
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

KGI Theses and Dissertations KGI Student Scholarship 

Spring 5-15-2021 

POINT OF CARE INFECTIOUS DISEASE DIAGNOSIS VIA POINT OF CARE INFECTIOUS DISEASE DIAGNOSIS VIA 

ISOTHERMAL NUCLEIC ACID AMPLIFICATION INTEGRATED INTO ISOTHERMAL NUCLEIC ACID AMPLIFICATION INTEGRATED INTO 

A SAMPLE TO ANSWER DEVICE A SAMPLE TO ANSWER DEVICE 

Abrar Al Maghribi 
Keck Graduate Institute 

Follow this and additional works at: https://scholarship.claremont.edu/kgi__theses 

 Part of the Life Sciences Commons 

Recommended Citation Recommended Citation 
Al Maghribi, Abrar. (2021). POINT OF CARE INFECTIOUS DISEASE DIAGNOSIS VIA ISOTHERMAL NUCLEIC 
ACID AMPLIFICATION INTEGRATED INTO A SAMPLE TO ANSWER DEVICE. KGI Theses and Dissertations, 
17. https://scholarship.claremont.edu/kgi__theses/17. 

This Open Access Dissertation is brought to you for free and open access by the KGI Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in KGI Theses and Dissertations by an authorized 
administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/kgi__theses
https://scholarship.claremont.edu/kgi_student
https://scholarship.claremont.edu/kgi__theses?utm_source=scholarship.claremont.edu%2Fkgi__theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=scholarship.claremont.edu%2Fkgi__theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu


1 

POINT OF CARE INFECTIOUS DISEASE DIAGNOSIS VIA 

ISOTHERMAL NUCLEIC ACID AMPLIFICATION 

INTEGRATED INTO A SAMPLE TO ANSWER DEVICE 

BY 

Abrar Al Maghribi 

A Dissertation submitted to the Faculty of Keck Graduate Institute of 

Applied Life Sciences in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy in Applied Life Sciences. 

Keck Graduate Institute, Claremont 2021 

Approved by: 

  ____________________________ 
03/26/2021



OFFICE OF THE REGISTRAR

PhD Dissertation 
Completion Form
We, the undersigned, certify that we have read this dissertation of  

Name and ID# 
and approve it as adequate in scope and quality for the degree of Doctor of Philosophy.

Dissertation Committee:

(Typed name of Chair), Chair

(Typed name), Member

(Typed name), Member

(Typed name), Visiting Examiner

(Typed name), PhD Program Director

Updated September 2018

Signature

Signature

Signature

Signature

Signature



3 

 

ABSTRACT OF THE DISSERTATION 

Point of Care Infectious Disease Diagnosis via Isothermal Nucleic Acid 

Amplification Integrated Into a Sample to Answer Device 

By 

 Abrar Al Maghribi  

Keck Graduate Institute of Applied Life Sciences: 2021 

 

 

Sexually transmitted infections caused by Chlamydia trachomatous (CT) and Neisseria 

gonorrhea (NG) are often under-diagnosed, miss-diagnosed, and not properly treated, 

leading to long term complications such as ectopic pregnancy and infertility, and to 

emergence of drug resistance. Dengue virus (DENV) infections can cause dengue fever 

(DF), which if not properly managed can lead to Dengue hemorrhagic fever (DHF) and 

dengue shock syndrome (DSS), causing significant morbidity and mortality. In both cases, 

early and accurate detection at the point of care is critical to facilitate proper patient care 

and disease management. Nucleic acid amplification tests (NAATs) provide suitable 

sensitivity and specificity, but are often complex, expensive, and difficult to implement at 

the point of care, especially in low resource settings. We have developed a prototype 

system consisting of a cartridge and compact instrument that can execute sample 

preparation, isothermal Loop Mediated amplification (LAMP) and lateral flow detection 

of these pathogens. For CT and NG, we have established singleplex and duplex LAMP 

assays, in liquid and paper form, with lateral flow detection. We have performed inhibition 

testing, demonstrated full process execution outside the cartridge, then implemented the 
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process in the cartridge and device, demonstrating detection down to 100 Elementary 

Bodies (EB)/mL for CT and 100 colony forming unit (CFU)/mL NG in urine. For DENV, 

we established a pan-serotype singleplex RT-LAMP assay and a duplex assay with MS2 

as an internal amplification control, in liquid and paper form. We demonstrated that the 

master-mix in paper form is stable upon storage at RT and 40oC over 8 weeks. For sample 

preparation starting from whole blood, we performed plasma separation coupled to 

amplification, with inhibitor testing. The next step is a front to back experiment and 

implementation in a modified cartridge for the detection of all DENV serotypes. The herein 

described assay processes and prototype systems can be further developed to enable point 

of care diagnosis for these and other pathogens in low resource settings. 
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INTRODUCTION 

Chlamydia trachomatis and Neisseria Gonorrhea Infections 

Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are the two most common 

genital infections worldwide and the most common reported sexually transmitted diseases (STIs) 

in the United States.1 In 2012, the World Health Organization (WHO) projected 130.9 million 

cases of chlamydia and 78.3 million cases of gonorrhea. However, the number of cases continues 

to increase. In the US, between 2013 and 2017, there was a 22% increase in cases of chlamydia 

and 67% increase in cases of gonorrhea.2,3,4 Both infections are mostly asymptomatic and can lead 

to long term complications if left untreated, such as pelvic inflammatory disease, infertility, 

chronic pelvic pain and tubal pregnancy.5,2 Therefore, timely treatment is crucial to prevent further 

transmission and complications to the individuals and their partners. The Centers for Disease 

Control and Prevention (CDC) recommends azithromycin or doxycycline as a first-line treatment 

for chlamydia. A dual treatment of ceftriaxone and azithromycin should be taken together as a first 

line treatment for NG.6-7 However, there is an alarming increase in antimicrobial resistance, 

especially in NG and CT.  There is an urgent need for rapid and accurate detection of these 

infections to ensure effective and timely treatment with the correct antibiotic, in order to prevent 

health complications and stop the spread.  

Both infections are not fatal and can be cured with early detection and treatment. However, 

there is lack of resources available for early detection, namely diagnostics. The diagnostics 

currently available are cell culture and nucleic acid amplification testing (NAAT), which both 

require a central lab setting. Cell culture has a high specificity (~99%) but is limited by low 
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sensitivity (60-80%), extended turn-around time and high labor intensity. NAAT methods became 

the diagnostic gold standard with both high sensitivity (~98%) and specificity (~99.5%), however, 

the involved instruments are expensive and for central lab use only. In contrast, CT/NG can be 

detected at the point of care via direct microscopy or antigen detection lateral flow assays.8 The 

direct microscopic exam has low sensitivity (17-74%) and high specificity (~99%). Lateral flow 

antigen detection has low sensitivity ranging from 53.1- 62.5% and a specificity of 98.0%.8-9  

Rapid NAATs, such as the Cepheid CT/Neisseria gonorrhoeae (NG) GeneXpert assay, have 

equivalent performance characteristics to traditional lab-based NAATs (Gaydos et al., 2013), but 

was originally categorized as moderate complexity, requires a central lab setting, and has a 90 min 

test-run time which is too long for integration into the standard workflow of many healthcare 

settings. A more recent molecular point-of-care platform is the Binx Health io system. The device 

provides results in 30 minutes combining testing and treatment in a single patient visit. However, 

the Binx io requires a bulky benchtop instrument.  

There is an unmet need with the current diagnostics. Therefore, we are working on a rapid, 

accurate, and affordable molecular diagnostic device to detect CT and NG from urine and swab 

samples at the point of care. 

Dengue Virus 

Epidemic Dengue is a mosquito-borne disease transmitted by the Aedes aegypti mosquito. 

Dengue virus (DENV) is an enveloped single positive-strand RNA virus of the Flaviviridae family. 

DENV has five different serotypes: DENV1, DENV2, DENV3, DENV4, and DENV 5. DENV5 

was recently discovered.10 The serotypes are antigenically distinct and share approximately 65% 

of their genomes.10-11 
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Approximately 390 million dengue infections occur annually, of which 96 million clinically 

manifest as Dengue fever (DF) or severe Dengue, which includes Dengue hemorrhagic fever 

(DHF) and Dengue shock syndrome (DSS).12 The virus is mostly spread in tropical urban 

countries. Mosquito vectors spread even more in areas where there is free standing water and a 

lack of sanitation. 13 

The virus hijacks the endosome cell forming process to enter the body and tricks the cells into 

allowing the virus to penetrate into the cell. There are two ways the virus can exit the endosome, 

when the cell environment is acidified, and the endosomal membrane will gain a negative charge. 

Once the virus exits the endosome, it is released into the cytoplasm and replicates itself. This viral 

complex makes more copies of the viral RNA that translate into more viral proteins that can infect 

other cells. 

