voter approves of the committee {A,B,C} but not of {A,C,D}.
The committee approved by the most voters is selected as the winner.

This procedure guarantees that voters can express preferences on the
relationship between committee members. However, the simplicity of the
method may pose unwanted issues for voters. For example, suppose a
voter approves of having candidates A and B on the committee as long as
candidate C is not; approving of the candidate group {A,B} is no longer
in the interest of the voter, even though she approves of many committees
containing those candidates. In addition, Section 2 of Fishburn and Pekeč
finds that the problem of applying the threshold function is NP-complete,
so computation for large elections may be troublesome.

Another voting procedure proposed by Brams et al. (2007) is known as
the minimax procedure. The minimax procedure asks all voters to declare
their most preferred committee. The procedure then selects the commit-
tee such that the maximum Hamming distance from the voters’ choices is
minimized. The Hamming distance between two committees is simply the
number of candidates by which they differ. Thus this method seeks to pick
a committee so as not to antagonize any of the voters too much. By only
asking voters for their favorite committee, the method obtains information
about preferences on the committee as a whole in a simple manner. Section
5 of Brams et al. shows that the minimax method is manipulable, meaning
that it is possible for a voter to obtain a preferred outcome by misrepre-
senting his preferences; however, the chance is small that a voter will have
enough information to perform a desired manipulation.



4 Introduction

1.3 The Problem At Hand

This thesis will attack the committee election problem from an algebraic
perspective, similarly to the work in Daugherty et al. (2009). With such an
enormous problem to tackle, we will begin by narrowing our attention.
This paper begins by seeking to understand committee elections which
share a structure similar to the Wheaton elections: elections which elect
members from separate divisions or departments, each with the same num-
ber of candidates. With an understanding of these elections come two im-
portant results: firstly, a better idea of how to construct a practical and
representative voting procedure for elections of any size, and secondly, an
understanding of the potential voting paradoxes which may arise. A pri-
mary goal of this thesis is to construct a strong algebraic framework that
will allow us to analyze different voting procedures while using the same
algebraic perspective.

While both of the aforementioned nonpositional voting methods are ap-
pealing, in this thesis we choose to focus on positional voting methods such
as the one used in the Wheaton elections. The selection of this particular fo-
cus is motivated by Daugherty et al. (2009), which shows that we can con-
struct an algebraic framework with which we can analyze the behaviors
of positional voting procedures. Before constructing a general algebraic
framework for committee elections, we try to get a sense of the breadth of
the task by looking at the various kinds of committee elections that exist. In
general, committee elections vary based on a few key parameters. One pa-
rameter is the manner in which candidates are grouped. An election might
seek to construct a committee from a large, uniform pool of candidates, or it
might be selecting candidates from multiple departments or categories. For
example, a little league kickball team might hold an election to vote their
starting lineup by simply choosing nine players from the whole group. On
the other hand, they could instead decide to elect their starting lineup by
voting for their favorite pitcher, catcher, etc.

Other key parameters involve quantities of people. When an organiza-
tion constructs a committee election they have to decide on some fixed or
variable number of people they want on the committee. If the voters are
voting for candidates from different departments, there may be a fixed or
variable number of candidates the voters want to elect from each depart-
ment. Another parameter is the number of people allowed to run for the
committee. If there are multiple departments, there may be rules about
how many candidates each department is allowed to put forth; there may
even be rules regarding whether candidates are allowed to run from mul-
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tiple departments or categories. Some elections may allow voters to even
vote for candidates not on the ballot.

Perhaps the parameter which most heavily influences our choice to use
an algebraic framework is the voting procedure. Different voting proce-
dures include the two methods mentioned in Section 1.3, approval voting
(pick anyone of whom you approve), and positional voting (rank all or
some of the candidates, and then points are assigned based on the rank-
ing). As demonstrated in Daugherty et al. (2009), an algebraic framework
can be applied to positional and approval voting procedures. The existing
literature demonstrates that an algebraic perspective is a powerful way to
study elections, and so in this paper we restrict our focus to voting proce-
dures realizable by this kind of framework. The framework constructed in
Daugherty et al. (2009) applies to single candidate elections; in this thesis
we construct a natural extension of the framework suited to handle com-
mittee elections.

As we can see, the committee election problem is a broad and complex
one. Constructing a general algebraic framework for all of these parameters
and scenarios is a daunting task, so we heavily narrow our focus. Primarily,
we will seek to construct a framework to handle positional voting methods
with the intent that there will be natural extensions to methods such as ap-
proval and plurality, such as in Daugherty et al. (2009). The focus of this
paper will be on committee elections which share a similar structure to the
Wheaton elections: elections which elect members from separate divisions
or departments, each putting forth two candidates. With an understanding
of these elections come two important results: firstly, a deeper understand-
ing of how voters influence the outcome of an election, and secondly, an
understanding of the potential voting paradoxes which may arise. Hope-
fully, this research will serve as a strong step towards understanding more
general committee elections, perhaps even providing ideas on how to con-
struct a practical and effective voting procedure for elections of any size.

We assume that the reader is familiar with linear algebra and abstract
algebra, with a basic knowledge of module theory and character theory.
For nice introductions to module theory and character theory, see James
and Liebeck (2001).





Chapter 2

The Algebraic Perspective

In this chapter, we build our algebraic framework by modeling an election
procedure as a linear transformation between two vector spaces. Using
group actions, we then view the linear transformation as a module homo-
morphism between two modules, which allows us to apply strong results
from representation theory. The framework allows us to analyze the ways
in which voting procedures use the information that is input by voters. We
discuss the choice of group with which to construct our modules and de-
fine the group action on the modules, and argue that the wreath product
group is the optimal choice given the particular election structure we are
studying.

2.1 The Profile Space and the Results Space

Based on the work of Saari (1999), Daugherty et al. (2009) present an al-
gebraic approach to voting theory which serves as an illuminating inter-
pretation of the inner workings of single-candidate elections. In particular,
Saari and Daugherty et al. focus heavily on positional voting procedures
in which points are assigned to alternatives based on how each voter ranks
or positions them. For example, the commonly used plurality method is
a positional procedure, as it assigns one point to each voter’s top-ranked
candidate; the Borda count is another example of a positional procedure
for n candidates, awarding n− 1 points to a voter’s top-ranked candidate,
n − 2 points to the second-ranked, and so on. An understanding of the
complexities of positional methods can help us to explain many paradoxes
which occur in elections. More on voting paradoxes will be discussed in
Chapter 4.
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The algebraic perspective that is applied to positional voting methods
by Daugherty et al. (2009) extends in a natural way to committee elections.
Consider an election in which there are m possible committees. With these
m committees, a voter can produce a list of all m committees in which com-
mittees higher on the list are preferred to those lower on the list. We call
such a list a full ranking of the committees. There exist m! full rankings of the
m committees, and these full rankings form the basis of an m!-dimensional
vector space (over Q) which we call the profile space. We may think of a
vector, or profile, in the profile space as a tally of votes for each possible full
ranking. For example, suppose there were three possible committees A, B,
and C; then a profile using the basis of full rankings might look like the
profile:

p =

ABC
ACB
BAC
BCA
CAB
CBA



3
0
2
1
3
0

 .

This example profile p represents an election in which 3 voters preferred
the full ranking ABC, none preferred ACB, 2 preferred BAC, etc.

The profile space contains all possible ways in which a group of voters
may vote for rankings of committees. In an election, after we have col-
lected these votes, we then score them in some way to obtain a winner.
This scoring procedure is realized as a linear transformation from the pro-
file space to the results space, an m-dimensional vector space in which the
set of m possible committees forms the basis. Vectors in the results space
simply indicate the “scores” each committee has received; in an election,
the committee with the highest score is usually considered the winner.

The linear transformation from the profile space to the results space
is encoded as a matrix using a weighting vector w. Every positional voting
procedure has a corresponding weighting vector; the weighting vector for a
procedure reflects the manner in which full rankings are scored under that
procedure. For our three committee example above, the weighting vector
is of the form w = [w1, w2, w3]t ∈ Q3. Given any full ranking, the first
place committee receives w1 points, second place receives w2 points, and
third place receives w3 points. For example, if we use the plurality method
to score the three committee election, the weighting vector is w = [1, 0, 0]t,
indicating that the highest-ranked committee receives 1 point, and the two
others receive none. Under the Borda count, the weighting vector is instead
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w = [2, 1, 0]t. The linear transformation Tw from the profile space to the
results space is constructed using w: the columns of Tw permutations of w
corresponding with the full rankings indexed in the profiles. For example,
the transformation of p via Tw for the Borda count (where w = [2, 1, 0]t) is

Twp =

2 2 1 0 1 0
1 0 2 2 0 1
0 1 0 1 2 2




3
0
2
1
3
0

 =

11
9
7

 .

