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This paper examines the interaction of an axisymmetric vortex monopole, such as a Lamb vortex, 
with a background irrotational liow. At leading order, the monopole is advected with the background 
flow velocity at the center of vorticity. However, inhomogeneities of the llow will cause the 
monopole to distort. It is shown that a shear-diffusion mechanism, familiar from the study of mixing 
of passive scalars, plays an important role in the evolution of the vorticity distribution. Through this 
mechanism, nonaxisymmetric vorticity perturbations which do not shift the center of vorticity are 
homogenized along streamlines on a Ren3 time scale, much faster than the Re decay time scale of 
an axisymmetric monopole. This separation of time scales leads to the quasisteady evolution of a 
monopole in a slowly varying flow. The asymptotic theory is verified by numerically computing the 
linear response of a Lamb monopole to a time-periodic straining flow and it is shown that a large 
amplitude, @(Ren3), distortion results when the monopole is forced at its resonant 
frequency. 6 1995 American Institute of Physics. 

I. INTRODUCTION 

Localized vortices are commonly observed in large Rey- 
nolds number fluid flows and in many instances appear to be 
robust structures which persist for long times compared to 
the vortex turnover time. Geophysical flows present namer- 
ous examples of large Reynolds number vortices including 
vortex monopoles and dipoles in planetary oceans and 
atmospheres.1-3 Numerical simulations of turbulent flows 
show the emergence of localized regions of vorticity.4-7 Vor- 
tices are also observed in moderate Reynolds number labo- 
ratory experiments such as impulsively started jets and flows 
past bluff bodiesK3s-10 (e.g., flow past a cylinder). 

Two-dimensional (2-D) models have been useful in un- 
derstanding i-lows with vorticity. The frequent observation of 
vortices in fluids suggests the existence of stable vortex so- 
lutions to the 2-D vorticity equations. Indeed, it has been 
proven by Dritschel that axisymmetric, inviscid monopoles 
with monotonic vorticity distributions are Lyapunov stable.” 
Another characteristic observed in these flows is that the vor- 
tices tend to be nearly circular. This observation has been 
supported by the inviscid numerical simulations of Melander 
er aLI who have argued that isolated, smooth distributions 
of vorticity will axisymmetrize. We have previously demon- 
strated that a large Reynolds number Lamb monopole is lin- 
early stable, relaxing to an axisymmetric state on a &(Ren3) 
shear-diffusion time scale.13 The presence of an external 
flow, however, may perturb the streamlines of a vortex, lead- 
ing to a nonaxisymmetric distortion. 

Several inviscid models for the distortion of a monopole 
in a straining Row exist; Moore and Saffmanr4 showed ellip- 
tical vortex patch solutions existed in the presence of suffi- 
ciently weak external strain. Kidal generalized these solu- 
tions and showed they may rotate, nutate or extend 
indefinitely for sufficiently strong external flows. Dritschelr6 
studied the stability of these solutions; he noted that reso- 
nance between the rotation rate of the ellipse and the oscil- 
lation frequency of a boundary perturbation can lead to in- 
stability. Legras and Dritsche117318 study the inviscid 

evolution of monopoles with monotonic profiles in an exter- 
nal straining flow. For small straining amplitudes, a mono- 
pole oscillates between axisymmetric and elongated shapes. 
Larger amplitudes lead to the stripping of vorticity from the 
outer edge of the monopole. 

In large Reynolds number simulations, McWilliams’ has 
observed the emergence and interaction of vortex monopoles 
and dipoles from decaying turbulence. The interactions range 
from weak nonaxisymmetric distortions to strong interac- 
tions such as vortex merging and stripping. In this paper, we 
consider the large Reynolds number dynamics of an axisym- 
metric monopole in a perturbing irrotational flow such as that 
which might be induced by distant vortices or boundary con- 
ditions. Our goal is to obtain a fundamental description of 
this interaction. 

Previously, the viscous regularization of an initial point 
vortex in a nonuniform irrotational flow has been studied by 
Ting and his collaborators’9*20 and extended by 
Gunzburger.” They showed that, to leading order, a mono- 
pole is advected at the velocity of the irrotational background 
flow evaluated at the center of the vortex. They found an 
oscillatory correction to this motion, which we will argue can 
be eliminated by a coordinate change. They also showed that 
a weak external straining flow induces a quadrupolar (i.e., 
slightly elliptical) distortion of the axisymmetric vortex. 

We extend the work of Ting and his collaborators in a 
new formalism that adds to their description of a decaying 
vortex in two respects. First, we utilize a coordinate system 
attached to the vorticity centroid. The vortex velocity is de- 
termined by momentum conservation (see Saffman’) and to 
leading order is advected at the irrotational flow velocity 
evamated at the centroid, in agreement with the “coarse 
grained” result of Ting and Tung.” This method yields the 
form of the velocity corrections as well, allowing an estima- 
tion of their magnitude. Second, we incorporate into the per- 
turbation theory the dissipative effects of a shear-diffusion 
mechanism that was overlooked in the analysis of Ting and 
Tung. Through shear and viscous diffusion, vorticity pertur- 
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bations are homogenized along the streamlines of the mono- 
pole on a ReV3 time scale. This yields a description of a 
decayingvortex on three distinct time scales; the &(l) vortex 
turnover time, the &ReU3) shear-diffusion time scale, and 
the @Re) viscous decay time scale. 