One in four people infected with DENV will experience illness. The most common type of 

DENV infection in adults is DF, which causes mild symptoms that can be misdiagnosed for other 

diseases. Symptoms can start as fever, eye pain, joint pain, muscle pain, bone pain, headache, rash 

and vomiting.11 Warning signs for severe dengue include bleeding from the nose or gums, 

hematemesis, hematochezia and/or restlessness and irritability. There are 0.5 million individuals 

who are hospitalized for DHF, of which mostly are children under the age of five.11, 14 

A dengue patient who is infected with one serotype will develop a lifelong immunity to the 

infecting serotype, although there is no cross protective immunity to the other serotypes. However, 

if the patient gets infected with a different serotype there is an increased risk of developing severe 

dengue illness due to antibody mediated enhancement, meaning these antibodies can act as Trojan 

horse and can enable the virus to be more infectious.10,15  
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Clinical symptoms for Dengue fever resemble general febrile illness, but differential diagnosis 

is important due to the risk of complications. If a patient is discharged prematurely, they may 

develop severe dengue, which has a mortality rate as high as 20% if left untreated, compared to 2-

5% mortality with proper treatment.11 Treatment involves oral or intravenous hydration therapy, 

bed rest, paracetamol for fever reduction, and avoidance of blood thinners such as aspirin.16-17 

Current diagnostic methods for Dengue virus include molecular tests, antigen tests, serological 

tests and viral cell culture. The acute phase of the disease is the first 1-7 days after symptom onset, 

with the virus located in blood or blood-derived fluids (serum or plasma). During this phase, the 

dengue virus RNA can be detected with molecular tests (NAAT) and NS1, the non-structural 

protein, can be detected with NS1 antigen tests. The virus secrets this protein during the acute 

phase of the infection. During the acute phase NS1 tests are as sensitive as molecular tests, but 

after the first week the CDC does not recommend NS1 tests. 14, 18 NS1 tests do not provide serotype 

information, while molecular testing does (Figure 1). The second phase, the convalescent phase, 

is more than seven days post symptom onset. During the convalescent phase, patients develop a 

primary antibody response that includes an increase in IgM antibodies. The IgM antibodies are 

detectable in 50% of patients by day 3-5 and 99% of patients by day 10.19,20 However IgM 

antibodies reach peak levels at two weeks, then decline two weeks after symptom onset. IgM 

antibodies remain detectable for up to three months.20 The fourth biomarker is the anti-dengue 

serum IgG. The IgG is detectable at low titers starting at day 7 of the illness, then its concentration 

increases slowly and can be detected months or years after illness.  During a secondary dengue  

infection (when a patient get infected with dengue virus for the second time), the IgG titer is at a 

high level and can be detected even during the acute phase and may last in the host body for months 

and sometimes for life. Furthermore, the IgM levels are lower during the acute phase of the 
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secondary dengue infection compared to the primary infection, allowing for tests to use the ratio 

of IgM/IgG antibodies to distinguish if the patient has a primary or secondary infection.  

 

 

Figure 1. Dengue Virus Biomarkers. Viral markers IgG, IgM, and NS1.21 

 

 Nucleic acid amplification tests (NAATs) became the main tool for the detection of the virus. 

Reverse transcription polymerase chain reaction (RT-PCR) provides high sensitivity and 

specificity, featuring RNA extraction, reverse transcription, purification, amplification and 

detection of the target RNA. This method is best used for early detection of the virus. 22,23,24 

However, most available NAATs tests are expensive and require an expert to use laboratory 

equipment.  

 

TECHNICAL BACKGROUND  
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Polymerase Chain Reaction   

The Polymerase Chain Reaction (PCR) makes million to billions of copies of specific DNA 

regions from different sources. The main steps in PCR are shown in (Figure 2). This technique is 

used in a variety of applications including gene cloning, infectious diseases diagnosis, and genetic 

screening .25 Initially, researchers used agarose gel electrophoresis and image analysis to visualize 

the bands of DNA when ethidium bromide fluoresces. 19, 20 However, PCR with endpoint detection 

gives qualitative and/or semi-quantitative analysis only. Often times the qualitative analysis was 

not sensitive enough to verify if the target amplified. Real-time quantitative PCR (qPCR) is a more 

advanced version of PCR that can measure the product in every cycle. Reverse transcription 

polymerase chain reaction (RT‐PCR) is used to detect viral RNA by reverse transcribing the RNA 

to DNA prior to amplification. qPCR measures fluorescence after every cycle, bypassing the need 

for gel electrophoresis to review the results. Optionally, melting curve analysis is available to 

verify the presence of the correct amplicon. qPCR can use intercalating DNA binding dyes (e.g., 

SYBR green or EvaGreen) or probes for the detection of the target. This method is easy to use, 

simple and quick.  

 



28 

 

 

Figure 2. Illustration showing the main steps in the polymerase chain reaction (PCR). PCR technique that 

uses DNA polymerase to synthesize millions of new DNA copies via a template DNA strand. Step one: 

Denaturation: As in DNA replication, the two strands in the DNA double helix need to be separated. The 

separation happens by raising the temperature of the mixture, causing the hydrogen bonds between 

the complementary DNA strands to break. This process is called denaturation. Step two: Annealing: 
Primers bind to the target DNA sequences and initiate polymerization. This can only occur once the 

temperature of the solution has been lowered. One primer binds to each strand. Step three: Extension, in 

which DNA polymerase extends the 3′ end of each primer along the template strands.27 

 

Isothermal Nucleic Acid Amplification  

Isothermal nucleic acid amplification provides a rapid, sensitive, specific, and simple means 

for the detection of nucleic acids from samples that require less expensive instrumentation. It does 

not require any thermal cycling and therefore is easier to operate with less energy required 

compared to PCR. Furthermore, isothermal amplification techniques are used in infectious 

diseases diagnosis and are suitable for point of care settings.  

There are many types of isothermal nucleic acid amplification methods which are categorized 

by the principle of the reaction. Some technologies are based on RNA transcription such as nucleic 

acid sequence-based amplification (NASBA) and Transcription-mediated amplification (TMA). 
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28,29 Another reaction principle method is based on DNA replication with enzymatic duplex 

melting/primer annealing such as recombinase polymerase amplification (RPA) and Helicase 

Dependent Isothermal Amplification (HDA).28 Other methods are based on polymerase 

extension/strand displacement, such as loop-mediated amplification (LAMP), one of the most 

commonly used isothermal amplification methods. In some cases amplification includes a single 

strand cutting event such as in strand displacement amplification (SDA).   

LAMP has been widely used in both laboratory and point of care diagnostic applications. LAMP 

is more resilient to inhibitors than PCR, thus simplifying the DNA purification step. LAMP 

requires a set of four to six primers that bind to six or eight different regions on the target gene 

making LAMP highly specific.30 The LAMP primer set must include two outer primers (F3 and 

B3) and two inner primers (forward inner primer (FIP) and backward inner primer (BIP)) that can 

recognize six distinct regions within the target DNA. Optionally, loop primers (loop forward and 

loop backward) can be added to speed up the amplification and detection efficiency. In the first 

step of the amplification reaction (Figure 3), the FIP primer hybridizes to F2c in the target DNA 

and is extended using a polymerase with displacement activity such as Bst polymerase. The outer 

primer F3 hybridizes to F3c in the target DNA and is extended, which leads to displacement of the 

product obtained from FIP extension. The same set of reactions occurs using BIP and B3 on the 

product of FIP. These reactions then form a dumbbell-like structure essential for isothermal 

amplification. The single strand can be annealed by FIP or BIP leading to elongated products with 

various copies of the target sequence. 31-32 LAMP requires careful primer design and optimal 

reaction conditions to avoid false positives. 

LAMP product detection can be performed by adding dyes for fluorescence or colorimetric 

determination, based on turbidity changes from pyrophosphate precipitation. Other options include 
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agarose gel electrophoresis or lateral flow detection. However a more improved detection method 

is the use of fluorescent labeled probes and primers.  

 

 

Figure 3. Graphic illustration of LAMP reaction. The Forward Inner Primer (FIP) consists of a F2 region 

at the 3'‐end and an F1c region at the 5'‐end; Forward Outer Primer (F3 Primer) consists of a F3 region 

which is complementary to the F3c region of the template sequence; Backward Inner Primer (BIP) 

consists of a B2 region at the 3'‐end and a B1c region at the 5'‐end. Backward Outer Primer (B3 Primer) 

consists of a B3 region, which is complementary to the B3c region of the template sequence. The reaction 

starts with the F2 region of FIP hybridizing to the F2c region of the target DNA and initiates 

complementary strand synthesis. Next the F3 primer hybridizes to the F3c region of the target DNA and 

extends, displacing the FIP linked complementary strand. This displaced strand forms a loop at the 5'‐end, 

which serves as a template for BIP. B2 hybridizes to the B2c region of the template DNA. Then, B3 

hybridizes to B3c region of the target DNA and extends, displacing the BIP linked complementary strand. 

Dumbbell‐shaped DNA is formed. 33 
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Infectious disease caused by RNA viruses can be detected via Reverse Transcription Loop-

mediated isothermal Amplification (RT-LAMP).  This technology combines LAMP with reverse 

transcription. RT-LAMP requires a reverse transcriptase, or a DNA polymerase with intrinsic 

reverse transcriptase activity. There are multiple enzymes that are used for RT-LAMP in order to 

convert RNA to cDNA prior to DNA amplification such as using a combination of GspM with 

Avian Myeloblastosis Virus (AMV RT) or Gsp SSD2 pol (OptiGene, UK) alone.  

 

Paper Based Devices  

Paper based devices for infectious disease diagnosis have potential for use in a point-of-care 

setting. Paper can be used for multiple purposes ranging from reagent storage to fully integrated 

paper based devices that control fluidics through printing wax on paper to create different reaction 

zones34,35, by folding the paper, 34,36 and through layered devices.37,38 We herein focus on the use 

of paper as a substrate for the master-mix component and reagent addition.  

Nucleic acid amplification tests (NAAT) have become widely implemented in paper-based 

device formats. Many groups were successful in using paper as a substrate for isothermal 

amplification methods such as RPA34,38,39, HDA40,41 LAMP35,37and iSDA.42 

A number of groups have demonstrated RPA by adding primers on paper, and using enzymes 

commercially purchased as freeze-dried pellets.38,43 The ultimate goal would be to store all 

reagents on paper and add a reconstitution buffer containing the target DNA or RNA.  

Cellulose chromatography paper is the most common used for separation and wicking34,38,40,42 

glass fiber for reagents release37,38, nitrocellulose, polyethersulfone (PES) for hybridization and 

protein binding. 38,40. Another key factor is paper pretreatment to avoid irreversible adsorption of 

reagents or the target. Some investigators chose not to pre-treat the papers prior to dispensing the 
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reaction mix34,41 although this resulted in a significantly higher LOD (10^7 copies/uL) or reduced 

stability, respectively. In some cases, initial attempts to complete the amplification reactions 

without pretreatment proved unsuccessful40. Common pre-treatment reagents include BSA40,42 and 

Tween 2042. Seok 2017 tested multiple pre-treatment reagents and found that PVA3% was most 

successful in maximizing fluorescent signal detection for LAMP. 37 

Although some paper based nucleic acid amplification methods have been developed, none of 

the studies have demonstrated the thermostability and sensitivity of the paper-based dry reagent 

master mixes. Shetty 2016 showed stable dried enzyme pads in ambient temperatures for 34 days. 