The first row of Tw indicates how many points A receives for each full
ranking; the second row corresponds to B, and the third row corresponds
to C. So, for example, the third column [1, 2, 0]t scores the full ranking BAC.
Notice that the results vector indicates that A receives 11 points, winning
the election under the Borda count, since B only receives 9 points with C
receiving 7.

By itself, this linear algebraic framework already gives us tools with
which we can begin to analyze elections. In particular, we can study the
kernel of Tw and the image of Tw, or we could talk about the row space
of Tw. The kernel of Tw can be interpreted as the space of profiles which
contribute nothing to the results of an election, while the row space of Tw
can be thought of as the space of profiles that do contribute to the results
of an election. The image of Tw can be seen as the space of possible results
given a weighting vector w.

With this perspective, we can study how elections behave differently
under different voting procedures. In particular, note that for two differ-
ent weighting vectors w and v, the linear transformations Tw and Tv may
differ in their kernels, row spaces, and images. Thus, once the votes are col-
lected in an election, it may be possible to achieve vastly different results by
choosing different voting procedures. For example, suppose we scored our
three committee election with the plurality procedure instead of the Borda
count. Using the weighting vector v = [1, 0, 0]t, we obtain the results vector

Tvp =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1




3
0
2
1
3
0

 =

3
3
3

 .
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While under the Borda count, A wins the election, under plurality the
three committees are all tied. This strong dependence of election results
on the voting procedure is one of the paradoxes of voting theory, and we
further explore voting paradoxes in Chapter 4.

2.2 Applying Representation Theory

It is helpful to understand positional voting procedures as linear transfor-
mations, but even more can be illuminated if we turn the profile and re-
sults spaces into modules and think of Tw as a module homomorphism. If we
define the action of a group algebra QG on the profile space and results
space, the spaces become QG-modules. In Daugherty et al. (2009), the pro-
file space and results space are viewed as QSn-modules; the vector spaces
become modules under the action of the symmetric group Sn. Expanding
the framework to use modules grants us even more tools for analyzing the
profile and results spaces.

Most importantly, we know that a QG-module P can be written as a
direct sum of QG-submodules, which are subspaces of P that are invariant
under the action of QG. In other words, we can write P as

P ∼= P1 ⊕ · · · ⊕ Pk

such that for all α ∈ QG and pi ∈ Pi, αpi ∈ Pi.
A module P is said to be irreducible if P is nonzero, and the only sub-

modules of P are {0} and P itself. As a consequence of Maschke’s Theorem
(see Chapter 8 in James and Liebeck (2001)), every nonzero QG-module is
a direct sum of irreducible QG-modules. Up to isomorphism, there exist
only a finite number of distinct irreducible QG-modules, so knowing how
a QG-module decomposes into irreducible submodules allows us to com-
pare its structure with other QG-modules. As an example, consider the
results space of the three committee election from the previous section. As
a QS3-module, the results space R can be decomposed as

R =

〈1
1
1

〉⊕〈 1
−1
0

 ,

 1
0
−1

〉 ,

where the subspaces on the right are distinct irreducible QS3-modules, say
R1 and R2 (so R ∼= R1 ⊕ R2). Irreducible submodules can be easier to grap-
ple with than the entirety of a module.
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Together with the theory of module homomorphisms, module decom-
positions help us understand the profile and results spaces. Viewing Tw
as a module homomorphism is extremely useful for two reasons. Firstly, if
Tw : P→ R is a module homomorphism, then the kernel of Tw is a submod-
ule of P, and the image of T is a submodule of R. If we define the effective
space E(Tw) as the orthogonal complement (under the usual inner product)
of the kernel of Tw, then E(Tw) ∼= Tw(P) as modules. Given a weighting
vector w, the effective space contains the only information in the profile
space that Tw will map to a nonzero vector in the results space.

Secondly, an important insight from representation theory, Schur’s Lem-
ma, provides an extremely useful tool to understand module homomor-
phisms. A reference for these results may be found in Chapter 9 in James
and Liebeck (2001).

Lemma 2.1 (Schur’s Lemma). Every module homomorphism between irreducible
modules is either an isomorphism or the zero homomorphism.

To illustrate how Schur’s Lemma is useful, consider our three commit-
tee example. We found that as a QS3-module, the results space has the
decomposition R ∼= R1 ⊕ R2. It turns out that as a QS3-module, the profile
space has the decomposition P ∼= R1 ⊕ R2 ⊕ R2 ⊕ R3, where R3 is another
irreducible module. Letting Tw be the module homomorphism Tw : P→ R,
Schur’s Lemma guarantees that R3 must be in the kernel of Tw. Thus
Schur’s Lemma helps us easily identify a subspace of the profile space that
will have no effect on the results of the election.

These observations can be useful since the profile space is m!-dimen-
sional, while the results space is only m-dimensional. Understanding the
irreducible submodules that make up the small results space will greatly
simplify our analysis of the effective space of any module homomorphism
from the large profile space. Once we know the irreducible submodules
that compose the results space, we know which irreducible submodules of
the profile space must be in the kernel, so we can essentially ignore them.
Decompositions of the profile and results spaces can help us see what kinds
of profiles are being considered or completely ignored by any positional
voting procedure. This kind of analysis will show up in Chapters 3 and 4
when we decompose the profile and results spaces.
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2.3 Choosing the Group

To view the profile and results spaces as modules, we of course must se-
lect a group. We will have to define the group action on the profile and
results spaces, so we want a group for which there will be a very natural
action on the committees. Furthermore, we want a group that will reflect
the symmetries that exist in our election structure. As a more technical
consideration, in choosing our group G, we also want to consider how our
profile and results spaces would decompose as QG-modules. For example,
if all irreducible QG-modules are 1-dimensional, then our modules will de-
compose into 1-dimensional components, from which it may be difficult to
extract information. On the other hand, if the irreducible QG-modules are
very large, then our decompositions will consist of very large components
which may be either unwieldy, uninformative, or both.

As demonstrated in Daughterty et al., in a single candidate election
with n candidates, a very appropriate choice of group is the symmetric
group Sn; the group action simply permutes the n candidates. For our com-
mittee elections, the symmetric group is also a plausible choice. With n de-
partments we have 2n possible committees, so we could use the group S2n ;
the group action would simply permute the 2n committees. One benefit of
using this group is that the theory of QSn-modules applied to elections is
already well-understood, so many of the results would likely carry over.
However, there are a couple important reasons that suggest we should use
a different group. Firstly, even for small n the size of S2n grows rapidly, as
do the sizes of irreducible QS2n -modules. As these irreducible modules are
the structures from which we hope to gain information, they would be dif-
ficult to handle and understand given their large sizes. Secondly and more
importantly, using this group only reflects the symmetries of the commit-
tees but not of the candidates themselves. We are heavily motivated to pay
more attention to the effect of the candidates in committee elections, and
the symmetric group ignores which candidates make up which commit-
tees.

Instead of a group that acts only on the committees, we should look
for groups that act directly on the candidates. Once we define a group ac-
tion on the candidates, we can then extend the action to the committees.
We search for groups that reflect the symmetries of our election structure.
Such groups will somehow permute the candidates within their respec-
tive departments; we can consider groups that permute the departments as
well. There exist plenty of such groups, but in particular three groups that
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act very naturally on the set of candidates are those in the chain

S2 × . . .× S2 ≤ S2[Sn] ≤ S2n,

where S2[Sn] is the wreath product group, which will be explained shortly.
In an election with n departments, we have a total of 2n candidates, so the
largest group in the chain is simply the symmetric group on 2n elements.
While this certainly permutes the candidates, it ignores the departmental
structure we have set, and so it is not an appropriate group to use here.