In the next section, we formulate the problem of a local- 
ized vortex in an irrotational flow and calculate the transla- 
tional velocity of a monopole. The vorticity equation is then 
transformed into a reference frame that propagates with the 
monopole velocity yielding an inhomogeneous equation for 
the distortion of the monopole. In Sec. III, the shear- 
diffusion mechanism is reviewed and the distortion of the 
monopole is computed in the limit of large Reynolds number. 
In Sec. IV, the asymptotic theory is validated by a numerical 
solution of the linearized vorticity equation for a Lamb 
monopole in a time-periodic straining flow. The frequency 
response of the monopole is computed and compared with 
the related problem of the mixing of a passive scalar. In Sec. 
V, we compare our results in detail with the previous re- 
search of Ting et al. and Gunzburger and qualitatively with 
the inviscid models of a vortex in a straining flow. Section VI 
summarizes our results and suggests some avenues for fur- 
ther research. 

II. FORMULATION OF PROBLEM 

In this section, the 2-D Navier-Stokes equations are for- 
mulated to study a localized monopole in an external irrota- 
tional flow. The velocity of a monopole is calculated utilizing 
the conservation of momentum and the vorticity equation is 
transformed into a reference frame that moves with the 
monopole velocity. 

A. Governing equations 

The vorticity formulation of the Navier-Stokes equa- 
tions is particularly suited to describing a localized vortex 
monopole.8~9 In 2D, the vorticity is a scalar quantity propor- 
tional to the local angular velocity of the @id and i_s equal to 
the curl of the velocity field, o=(VXu).k, where k is a unit 
vector perpendicular to the plane of the fluid. The vorticity 
obeys an advection-diffusion equation, 

1 
o,+u-Vo= - v20, 

Re 

where Re=D”l(pv) is the nondimensional Reynolds num- 
ber. Lengths are nondimensionalized on the vortex diameter, 
D; time is scaled by the vortex turnover time, ?; and v is the 
kinematic viscosity of the fluid. Incompressibility is satisfied 
by introducing a streamfunction, u(x,t j = Va,bfx,t) X k. The 
streamfunction is related to the vorticity by a Poisson equa- 
tion, 

v2*= --co. (2) 
The irrotational component of the streamfunction is deter- 
mined by specifying boundary conditions on Eq. (2). 

B. Axisymmetric vortices 

Axisymmetric distributions of vorticity will form the ba- 
sis of our perturbation expansion in Sec. III. Such monopoles 

FIG. 1. Schematic illustration showing a localized vortex monopole in an 
external irrotational flow. The flow in the vicinity of the monopole is a 
superposition of the flow induced by the monopole itself plus au irrotational 
component induced by other vorticity distributions external to the domain R 
or boundary conditions on the fluid. 

are exact solutions of Eq. (1). They possess circular stream- 
lines along which the vorticity is constant and decay on the 
Reynolds number time scale due to the radial diffusion of 
vorticity. The Lamb vortex is a particular example with ex- 
ponentially localized vorticity and corresponding stream- 
function, 

w(x,f)=FV(r,T)= & 

$(x,t)=!P(r,T)= - & 

where T is time scaled by the Reynolds number (i.e., T= tl 
Re). It is the viscous regularization of an isolated point vor- 
tex of unit strength. Since axisymmetric localized monopoles 
decay toward Gaussian profiles,” it is natural to consider the 
Lamb vortex as our basic monopole solution. In the follow- 
ing, we compute the velocity and distortion of such a mono- 
pole in the presence of an external flow. 

C. Vortex velocity 

The lirst moment of a vorticity distribution is analogous 
to the linear momentum of the vortex.’ The conservation of 
this moment allows the velocity of the vortex centroid to be 
determined as an integral of the background irrotational flow 
weighted by the vorticity of the monopole. Below we derive 
an expression for the velocity of the monopole centroid. 

Consider a simply connected region of fluid, 93, contain- 
ing a single exponentially localized monopole (see Fig. 1). 
We assume the vorticity is exponentially decaying on a scale 
comparable to the characteristic radius of the vortex, which 
is small compared to the size of the domain 33. The centroid 
is defined by 

where I’=J3w dx is the integrated vorticity (a constant) of 
the monopole. The velocity of the centroid then followsy 
from multiplying (1) by x and integrating over the region 33, 
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dX 1 
-=- 
& r J- 

p) dx* 

Utilizing the linear relationship between the vorticity 
and streamfunction, we decompose the fluid velocity 
(streamfunction) into a background component, u”(@) and 
a component induced by the vorticity within 9, uw(@“), 

qCl(x,4 = $%J> + V(x,Q. (6) 

The vorticity induced component, @“, is given by a convo- 
lution integral of the vorticity with the free space Green’s 
function of the Poisson equation, 

f?x,t) = - & 
I 

loglx-x’~2w(x’,t)dx’. 
w 

The background component, 8, is an irrotational flow, 
uniquely specified in B by its value on the boundary. From 
this decomposition, we split the integral in Eq. [S) into two 
pieces, 

03) 

The second integral in (8) vanishes; to show this we rewrite 
o in the second integral as the z component of the curl of u”. 
Utilizing the divergence theorem, the second integral be- 
comes 

I 33 
u,ow dx= G$fij dSp 

where the right-hand side of (9) is a counterclockwise line 
integral around &B, ds is an arclength, and h is an outward 
pointing normal to the contour. The subscript indices on the 
vectors denote the Cartesian components and the matrix Mij 
is given by 

, I. 
M= 

-h"-u2)/2 -uu ' I 
where uw=z&+ uj. Due to the exponential localization of the 
vorticity, the integration contour in Eq. (9) can be extended 
to a contour at infinity with exponentially small error. Using 
the far-field behavior of the velocity, ju~j~F/~, shows that 
the line integral vanishes yielding 

dX 1 
V= it = F 

I 
guBo dx. (11) 

We now evaluate Eq. {ll) to obtain a series expansion 
for the velocity of a monopole. In terms of a polar coordinate 
system centered at the vorticity centroid, X’ =x-X(t), the 
streamfunction of the external flow, which is harmonic, has a 
Taylor expansion about the vorticity centroid, 