Magro 2017 stored for one month at room temperature with no light or humidity, showed 20% 

success of devices after 3 months. Tang 2017 showed greater stability with addition of BSA 

treatment for up to 30 days at 25ºC. 34,37 

 

Nucleic Acid Lateral Flow based Detection 

Lateral Flow Strips (LF) are assay materials used for the detection of designated antigens by 

capillary action; composed of porous nitrocellulose membrane, sample pad, conjugate pad, and 

absorbent pad; abbreviated to LF. The sample Pad component of LF Strip, contains pretreatment, 

method of application of sample to be tested and conjugate pad component of LF strip, contains 

colloid used as the method of detection. Lateral flow strips contain avidin functionalized gold 

nanoparticles on the conjugate pad, anti-FAM antibodies on the test line and anti-Dig antibodies 

on the control line purchased from USTAR (Hangzhou, China). To allow detection of the target, 

we utilized biotinylated primers labeled with digoxigenin (DIG) or FAM (Figure 4) depending on 

the assay target. 
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Figure 4.  Lateral Flow Assay is designed to detect amplified DNA/RNA sequence which is labeled with 

biotin and a small molecule hapten. The lateral flow strip consists of a sample pad with buffers, a 

conjugate pad containing gold nanoparticles conjugated to steptavidin (GNPs), a nitrocellulose membrane 

containing capture antibodies specific to the hapten, and an absorbent pad. Target RNA labeled with 

biotin is dispensed onto the sample pad, which flows to the conjugate pad and binds to the Streptavidin on 

the GNPs. The target RNA – GNP complex flows down the strip and binds to the target capture antibody, 

while unbound GNPs bind to the positive control. The signal of the conjugate bound to the capture 

antibodies is proportional to the number of copies captured. 

Herein we have characterized the limit of detection and thermostability of these dry reagent 

LAMP and RT-LAMP paper pads, as further described in the methods section. We tested the long-

term storage capability of the RT- LAMP assay reagents performing a thermostability study. The 

goal is for the assay to be stable at room temperature and at 40oC for eight weeks showing no false 

negative results. This result can affect the overall cost of the NAAT device that our lab is building 

to be able to serve low-resource settings.   

 

 

 

 

 

 

 

 

 



34 

 

 



35 

 

 

 

 

 

 

CHLAMYDIA AND GONORRHEA 

AMPLIFICATION AND DETECTION 

 

 

 

 

 



36 

 

MATERIALS AND METHODS 

Reagents 

We purchased Chlamydia trachomatis genomic DNA, and the plasmid pFEN207 that contains 

the kdo gene from ATCC (ATCC® VR-886D). Quantified genomic DNA of Neisseria 

gonorrhoeae was purchased from ATCC (ATCC® 700825DQ™, Manassas, VA, USA). All CT, 

NG, and Bsub primers were purchased from Integrated DNA Technologies (IDT). Tris and other 

general reagents were purchased from (Sigma Aldrich, St. Louis, MO, USA). For CT 

quantification: Calf DNA (Qiagen) and Quant-iT™ PicoGreen™ dsDNA Assay Kit was 

purchased from ThermoFisher (Waltham, MA, USA). 5M Betaine solution, bovine serum 

albumin, Deoxynucleotide Set 100 mM (DNTP100A-1KT), Magnesium sulfate solution (MgSo4) 

and trehalose are obtained from Sigma Aldrich (St. Louis, MO, USA). Bst 2.0 warmstart glycerol 

free polymerase was obtained from New England Biolabs (Ipswich, MA, USA). SYBR Green was 

purchased from Life technologies (Carlsbad, CA, USA). All the reagent solutions were prepared 

using nuclease free water prepared by Promega (Madison, WI, USA). CF1 100% cotton linter 

sample pads (176 µm thickness, 22 mm width, and 50 m length) were purchased from GE 

Lifesciences (Marlborough, MA, USA).  

 

Chlamydia plasmid standard quantification via Pico Green 

A standard curve was obtained using calf thymus DNA (Type I; Sigma, St. Louis, MO, USA), 

dissolved in Tris-EDTA buffer solution (Sigma Aldrich, St. Louis, MO, USA) and serially diluted 

to concentrations ranging from 5–40 ng/mL as shown in Table (1). We allowed PicoGreen to warm 

up to room temperature, then prepared a 200x dilution by adding 12.5µL of PicoGreen to 

2,487.5µL of TE buffer in a plastic 50mL tube wrapped in foil or placed in the dark. Triplicate 
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aliquots of 100µL DNA standard and unknown plasmid DNA, plus 100µL of 200x PicoGreen 

added to each replicate resulting in 200µL/well, were mixed by shaking for 5 seconds. Absorbance 

measurements were taken in a SPECTRAmax PLUS plate reader with excitation at 480 nm and 

emission at 520 nm. We subtracted the reagent blank fluorescent reading from each sample, plotted 

the standard curve of concentrations against fluorescence, and used the standard curve to determine 

the unknown concentration of the plasmid. 

Table 12. Protocol of preparing standard curve via PicoGreen Assay. 

Standard 

 

Volume 

(µL) of TE  

High Concentration  Sample Final Volume (µL)  Final DNA 

Concentration 

Stock     6630 ng/mL 

S1 795 µL 5µL Stock 800 µL 40 ng/mL 

S2 400 µL 400µL S1 800 µL 20 ng/mL 

S3 400 µL 400µL S2 800 µL 10 ng/mL 

S4 400 µL 400µL S3 800 µL 5 ng/mL 

S5 400 µL 400µL N/A 800 µL 0 ng/mL 

     6630 ng/mL 

 

CT Genomic DNA Quantification via quantitative polymerase chain reaction (qPCR)  

A standard curve was prepared by serial dilution of the quantified plasmid sample to four 

different concentrations ranging between 1e5-1e2copies/reaction diluted in Tris-EDTA buffer. A 

set of two primers was purchased from (Integrated DNA Technologies, Coralville, IA, USA). Each 

reaction contained a final concentration of 0.9 µM each of the forward primer 

(GAGCTTCTGTGGGGGAAGTC) and reverse primer (ATACAAACGACGAGCGGTGT). 

8.5µL of 2X PowerUp™ SYBR™ Green Master Mix (Thermo Fisher Scientific, Waltham, MA, 

USA). 0.2X of SYBR Green and 11.5µL of DNA sample. QPCR amplification curves were 

analyzed using the Roche LightCycler® 96 instrument with software version 3.5 (Roche 

Diagnostics). After ensuring there is good amplification for the standard and the unknown, we 
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made sure the efficiency of amplification of the control template is within 90–110% (meaning 

slope is within -3.58 to -3.10) and that the R2 >0.9. Then we calculated the initial concentration of 

CT unknown DNA based on the standard curve generated from the quantified control plasmid 

DNA.  

 

Loop Mediated Isothermal Amplification (LAMP) 

LAMP primers: 

We designed CT LAMP primers targeting the CT CDS2 gene and NG LAMP primers targeting 

the NG 16S rRNA gene via Primer Explorer software (Eiken Chemical Co., Tokyo, 

Japan).  BLAST analysis was used to check any cross reactivity of the primers. Final primer 

sequences are shown in Table 2, where FIP and BIP are the forward and backward inner primers, 

F3 and B3 are the forward and backward outer primers, and LF and BF are the forward and 

backward loop primers. 

 

 

 

 

 

 

 

 

 

 



39 

 

 

Table 13. Primers for Chlamydia trachomatis CDS2 gene, Neisseria gonorrhoeae 16S rRNA gene and 

Bacillus subtilis 

Primer Name  Sequence (5′–3′) 

CT1 F3 GAGCGAGTTACGAAGACAA 

CT1 B3 CAGACAATGCTCCAAGGA 

CT1 FIP 56-FAMN ACCGTCAGACAGAAAAGAGGATTATCCTCTTCGTTGACCGATG 

CT1 BIP GCTGGGAGAAAGAAATGGTAGCGTAAACGCTCCTCTGAAGT 

CT1 LF TCCTCAGAAGTTTATGCACT 

CT1 LB 5BiodT CAAATCTGACTAATCTCCAAGC 

NG1 F3 AGGGAAGAAAAGGCCGTTG 

NG1 B3 TTCAGAACGCAGTTCCCG 

NG1 FIP GCTGCTGGCACGTAGTTAGCCAATATCGGCGGCCGATGA 

NG1 BIP 5DiGN  CGTAGGGTGCGAGCGTTAATCGGGGGATTTCACATCCTGCTT 

NG1 LF 5BiodT GGTGCTTATTCTTCAGGTACCG 

NG1 LB AATTACTGGGCGTAAAGCGGGC 

Bsub F3 GAAGAGGATATGCCTTACCTTC 

Bsub B3 CGACAGATACACGGTTATCAA 

Bsub FIP GGTAACGAGCGGCCATACCTACCATCACGTATGAACATCG 

Bsub BIP TGGCATTCACATTGCATCTCCTCCGGCTTCTTCAAGTGTT 

Bsub LF CATGTGAAGTTCCAATACCTGC 

Bsub LB GCGAGAAGAGGATGTCTGG 

 

 

Reaction Mixture for Liquid LAMP Assay: 

The LAMP protocol was designed for a total of 25µL per reaction. The singleplex liquid assay 

for CT and NG LAMP reactions contained a final concentration of 0.8µM each of FIP and BIP, 

0.2µM each of F3 and B3 and 0.4µM each of LF and LB. However, the singleplex Bsub liquid 
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assay contained a final concentration of 1.6µM each of FIP and BIP, 0.2µM each of F3 and B3 

and 0.8µM each of LF and LB. CT, NG and Bsub liquid assay also contained 0.4mM dNTPs, 2mM 

MgSO4, 1M betaine, 0.20mg/mL BSA, 1x Isothermal amplification buffer (IAB) made as shown 

in Table 3, 0.1x of SYBR green and 8U Bst DNA polymerase large fragment (New England 

Biolabs). The LAMP master-mix liquid solution was prepared on ice without target DNA. After 

adding all reagents, we added 1µL of target DNA to make a total volume of 25µL per reaction for 

the positive control in a 1.5mL eppendorf tube. For the negative control, 1µL of nuclease free 

water was added to make a total volume of 25µL per reaction for the negative control in a 1.5mL 

eppendorf tube while on ice. The mixture was pipetted into LightCycler® 8-Tube strips (Bio-Rad, 

Hercules, CA) with 25µL in each well and amplified using the Roche LightCycler® 96 for 45–60 

min at 63 °C. 