The smallest group in our chain is a direct product of n copies of S2.
This group permutes each pair of candidates, but ignores any symmetry
between the departments. This is a very natural group action that fits our
election structure, but its module theory reveals that this is not quite the
group we want. Firstly, all irreducible Q(S2 × . . . × S2)-modules are 1-
dimensional, suggesting that it may be difficult to extract information from
our decompositions. Secondly, as a Q(S2 × . . . × S2)-module, the results
space contains copies of every distinct irreducible Q(S2× . . .× S2)-module.
Recall our illustration of how to use Schur’s Lemma to determine which
submodules of the profile space must be in the kernel of Tw. Because every
distinct irreducible Q(S2 × . . .× S2)-module exists in the results space, we
are unable to use Schur’s Lemma to determine if any submodules of the
profile space are always in the kernel. Thus in our discussions of the ef-
fective space of Tw, we are forced to accommodate the entirety of the large
profile space in our analysis.

Finally, we consider the group in the middle of the chain, S2[Sn], the
wreath product group. The wreath product S2[Sn] is defined as a semidirect
product H o Sn where H is a direct sum of n copies of S2. There is a more
natural way to interpret this wreath product for our purposes, as it reflects
the symmetries of our election structure. An element of S2[Sn] will permute
the pair of candidates in each department (not necessarily the same permu-
tation), and then it will permute the n departments. The reasons to use the
wreath product extend beyond the simple reason that the election structure
is highly appropriate for a wreath product action. A highly beneficial re-
sult of using the wreath product instead of the symmetric group is that we
achieve a finer decomposition of the spaces; given n, irreducible Q(S2[Sn])-
modules are generally smaller than irreducible Q(S2n)-modules. In other
words, our modules will decompose into smaller, more manageable irre-
ducible submodules. Demonstrations of this result will be discussed in
later chapters.

Another wonderful advantage the wreath product has over the sym-
metric group is that for our problem, the wreath product group we will be
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n S2[Sn] S2n

2 8 24
3 48 40, 320
4 384 2.09× 1013

Table 2.1: Comparing Wreath Product and Symmetric Group Sizes.

using is much smaller than the associated symmetric group. With 2n pos-
sible committees, the symmetric group we would use, S2n , is of size 2n!.
The wreath product group S2[Sn] has size of only 2nn!. Table 2.1 shows
the size of the wreath product for small values of n. The size of the neces-
sary symmetric group balloons magnificently compared to the size of the
associated wreath product group. The wreath product seems to make the
best compromise between the qualities we want from our group, and so we
choose to use its group action to make our profile and results spaces into
S2[Sn]-modules.

2.4 Using the Group

To illustrate the action of this group on a profile space, we begin with the
simple case using n = 2. The structure shown in Figure 2.1 is used to
represent the election structure; A and B represent two departments, where
a1 and a2 are the two candidates from department A, and b1 and b2 are the
two candidates from B. An element in the wreath product S2[S2] will either
leave alone or swap the departments A and B (leaving a1 and a2 attached
to A, and b1 and b2 attached to B), and it will either leave alone or swap the
pairs of candidates a1,a2 and b1,b2.

In this situation, there are four possible committees, which we will de-
fine as W,X,Y, and Z as follows:

W = {a1, b1} X = {a1, b2} Y = {a2, b1} Z = {a2, b2}.

We define the group action as follows. Let all possible committees be
indexed by lists of the form (c1,c2), where the committee consists of the cth

i
candidate from the ith department for each i. Applying this notation to the
committees we have just defined, we have

W = (1, 1) X = (1, 2) Y = (2, 1) Z = (2, 2).
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A B

a2a1 b1 b2

Figure 2.1: The election structure with two departments each putting forth
two candidates.

We begin by defining the action of S2[Sn] on the candidates. This action
then induces an action of S2[Sn] on the committees, which in turn induces
an action on the full rankings of the committees.

An element σ of S2[Sn] will first act on the candidates within their re-
spective departments, either swapping them or leaving them. Then the
element will perform some permutation on the n departments. This action
will produce a new list which can be identified as one of the possible com-
mittees. For example, in our above example, let σ be the element in S2[S2]
that swaps both pairs a1, a2 and b1, b2 but leaves A and B in place. Then
the action of σ on W = (1, 1) turns W into the list (2,2), which we identify
as committee Z; thus σ(W) = Z. One way to interpret the action of S2[Sn]
is to think of elements of S2[Sn] as permuting the committees. So in our
example, σ takes the committee W and changes it into committee Z.

We can easily extend this group action to an action on full rankings
in a natural way. Let F be some full ranking in the profile space, say F =
(C1, C2, . . . , C2n), where the Ci’s are the possible committees in some ranked
order. Then the action of an element σ ∈ S2[Sn] on F is simply σF =
(σ(C1), σ(C2), . . . , σ(Ckn)), using the action on committees defined above.
For example, if σ is the wreath product element defined in the previous
paragraph, then σ(WXYZ) = ZYXW. We can show that a wreath product
group action will always permute a full ranking into another full ranking.
This follows from the observation that due to the uniqueness of inverses in
S2[Sn], if σ(C) = D for committees C and D, then C is the unique committee
such that C = σ−1(D). Therefore, if F is a full ranking, then σF must be a
list of all of the possible committees with none repeated—a full ranking.

Finally, we can extend the group action to an action on the profile space.
Profiles are of the form ∑Fi

αiFi, where αi ∈ Q and the sum is over the set of
all possible full rankings Fi. Thus the wreath product action naturally ex-
tends to an action on the profile space such that σ(∑Fi

αiFi) = ∑Fi
αiσ(Fi)

for σ ∈ S2[Sn].
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The action of S2[Sn] on the results space R is fairly straightforward,
since the basis elements of R are simply the possible committees. So if
∑Ci

αiCi ∈ R where αi ∈ Q and the sum is over all possible committees
Ci, then the group action on R is defined as σ(∑Ci

αiCi) = ∑Ci
αiσ(Ci) for

σ ∈ S2[Sn].
Now that we have defined the group action on both the profile and

results spaces, we may treat them as QS2[Sn]-modules. We now argue that
for any weighting vector, Tw is indeed a module homomorphism from the
profile space to the results space.

As defined in Chapter 7 of James and Liebeck (2001), if P and R are
modules, then T : P → R is an FG-module homomorphism if T(gp) =
gT(p) for all g ∈ G and p ∈ P. In other words, T is a module homomor-
phism if the group action commutes with T. In our case, the action of any
σ ∈ S2[Sn] on any profile p essentially effects a relabeling of the committees,
and the same relabeling occurs for any results vectors. Thus, if committee
A first receives x points and is then relabeled as committee B, we will have
the same outcome if committee A is first relabeled as committee B and then
receives x points. By this argument we see that the group action commutes
with Tw, therefore Tw is indeed a QS2[Sn]-module homomorphism.

Now that we have a framework with a module homomorphism be-
tween two modules under the action of the wreath product group, we may
begin to use our representation theoretic tools to uncover the inner work-
ings of the profile space and the results space.



Chapter 3

Characters and the Results
Space Decomposition

In this chapter, we explore the character theory of the wreath product group
to enable us to decompose our modules. We proceed to find the charac-
ters of S2[S2] and use them to decompose the results space for the n = 2
case. We continue on and work with the n = 3 case, decomposing the re-
sults space with S2[S3]. The decompositions we find tell an intriguing story
about the way results vectors decompose into smaller parts which contain
information about the way the candidates make up the committees.

3.1 The Irreducible Characters of S2[Sn]

In order to harness the property that our modules will decompose into
irreducible submodules, we first obtain the irreducible characters of the
wreath product group. These characters will allow us to decompose the
modules using tools from representation theory. The character tables for
S2[Sn] seem difficult to find in literature, but Section 3.1 in Rockmore (1995)
provides a method to produce the complete set of irreducible characters for
S2[Sn]. This method delves into representation theory and Clifford theory
and would be difficult to explain completely here.