~(x’+X(~),t)=~(X(tj)+ 5 : (er)%,fP+c.c. ) ( n=l i 
(12) 

where r is the magnitude of the vector x’ (i.e., r =1x’/) and 
the Taylor expansion coefficients, a,(X(t),t), depend on the 
location of the vortex and time. A scaling parameter, e, has 

been introduced into the streamfunction to characterize ve- 
locity fields whose length scale is large compared to the 
characteristic size of the vortex. From Eq. (12), the back- 
ground velocity in Cartesian coordinates is 

= tP(x(tj j + i (ii-j) I; na,( w-y-l 

where $j are the unit vectors in the x,y directions, respec- 
tively. We also expand the monopole vorticity in a Fourier 
series, 

w(x’+X(t),t)=w,(r,t)+ 5 w,(r,t)ezne+c.c. . 
( n=l i 

04) 

Since the coordinate system is centered at the vorticity cen- 
troid, the n=l expansion coefficient of the vorticity will 
satisfy,r3 Jrr201 dr =O. 

Substituting Eqs. (13) and (14) into (ll), gives an ex- 
pression for the velocity, V, of the monopole, 

v=UB(X(t),t)+[(i~+j)U+C.C.], im 

where V is given by 

27r a 

J- 

co 
6=-r c nu,En-l rnw,-l dr. 

n=3 0 
(16) 

The monopole propagates at the velocity of the irrotational 
background flow evaluated at the vorticity centroid with a 
correction term that depends upon nonuniformities in the 
flow and the distortion of the monopole. We will be inter- 
ested in irrotational flows that perturb the monopole slightly: 
these can be categorized as slowly varyingftows correspond- 
ing to eel, la,l--@(l) and weak flows corresponding to 
~=l, (a,1 Cl. For either of these situations, the corrections to 
the monopole velocity are higher order, In Sec. III, we show 
the nonaxisymmetric distortion of the monopole is @E) for a 
slowly varying flow and @t( Iu,J) for a weak flow. Using this 
result in Eq. (16), the corrections to the vortex velocity for 
the slowly varying flows and weak flows are &fes), @I a,/ “), 
respectively. 

A relation governing the centroid velocity of a monopole 
in an irrotational flow has been established by defining the 
vorticity centroid of the monopole and then applying the 
conservation of the first moment of vorticity. The leading- 
order term in the velocity expansion agrees with the “coarse 
grained” vortex velocity obtained by Ting and Tung.l’ They 
also calculated a “tine grained” solution which allows for 
the monopole velocity to oscillate about the centroid veloc- 
ity. These Yine grained” velocity oscillations result from 
working in a coordinate system whose origin is displaced 
from the vorticity centroid. Viewed from the laboratory ref- 
erence frame, a point off center will travel at the centroid 
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velocity superposed with a rotational velocity about the cen- 
troid. We come back to this point in the discussion section of 
this paper where we explicitly show that the “fine grained” 
oscillations are removed by shifting the origin of the coordi- 
nate system to the vorticity centroid. 

D. inhomogeneous equation for a monopole in an 
external flow 

In this subsection we transform the vorticity equation (1) 
into a reference frame that translates with the vorticity cen- 
troid, X(t). This yields an alternate form of the vorticity 
equation in which the effect of the external flow is repre- 
sented as an inhomogeneous term. 

Let the centroid of the vortex be located at X(t). A co- 
ordinate system relative to the centroid is given by 

x’=x-X(t), t’=t. (17) 

The derivative operators transform according to the chain 
rule, 

axi= ?I?!, d,=d,r- V,c?,f. 1 i 
08) 

Note that the vorticity is invariant under this change of co- 
ordinates. Equations (1) and (2) become, 

1 
o,+lP-vw- Re v20=-(uE-V).Vw, (19) 

v2*m=-o, lP=(z&y-ig), (20) 

where the primes have been dropped from the independent 
variables and the velocity has been split into background and 
vorticity-induced components (i.e., u=ua+uB). The initial 
profile of the vortex is specified by the initial condition, 
0(x,0). Boundary conditions are imposed to require the ve- 
locity and vorticity to be continuous at the origin and decay- 
ing in the far field. 

The right-hand side of Eq. (19) represents the distortion 
of the monopole streamlines by the external flow. For both 
the slow and weak external flows this term is small (i.e., 
]uB-V]<l) and represents a small perturbation to an axi- 
symmetric monopole. In the next section a perturbation 
theory for the distortion of a monopole is developed in which 
the effect of the external flow enters as an inhomogeneous 
term. 

III. MONOPOLE DISTORTION IN AN EXTERNAL 
IRROTATIONAL FLOW 

In this section we will construct asymptotic solutions to 
Eq. (19) valid in the large Reynolds number limit. First, we 
describe the decay of an initially perturbed monopole in the 
absence of an external flow (i.e., u’=V=O). In Sec. III B the 
distortion of a monopole in a perturbing external flow [i.e., 
/us-VI-@[y) where 611 is computed. 

A. Shear-diffusion mechanism 

We have previously studied the large Reynolds number 
linear stability of a Lamb monopole based on the ideas of 
Lundgren’” and Rhines and Young.U The main result is the 
mixing hypothesis which we restate here:13 

Mixing Hypothesis: If an axisymmetric Lamb 
monopole, W(r,T), is subject to a linear perturba- 
tion, 0, with zero mean along streamlines (i.e., 
$6 de=O) and which preserves the first moment of 
vorticity, this perturbation will decay on an @ReU3) 
time scale. 

The mixing hypothesis identifies vorticity perturbations 
which decay on an @Rem) time scale as those which are 
orthogonal to both axisymmetric redistributions of vorticity, 
and intinitesimal translations of the monopole. Thus, an ini- 
tially perturbed monopole will relax to an axisymmetric state 
centered at the vorticity centroid on an 6(Re”3) time scale, 
much faster than the &Re) time scale for the viscous decay 
of a monopole. 