Table 14. Composition of 10X Isothermal Amplification Buffer 

Chemical Stock conc (M) Target conc (M) Vol (mL) 

Tris 1 0.2 2 

pH 8.5     0.54 

pH 9     1.46 

(NH4)2SO4 3.2 0.1 0.3125 

KCl 2 0.5 2.5 

MgSO4 1 0.02 0.2 

Triton 10 1 1 

Water     4.00 

 

NG LAMP Liquid Taguchi 

We used the Taguchi method to test for the best combination of NG LAMP primer 

concentrations to improve NG DNA amplification. The NG primers were selected as the 

independent factors, with multiple concentrations for each primer (levels).  Each factor had five 
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levels of concentrations as shown in Table 4. All parameters were distributed in a balanced 

orthogonal array of 25 experimental combinations. To fit all replicates in one 96 well plates, we 

ran 24 out of these 25 combinations. It was important to run all combinations at the same time, in 

one plate, to avoid any outside variables.  For each combination we ran two positive replicates 

(772 copies/reaction NG DNA) and two negative replicates with nuclease free water. The mixture 

was pipetted into a LightCycler® 96 well plate (Bio-Rad, Hercules, CA) with 25µL in each well 

and amplified using the Roche LightCycler® 96 for 60 min at 63 °C. We analyzed the data using 

the Taguchi module in the software suite DesignExpert (Stat-Ease) to find the main effects of each 

primer and interaction effects between primers and how significant these effects are on the LAMP 

amplification and detection of NG DNA.  

To confirm the results of the Taguchi experiment, we ran the best four combinations of primer 

concentrations obtained from the Taguchi experiment (Table 5). We tested each combination with 

three replicates of positive NG DNA at 772 Copies/reaction and three replicates of negative control 

with nuclease free water. The mixture was pipetted into LightCycler® 96 well plates (Bio-Rad, 

Hercules, CA) with 25µL in each well and amplified using the Roche LightCycler® 96 for 60 min 

at 63 °C. 

Table 15. Factors and levels (concentrations) evaluated in the Taguchi experimental design for the NG 

LAMP assay. 

Primer Level 1 Level 2 Level 3 level 4 level 5 

B3 0.3uM 0.25uM 0.2uM 0.15uM 0.1uM 

FIP 1.2uM 1uM 0.8uM 0.6uM 0.4uM 

BIP 1.2uM 1uM 0.8uM 0.6uM 0.4uM 

FLP 0.6uM 0.5uM 0.4uM 0.3uM 0.2uM 

BLP 0.6uM 0.5uM 0.4uM 0.3uM 0.2uM 
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Table 16. Primer concentration combinations from the Taguchi design experiment. 

 
Original 

Concentration 

Combination 1 Combination 2 Combination 3 Combination 4 

NG1 FIP 0.8uM 0.8uM 0.8uM 1.0uM 0.6uM 

NG1 BIP 0.8uM 1.0uM 1.0uM 1.0uM 0.8uM 

NG1 F3 0.2uM 0.2uM 0.2uM 0.2uM 0.2uM 

NG1 B3 0.2uM 0.3uM 0.2uM 0.2uM 0.2uM 

NG1 LF 0.4uM 0.4uM 0.6uM 0.5uM 0.5uM 

NG LB 0.4uM 0.3uM 0.3uM 0.5uM 0.6uM 

 

 

Multi-parametric Optimization via Fractional Factorial Design Experiments 

Eight conditions were used to optimize the detection of CT and NG DNA. Factors and Levels: 

Temperature: low = 60, high = 63 degrees Celsius. Mg+: low = 2mM, high = 2.5 mM and DMSO: 

low = 0%, high = 5%, low = 0, high = 1. This 23 full factorial design resulted in 8 reaction 

conditions representing all possible combinations of these parameters. For each condition we ran 

LAMP reactions containing 3e3copies/reaction of Chlamydia DNA, 3e3copies/reaction of NG 

DNA, and the negative NTC control. Samples were prepared as described earlier. Samples were 

pipetted into Roche LAMP strips (Bio-Rad) with 25µL in each well and amplified using the Roche 

LightCycler® 96 for 45–60 minutes at 63 °C. Results were analyzed via the statistical tool design 

expert to understand the interactions between the different independent variables. 
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CT and NG Multi-parametric Optimization 

Two factors and two levels per factor were tested to optimize CT/NG amplification: 

polymerase: low = 0.2mM, high = 0.4mM. Mg+: low = 2mM, high = 3mM. Five LAMP mixtures 

were prepared as described above in a reaction mixture of LAMP session. The experimental design 

model showed statistical design and data analysis via Design Expert Software (version 7.0). Two 

independent effective variables, Polymerase concentration and Mg concentration were tested. 

Amplification curves were generated using the “Abs quant” analysis in the LightCycler 96 

software. Amplification curve colors distinguish each condition. 

 

Internal Control (Bsub) Liquid Assay LOD 

The liquid LAMP protocol was designed as described above for a total of 25µL per reaction. 

The Bsub LAMP reactions contained a final concentration of 0.8µM each of FIP and BIP, 0.2µM 

each of F3 and B3 and 0.4µM each of LF and LB of Bsub primers. In addition to 0.4mM dNTPs, 

1M betaine, 0.20mg/mL BSA, 1x Isothermal amplification buffer (IAB) made as shown in Table 

3, 0.1x of SYBR green and 8U Bst DNA polymerase large fragment (New England Biolabs). The 

LAMP master-mix liquid solution was prepared on ice without a target DNA. After adding all 

reagents, we added 1µL of Bsub DNA to make a total volume of 25µL per reaction, with target 

DNA present at 1e3copies/reaction, 5e2copies/reaction and 250copies/reaction. For the negative 

control, we added 1µL of nuclease free water to make a total volume of 25µL per reaction. The 

mixture was pipetted into LightCycler® 8-Tube strips (Bio-Rad, Hercules, CA) with 25µL in each 

well and amplified using the Roche LightCycler® 96 for 45–60 minutes at 63 °C. 
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Dry LAMP Assay Reagent Preparation 

Pre-Treatment Process 

 Cellulose fiber cotton pads are used to support the dry master-mix reagents and are purchased 

from GE Lifesciences (Marlborough, MA, USA). The pads were cut to a round shape (176 µm 

thickness, 22 mm width, 50 m length), then we placed individual pads into a 24-well plate. Pads 

were pre-treated with a solution consisting of 0.01M Tris pH 8, 0.50M Betaine, 0.40mg/mL BSA, 

and 3% Trehalose (all Sigma Aldrich). We vortexed, then spun-down the pre-treatment solution, 

and pipetted 9µL onto each pad. We slightly covered the 24-well plate and placed it into a 

desiccator for a minimum of four hours.  

Master-Mix Process 

The master-mix solution was prepared immediately after the pre-treatment process was over. 

We made two different solutions to generate enzyme and primer pads. The final concentration of 

Bst2.0 WS polymerase was 0.40U/µL for the enzyme pads. For the NG primer pads we added 1x 

IAB buffer, 0.80mM dNTP, 4mM MgSO4, 0.80µM FIP and BIP, 0.20µM F3 and B3, and 0.40µM 

LF and LB. For the CT primer pads as a final concentration upon reconstitution to a final volume 

of 100 µL. For the CT/NG duplex primer pads, we added 9.96µL. We pipetted 8.5µL of 

concentrated primers mix or enzyme mix onto the respective pads, covered the plate, and placed 

in a -80°C freezer for one hour minimum. An hour later we used the lyophilizer from Labconco (6 

Liter Console Freeze Dry System freeze dry) to dry the reagents for a minimum four hours.  

 

Dry Reagents Quality Control Check 

As standard quality control, we tested each batch of CT and NG master-mix papers for use in 

loop-mediated amplification (LAMP) after lyophilization. We reconstituted the dry reagents 
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present on a set of enzyme and primer papers by adding 100uL of 25mM Tris pH 9.2, 1mM of 

EDTA, 0.1x of SybrGreen with target DNA at a concentration as indicated in the results section. 

We combined one enzyme paper with one primers paper in an Eppendorf tube, and then placed 

the tubes on ice. We soaked the dry reagents paper in the solution and let them sit on ice for one 

minute. We vortexed the soaked dry reagents in a tube three times, one second each, which were 

discarded after. The liquid solution from the soaked papers were pipetted into PCR strips to test 

for amplification using the Roche LightCycler® 96 instrument. 

 

Lateral Flow Detection 

To enable the detection of LAMP amplicons via lateral flow, the forward loop primers (FLP) 

of the CT and NG LAMP assays were biotinylated at the 5’ end. The backward inner primer (BIP) 

of the NG LAMP assay was 5’-labeled with digoxigenin, while the BIP of the CT LAMP assay 

was labeled with FAM. During testing outside the cartridge, for lateral flow detection of LAMP 

amplicons from liquid master-mix, 10 L amplified master-mix was combined with 90 L LF 

running buffer (USTAR), and then applied to the sample pad of the LF strip. For lateral flow 

detection of LAMP amplicons from reconstituted dry reagent master-mix, 90 L amplified master-

mix was directly applied to the sample pad of the LF strip. In either case, the sample was allowed 

to migrate along the strip, and results were read after 10 minutes. Lateral flow strip results were 

considered positive if a visible line appeared at the appropriate location, depending on whether a 

DIG or FAM labeled primer was used. 
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Multiplex Liquid LAMP Assay Optimization  

To identify CT and NG in the same assay reaction, along with an appropriate internal control, we 

established multiplexed isothermal amplification coupled with lateral flow detection. The internal 

control is co-extracted and co-amplified to identify false negatives. We established a LAMP assay 

for the internal control, Bacillus subtilis (B.sub), and performed preliminary studies on a duplex 

assay to detect CT and NG in liquid master-mix and as dry reagent paper assay. 

 

CT/NG Duplex Labeled Liquid Assay  

The CT/NG liquid assay master-mix was prepared as described above. The primers were 

prepared to a final concentration of 0.80µM FIP and BIP, 0.20µM F3 and B3, and 0.40µM LF and 

LB. We tested four conditions, one condition containing NG at 5e3copies/reactions only, one 

condition containing CT 9e3copies/reaction only, one condition containing both NG DNA at 

5e3copies/reactions and CT DNA at 9e3copies/reaction, and one for the NTC. We amplified three 

replicates of 25L per condition, then analyzed the amplified master-mix via lateral flow as 

discussed previously.  