A visual that can help us navigate the irreducible characters of S2[Sn]
is the branching diagram Γ in Figure 3.1. The nth row of Γ, where the 0th

row is the lone (∅,∅) node, corresponds with the irreducible characters
of S2[Sn] such that each node in row n corresponds to a distinct irreducible
character of S2[Sn]. The irreducible characters of S2[Sn] are indexed by dou-
ble partitions λ = (α, β) such that |α|+ |β| = n. Note that α and β are not
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( , ) ( ,∅) ( ,∅)(∅, )(∅, )

( ,∅)(∅, )

(∅,∅)

( , ) ( , ) ( ,∅) ( ,∅) ( ,∅)( , )( , )(∅, )(∅, )(∅, )

Figure 3.1: The branching diagram Γ, indexing the irreducible characters of
S2[S3] ≥ S2[S2] ≥ S2[S1] ≥ 1.

merely integers; they are partitions whose sizes add to n. The rows of Γ
contain all of the possible double partitions for each n ≥ 0. Partitions are
often visually represented with Young diagrams, the boxes shown in Γ. For
example, the only partitions of size 2 are (2) and (1,1), visually represented

as and , respectively.
The branching diagram Γ can help us find the dimensions of the irre-

ducible characters as well. The restriction rules for these characters are such
that if V(α,β) is an irreducible S2[Sn]-module, then it restricts to S2[Sn−1] as

V(α,β) ↓S2[Sn−1]
∼= ⊕(µ,ν)∈(α,β)−V(µ,ν)

where the direct sum is over the set of double partitions (µ, ν) of size n− 1
which are obtained by removing one box from (α, β), where a box can only
be removed if there are no boxes bordering it from the right and from below.
Note that in Γ, a path between nodes in rows n and n− 1 indicates that a
box can be legally removed from the node in row n to form the node in row
n− 1.

It follows that the dimension of the irreducible character indexed by
(α, β) is equal to the number of paths from (α, β) to the (∅,∅) node in
Γ, where a path may only move towards a smaller double partition. In
checking the dimensions of the irreducible characters for small values of
n, we find that these dimensions are small but nontrivial, reinforcing our
selection of S2[Sn] as our group of choice. The dimensions of the irreducible
characters are precisely the dimensions of the irreducible QS2[Sn]-modules,
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1 a a2 b ab

χ( ,∅) 1 1 1 1 1
χ
(∅, )

1 1 1 −1 −1

χ
( ,∅) 1 −1 1 1 −1

χ(∅, ) 1 −1 1 −1 1
χ( , ) 2 0 −2 0 0

Table 3.1: Character table for S2[S2]. Note that S2[S2] ∼= D8 = 〈a, b|a4 =
b2 = 1, ab = ba−1〉.

and so using the wreath product group action should give us a manageable
but nontrivial decomposition.

We actually already know the irreducible characters of S2[S2] without
having to use the method in Rockmore (1995). Conveniently, S2[S2] is iso-
morphic to the dihedral group D8, for which the character table may be
found in James and Liebeck (2001). Although we already have the irre-
ducible characters of S2[S2], we would like to try and link these characters
to the double partitions, and so we perform the method in Rockmore (1995)
anyways, to see which irreducible characters correspond to which double
partitions. Let χ(α,β) be the irreducible character corresponding to the dou-
ble partition (α, β). Table 3.1 shows the character table of S2[S2] indexed
with its double partitions.

Checking Γ we may verify that the dimensions of the irreducible char-
acters (the values of χ(1)) indeed equal the number of paths to the (∅,∅)
node.

3.2 Decomposing the Results Space With S2[S2]

Once we have the irreducible characters of our group, we can use them
with our defined group action to decompose the results space into its ir-
reducible submodules. There is a well known technique used for module
decomposition; one such explanation of the technique which we briefly
summarize here can be found in Chapter 14 of James and Liebeck (2001).
Suppose V is a QG-module. Let χi be an irreducible character of G, and let
Vi = (∑g∈G χi(g−1)g)V. Then Vi is a sum of all of the irreducible QG-
submodules of V which have character χi. It follows that V ∼=

⊕
i Vi;
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in other words, V decomposes into submodules, each associated with a
unique irreducible character of G.

As the results space is 2n dimensional, this technique is computation-
ally manageable for the small cases. We begin with the n = 2 case, us-
ing the characters for S2[S2], shown in the character table in Table 3.1. For
the purpose of our discussion of irreducible submodules, we make a quick
definition. Let S(α,β) be the irreducible S2[Sn]-module associated with the
double partition (α, β) of size n, where χ(α,β) is its character.

Recall the committees we defined in Chapter 2, shown again here for
convenience:

W = {a1, b1} X = {a1, b2} Y = {a2, b1} Z = {a2, b2}.

Let the vectors in the results space be indexed lexicographically. For exam-
ple, the results vector

r =


7
4
2
5


indicates that committee W received 7 points, X received 4 points, Y re-
ceived 2 points, and Z received 5 points.

Upon decomposing the results space using our decomposition tech-
nique, we find that R ∼= S( ,∅) ⊕ S( , ) ⊕ S(∅, ), where

S( ,∅) =

〈
1
1
1
1


〉

S(∅, ) =

〈
1
−1
−1
1


〉

S( , ) =

〈
1
0
0
−1

 ,


0
1
−1
0


〉

.

Note that we performed the technique for all of the characters; applying
the technique for the characters χ

( ,∅) and χ
(∅, )

produced the zero sub-

module in both cases.
We performed this decomposition with the hope of breaking the results

space into submodules which would be informative in some way. Thus we
make the interesting observation that these basis vectors actually tell a kind
of story.

For α ∈ Q, the space S( ,∅) contains results vectors of the form

r =


α
α
α
α

 .
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We can see that all results vectors from S( ,∅) are score tallies in which
all committees receive the same number of votes. We refer to this space as
the trivial space.

For α ∈ Q, the space S(∅, ) contains results vectors of the form

r =


α
−α
−α
α

 .

Thus we find that the results vectors from S(∅, ) are score tallies which
award α points to committees W and Z, and −α points to commitees X
and Y. But notice that W and Z are disjoint committees - that is, they have
no candidates in common; X and Y are disjoint committees as well. Thus
we see that these score tallies are awarding points equally to two disjoint
committees, while docking the same amount of points from the other pair
of disjoint committees.

For α, β ∈ Q, the space S( , ) contains results vectors of the form r + s,
where

r =


α
0
0
−α

 , s =


0
β
−β
0

 .

Thus the results vectors from S( , ) are linear combinations of score
tallies that tell an interesting story. We find that r awards α points to W
and −α points to Z, giving no points to X or Y. But note that W and Z are
disjoint committees, while X and Y each share one candidate with W and Z,
respectively. For some voters, this kind of tally may reflect a very natural
way to score votes for committees: award the most points to a favorite
committee, say W, award no points to committees who share one candidate
with W, and deduct points from Z, the committee with no candidates in
common with W. We can see that s behaves similarly to r, so results vectors
from S( , ) contain linear combinations of these kinds of score tallies.

These basis vectors reveal that we have discovered a decomposition
which reflects how the candidates make up the committees. Each irre-
ducible submodule reflects a different kind of preference between the com-
mittees. The trivial space is much less interesting, as it only indicates ties
between committees. The two submodules S( , ) and S(∅, ), on the other
hand, reflect completely different kinds of preferences with respect to can-
didate make-up of the committees.
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n DTP Total

2 3 5
3 4 10
4 5 20
5 6 36
6 7 65

Table 3.2: Comparing Number of Double Trivial Partitions and Total Irre-
ducible Characters.

3.3 Characters for Larger n

For the larger cases of n we could simply repeat this procedure, and we
would produce similar decompositions. However, along the way we ob-
serve an interesting property of the results space decomposition that may
make the application of the procedure easier and faster. From the decom-
position we have obtained for the n = 2 case, along with the restriction rule
on the irreducible characters of S2[Sn], we make the following conjecture on
how the results space decomposes for all n.

Conjecture: For all n ≥ 2, the results space R decomposes into a direct
sum of the irreducible submodules which are indexed by double partitions
(µ, ν), where both µ and ν are trivial partitions (in the graph Γ, these are
the “flat” partitions). Each of these irreducible submodules only appears
once in the decomposition. In other words, R ∼=

⊕
(µ,ν) S(µ,ν), where the

direct sum is over all such double partitions. Let us refer to these double
partitions as double trivial partitions.

For example, we saw that for n = 2, R ∼= S( ,∅) ⊕ S( , ) ⊕ S(∅, ).
Note that each irreducible submodule is indexed by a double trivial par-
tition. If our conjecture is true, then we no longer need to find all of the
irreducible characters of S2[Sn]. Instead, we only need to find the charac-
ters of S2[Sn] for double trivial partitions! For each n, the number of double
trivial partitions (µ, ν) is simply n + 1 (there are n + 1 choices for the size of
µ, and the size of ν is then fixed). The total number of irreducible characters
of S2[Sn] does not have a closed form, but the total number for small values
of n is shown in Table 3.2.