The mechanism leading to the rapid decay of nonaxi- 
symmetric vorticity perturbations is known as the shear- 
diffusion mixing mechanism, familiar from the study of the 
mixing of passive scalars by flows with closed 
streamlines.3-27 Rhines and Young elucidated the relevant 
scalings for the mixing of a passive scalar and emphasized 
the importance of simultaneous shearing and cross-stream 
diffusion in homogenizing the passive scalar along the 
streamlines of the flow. According to the mixing hypothesis, 
this same mechanism applies to small vorticity perturbations 
to a Lamb monopole as well. The difficulty in verifying this 
result for vorticity is due to the coupling of the vorticity with 
the tlow field of the monopole and has been discussed in 
previous research.*3122 

The decay of a vorticity perturbation by the shear- 
diffusion mechanism is best illustrated by a contour plot of 
the vorticity at various times (see Bernoff and Lingevitch13). 
The initial vorticity perturbation is sheared by the differential 
rotation inside the Lamb monopole. The shearing generates 
large vorticity gradients in the radial direction which are 
smoothed by the radial diffusion of vorticity on the Re”3 
time scale. Jn Fig. 2, the real and imaginary phases of an 
initial nonaxisymmetric perturbation to a Lamb monopole 
are plotted versus time at a fixed radius. The oscillations in 
the vorticity are due to the advection of the vorticity pertur- 
bation around the streamlines on the turnover time of the 
monopole. The envelope for the decay of these oscillations 
scales like Re’” for large Reynolds numbers. In the next 
section, the response of a monopole to an external flow is 
described for which the solution shown in Fig. 2 corresponds 
to a Green’s function. 

Through the mixing mechanism, we have argued that 
nonaxisymmetric, linear vorticity perturbations which are or- 
thogonal to the translational modes of an isolated axisym- 
metric monopole will decay on the ReV3 time scale. This 
contrasts with the inviscid dynamics of a perturbed axisym- 
metric monopole which has been studied by Dritschel.17 He 
showed that an inviscid axisymmetric monopole with a 
monotonic vorticity profile is Lyapunov stable. The Hamil- 
tonian nature of the Euler equations suggests that a perturbed 
inviscid vortex will oscillate about its unperturbed state in- 
definitely. A large Reynolds number monopole, however, will 
relax to an axisymmetric state due to the shear-diffusion mix- 
ing mechanism on the @Re’“) time scale. 
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B. Perturbation theory for distortions to a rnonopole 

Consider a monopole in an external perturbing flow. We 
work in a polar coordinate system with origin at the vorticity 
centroid and propose a perturbation expansion for the vortic- 
ity and the streamfunction about a localized axisymmetric 
state, 

;: 

where IV, ‘!I! are functions of the radial coordinate and the 
viscous time scale, T== t/Re. The small parameter, 7, is the 
strength of the external flow nondimensionalized on the char- 
acteristic monopole circulation 
y=~u”-vpl”~>. w 

velocity (i.e., 
e consider external flows. which are small 

perturbations to an axisymmetric vortex. These are catego- 
rized as slow and weak external flows with c&espohding 
streamfunctions, r,& and I&. They have Taylor expansions 
about the vorticity centroid, 

&=+ 
i 

i a,( yr)“eine+ c.c. + @ g), 
i 

(23) 
II=2 

t&= ( i. anrrleine+c.c.i +@y’). (24) 

The streamfunctions are arbitrary up to a constant, ao, which 
has been set equal to zero and the n = 1 coefficient, a i , van- 
ishes due to the fact that we transformed into a coordinate 
system that translates with the centroid velocity. For the slow 
external flow, the coefficients, a,, , are order unity [i.e., 
la,,/-@(l)] and for the weak flow, [a,l-@$. The error 
terms in Eqs. (23) and (24) represent the correction to the 
streamfunction due to higher-order corrections to vortex ve- 
locity V. The leading-order effect of the external flow is 
&j(r) for both the slow and weak streamfunctions. From Eqs. 
(23) and (24), we see that the general form of the external 
streamfunction is 

$=y$‘+@(p)=yi A,(X(t),t)r”e’““+~(~), 
,1=2 

(25) 

where A,, are the Taylor expansion coefficients of the exter- 
nal flow resealed to be order unity. For a slow external flow, 
only A,#O, while for the weak external flow, A,, = a,/y. 

Substituting these expansions into Eq. (19) and grouping 
terms in powers of y gives at @l), 

WT=LFOW, 
where 55’” is the axisymmetric Laplacian operator, 

(26) 

.B”=i3,,+~ d,=f d,rd,. (27) 

At leading order the vortex is axisymmetric leading to a 
decoupling of the vorticity equation from the streamfunction. 

Real and Imaginary Parts of Green’s Function 
n-2,Re-iO’,r=3.8 

1 .o 1 --- 

0.5 

3 0.0 

-0.5 

-1.0 i-----l 
0.0 1000.0 2000.0 3000.0 

t 

FIG. 2. The n=2, Re=lO’ Green’s function solution at a radius r=3.8 
showing the d&cay of the real and imaginary components of the vorticity 
perturbation with time. The oscillations in the Green’s function are related to 
the turnover frequency of the Lamb monopole. The decay envelope for the 
oscillations scales as RelD3, . m  agreement with the large Reynolds number 
asymptotic prediction. 

The vorticity decays on the Reynolds number time scale due 
to viscous diffusion. The streamlines of flow are also axi- 
symmetric and given by the solution of 

~“~=-w. GN 

The Lamb vortex specified in Eq. (3) is a particular axisym- 
metric solution of Eqs. (26) and (28) corresponding to the 
self-similar viscous decay of an initial point vortex. 