 

CT/NG Duplex Labeled Paper Assay  

The duplex dry reagents papers were prepared as described above. The primer pads were 

prepared to yield a final concentration of 0.80µM FIP and BIP, 0.20µM F3 and B3, and 0.40µM 

LF and LB, 0.80mM dNTPs, and 4mM MgSO4 upon reconstitution to a final volume of 100 µL, 

The 10x IAB buffer was split 75% and 25% between the enzyme and primer pads to yield a final 

1x concentration of 20mM Tris pH 9.2 10mM (NH4)2SO4, 2mM MgSO4, 50 mM KCl, and 0.1% 

Triton. NG primers were labeled with DIG and CT primers labeled with FAM as described above. 
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We tested three papers, each with two LAMP amplification replicates, of the dry reagent paper 

master-mix at 9e3copies/reaction of CT DNA only. A second set of three dry reagent papers were 

tested at 5e3copies/reactions of NG only, then a third set of three papers (six replicates) was tested 

at 5e3copies/reactions NG DNA and 9e3copies/reaction CT DNA. The fourth set of three papers 

was for the NTC, with no DNA added. The amplified master-mix was analyzed via lateral flow 

strips as previously discussed.  

 

Dry LAMP reagent optimization process: 

 

Pathogen Lysis 

We tested two different methods to lyse NG cells: mechanical versus heat lysis (Figure 5). 

Mechanical lysis was performed using the Claremont Bio OmniLyse bead blender (ClaremontBio, 

CA). Each condition was tested at two different concentrations (1e3CFU/mL and 1e4CFU/mL). 

We tested nine replicates for heat lysis at 1e4CFU/mL and nine replicates at 1e3CFU/mL. In 

addition, we tested nine replicates for the OmniLyse bead blender at 1e4CFU/mL and nine 

replicates at 1e3CFU/mL all in one experiment, along with an NTC for each condition. We 

prepared  master mix  contained a final concertation of 0.9uM each of NG primers F and B, 0.2uM 

of SybrGreen and 8.5uL of PowerUp™ SYBR™ Green Master Mix (ThermoFisher, MA) to make 

a total of 25uL per reaction. NG cells samples were diluted in 1X PBS to make the target 

concertation for each condition. For heat lysis, NG samples were placed into an incubator 

(Benchmark Scientific, NJ) at 95oC for five minutes. After that the samples were mixed with the 

master-mix. For mechanical lysis, the NG cells in 1XPBS were pumped through the OmniLyse 

bead blender at ~4 mL/min flow rate. The mixture was pipetted into LightCycler® 8-Tube strips 
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(Bio-Rad, Hercules, CA) with 25µL in each well and amplified using the Roche LightCycler® 96 

for 45–60 minutes at 95 °C. The data was analyzed by comparing the Cq values of samples 

processed via mechanical versus heat lysis. 

 

 

 

Figure 5. NG Lysis: Heat lysis verse Mechanical lysis.  

 

 

NG Automated Process Execution outside of the Cartridge 

We initially tested the process including mechanical lysis, isothermal LAMP, and lateral flow 

detection outside of the cartridge and instrument. As the sample matrix, we used the supernatant 

of 25mL human urine (Lampire Laboratory, Encinitas CA) that was spun at 800 rpm for 5 min. 

We used NG clean titer at the original stock concentration (4.8e8 CFU/mL) from Zeptomatrix 

(Buffalo, NY) to make a 1e6CFU/mL NG working solution in 1X sterile PBS. From that we 

performed a serial dilution in urine to obtain 3mL each of spiked urine samples with 1e4, 1e3, 1e2 

and 1e1CFU/mL. For the NTC, we used urine without NG. We performed the full process 

execution of three replicates of one mL each for the positive samples, and four replicates of 1 mL 

each for the negative control. These samples were pushed through a Claremont Bio OmniLyse 

bead blender operating at 6 V, at a flow rate of ~4 mL/min. Of the lysed samples, 100 L was 
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diluted in 300 L TE buffer pH 9.2. For each sample, a pair of NG LAMP dry reagent papers, 

prepared as previously described, were rehydrated with 99 µL of the diluted sample and 1uL of 

10X SybrGreen, then analyzed in duplicates of 45µL in each well on the Roche LightCycler® 96, 

with amplification for 60 min at 63 °C. Finally, we combined the two technical replicates of the 

amplified master-mix into a new microcentrifuge tube and used USTAR disposable nucleic acid 

detection strips (Hangzhou, China) to detect the target as previously discussed. 

Material compatibility: NG Inhibition Studies  

We tested LAMP assay inhibition potentially caused by the reaction insert, the inlet valves, the 

polypropylene film vs aluminum film, and by heat sealing the master-mix papers into the reaction 

insert. We used the NG liquid assay to test the inlet valves in our reaction inserts. We fabricated 3 

reaction inserts with and 3 without inlet valves. We filled each reaction insert with TE buffer pH9.2 

and incubated each insert in the oven at ~63C for 1 hour. Each inhibition test included three 

replicates of the positive at 3e3copies/reaction NG DNA and negative control nuclease free water. 

In another series of testing, the reaction inserts were incubated with TE buffer pH 9.2 for an hour 

minimum. The TE buffer that was flushed through the reaction insert was collected to reconstitute 

NG unlabeled papers at previously described at 5e4copies/reaction. To test any inhibition caused 

by either the polypropylene film or the Aluminum film used to heat seal the reaction insert in the 

cartridge, we flushed the heat sealed reaction inserts with TE buffer pH 9.2, and used that solution 

to reconstitute NG papers with unlabeled primers. We ran 3 paper replicates each for the aluminum 

and polypropylene films, with two positive and one negative replicate each.  The positive controls 

contained 5e3copies/reaction NG DNA. We also tested heat sealed NG papers. The papers were 

heat sealed into the reaction insert, then the reaction pouch was cut open to remove the papers 
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again. These papers and control papers that were not heat sealed were reconstituted at 

3e3copies/reaction NG DNA.  

 

NG Labeled Liquid Assay Inside the cartridge 

To demonstrate that amplification and detection works inside the cartridge, we used the NG 

liquid assay with labeled primers to test the cartridge designed by the engineering team. The 

engineering team made four cores cartridges. We prepared NG Liquid master-mix with labeled 

primers and divided it into three tubes. Two tubes contained 192L of the master-mix and 8L 

NG DNA at a concentration of 5e4copies/reactions. The third tube contained 192L of master-

mix and 8L of nuclease free water for the NTC. All three master-mix tubes were handed to the 

engineering team and pumped into the cartridge by manual pressing. The engineering team cut 

holes into the cartridge body and attached tubing to inject the master-mix samples. The samples 

ran through the OmniLyse® device into the reaction insert, then followed by amplification at 63C 

for 60 minutes, and pumped into the lateral flow strip chamber.  

 

Automated Process Execution inside of the Cartridge 

Our engineering team developed an integrated cartridge plus associated instruments to 

automate the process execution described above for detection of CT (singleplex), NG (singleplex) 

and CT/NG (duplex). We prepared CT, NG, and CT/NG LAMP dry reagents papers as previously 

described. The respective reagent pads were then integrated into the reaction insert of the cartridge. 

The cartridge further incorporated an OmniLyse blender motor, 300 L of 9.2pH elution buffer, 

and a LF strip.  
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We prepared human urine samples spiked with NG only, CT only, and CT plus NG at 

concentrations indicated in the results section. Of these samples, 80 L was introduced into the 

cartridge. The sample in the cartridge was diluted with 240 L TE buffer pH 9.0, lysed via the 

omniLyse blender motor, and amplified in the reaction insert in contact with a heater in the 

instrument. The amplified master-mix was then pumped into the lateral flow strip chamber in the 

cartridge for detection. Images of the developed lateral flow strip in the cartridge were taken using 

a Canon DC 8.1v camera under uniform lighting.  The signal intensity of the test line was then 

analyzed using image processing software suite imageJ 44.  Briefly, each image was cropped to 

obtain consistent registration features and sizes. Two regions of interest were defined: one region 

at the respective test line to signify presence or absence of either CT or NG in the sample, and a 

second separate region just upstream of that test line to obtain the background intensity. Presence 

of a red test line relative to background was determined based on a decrease in the imageJ green 

channel intensity, (i.e. less green light was reflected at the test line due to absorbance by the gold 

nanoparticles on the test strip, which makes the line appear red). A common cut-off value was used 

to differentiate positive from negative results. 

RESULTS AND DISCUSSION 

CT/NG Front to back process Overview 

 

Figure 6. CT and NG Full Process Overview, which starts with sample preparation in urine or swab 

samples followed by LAMP isothermal amplification and lateral flow detection.  

Sample 
Preparation

Isothermal 
Amplification

Lateral Flow 

Detection
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The full process execution of CT and NG requires three main steps starting with sample 

preparation, isothermal amplification and later flow detection. The work presented herein is part 

of a team effort (Figure 6). However, the sample preparation work presented in this thesis was 

performed by me with the guidance from the former lab postdoctoral Sakamuri Rama Murthy. The 

device and engineering side of the project was designed by Hsiang Wei Lu and other members of 

our engineering team. I am focusing on isothermal amplification and coupling thereof with 

upstream sample preparation and downstream lateral flow detection. The work described herein 

constitutes my contributions to this effort unless otherwise noted.  

CT DNA Quantification 

We purchased genomic DNA of Chlamydia trachomatis grown inside mammalian host cells, 

which means that the CT DNA is present in a background of host DNA and therefore needs to be 

quantified. To quantify the amount of CT genomic DNA in this sample, we used the plasmid 

pFEN207 that contains the kdo gene, a single copy CT gene, as reference standard. We used the 

PicoGreen assay to quantify the plasmid relative to a Calf thymus DNA standard curve. The 

PicoGreen assay was used to quantify the plasmid due to its high sensitivity, specificity, and linear 

range. We obtained a suitable trend line with an R 2 value of 0.999, from which we calculated the 

final concentration of the plasmid standard to be 1.69E+07 copies/µL (Figure 7 A). 

qPCR was used to quantify the CT DNA concentration in a background of host DNA relative 

to the plasmid standard (Figure 7 B). We calculated the DNA concentration via the standard curve 

by making a plot of Ct vs log concentration. The CT DNA is 1E+07 per µL (Figure 7 C). 
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Figure 7. Quantification of Chlamydia Genomic DNA via qPCR. (A) PicoGreen assay standard curve 

obtained with calf thymus DNA relative to plasmid DNA. (B) The amplification of standard CT plasmid 

dilutions made by serial dilution of CT Plasmid and one sample of genomic DNA and plasmid DNA. (C) 

Standard curve obtained with quantified plasmid DNA relative to genomic DNA. 