We can support our conjecture by checking the dimensions of the irre-
ducible characters with double trivial partitions. This is due to the fact that
if our conjecture is true, the dimensions of the associated irreducible sub-
modules must sum to the dimension of R. We can check the dimensions
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I II III IV V VI VII VIII IX X

χ( ,∅) 1 1 1 1 1 1 1 1 1 1
χ(∅, ) 1 −1 −1 −1 −1 −1 1 1 1 1
χ( , ) 3 3 1 0 −1 −1 −1 1 0 −1
χ( , ) 3 -3 −1 0 1 1 −1 1 0 −1

Table 3.3: Irreducible characters of S2[S3] with double trivial partitions.

using the graph Γ, counting the paths from (µ, ν) to (∅,∅).
Recall that, as described with the restriction rules in Section 3.1, the

number of paths is equal to the number of ways we can remove boxes one at
a time from (µ, ν). Consider a double trivial partition (µ, ν) with |µ|+ |ν| =
n. To follow a path from (µ, ν) to (∅,∅), at each node of the path we either
remove a box from µ or from ν. For trivial partitions, we can only remove
the rightmost box. Therefore any path can be uniquely determined with a
list of |µ| L’s and |ν| R’s, indicating the order in which boxes were removed
from either the left or right partition. For example, if |µ| = 2 and |ν| = 1,
then the list (L,R,L) represents the path for which we first remove a box
from µ, then remove the sole box from ν, and finally remove the last box of
µ. Any such list will determine a path, so given |µ| and |ν| the number of
paths equals the number of such lists. The number of such lists is equal to
( n
|µ|), the number of ways to first place the L’s in the list—the R’s are then

fixed.
Thus we find that the dimension of S(µ,ν) is ( n

|µ|). It follows that to sum
over all of the double trivial partitions, we simply take ∑n

|µ|=0 (
n
|µ|), which

by the binomial theorem is equal to 2n, the dimension of the results space.
Thus we confirm that the dimensions of the submodules add up the way
they should, supporting our conjecture.

Following this conjecture, we use the Rockmore method to find the ir-
reducible characters of S2[S3] that are associated with double trivial parti-
tions, so that we may find the results space decomposition for the n = 3
case. The characters we find are shown below. The ten conjugacy classes of
S2[S3] are represented with roman numerals, where roman numeral I rep-
resents the identity element. For more on these conjugacy classes and on
the conjugacy classes of S2[Sn] in general, see Appendix A.

We can verify that these are indeed the characters of the irreducible sub-
modules of R. We know from representation theory that the character of a
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I II III IV V VI VII VIII IX X

χR 8 0 0 0 0 0 0 4 2 0

Table 3.4: The character of R.

module is equal to the sum of the characters of its irreducible submodules
(see Chapter 14 in James and Liebeck (2001)), thus we find the character
of R, χR, and see if it equals the sum of the irreducible characters of S2[S3]
that we found. Since the action of S2[S3] on R simply permutes the basis el-
ements (the committees), R is a permutation module. In a permutation mod-
ule, the value of χR for a conjugacy class is the number of basis elements
left fixed by the action of any representative from that conjugacy class (see
Chapter 13 in James and Liebeck (2001)). Thus, for each conjugacy class of
S2[S3], we take any element of that conjugacy class and act on every com-
mittee with that element; the number of committees that are left fixed by
the action is equal to the value of χR for elements in that conjugacy class.
Using this process, we find that the character of R is as shown in Table 3.4.

The character of R is precisely the sum of the four irreducible characters
of S2[S3] that we found earlier! Thus we conclude that R ∼= S( ,∅) ⊕
S(∅, ) ⊕ S( , ) ⊕ S( , ). Not only do we obtain the decomposition
of R, but we also confirm our conjecture for the n = 3 case: the irreducible
submodules of R correspond to double trivial partitions! This thesis does
not complete any computations for larger values of n, but hopefully this
conjecture holds, simplifying the process for all such n.

3.4 Decomposing the Results Space With S2[S3]

In the S2[S2] case, not only did we find all of the irreducible characters,
but we also performed the decomposition method for all of the characters.
Now that we have already determined which irreducible QS2[S3]-modules
are found in R when n = 3, we only need to apply the decomposition
method with respect to those characters.

For the purpose of discussing results vectors, we define new commit-
tees for the n = 3 case. Let the three departments be A, B, and C, where
the candidates from A are a1, a2, the candidates from B are b1, b2, and the
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candidates from C are c1, c2. Define the committees as follows:

S = {a1, b1, c1} T = {a1, b1, c2} U = {a1, b2, c1} V = {a1, b2, c2}
W = {a2, b1, c1} X = {a2, b1, c2} Y = {a2, b2, c1} Z = {a2, b2, c2}.

Again, vectors in the results space are indexed lexicographically, so the
results vector r = [5, 3, 6, 2, 7, 5, 1, 0]T represents a score tally in which S
receives 5 points, T receives 3 points, and so on.

Applying the decomposition method, we find that the irreducible sub-
modules of R have the following basis vectors:

S( ,∅) =

〈


1
1
1
1
1
1
1
1


〉

S( , ) =

〈


3
1
1
−1
1
−1
−1
−3


,



1
3
−1
1
−1
1
−3
−1


,



1
−1
3
1
−1
−3
1
−1


〉

S(∅, ) =

〈


1
−1
−1
1
−1
1
1
−1


〉

S( , ) =

〈


3
−1
−1
−1
−1
−1
−1
3


,



−1
3
−1
−1
−1
−1
3
−1


,



−1
−1
3
−1
−1
3
−1
−1


〉

.

Again, these basis vectors also tell an interesting story! Three of these
submodules even resemble the ones we found in the n = 2 case. Here
the irreducible submodule S( ,∅) is the trivial space, containing results
vectors which award the same number of points to all committees.

The results vectors found in S( , ) resemble those found in S( , ) in
the n = 2 case. This time, the story is definitely similar, but it also extends
to accommodate the third member of the committee! For example, in the
first basis vector listed above, [3, 1, 1,−1, 1,−1,−1,−3]T, the committee S
receives three points. The committees T, U, and W each receive one point;
these are the committees with two candidates in common with S. The com-
mittees V, X, and Y each lose one point; these are the committees with ex-
actly one candidate in common with S. And of course, Z loses three points,
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having no candidates in common with S. Essentially, results vectors of this
form seem to suggest a scoring in which a favorite committee receives the
most points, and the rest of the committees are awarded fewer points based
on how many candidates they have in common with the favorite. Notice
that there are four pairs of disjoint committees but only three basis vectors;
the vector [−1, 1, 1, 3,−3,−1,−1, 1]T which awards 3 points to committee V
is not listed as a basis vector, but is still a linear combination of the three ba-
sis vectors. Thus this irreducible submodule contains results vectors of this
form for all pairs of disjoint committees, including all linear combinations
of such results vectors.

The results vectors found in S( , ) resemble those found in S(∅, )

in the n = 2 case. The story told here is a similar one. For example,
in the first basis vector shown above, [3,−1,−1,−1,−1,−1,−1, 3]T, the
committees S and Z—which are disjoint committees—each receive three
points, while the rest of the committees lose one point. The other basis vec-
tors demonstrate the same scoring, with two disjoint committees receiving
a large positive number of points while the rest of the committees lose a
small number. Again, there are four pairs of disjoint committees but only
three basis vectors; just as in S( , ), this issue is no concern, as the vec-
tor [−1,−1,−1, 3, 3,−1,−1,−1]T is a linear combination of the three basis
vectors shown. Thus this irreducible submodule contains results vectors of
this form for all pairs of disjoint committees, as well as all linear combina-
tions of such results vectors.

The irreducible submodule that does not have a cousin in the S2[S2]

case is S(∅, ), a peculiar one-dimensional submodule. For α ∈ Q, results
vectors from this submodule are of the form

r =



α
−α
−α
α
−α
α
α
−α


.

These vectors represent a score tally in which the committees S, V, X, and
Y each receive α points, while the committees T, U, W, Z each receive −α
points. The relationship between these committees is an interesting one.
Any pair of committees in the set {S,V,X,Y} shares exactly one candidate;
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the same holds for the set {T,U,W,Z}. Notice that in S( , ), the most
points are awarded to committees which have no candidates in common;
in S( , ), the most points are awarded to a favorite committee and to the
committees which have two candidates in common with the favorite. Thus
it seems natural that we have a submodule in which points are awarded to
some committee along with the committees which share exactly one candi-
date.