At &[y) an inhomogeneous equation is obtained, 

1 
r&4- ; d,(-?++ Wr$)-Re-’ V2&= - i W&-I’, 

vqj= - gj, 
(29) 

where 6’ is the &j(y) term in the Taylor expansion of the 
external flow. Physically the inhomogeneous term corre- 
sponds to the radial advection of the basic state vorticity, 
W(r, T), by the external flow. 

We proceed by expressing the vorticity and streamfimc- 
tion perturbations, (i&e), in terms of their Fourier represen- 
tations, 

&(x,t)=wo(r,t)+ C inIl drA+c.c.), 

5/ix,t)=tl/o(rJ)+ ( il hirA+c.c.) . , 

The equation for each Fourier component decouples, 

(30) 
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1 
( unjt+ in ; (--*pa+ W;&) - Re-’ 9 “g,, 

1 
=-in ; WJnr”=IA, 

y2 Qd,- 5, 
r 

where the amplitudes A, are the fi($ Taylor expansion co- 
efficients of the external flow and depend upon the centroid 
location and time. The velocity and vorticity are required to 
be continuous at the origin, 

+ II ,W,c+ as r-+0. 

Exponential localization of the monopole leads to 

(33) 

wnjr9~n+o as r-m. (34) 
For 12 =O, 1, the inhomogeneous term vanishes as can be 

seen from Eq. (25). Thus, at fly), the external flow does not 
radially redistribute vorticity nor does it translate the mono- 
pole. For n>2 the inhomogeneous term creates a nonaxisym- 
metric distortion of the monopole. 

The solution of Eq. (31) can be approximated in the limit 
of large Reynolds number in terms of a convolution integral 
with a Green’s function. The linear operator on the left-hand 
side of Eq. (31) depends on time through the coefficients 
W( r, I’), 9!( r, T) . These coefficients evolve on the Reynolds 
number time scale, much slower than the shear-diffusion 
time scale [i.e., Q(ReU3)]. Treating the T dependence of the 
coefficients as an independent parameter, we define the 
Green’s function as the solution of 

GTfin k (--T,G”+ WrHn)-Re-l~S G” 

.TZ’ H”= -G”, 

where 2(t) is the Dirac delta function in time; Gn(r,t;T), 
Hn(r,t; T) are the Green’s functions for the vorticity and 
corresponding streamfunction, respectively. The Green’s 
function is zero for t<O. Since all n>2 perturbations satisfy 
the conditions of the mixing hypothesis, the Green’s function 
is exponentially decaying on the shear-diffusion time scale 
for t>O (see Fig. 2). The solution of Eq. (31) becomes a 
convolution integral, 

dr,t) = I 

co 
A,(X(t- ~),t-- T)G”(r,r;T)dT. (36) 

0 

Utilizing this solution, we can estimate the response of the 
monopole to a time-dependent external flow. 

If the time scale of the external flow is much slower than 
the shear-diffusion time scale (i.e., T,4Re’13), then the 
monopole relaxes to a quasisteady state, 

w,(r,t)=A,(X(t),t) (37) 

The monopole equilibrates to this state via the shear- 
diffusion mixing mechanism on the Re”3 time scale. From 
Eq. (31), we see that at leading order, the quasisteady state 
satisfies an ordinary differential equation for the perturbation 
streamfunction, 

S”Ijl,f > rcS,= - : A.(X(t),t)r”. 
r r 

This agrees with the “coarse grained” solution obtained by 
Ting and his collaborators. 19,20 They interpreted the “coarse 
grained” solution as the time average evolution of the mono- 
pole. In addition, they computed a “fine grained” solution 
which includes oscillations in the vorticity on the monopole 
turnover time. Their description, however, overlooks the 
shear-diffusion mechanism which attenuates these fine scale 
oscillations on a Re’” time scale, thus, allowing the mono- 
pole to relax to a quasisteady state. 

If the time scale of the external flow is not much slower 
than the shear-diffusion time scale, the linear response of the 
monopole is bounded by 

lqJr,t)l~ supA,@(t’j,t’j 
t’et 

The Green’s function decays on the shear-diffusion time 
scale and a Wentzel-Kramers-Brillouin (WKB) analysist3 
shows 

G”(r,T)<C exp[idt-n”(fiR,)‘t’/(3 Rej], (40) 

for large times where R=--V!Jr is the angular velocity of 
the base state monopole and C is a constant. From this esti- 
mate, a bound on the response of the monopole becomes 

Iw,(r,t)l&L‘ Reri3 (nS11,)2,~ 1 supA,@(t’)J’)l. (41) 
It’Ct I 

where C is a constant. This allows for the possibility of a 
large amplitude, gqRerB), resonant response. In the next sec- 
tion, we solve Eq. (31) numerically and show that the re- 
sponse of the monopole is @(Re1’3) when the external flow is 
in resonance with the monopole whereas in the nonresonant 
case the response of the monopole is order unity. 

The @(+j perturbation theory is valid up to the time at 
which the error due to ignoring the effect of the nonlinear 
term in the vorticity equation becomes Ml). We estimate 
this time by considering the @$j terms in the perturbation 
theory. At this order, the nonlinear interaction of the vorticity 
perturbation, c3, with its induced streamfunction, @,, contrib- 
utes to the inhomogeneous term. In the nonresonant case 
[i.e., O-Hl)], the nonlinear term will lead to an fly) cor- 
rection to the velocity of the monopole and an axisymmetric 
redistribution of vorticity. These errors will accumulate on an 
@ldg) time scale; requiring this nonlinear time scale to be 
much longer than the viscous decay time of the monopole 
yields, @Reel’. In the resonant case (i.e., 6+-Re1’3), an 
analogous estimate for the effect of the nonlinear term yields 
@Re-5’6. 