 

LAMP Process Optimization Goals 

Key components of the master-mix include dNTP, Mg2+, BSA, betaine, primers, and 

polymerase, and temperature (Figure 8). We did experiments to test the effect of each component 

on the assay. 

 

Figure 8. The Main Parameters for Assay Optimization. Parameters include: 1) deoxyribose nucleotide 

triphosphate (dNTPs). dNTPs comes with Extension (68c to 72c) of primers acting as building blocks to 
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the strand by DNA polymerase. 2) MgSo4: Mg2+ helps to coordinate interaction between the 3′-OH of a 

primer and the phosphate group of an incoming dNTP in DNA polymerization. 3) BSA increases PCR 

yields from low purity templates. 4) Betaine used to enhance amplification of GC rich sequences. 5) 

Primers are DNA strands designed to target conserved regions within the target DNA. 6) Polymerase 

enzyme makes a new strands of target DNA, using existing strands as templates. 7) Temperature at an 

isothermal condition (63 to 65°C) gives greater efficiency of DNA amplification.  

 

Our goal is to get consistent amplification of the positives with no amplification of the NTC (Figure 

9A). Sometimes we get late and inconsistent amplification (Figure 9B), or NTC amplification 

(Figure 9C), which is what we want to avoid via further optimizing.  

 

Figure 9. Examples of varying Amplification Time and Consistency of LAMP and RT-LAMP Assay. (A) 

Early and consistent amplification of CT DNA. (B) Late amplification of CT DNA. (C) Inconsistent and 

false positive amplification of DENV RNA. 

 

We ran the liquid assay for CT and NG at different DNA concentrations to establish the current 

detection limit. CT can be detected around 2.5e3copies/reaction with early and consistent 

amplification (Figure 10 A). However, when we tested CT DNA at lower DNA concentrations 

(600copies/reaction) we failed at detecting our target. Likewise, the liquid NG LAMP assay can 

detect NG DNA as low as 500copies/reaction with early and consistent amplification (Figure 10 

B). However, we are still working on optimizing the assay to lower the concentration of DNA. 

The goal is to be able to detect CT at 50 copies / reaction, and NG at 100 copies/reaction. 
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Figure 10. Amplification and Detection of Liquid LAMP Assay for CT and NG at Variant DNA 

Concentration. (A) Amplification of CT DNA at different DNA concentrations. (B) Amplification of NG 

DNA at different DNA concentrations. 

 

NG LAMP Liquid Taguchi 

The Genichi Taguchi method is a simple statistical method used in process optimization that 

uses an orthogonal array to test multiple variables and conditions for statistically significance to 

improving the process of interest.45 We used the Taguchi technique to optimize the NG LAMP 

assay using combinations of different NG primer concentrations as described in the methods 

session. The goal is to detect NG DNA as early as possible with consistent amplification at a low 

DNA concertation. Figure 11A shows the times to onset of amplification (amplification times) for 

all 24 conditions labeled with the amplification time. Figure 11B shows that there is no NTC 

amplification observed in the negative replicates for each condition. The amplification times for 

the positives allow us to see which primer combinations amplified earlier than the control 

combination1. The best combinations of primer concentrations are highlighted with orange boxes. 

The final concentrations of each primer at each of the four combinations is shown in Table 5 in 

the Method section. We then re-tested these combinations via liquid NG LAMP.  
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Figure 11. Taguchi NG LAMP Liquid Assay. A) The amplification times of the positive condition of NG 

LAMP Liquid Taguchi assay at 772Copies/reaction of NG DNA. B) Represent the negative control for 

each condition.   

 

Figure 12 shows that the earliest and most consistence amplification was observed for 

combination 1 at an amplification time value of 25.3. For this condition none of the negative 

controls amplified. However, the results don’t provide statistical significance compared to the 

original condition. We reran the Taguchi experiments multiple times and still showed no statistical 

significance and we ran the combinations multiple times and showed our original condition was 

the best combination.   
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Figure 12. NG Liquid Assay to Test the best combination of primers concentration. A) Real time 

amplification curves of each replicate at 500Copies/reaction and NTC curves. B) The amplification time 

of each condition labeled with the amplification time.  

 

Multi-parametric Optimization via Design of Experiments:  

CT/NG full 3x3 Fractional Factorial Design 

We ran multi-parametric optimization using an approach called design of experiments. In one 

experiment, we investigated the effect of three factors: amplification temperature, Mg2+ 

concentration, and DMSO as an additive. We ran a 23 full factorial experiments, with two levels 

for each factor, referred to as 0 for the low level and 1 for the high level, resulting in a total of 8 

conditions (Table 6). Condition 5 represents our current parameters. The best detection shown at 

the earliest and most consistent amplification with our standard combination of parameters (Figure 

13B and C). Which means there is no need to change the concentration of DMSO and Mg+ nor 

the temperature for future further optimization. However, we will be testing other parameters such 

as the type of polymerase to use and the primers sequences.  
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Table 17. The eight different conditions used for multi-parametric optimization. 

Conditions  Temp Mg2+ DMSO 

1 0 0 0 

2 0 0 1 

3 0 1 0 

4 0 1 1 

5 1 0 0 

6 1 0 1 

7 1 1 0 

8 1 1 1 

Levels: Temp 0=60C, 1=63C; Mg 0=2mM, 1=2.5mM; DMSO 0=0%, 1=5% 

 

 

Figure 13. Multi-parametric Optimization via 23 full Factorial Design of Experiments. Approach for: 

LAMP (A) CT at 60oC. (B) CT at 63oC and (C) NG at 60oC (D) NG at 63oC.  
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Figure 14. Onset time of amplification for multi-parametric optimization via Fractional Factorial Design 

of Experiments approach for (A) CT LAMP and (B) NG LAMP. Triplicate measurements for each 

condition. 

 

Multi-parametric Design of Experiments: 

 

Polymerase and Mg+ Concentration. CT 

We tested the Mg+ and the polymerase in liquid LAMP assay at different concentrations 

separately and together. We learned from this experiment that adding an extra 0.2mM on 

polymerase did improve the amplification of CT DNA at 5e3copies/reaction, as shown in (Figure 

15 A and B) below.  
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Figure 15. Multi-parametric Optimization of Chlamydia DNA via Isothermal Amplification Method. (A) 

CT DNA amplification at varying conditions. (B) Response surface graph of model with interaction via 

Design Expert graph. 

 

 

Liquid LAMP Assay vs Dry Reagents LAMP Assay 

We formulate our LAMP master-mix in dry reagent form to improve thermostability and to 

facilitate integration of the assay components into the cartridge. Dry reagents are obtained by 

lyophilizing the master-mix onto pre-treated cellulose paper pads. 

As shown in (Figure 16A) the amplification of CT liquid assay at 5e3copies/reaction is 

consistence and early. However, (Figure 16B) shows the dry reagents amplification assay is slower 

and inconsistent at a DNA concentration of 9e3copies/reaction.  
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Figure 16. The Amplification and Detection of CT Liquid Assay vs Dry Reagents Assay. (A) Consistent 

and early amplification of CT DNA via liquid LAMP assay at 5e3copies/reaction. (B) Inconsistent and 

delayed Amplification of CT DNA via dry reagent paper assay at 9e3copies/reaction.  

Likewise, as shown in (Figure 17A) the amplification of the NG liquid assay at 

3e3copies/reaction is consistent and early. However, Figure (Figure 17B) shows that the dry 

reagents amplification assay is slower and inconsistent. Further optimization of the dry reagent 

assay is in progress. 

 

(A) (B)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 6 11 16 21 26 31 36 41 46 51 56

CT5e3Copies/rxn

0 10 20 30 40 50 60

5e3CT

Amplification Time [Min]

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

1 6 11 16 21 26 31 36 41 46 51 56

CT9e3Copies/rxn NTC

0 10 20 30 40 50 60

CT9e3Copies/rxn

Amplification Time [min]



62 

 

 

Figure 17. The Amplification and Detection of NG Liquid Assay vs Dry Reagents Assay. (A) Consistent 

and early amplification of NG DNA via liquid LAMP assay at 3e3copies/reaction (B) Inconsistent and 

delayed Amplification of NG DNA via dry reagent paper assay at 9e3copies/reaction.  

 

Internal Amplification Control 

Bacillus subtilis (Bsub) has been used as an internal amplification control (IAC). The IAC 

DNA is co-extracted and co-amplified to identify false negatives. For our technology to be 

approved by the FDA, we are required to have an internal control. We chose Bsub as IAC because 

it is a bacterial organism that can be sporulated, thus is very stable and hard to lyse, which makes 

it a stringent control for the mechanical lysis part of the process execution. 

We tested the detection of our internal amplification control (IAC) Bsub using our liquid and 

dry reagent paper assay. As shown in (Figure 18A and B) below we successfully detected Bsub in 

the liquid assay format, and in the dry reagent paper format we had a few Bsub positive replicates 

that were negative (Figure 18B).  
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Figure 18. The Amplification and Detection of Bsub Liquid Assay and Dry Reagents Assay. (A) 

Consistent and early amplification of Bsub DNA via liquid LAMP assay at 1e3copies/reaction (B) 

Amplification of Bsub DNA via dry reagent paper assay. 

 

To use Bsub as an internal amplification control for CT and NG detection, we need to detect 

Bsub in a robust manner at a suitably low concentration via LAMP using liquid master-mix and 

dry reagent paper master-mix. We tested the limit of detection of Bsub DNA via liquid LAMP as 

shown in Figure 19 A and B, and successfully detected Bsub DNA at a concentration of 

1e3copies/reaction. The goal of adding Bsub to the assay is to identify any false negatives, meaning 

negative results even though NG and/or CT are present. Detecting Bsub at a low concentration is 

not as critical, since we can control how much to add to the sample. More important is designing 

the assay such that Bsub does not compete and suppress the amplification of CT and NG if they 

are present at low concentration.  
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Figure 19. Bsub Limit of Detection Liquid Assay. A) Real-time amplification curves of each Bsub 

concentration for each replicate. B) Cq values for each Bsub concentration at a real time amplification 

value.  