The fact that the decompositions still tell a story in the n = 3 case is
both interesting and encouraging. Since the set of all the basis vectors for
the irreducible submodules forms a basis for R, any results vector can be
expressed uniquely as a linear combination of the basis vectors. In other
words, we can interpret any results vector as the composition of various
pieces which carry different kinds of information. For example, if an elec-
tion procedure returns a results vector with a winner S that is mostly com-
prised of vectors from S( , ), we may interpret this in two ways. Firstly,
we may see it as a suggestion that voters somehow more heavily preferred
committees which had two candidates in common with S. Secondly, this
may suggest that the effective space for the voting procedure that was used
contains copies of S( , ) in the profile space as opposed to the other sub-
modules of the profile space.

These decompositions enhance the strength of the algebraic framework,
allowing us to make conclusions about the profile space and about Tw. We
are also encouraged by the idea that even in cases with larger values of n,
the decomposition of the results space will continue to tell a similar kind of
story.





Chapter 4

Decomposing the Profile Space

In this chapter we seek to decompose the profile space so that we may ap-
ply our findings on the decomposition of the results space. We discuss the
decomposition of the profile space into smaller, more manageable orbits
and the properties of these orbits. We then show that the module homo-
morphism Tw also breaks down into smaller components. Finally, we in-
vestigate the implications of using these smaller components, including a
discussion on voting paradoxes.

4.1 Orbits in the Profile Space

Since we have defined the group action of the wreath product S2[Sn] on
the profile space P and have found the group’s irreducible characters we
want, we have the ability to decompose P into irreducible submodules us-
ing the same process with which we decomposed the results space. How-
ever, given the massive size of P (2n!-dimensional, as 2n is the number of
possible committees), this process quickly becomes computationally diffi-
cult. Furthermore, any decomposition we obtain will be expressed as a
set of 2n!-dimensional basis vectors for each irreducible submodule, which
may still be unwieldy. Fortunately, S2[Sn] acts on P in such a way that there
exists a much more manageable and preferable means of decomposing P.

For any full ranking F in P, consider the orbit of F under the action of
S2[Sn]; as we saw in Chapter 2, every element of S2[Sn] turnsF into another
full ranking. Since different elements of S2[Sn] effect different relabelings
of the committees, no two full rankings in the orbit of F are identical. As
an example, here is the orbit of the full ranking WXYZ under the action of
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S2[Sn], where the committees are defined as they were in Chapter 2:

WXYZ XZWY ZYXW YWZX
XWZY WYXZ YZWX ZXYW.

Given any orbit of full ranking F , consider the subspace PF of P whose
basis elements are the elements of the orbit. By definition, vectors in this
subspace are closed under the action of S2[Sn]. Because of this property, PF
becomes a submodule of P.

Since the action of S2[Sn] permutes the full rankings that form the basis
of PF , PF becomes a permutation module. We then note that any non-
identity element of S2[Sn] leaves no full rankings fixed under the group
action. This is due to the fact that aside from the identity element of S2[Sn],
no element of S2[Sn] leaves all committees fixed; thus every non-identity
element of S2[Sn] must permute all of the full rankings. It follows that the
character of PF has the values χPF (1) = |S2[Sn]| where 1 ∈ S2[Sn] is the
identity element, and χPF (σ) = 0 for all non-identity σ ∈ S2[Sn]. From
these character values we conclude that under the action of S2[Sn], PF is
isomorphic to a regular QS2[Sn]-module (a proof may be found in Chapter
13 of James and Liebeck (2001)).

Any full ranking belongs to a unique orbit under the S2[Sn] action.
Thus, the set of all full rankings can be viewed as the collection of orbits
of full rankings under the S2[Sn] action. It follows that as a module the
profile space is isomorphic to a direct sum of regular QS2[Sn]-modules. A
regular QS2[Sn]-module has dimension equal to the order of S2[Sn]. The
wreath product has order |S2[Sn]| = 2nn!, and the profile space is 2n!-
dimensional, so the profile space is the direct sum of exactly (2n−1)!

n! regular
QS2[Sn]-modules.

This decomposition of the profile space is important for three main rea-
sons. Firstly, the decomposition of regular modules is well understood. If
U1, U2, . . . , Uk forms a complete set of irreducible QS2[Sn]-modules, then
QS2[Sn] ∼= d1U1 ⊕ d2U2 ⊕ . . .⊕ dkUk, where Ui has dimension di. Secondly,
this decomposition allows us to narrow our analysis of the profile space to
these smaller orbits which are much more manageable. Furthermore, there
exists an interesting difference between these orbits. Consider the follow-
ing orbit in the profile space P for the n = 2 case, and compare it with the
orbit shown above:

WXZY XZYW ZYWX YWXZ
XWYZ WYZX YZXW ZXWY.
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Recall that W and Z are disjoint committees, having no candidates in
common. Notice that in all of the full rankings in the first orbit shown,
the committees W and Z either occupy first and fourth places, or second
and third places. On the other hand, in the full rankings of the second orbit
shown, the committees W and Z either occupy first and third places, or sec-
ond and fourth places. In this manner, for any full ranking we can partition
the ranks into pairs based on where the disjoint committees are ranked. We
refer to such a partition as a disjoint pair partition. For example, in the first
orbit shown we can notate the disjoint pair partition as D = {(1, 4), (2, 3)},
indicating that in full rankings with the disjoint pair partition D, disjoint
pairs of committees are either placed first and fourth, or second and third.

In short, a disjoint pair partition tells us how all the pairs of disjoint
committees are ranked. A disjoint pair partition is an indication of a kind
of structure that exists in every full ranking; note that this is a structure
based on how the candidates play a role in the ranking of committees. An
interesting property of the disjoint pair partitions is demonstrated with the
following lemma.

Lemma 4.1. Suppose F and G are full rankings of committees, and σ ∈ S2[Sn]
such that σ(F ) = G under the defined group action. Then F and G have the same
disjoint pair partition.

Proof. Suppose committees W and Z are disjoint committees such that W is
ranked mth and Z is ranked nth in F . By the definition of the group action,
W ′ = σ(W) is ranked mth and Z′ = σ(Z) is ranked nth in G. We show that
W ′ and Z′ are disjoint. Let x1 and x2 be the candidates from department X.
Suppose x1 ∈ W, so x1 /∈ Z. If x1 ∈ W ′, then the element σ does not swap
x1 and x2, and so x1 /∈ Z′. If x1 /∈ W ′, then σ does swap x1 and x2, and so
x1 ∈ Z′. The same argument follows if we suppose candidate x1 /∈W. Thus
W ′ and Z′ are disjoint committees. It follows that the disjoint pair partition
is preserved under the group action.

This lemma implies that every full ranking within one orbit has the
same disjoint pair partition. In addition, for every possible disjoint pair
partition there must exist an orbit with that partition; thus, different orbits
may differ in their disjoint pair partitions. Each kind of orbit has something
different to say about the candidates’ roles in the rankings.
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4.2 Pockets in the Transformation

When we view the profile space as a direct sum of smaller subspaces, we
can then study how this concept of orbits applies to the module homo-
morphism Tw. In particular, we will be able to study Tw as a collection of
smaller pieces as well. In the profile space P, let us index the full rankings
so that all of the rankings from an orbit are grouped together. For example,
in the n = 2 scenario we can view a profile p as p = [p1|p2|p3]t, where
the pi’s are each 8-dimensional column vectors corresponding to different
orbits of S2[S2] in P.

It follows that we can divide up the Tw matrix in corresponding fashion.
We can view the 4x24 Tw matrix as Tw = [Tw1 |Tw2 |Tw3 ], where the Twi are
4x8 matrices corresponding to different orbits. In other words, the columns
of Twi are the appropriate permutations of w used to score the full rankings
found in the ith orbit. Following from this, we can then write Tw as a sum

Tw = [Tw1 |0|0] + [0|Tw2 |0] + [0|0|Tw3 ].

Notice that each of these transformations which sum to Tw is still a module
homomorphism, and so we can still use the results we obtain from using
module homomorphisms, such as Schur’s Lemma. For convenience, we
will refer to these smaller transformations as “pockets” of Tw.