, 

In this section, we have described the distortion of a 
monopole in a perturbing irrotational flow at large Reynolds 
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numbers. We have shown that the distortion of the monopole 
is given in terms of a convolution integral of a Green’s func- 
tion with an inhomogeneous ‘forcing. Due to a shear- 
diffusion mixing mechanism, the Green’s function decays 
exponentially on the RelB time scale. Based on this descrip- 
tion, we find that for slowly varying time-dependent flows, 
the monopole relaxes to a quasisteady state on the Re”3 time 
scale. For general time-dependent flows, we have approxi- 
mated a bound on the response amplitude and described the 
possibility of a resonant interaction between the monopole 
and the external flow. The amplitude of the resonant response 
scales as Re1’3 due to a balance between energy dissipation 
by the shear-diffusion mechanism and energy input from the 
external flow. In the next section, we numerically solve the 
vorticity equation linearized about a Lamb monopole to 
verify the results of this asymptotic theory. 

Iv. NUMERICAL VERIFICATION iIF ASYMPTOTIC 
THEORY 

We consider as our canonical problem, a Lamb mono- 
pole centered in a straining flow. As can be seen from Eq. 
(23), a straining flow is the leading-order term in the Taylor 
expansion of a slow external flow, 

@(x’,t)=Ag2ei2’+c.c., (42) 

where A, is the coefficient of the quadratic term. 
In this section, we numerically compute the frequency 

response of the monopole and show that the amplitude of the 
response is @(Re”3) when the the external flow is resonant 
with the monopole. For the numerical results of this section a 
time-periodic straining flow is chosen with A, given by 

A2= ieminFts (43) 

This corresponds to a stagnation point Ilow rotating in the 
counterclockwise direction with rotational frequency, &2. 
With this choice of external flow, the linearized vorticity 
equation becomes, 

1 
(wz),+i2; (--Q+Q+W&~)-R~- -S2wz 

c-p 1 
r Wre -inFtJ 

AP$~=--02. (44) 

The harmonic time dependence can be separated from the 
rest of the perturbation by the transformation, 

(d2= DesiRFf, J12= &ewinFt, 

yielding, 

&+i[2fi(r)-fiF]&+i2 T $-Red1 S2D 

(45) 

=2r” i W,, 

,p& _ (j, 

where R(r) = - YrJr is the angular velocity of the base state 
vorticity distribution. From Eq. (46), we see that the time 

dependence of the external flow effectively reduces the an- 
gular velocity of the base flow by a constant. 

The base state monopole that we choose for our numeri- 
cal experiments is a Lamb monopole [see Eq. (3)] with T = 1. 
The viscous decay of the base state on the Reynolds number 
time scale has been suppressed. We will see that this approxi- 
mation is valid in the large Reynolds number limit since the 
monopole relaxes to periodic oscillations much more rapidly 
than the Reynolds number decay time scale of the monopole. 

Equation (46) is solved using a second-order split-step 
method. The streamfunction and vorticity perturbation are 
discretized in the radial direction using second-order cen- 
tered finite differences. The diffusion step is implemented 
implicitly using Crank-Nicholson and the advection step ex- 
plicitly with fourth-order Runge-Kutta; the perturbation 
streamfunction at each time step is computed as a tridiagonal 
inversion of the Laplacian operator. 

The frequency response of the Lamb monopole is shown 
in Fig. 3 as a function Reynolds number. Figure 3(a) is a plot 
the maximum vorticity amplitude and Fig. 3(b) is the L, 
norm of the vorticity perturbation. The response curves ex- 
hibit a resonant peak at which the energy input from the 
external flow is balanced by the dissipation due to the shear- 
diffusion mechanism. The scaling of the peak response am- 
plitude with Reynolds number is approximated by a local 
analysis of Eq. (46) about the resonant streamline at r = R. 
&suming that the vorticity behaves as a passive scalar and 
seeking a steady solution yields, 

icuph-Re-r OPP=p, (47! 

where p is a local radial coordinate (i.e., r =R +p) and, 

dCl 
ff=2- ) 

dr 
P=2rW,I,=, . (48) 

r=R 

In Eq. (47), the streamfunction-vorticity coupling has been 
suppressed and only the leading-order diffusion term cjPP is 
retained. Resealing p and 6 to balance the effects of shear, 
diffusion, and the external forcing yields a similarity solu- 
tion, 

P 
d=Re”3 --p j*(a Re p3). 

From this, we see that the maximum vorticity amplitude at 
the resonant streamline scales as 0iRe”3) and the response is 
localized about the streamline with length scale of 
&{Re-‘“). 

Figure 4(a) is a log-log plot of the maximum perturba- 
tion amplitude and L2 perturbation norm versus Reynolds 
number. The maximum vorticity amplitude is in good agree- 
ment with the Ret’ asymptotic prediction for large Reynolds 
numbers. This supports the argument that the dissipative 
shear-diffusion mechanism is balancing energy input from 
the external flow. The scaling of the L2 perturbation norm 
with Reynolds number yields a slope of 0.150 which differs 
slightly from the theoretical slope of l/6. We attribute the 
slow convergence of the L, norm to its asymptotic value as 
due to the order unity contributions to the vorticity away 
from the resonant streamline. Figure 4(b) is a plot of the 
forcing frequency at which the response amplitude is maxi- 
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Maximum Vorticity Amplitude VS. Forcing Frequency 

___-- 

L, Norm vs. Forcing Frequency 

RB = 10; 
_..__....._. Re _ , 0 
---- Re - lo5 1) --- Re-10 

I’ 
I ’ # \ 

FIG. 3. Freqiency response of a Lamb monopole to a time-periodic straining flow (n=2). Panel (a) shows the maximum of the vorticity response, w,,, 
versus forcing frequency, CL,, and (b) shows the L2 norm of the vorticity perturbatibn, 11 w versus forcing frequency for Re= 103, 104, lo’, 10”. The peak in 11 
the response curves are due to the resonant forcing of the monopole at twice the turnover frequency, Cl,= XL(r). At resonance, dissipation of the 
shear-diffusion mechanism balances the energy input from the external flow. 

mized versus Reynolds number. The frequency asymptotes to 
a constant value of &I: ig 0.0225 as the Reynolds number 
becomes large. This differs significantly from the predicted 
value, ‘0.0482, from Eq. (49) which neglects the 
streamfutiction-vorticity coupling. 