Lateral Flow Detection 

We have coupled our LAMP assays with lateral flow detection to facilitate a simple visual 

read-out compatible with integration into a compact point of care device. This process involves 

primers labeled with Biotin/FAM or DIG binds to the Neutravidin on the microsphere. For 

example, the dig labeled primers binds to the antibody on the line of the LF strip. If there is no 

target present, those primers are separate from each other and there will be no line detected. (Figure 

20A) However, if there is DNA present then an amplicon is created connecting Biotin and DIG or 

FAM and there will be a visible colored line on the LF strip (Figure 20B). 
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Figure 20. Lateral Flow Assay is designed to detect amplified DNA/RNA sequence which is labeled with 

biotin and a small molecule hapten. The lateral flow strip consists of a sample pad with buffers, a 

conjugate pad containing gold nanoparticles conjugated to steptavidin (GNPs), a nitrocellulose membrane 

containing capture antibodies specific to the hapten, and an absorbent pad. Target RNA labeled with 

biotin is dispensed onto the sample pad, which flows to the conjugate pad and binds to the Streptavidin on 

the GNPs. The target RNA – GNP complex flows down the strip and binds to the target capture antibody, 

while unbound GNPs bind to the positive control. The signal of the conjugate bound to the capture 

antibodies is proportional to the number of copies captured.  

 

Multiplexing Assay 

CT/NG Duplex Labeled Liquid and Paper Assay  

We used multiplexing to detect CT and NG at the same time in one reaction. For this, we 

used a LAMP assay that combines all 12 primers for CT and NG detection, wherein the BIP primer 

(A)

(B)
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of NG is 5’-DIG labeled, and the BIP primer of CT is 5’- FAM labeled, to enable differentiation 

on the two line lateral flow strip. The duplex liquid assay of CT and NG was amplified containing 

9e3copies/reaction for CT DNA and 5e3copies/reactions for NG DNA, separately and together. 

We collected the amplified product and introduced them into the lateral flow strips. Figure 21 

shows lateral flow strips with two lines representing NG on the top part of the strip and CT on the 

lower part of the strip, respectively, one line for NG DNA only and one line for CT DNA only.  

   

Figure 21. Duplex CT/NG Amplification and Detection via liquid LAMP combined with lateral flow 

detection, wherein the top line represents NG and the bottom line represents CT. 

We then implemented the CT and NG duplex assay in dry reagent paper form with all 12 

primers on a single paper. Figure 22 shows a duplex assay for CT at 9e3copies/reaction and NG at 

5e3copies/reaction, separately and together. In some similar experiments we preformed, one line 

was either faint or nonexistent, giving us a false negative. CT and NG target DNAs tend to compete 

with one another, so if CT was the first target to amplify it will use up most of the amplification 

reagents, leaves NG with little to none. This problem requires further optimization to be able to 

detect both targets robustly with a strong later flow readout signal.  

NG + + + + – –

CT + + – – + +
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Figure 22. Duplex CT/NG Amplification and Detection via Paper LAMP combined with lateral flow 

detection, wherein the top line represents NG and the bottom line represents CT. The FAM tag is specific 

to amplicon products that attach to the anti-FAM test line. 

 

CT/NG Full Process Execution 

Mechanical Lysis vs Heat Lysis 

We ran an experiment to compare mechanical lysis using the Claremont Bio OmniLyse bead 

blender versus heat lysis of CT and NG to liberate the DNA (Figure 23). The experiment was 

performed twice with two different concentrations and 30 replicates per concentration, and both 

times results were consistent. Mechanical lysis (blue curves) provided earlier amplification and 

thus superior performance compared to heat lysis (red curves). Furthermore, mechanical lysis can 

be readily implemented in a point of care device. Compared to heat lysis, mechanical lysis is faster. 

The device already contains one heater to amplify the reaction at 63C, so adding a second heater 

to the device to reach 95oC step would in principle be feasible but would complicate the cartridge 

design because proper insulation is required to separate the two temperature zones, since the high 
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temperature for lysis might interfere with master-mix stability and the amplification step. In 

addition, heating to 95oC requires more power than running the blender motor for mechanical lysis. 

 

Figure 23. Heat Lysis vs Mechanical Lysis. Amplification of three replicates of each condition of NG 

DNA at two different concentrations 1e3CFU/mL and 1e4CFU/mL.  

 

 

Front to back experiment for detecting NG in urine 

 

Figure 24. Full Process Execution of NG in Urine. Starts with sample preparation spiking NG in urine 

then mechanical lysis the sample followed by LAMP isothermal amplification and lateral flow detection. 

 

We initially established the full process execution to detect NG in urine samples outside of the 

cartridge (Figure 24). Urine was spiked with NG at various concentrations. The sample was then 

mechanically lysed as discussed above, followed by isothermal amplification with dry NG LAMP 

reagent papers, and finally lateral flow detection. As shown in (Figure 25) we were able to detect 

NG at concentrations as low as 10 CFU/mL in urine.  
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Figure 25. Full Process Execution of NG in Urine. Strong detection of NG in urine at different of 

concentrations.   

It is important to note that one CFU NG does not equal one genome equivalent of NG. At 

Zeptomatrix, NG quantification was performed through serial dilution plating of NG grown in 

culture on chocolate II agar plates. NG has a tendency to clump, so one CFU may correspond to 

more than one bacterium. Furthermore, NG has limited viability in culture, so it is likely that dead 

bacteria are present in solution. A precise conversion factor for NG CFU/mL to NG genome 

equivalents/mL could not be determined.  

Material compatibility: NG Inhibition Studies  

In developing the cartridge, we needed to make design choices for materials. One important 

requirement was ensuring that none of the components in contact with the reaction fluid would be 

inhibiting LAMP. In this experiment we tested if the type of film used to seal the reaction insert is 

inhibiting the assay by flushing buffer pH 9.2 though reaction inserts sealed with a Polypropylene 

(PP) film versus aluminum laminated polyethylene (AL) film. Figure 26A and B show the 

amplification curves of reaction inserts sealed with PP and AL film, respectively, versus the 

control condition of NG dry reagent assay paper QC, each at 5e3copies/reaction NG DNA. Figure 

26C shows the time to amplification for all conditions indicating no significant difference in 

amplification time for all three conditions. The results show that AL and PP films did not cause 

significant inhibition to the assay because the amplification time is around the amplification time 

of the positive NG control with no film introduced. The engineering team decided to use the PP 
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film when building the device because it is clear compared to aluminum that blocks what’s under 

with its silver color.  

 

 

Figure 26. NG Liquid LAMP Assay Inhibition Testing of PP Film vs AL Film. A) Real time 

amplification curves of NG LAMP liquid assay with Polypropylene film and negative control replicates 

compared to standard NG liquid LAMP. B) Real time amplification of NG LAMP liquid assay with 

Aluminum film compared to standard NG liquid assay. C) Amplification time of PP film condition, AL 

film, no device and control assay amplification.  

To determine if the inlet valve we use in the reaction insert is inhibiting LAMP, we ran NG 

liquid LAMP with buffer passed through six reaction inserts, three made with the inlet valve and 

three without. Figure 27A represents one sample amplification curves of Valve 3 compared to the 

control NG assay. Figure 27B shows the time to amplification for all conditions, with no significant 

difference observed between amplification times for buffer passed through reaction inserts made 

with and without valves, and the positive control.   
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Figure 27. NG Liquid LAMP Assay Inhibition Testing of Inlet valves. A) Real time amplification curves 

of NG LAMP liquid assay with Valve 3 at 3e3copies/reaction NG DNA and negative control replicates 

compared to standard NG liquid LAMP assay at the same DNA concentration. B) Amplification time of 

all 4 reaction inserts with valves that been tested, the two reaction inserts without valves and the positive 

control of NG assay. 

To test for inhibition caused by the reaction insert, we reconstituted NG dry reagent papers at 

5e3copies/reaction NG DNA using TE buffer pH 9.2 that was injected into the reaction chamber 

of the insert and incubated there for one hour minimum. Figure 28A shows no significant 

difference between this condition and the control.  

Also, we tested if heat sealing the master-mix papers in the reaction insert might be causing 

LAMP inhibition. We heat sealed NG dry reagents paper with unlabeled primers into the reaction 

insert, then removed the papers and reconstituted them with TE buffer containing 

5e3copies/reaction NG DNA or negative control. Figure 28B shows one out of the six papers that 

were heat sealed. All papers show similar results indicating insignificant difference in 

amplification time.  
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Figure 28. Reaction inserts inhibition tests. A) Real time amplification of NG LAMP dry reagents assay 

papers (Paper3:P3) heat sealed into the reaction insert compared to standard NG dry reagents assay with 

negative control. B) Real time amplification of NG LAMP dry reagents assay papers (Paper4:P4) heat 

sealed into the reaction insert compared to standard NG dry reagents assay with negative control. 

 

NG labeled liquid master-mix for inside the cartridge 

 Our big goal is to execute the assay process in the cartridge from sample into lateral flow 

detection. We started with performing the liquid assay inside the cartridge to demonstrate that 

amplification and detection works with liquid master-mix. Figure 29A shows real time 

amplification of NG DNA positive control run outside the cartridge, plus the lateral flow strip 

images of the control positive at 5e4copies/reaction. Figure 29B shows an actual image of the same 

master-mix amplified and detected in the cartridge. We successfully detected the NG DNA sample 

using the liquid assay method, the next step is to detect the NG spiked urine samples using the dry 

reagents paper assay.  
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Figure 29. Testing of NG LAMP inside the cartridge with labeled liquid master-mix. A) Real time 

amplification curves of NG LAMP liquid assay at 5e4copies/reaction and negative control replicates. B) 

A picture of the cartridge top with casing removed and without the sample chamber cover lid. The 

cartridge showing the positive NG sample at 5e4copies/reaction.  