Another interesting door we open by splitting up Tw into pockets is
the ability to talk about the effective spaces E(Twi) of each of the pockets.
We define the effective space E(Twi) of a pocket of Tw as the orthogonal
complement to the kernel of the mapping Tw ◦ ι, where ι : Pi → P is the
inclusion map from the ith orbit to the profile space. We find that ker(Tw ◦
ι) = (P⊥i + ker(Tw)⊥)⊥. Thus the orthogonal complement to the kernel is
Pi ∩ (ker(Tw ◦ ι))⊥ = Pi ∩ (P⊥i + E(Tw)). Thus we can think of the effective
space of a single pocket as the space of profiles from a single orbit that
contributes to the results of the election.

We can then ask if and how these pockets’ effective spaces differ given a
particular weighting vector w. To investigate this question, we recall the re-
sults space decomposition we obtained earlier and apply Schur’s Lemma.
Recall that in the n = 2 case, we found that the results space has decompo-
sition R ∼= S( ,∅)⊕ S( , )⊕ S(∅, ). It follows that for any pocket Twi , its
effective space E(Twi) must be isomorphic to the direct sum of irreducible
S2[S2]-modules from the set {S( ,∅), S( , ), S(∅, )}.

To find the effective spaces of a given pocket Twi , it is actually sufficient
to find how its image decomposes in the results space R. For example, if the
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image of Tw1 is isomorphic to S( , ) in the results space, then by the First
Isomorphism Theorem, E(Tw1) must also be isomorphic to S( , ). The pro-
cess of finding this image decomposition is simple, given that we have al-
ready found decompositions of R. Given a weighting vector w, suppose we
wish to find the image of Twi . The image of Twi is simply its column space,
but the columns of Twi are simply permutations of w that correspond to
the full rankings indexed in this pocket. Thus, let wi be any one of these
permutations of w. The set of basis vectors for all the irreducible submod-
ules of R forms a linearly independent set of vectors; thus we are able to
uniquely decompose wi as a linear combination of these basis vectors. If wi

contains a component that is a basis vector for S( , ), for example, then we
can conclude that S( , ) ⊆ E(Tw). We can make this conclusion because
wi is in the column space of Twi , and so if a component of S( , ) is in the
column space of Twi , then all of S( , ) is in the column space, or image, by
Schur’s Lemma. It follows that some copy of S( , ) in the corresponding
orbit of the profile space must be in the effective space of Twi .

We only need to perform this process on a single permutation wi. To see
why, we view wi not just as a weighting vector, but also as a vector in the
results space. The column space of Twi is the span of all columns of Twi , but
this set of columns is simply the set S2[S2](wi), the wreath product group
acting on wi as a results vector. We harness the fact that S2[S2]-modules are
invariant under the group action, and that the irreducible submodules of R
all have multiplicity 1. Thus, if for example wi is the sum of components
from S( , ) and S( ,∅), then under the group action from any element of
S2[S2], these components remain in their respective submodules. It follows
that all permutations of the components of wi under the group action be-
long to the same irreducible submodules, and thus we only need one of
those permutations to identify which irreducible submodules contribute to
wi.

The interesting result we find in the n = 2 case is that the effective
spaces of different pockets of Tw may be isomorphic to different subsets of
the irreducible S2[S2]-modules we found in the results space. Performing
this process for the 2 department case using the Borda count weighting vec-
tor w = [3, 2, 1, 0] reveals that the three pockets have the following effective
spaces:

E(Tw1)
∼= S( ,∅)⊕S( , ), E(Tw2)

∼= E(Tw3)
∼= S( ,∅)⊕S( , )⊕S(∅, ).

We have found that under the Borda count, the effective spaces of dif-
ferent pockets decompose into different direct sums of irreducible QS2[Sn]-
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modules. This can be fairly intriguing if we recall that different irreducibles
in the results space tell different stories. Since irreducible submodules in
P are isomorphic to their counterparts in R, it would seem that the irre-
ducible submodules of P have as much a story to tell as do the submodules
of R. This seems to imply that different pockets can tell different stories; in
particular, different kinds of full rankings—different in their disjoint pair
partitions—produce different kinds of results vectors in R. For example,
voters who vote in the orbit corresponding to Tw1 only contribute infor-
mation that is mapped to results vectors which reflect the stories told by
S( ,∅) and S( , ), whereas the other voters contribute information that is
mapped to results vectors in S(∅, ) as well.

In the n = 2 case it is possible for the effective spaces of two dif-
ferent pockets to be completely disjoint. Consider the weighting vector
w = [1, 1,−1,−1]. This weighting vector represents a voting procedure in
which voters assign one point to their two most preferred committees and
deduct one point from their two least preferred committees. Finding the
effective spaces of the pockets shows that

E(Tw1)
∼= E(Tw2)

∼= S( , ), E(Tw3)
∼= S(∅, ).

If we know an irreducible submodule U is in the effective space, then it
must be the case that the effective space of at least one pocket must contain
U (otherwise U would be in the kernel of Tw and not in the effective space).
Thus the question of how the pockets’ effective spaces differ can perhaps be
rephrased as: which submodules U ⊆ E(Tw) does each pocket lack, if any?
If E(Twi) contains U while E(Twj) does not, then the two pockets contribute
differently to the results space.

Our conjecture is that the effective space of a given pocket is closely
related to the disjoint pair partition of the full rankings in that pocket, but
more research will have to be completed to support this hypothesis. For
example, in our n = 2 Borda count example, the pocket Tw1 differs from
the other two pockets in that its effective space contains only the trivial
irreducible submodule and S( , ). The corresponding orbit has disjoint
pair partition {(1, 4), (2, 3)}, meaning disjoint committees are either ranked
first and fourth, or second and third. Notice that this kind of full ranking
reflects the story told by results vectors in S( , ).
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4.3 Voting Paradoxes

A common paradox found in single-candidate voting theory occurs when
a fixed profile yields different results under different scoring methods. De-
spite the voters’ data remaining the same, the fate of the election rests in
the hands of whoever determines the scoring method. In single-candidate
elections, paradoxes can be constructed by taking advantage of the differ-
ent results yielded by profile data when scored with different weighting
vectors (see Section 3 in Daugherty et al. (2009)). The transformations for
different weighting vectors have different effective spaces, so it is possible
to carefully construct a profile that behaves very differently under those
weighting vectors. Unsurprisingly, committee elections are prone to these
paradoxes as well, and the profile space decompositions discussed earlier
help us illuminate and construct these paradoxes.

The breaking up of the profile space into smaller pockets actually makes
our job of constructing profiles much easier; for example in the n = 2 case,
rather than have to try and build a 24-dimensional profile, we can focus on
building an 8-dimensional profile that will behave differently under differ-
ent weighting vectors.

A simple example of a paradoxical profile is shown below. The profile
p contains votes from only one pocket, to simplify the example. Under the
Borda count which uses weighting vector w = [3, 2, 1, 0], the profile gives
the following result:

TBorda :

WXYZ
XZWY
ZYXW
YWZX
XWZY
WYXZ
YZWX
ZXYW

.

.

.

.

.



2
3
0
3
3
1
3
1
0
.
.
.
0



→

W
X
Y
Z


27
25
23
21

 .

Thus, under the Borda count, committee W receives the most points and
wins the election. However, under the plurality scoring method which uses
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weighting vector w = [1, 0, 0, 0], the profile gives a different result:

TPlurality :

WXYZ
XZWY
ZYXW
YWZX
XWZY
WYXZ
YZWX
ZXYW

.

.

.

.

.



2
3
0
3
3
1
3
1
0
.
.
.
0



→

W
X
Y
Z


3
6
6
1

 .

Under the plurality method, committees X and Y actually tie for the win, a
completely different result than when the Borda count is used.

These paradoxes were constructed by finding the effective spaces E(Tw)
and E(Tv) for different voting procedures which use weighting vectors w
and v, respectively. As an abstract example, suppose U1 � U2 are irre-
ducible submodules of P, and E(Tw) = U1 but E(Tv) = U1 ⊕ U2. We
construct a profile p = u1 + u2 where u1 ∈ U1 and u2 ∈ U2. We choose u1
such that Tw(u1) and Tv(u1) produce results vectors indicating a victory
for committee W, but with a small amount of points. We choose u2 such
that Tv(u2) produces a results vector indicating a victory for committee X
with a large amount of points. Then when we compute Tw(p), we will
produce a results vector that indicates a victory for W, since Tw(u2) = 0.
However, when we compute Tv(p), we produce a results vector giving a
small amount of points to W plus a results vector granting a large amount
of points for X, resulting in a victory for X overall.