The radial position of the maximum amplitude response 
for a passive scalar and vorticity are plotted versus forcing 
frequency in Fig. 5. The passive scalar data corresponds to a 
time-periodic source released into the flow of a Lamb mono- 
pole. For a range of frequencies, the maximum response oc- 
curs at a radius given by R,=262(r) which corresponds to 
the resonant excitation of a particular streamline of the 
monopole. As the frequency of the external forcing is de- 
creased, the resonant streamline moves radially outward and 
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finally into the region of exponentially small vorticity. In- 
creasing the frequency &hi@ the maximum amplitude vortic- 
ity radially inward until th% external frequency exceeds the 
maximum turnover frequency of the monopole. 

Figure 6 is a plot of the real and imaginary parts of the 
vorticity at a forcing frequency of C&=0.02125 and,yRey- 
nblds numbers 104, lo’, lo6 showing the localization of the 
vorticity about the resonant streamline. The monopole re- 
laxes to this state on the Re’” time scale. Recall that the time 
periodicity of the perturbation has been explicitly removed 
by the transformation in Eq. (45), so, Fig. 6 represents the 
Fourier amplitude of the periodic response of the monopole. 
Figure 7 compares the frequency response of a passive scalar 
and vorticity. There is excellent agreement between the pas- 
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Maximum Response vs. Reynolds Number 
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PIG. 4. Panel (a) is a log-log plot of the maximum vorticity response versus Reynolds number for a Lamb monopole in a time-periodic external straining 
how. The data are in agreement with the predicted asymptotic slopes of l/3 for the maximum vorticity and l/6 for the L, norm of the vorticity response. Panel 
(b) is a log plot of the frequency of the maximum amplitude response, a: , versus Reynolds number. The frequency of the maximum response approaches 
a constant value Cl: - 0.022 50 at large Reynolds numbers. 

sive scalar data and the asymptotic theory, which verifies our 
analysis. The frequency response of the vorticity, however, is 
shifted to a lower frequency due to the streamfunction- 
vorticity coupling. 

The numerical solutions discussed above support the 
large Reynolds number asymptotics of Sec. III. We have 
shown that due to the shear-diffusion mechanism, a mono- 
pole in an external ilow equilibrates to a periodically distort- 
ing shape on the Re” time scale. The amplitude of the pe- 
riodic distortion is order unity for most frequencies but there 
is a resonant range when the response scales as Re’13. The 
amplitude of the resonant response is explained by a balance 
of energy into the monopole from the external flow and dis- 
sipation by the shear-diffusion mechanism. 

Phys. Fluids, Vol. 7, No. 5, May 1995 J. F. Lingevitch and A. J. Bernoff 1023 

V. DlSCUSSlON 

In this section, we attempt to elucidate the relationship 
between the asymptotic results of this paper and previous 
work in the field. Ting et al. 1gY20 and Gunzburger”’ have con- 
sidered essentially the same problem as is discussed herein. 
They described the viscous decay of a monopole in terms of 
a multiple time scale asymptotic solution where the relevant 
time scales were the monopole turnover time and the Rey- 
nolds number time scale (i.e., an inviscid time scale and a 
viscous time scale). In our work, we include the shear- 
diffusion time scale which is intermediate between the invis- 
cid and viscous time scales. An additional difference be- 
tween our work and theirs is the choice of coordinate system. 
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Radial Position of Maximum Amplitude Response vs Frequency 
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FIG. 5. Radial position of the maximum amplitude response versus forcing 
frequency for: (1) a time-periodic, n=2 source of passive scalar mixed in 
the flow field of a Lamb monopole and (2) the vorticity perturbation of a 
Lamb monopole in a time-periodic straining flow. At resonance, the maxi- 
mum amplitude response occurs at the streamline for which 0,,=2J?,(l). 

We choose the vorticity centroid of the monopole as the ori- 
gin of our coordinate system. They choose the center of the 
leading-order axisymmetric solution as their origin, which 
can differ from the centroid by a distance of order RemIt due 
to their first-order correction. This difference manifests itself 
in two ways in their expansion; the appearance of the trans- 
lational mode at first order and the rotation of the origin 
about the centroid. 

To see this difference explicitly we examine the first- 
order distortion of the monopole vorticity, i(l), from Gunz- 
burger (setting his vortex strength I’ and initial time To to 
unity to agree with our nondimensionalization and using our 
nomenclature), 

2fio 
i(l)= - F [ 77 exp(- v2)]sin 

i 
8-po- g In(T) , 

i 
(50) 

where fro is the speed of the monopole relative to the back- 
ground flow, T is the viscous time, and 11 = r/m. Equa- 
tion (50) is precisely a multiple of the translational mode for 
the Lamb vortex,13 

p =xo.vw=- r trans iii-zPe 
-r”l(4T)Xo.f* (51) 

Ting et al. and Gunzburger allow the initial velocity of the 
vortex to be specified at order Re-‘“; this can be accommo- 
dated by choosing the origin slightly shifted from the cen- 
troid. The amplitude of the translational mode in (501 is pro- 
portional to the relative speed of the monopole, lJo, and 
follows from a small r Taylor expansion of the velocity field 
due to a Lamb monopole. Using Eq. (3), an expression relat- 
ing the displacement of the origin, 1x01, to the relative speed 
of the monopole is obtained, 

fj h!+... . 
O  8rr 62) 