Such constructions of paradoxes demonstrate how once the voters place
their votes, the results can very much be out of their hands, assuming the
procedure is announced afterwards or changed from the original. How-
ever, the discovery that different pockets have different effective spaces
suggests a different kind of paradox. The discovery suggests that voters
may have much greater control over the election results than they might re-
alize. Whether they realize it or not, by simply voting for a different kind of
full ranking, they vote for a different disjoint pair partition and thus change
the effective space of the pocket to which their full ranking belongs. In a
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sense, they change the kind of data they input into the election. Of course,
the data input by a single voter is easily understood: they simply add a
permutation of the weighting vector to the results space. Where this kind
of paradox may arise is when a large group of voters votes in a certain man-
ner. If a large group of voters decides to vote for a certain kind of disjoint
pair partition, it may produce vastly different results than an election in
which they vote for a slightly different disjoint pair partition.

As an example, consider the profile we saw earlier, scored under the
Borda count:

TBorda :

WXYZ
XZWY
ZYXW
YWZX
XWZY
WYXZ
YZWX
ZXYW

.

.

.

.

.



2
3
0
3
3
1
3
1
0
.
.
.
0



→

W
X
Y
Z


27
25
23
21

 .

As a thought experiment, suppose each of the voters do not care too much
about who is listed third and fourth in their full rankings. If we go through
and swap the third and fourth committees in each of the full rankings in
the first orbit, we obtain all of the full rankings in the second orbit, so the
profile becomes

[0|2, 3, 0, 3, 3, 1, 3, 1|0]t.
Scoring this profile with the Borda count gives

TBorda :

.
WXZY
XZYW
ZYWX
YWXZ
XWYZ
WYZX
YZXW
ZXWY

.



0
2
3
0
3
3
1
3
1
0


→

W
X
Y
Z


22
30
26
18

 .
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By shifting all of the information in the profile to another orbit, we com-
pletely change the result of the election. This example may seem unsur-
prising and unimpressive, but the intent here is to suggest that when we
extend this situation to larger cases, this behavior becomes more interest-
ing. For example, in the n = 3 case, voters generate full rankings of eight
committees. Suppose a group of voters nonchalantly swap their fifth and
sixth ranked committees because their preferences become more arbitrary
towards the middle of their full rankings. This swap shifts their full rank-
ings to a completely different orbit with a different disjoint pair partition
and possibly a different effective space. It may be the case that a small,
nonchalant swap causes a world of difference in the results.



Chapter 5

Conclusion

In this thesis, we have constructed an algebraic framework with which we
can try to understand the mathematics of a specific committee election pro-
cedure. The wreath product group enabled us to produce decompositions
of the profile and results spaces which demonstrated that profiles and re-
sults vectors can be viewed as combinations of pieces from different irre-
ducible submodules. These irreducible submodules each represent differ-
ent kinds of preferences about the committees—preferences that are based
on the candidates who make up the committees. This insight suggests that
this framework may be useful in constructing or understanding voting pro-
cedures that strive to represent voters’ opinions on the candidates within
the committees. If we can find which irreducible submodules are in the
effective space of a voting procedure, we may be able to see how the pro-
cedure relates with the way candidates make up the committees.

The study of committee elections is still an undeveloped and daunting
world. Various methods have been proposed to tackle the problem of find-
ing a fair and representative committee election procedure, but so far there
does not seem to be a consensus on how to run committee elections in gen-
eral. This research is making an effort to address positional voting proce-
dures by starting with a simple, specific kind of committee election. Using
our profile space decomposition, we discussed some voting paradoxes that
can arise in committee elections. In the future, we may seek to expand our
focus to elections which allow k > 2 candidates from each department, per-
haps demanding the use and understanding of the representation theory of
the wreath product group Sk[Sn]. We may attempt to apply our framework
to various positional voting procedures that use only partial rankings, to
try and understand them using our irreducible QS2[Sn]-submodules. We
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may even try to use our findings to construct our own voting procedure to
fairly represent the voters’ opinions on the candidates and committees.



Appendix A

Conjugacy Classes of the
Wreath Product Group

In this appendix we describe the conjugacy classes of the wreath product
group and connect them with the double partitions which index the irre-
ducible characters of S2[Sn]. Here we also indicate which conjugacy classes
of S2[S3] were indexed by the roman numerals in Chapter 3. All definitions
in this section relating to conjugacy classes are taken directly from Bayley
(2006).

One common interpretation of the wreath product group S2[Sn] is to
view the elements as signed permutations of the set {1, . . . , n}. In other
words, each element of the wreath product group permutes the numbers 1
through n and also assigns a ± sign to each number. We can connect this
with our election structure: each element of the wreath product group per-
mutes the n departments, and either fixes or swaps each pair of candidates.

We demonstrate the conjugacy classes of S2[S2] and show how to gener-
alize to larger n. Let our two departments be A and B. We can think of our
four candidates as occupying four positions: 1, 1̄, 2, and 2̄. The candidates
in positions 1 and 1̄ occupy one department, and the candidates in 2 and 2̄
occupy the other. Thus we can think of a permutation (11̄) as swapping the
two candidates in one of the departments. In talking about actions on com-
mittees, we can think of 1 and 2 as the positions that are on the committee,
while 1̄ and 2̄ are the positions that are off the committee. For example, re-
call our committees from Chapter 2; as an example, committee W is {a1, b1}.
The action of the permutation (11̄) gives (11̄) {a1, b1} = {a2, b1}. As an-
other example, the permutation (12̄1̄2) gives (12̄1̄2){a1, b1} = {b1, a2}.
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The entire group S2[S2] consists of the following permutations:

{(), (22̄), (12)(1̄2̄), (121̄2̄), (11̄), (11̄)(22̄), (12̄1̄2), (12̄)(21̄)}.
To connect these elements with the double partitions, we define stable and
antistable cycles. Much like the permutations in the symmetric group, the
elements of the wreath product group are products of cycles. Let c be a
cycle, say c = (a1a2 . . . ak) with ai ∈ {1, 1̄, . . . , n, n̄}. Define c̄ = (ā1 ā2 . . . ān),
and ¯̄ai = ai. If c̄ = c, then c is stable. If c̄ 6= c, then c is antistable.

The connection between a wreath product group element σ and its cor-
responding double partition (µ, ν) is as follows. The partition µ is obtained
by taking each stable cycle in σ and dividing its length in two; we then
arrange the resulting numbers in decreasing order to obtain the partition.
For example, the element (11̄)(22̄) consists of two stable cycles, so its dou-

ble partition is ( ,∅). The partition ν is obtained by taking each pair of
antistable cycles (they always come in pairs) and taking the length of one
half of the pair; we then arrange these numbers in decreasing order to ob-
tain the partition. For example, the element (1)(1̄)(2)(2̄) consists of two

pairs of antistable cycles, so its double partition is (∅, ).
As another example, the element (22̄)(1)(1̄) consists of one stable cycle

and a pair of antistable cycles. Thus its double partition is ( , ).
The elements are grouped into their conjugacy classes based on their

associated double partitions. We can thus reindex the character table of
S2[S2] as follows:

(∅, ) ( ,∅) ( ,∅) ( , ) (∅, )

χ( ,∅) 1 1 1 1 1
χ
(∅, )

1 1 1 −1 −1

χ
( ,∅) 1 −1 1 1 −1

χ(∅, ) 1 −1 1 −1 1
χ( , ) 2 0 −2 0 0

The same process can be performed to find the conjugacy classes of
S2[Sn] for all values of n. The double partitions that correspond with the
roman numerals in Chapter 3 are shown here, along with a conjugacy class
representative for each.

It may be of interest to note that the only conjugacy classes which had
nonzero character values in the results module (I, VIII, and IX) are the
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Numeral Double Partition Class Rep

I (∅, ) (1)(1̄)(2)(2̄)(3)(3̄)

II ( ,∅) (11̄)(22̄)(33̄)

III ( , ) (12)(1̄2̄)(33̄)
IV ( ,∅) (1231̄2̄3̄)
V ( , ) (1)(1̄)(2)(2̄)(33̄)
VI ( , ) (12̄1̄2)(3)(3̄)
VII ( , ) (11̄)(22̄)(3)(3̄)
VIII (∅, ) (12)(1̄2̄)(3)(3̄)
IX (∅, ) (123)(1̄2̄3̄)
X ( ,∅) (121̄2̄)(33̄)

classes with no stable cycles. It turns out the same is true for the n = 2
case.
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