Note that if the relative speed fro vanishes, the origin coin- 
cides with the vorticity centroid; this is the coordinate system 
we have chosen. The angular velocity of a point shifted off 
the vortex centroid also follows from the first term in the 
Taylor expansion for the angular velocity, 

d9 Re -=-- 
dT 8,X-T’ 

C)(T)= Bo- g In(T). (53) 

This shows that the time-dependent phase in Eq. (50) is due 
to the rotation of the displaced center about the centroid. 
Note that the angular velocity decreases on the viscous time 
scale as the Lamb monopole decays. In summary, this oscil- 
lation can be removed by choosing a coordinate system 
whose origin coincides with the centroid. 

By including the shear-diffusion mechanism into the 
analysis of a decaying vortex, we have described how an 
initially perturbed vortex equilibrates in an external flow. 
Ting et al. and Gunzburger average over non-null perturba- 
tions of the monopole to yield a time-averaged description of 
a distorted monopole. Although the Lamb monopole is a 
stable solution of the Euler equations,‘l they do not address 
the large Reynolds number stability of the monopole. Previ- 
ously we have shownI that the Lamb monopole is stable and 
nonaxisymmetric disturbances decay due to the shear- 
diffusion mechanism on the Re’” time scale. 

Finally, we have examined the distortion and evolution 
of the monopole due to an external straining flow. The qua- 
sisteady quadrupolar distortion of the Lamb monopole de- 
rived here is in agreement with the previous work of Ting 
et al. 19*2o We extend this analysis to consider time-dependent 
straining flows which vary on the monopole turnover time. 

A qualitative comparison of these results with elliptical 
inviscid models can be made. We first note that for weak 
straining flows circular patches become elliptical,14*‘5 which 
is effectively a quadrupolar distortion. This elliptical distor- 
tion is also observed by Dritschel and Legras17.18 for mono- 
tonic vorticity distributions in sufficiently weak straining 
flows. The stripping of vorticity for stronger straining flows 
is a fully nonlinear effect and is beyond the asymptotic meth- 
ods presented here. Dritschel16 identified a resonant mecha- 
nism of instability whereby oscillations of a patch in phase 
with the rotational frequency of the patch relative to the 
straining field are amplified; this mechanism is similar to the 
resonant amplification mechanism described herein. 

VI. CONCLUSIONS 

In this paper we have studied the interaction of a local- 
ized vortex monopole with an external irrotational flow at 
large Reynolds number. This work builds upon the previous 
research of Ting and his collaborators, and Gunzburger who 
studied the viscous regularization of a point vortex in an 
external flow.19-21 

The monopole is advected at a velocity which is deter- 
mined from the conservation of the first moment of vorticity, 
a quantity analogous to momentum. To leading order this 
yields that the monopole propagates at the velocity of the 
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Vorticity vs. Radius. R, = .02125 

(a) 
1 .o 2.0 3.0 4.0 5.0 

r 

W 1.0 2.0 3.0 4.0 
r 

FIC$ 6. The real and imaginary parts of the vorticity versus radius for a Lamb monopole in a time-periodic straining flow (the oscillatory time-dependent 
factor has been factored out). The forcing frequency is C&=0.021 25 and the maximum in the vorticity occurs at r-3.8. Note as the Reynolds number is 
in&eased the amplitude of the maximum response scales like ReV3 and the width of the peak like Re-‘“. 

irrotational flow evaluated at the vorticity centroid in agree- 
ment with the previous work of Ting and Tung. 

Nonuniformities in the external flow act to distort the 
vorticity distribution of the monopole. A new facet of this 
research is that we have included the effects of the shear- 
diffusion mechanism into a large Reynolds number asymp- 
totic theory for the evolution of the monopole. Through this 
mechanism, nonaxisymmetric distortions of the monopole 
are equilibrated on an C9[Ren3) shear-diffusion time scale 
which is much faster than the viscous decay time, @(Re), of 
the monopole. 

We have verified the asymptotic results through a nu- 
merical solution of the linearized equations for the canonical 
example of a Lamb monopole in a time-periodic straining 

flow. The numerical results support the rapid relaxation of 
the monopole to a quasisteady state for slowly varying ex- 
ternal flows and periodic oscillations for time harmonic ex- 
ternal flows. We have also computed the frequency response 
of the monopole, showing that a resonant forcing of the 
monopole leads to a large response near the streamline that is 
in resonance with the external forcing. The amplitude of the 
vorticity perturbation maximum scales as Ren3 in agreement 
with a local asymptotic analysis which treats the vorticity 
perturbation as a passive scalar. The analogy between a pas- 
sive scalar and vorticity is limited, however, because the 
streamfunction-vorticity coupling shifts the maximum of the 
frequency response. 

A large amplitude resonant response limits the validity 
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Comparison of Maximum Response for Passive Scalar and Vorticity 
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FIG. 7. Comparison of the frequency response of a time-periodic source of 
passive scalar mixed in the flow field of a Lamb monopole and a vorticity 
perturbation to a Lamb monopole in a time-periodic straining flow. The 
shape of the passive scalar response curve is in excellent agreement with 
that predicted by asymptotic theory. The difference of the vorticity response 
curve is due to the streamfunction-vorticity coupling. 

of our small amplitude theory and requires further study. 
Currently, we are collaborating with Dr. Louis Rossi on fully 
nonlinear numerical simulations of a monopole in a resonant 
straining flow. One of the problems suggested by this re- 
search will be to determine the fate of the monopole as the 
external flow amplitude is increased beyond the linear re- 
gime. 
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