 

Automated Process Execution inside of the Cartridge 

To be able to diagnose infectious diseases at the point of care and in low resource settings, our 

engineering team developed a prototype system that consists of an integrated cartridge, shown in 

Figure 30, approximately the size of a mobile phone, in conjunction with a compact instrument. 

This system can execute sample preparation, isothermal DNA amplification and lateral flow-based 

detection in a fully automated manner. 

 

Figure 30. A picture of our prototype device including the instrument and cartridge.  
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The engineering team fabricated eighteen identical cartridges to detect NG spiked into urine at 

various concentrations. Figure 31 shows example cartridges from this experiment with the top 

casing removed.  

 

Figure 31. Automated Process Execution inside the Cartridge of NG spiked urine samples at 1e4, 1e3, 

1e2 CFU/mL and negative eluates. Pictures of selected cartridges with the top casing removed, showing 

the LF strip signal line in positive samples and no line in the negative sample.  

Cropped images of the lateral flow strips inside each cartridge are shown in Figure 32. The 

figure confirms the detection of NG spiked into urine at different concentrations. However, some 

of the lateral flow strips show weaker signal compared to others in the same concentration. 

 

Figure 32. Cropped images of the lateral flow strips inside each of the cartridge used for automated 

detection of NG in urine at various concentrations. 

 

1e3CFU/mL 1e2CFU/mL 0 CFU/mL1e4CFU/mL
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Table 18. Detection of NG cells in urine at various concentrations plus negative sample, with number of 

positive results per total number of cartridges run at each concentration. 

NG  

CFU/mL urine 

Positive /  

Total 

10,000 3/4 

1,000 4/4 

100 2/5 

0 0/5 

 

We were able to detect 3 out of 4 samples at 1e4CFU/mL, 4 our 4 NG samples at 1e3CFU/mL, 

and 2 out 5 samples at 1e2CFU/mL as shown in table 7. The negative samples show no lateral 

flow signal meaning no detection. The cartridge was more successful at detecting NG samples at 

higher concentrations. We will need to optimize the assay or the cartridge to allow detection at 

lower concentrations. However, this was the first experiment of full process executed inside the 

cartridge. 

 

CT Automated Process Execution inside of the Cartridge 

A second set of experiment was performed to detect CT elementary bodies spiked in urine at 

various concentrations inside the cartridge and automatically performed by the instrument. Figure 

33 shows example cartridges from this experiment with the cartridge top casing removed. Cropped 

images of the lateral flow strips inside each of the cartridges run in this experiment are shown in 

Figure 34.  
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Figure 33. Automated Process Execution inside the Cartridge of CT spiked urine samples at 1e4, 1e3, 

1e2EB/mL and negative eluates. Pictures of the cartridge top with casing removed showing the LF strip 

signal line in positive samples and no line in the negative sample. 

 

 

Figure 34. Images of lateral flow strips in the cartridge of the NG automated process execution inside of 

the Cartridge at various concentrations. 

Table 19. The detection of CT elementary bodies in urine at various concentrations, with number of 

positive results per total number of cartridges run at each concentration. 

CT 

EB/mL urine 
Positive / 

Total 

10,000 6/8 

1,000 4/4 

100 2/4 

0 0/5 

 

 

1e3CFU/mL1e4CFU/mL 1e2CFU/mL 0 CFU/mL
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In Figure 35 it can be seen that the CT lateral flow strip line is obstructed by a white dot, a 

plastic protrusion caused by a design flaw of the lateral flow strip chamber injection molding. The 

sprue of the mold is where the liquid materials pass through to solidify to the form part. In this 

case the sprue of the lateral flow strip chamber mold was located exactly where the CT lateral flow 

strip line is located, which it is causing the white dot on top of the CT line lateral flow strip readout.  

Even at high CT EB concentrations, the lateral flow strips readout shows very weak to no lines. 

Whether a signal is considered positive is subject to interpretation. As shown in Table 8, if weak 

signals are considered positive, then we were able to detect 6 out 8 samples using our integrated 

cartridge and instrument system at 1e4EB/mL, 4 out of 4 samples at 1e3EB/mL, 2 out of 4 CT 

samples at 1e2EB/mL, and the negative controls showed no detection. Overall, the CT results are 

not as promising as the NG results. The next step is optimizing the cartridge by moving the sprue 

of the lateral flow strip chamber to a different location. Then we need to further optimize the assay 

outside the cartridge to be able to robustly detect CT EB using dry reagents papers at a lower 

concentration, by itself and as part of the front to back experiment. Then finally we can move to 

implementing an optimizing the process inside the cartridge. 

 

CT/NG Duplex Automated Process Execution inside of the Cartridge 

We ran a third set of experiment with fully automated process inside the cartridge using duplex 

dry reagent papers with all primers for detection of CT and NG. We tested urine spiked with just 

CT, just NG, and both CT and NG together. Table 8 shows the concentrations that were run for 

each target pathogen by itself and in combination, along with the results.  

Figure 35 shows images of some of the cartridges that were tested. The results show a clear 

readout lateral flow strips lines for the duplex and singleplex fully automated system. However, 

not all cartridges were successful at detecting the duplex assay.  
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Figure 35. Automated Process Execution inside the Cartridge for the duplex assay to detect CT and NG-

spiked urine samples at NG 1e4CFU/mL with CT 1e4EB/mL, NG 1e3CFU/mL with CT 1e3EB/mL, NG 

1e3CFU/mL with CT 1e4EB/mL, NG 2e3CFU/mL with CT 1e4EB/mL and negative eluates. Pictures of 

the cartridge top with casing removed showing the LF strip signal line in positive samples and no line in 

the negative sample. 

Table 20. CT/NG Duplex Automated Process Execution inside of the Cartridge at various concentrations. 

NG Concentration 

(CFU/mL) 

CT Concentration 

(EB/mL) 

NG 

Positive  

CT 

Positive  

1.00E+03 1.00E+03 3/3 0/3 

1.00E+04 1.00E+04 3/3 0/3 

1.00E+03 1.00E+04 2/2 2/2 

2.00E+03 1.00E+04 4/5 2/5 

NTC NTC 1/4 0/4 

 

We ran the duplex assay for CT and NG at varying concentrations. The NG assay performs 

more robustly and tends to out-compete the CT assay. Therefore, when both are present at the 

same concentration (e.g. both 1e4 and both 1e3), then only NG amplifies as seen in the data shown 

in (Figure 36). However, when CT is present at a higher concentration than NG (CT 1e4 and NG 

1e3) then both amplified (Figure 36). The NG control showed positive amplification on the NG 
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line in both replicates, while only one replicate of the CT produced a positive lateral flow strip 

readout. One of the negative controls showed amplification on the NG line. 

 

 

Figure 36. Images of lateral flow strips in the cartridge of the duplex NG and CT automated process 

execution inside the Cartridge at various concentrations.  

CONCLUSIONS: 

The goal of the project is to develop a rapid, accurate and affordable point of care diagnostic 

device for detecting CT and NG in urine and swab samples. For this, we need to develop a process 

on the bench consisting of sample preparation, amplification, and lateral flow (LF) detection that 

can be implemented and automated in a cartridge in conjunction with a robust and portable 

instrument.  

For CT/NG I worked on amplification and detection, and on full process execution. For 

amplification and detection, we established singleplex assays for CT, NG, Bsub using dry a reagent 

master-mix, coupled to LF detection. We demonstrated execution of CT/NG duplex and 

CT/NG/Bsub triplex assays using two-line LF strips. The next steps are executing the triplex assay 

with three-line lateral flow strip detection, as well as further optimization of the LOD attainable 

with the dry reagent master-mix, along with master-mix thermo-stability. We will further validate 

the assay’s inclusivity, i.e. ability to detect all relevant CT serovars and NG reference strains, and 

NG 1e3 CFU/mL 1e4 CFU/mL 0 CFU/mL 0 CFU/mL

CT 1e4 EB/mL 0 EB/mL 1e3 EB/mL 0 EB/mL

1e3 CFU/mL 1e4 CFU/mL

1e3 EB/mL 1e4 EB/mL
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exclusivity, i.e. lack of cross-reactivity with other pathogens. For full process execution, we 

accomplished the detection of NG in urine down to 10 CFU/mL through front to back process 

execution, as well as proof of principle for the front to back assay process using contrived swab 

samples. We have established amplification in the current prototype cartridge and instrument, then 

refined the prototype and demonstrate fully automated process execution in the cartridge 

controlled by the instrument. We were able to detect CT and NG via full process execution inside 

the cartridge, although the process for CT still requires further refinement as the detection signals 

were very weak. We will optimize the detection of CT via full process execution outside and inside 

the cartridge to detect CT EBs with more consistency. We also had some success in duplex 

detection of CT and NG in the same reaction, although one target often out-competes the other. 

We have worked towards a solution to this problem that involves geometric multiplexing, which 

entails locating the primers in different regions of the reaction chamber. Once we have suitably 

optimized the assay process inside the cartridge and instrument, we will test a set of clinical 

samples to determine the clinical sensitivity and specificity. 
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DENGUE ASSAY MATERIALS AND METHODS  

Reagents 

We purchased MS2 Bacteriophage RNA (ATCC® 15597-B1™) from ATCC (Manassas, VA, 

USA). MS2 RNA was purchased from Sigma Aldrich (St. Louis, MO, USA). DENV1-4 RNA was 

obtained from virus reference strains individually propagated in Vero cells from African green 

monkey kidney. Bacillus subtilis (Bsub) DNA. Both MS2 and DENV primers were purchased 

from Integrated DNA Technologies (IDT). Tris and other general reagents were purchased from 

(Sigma Aldrich, St. Louis, MO, USA). 5M Betaine solution, bovine serum albumin, 

Deoxynucleotide Set 100 mM (DNTP100A-1KT), Magnesium sulfate solution (MgSo4) and 

trehalose are obtained from Sigma Aldrich (St. Louis, MO, USA). GspSSD 2.0 large fragment 

DNA polymerase with reverse transcriptase activity was obtained from OptiGene Ltd (Horsham, 

UK). SYBR Green was purchased from Life technologies (Carlsbad, CA, USA). All the reagent 

solutions were prepared using nuclease free water prepared from Promega (Madison, WI, USA). 

CF1 100% cotton linter sample pads (176 µm thickness, 22 mm width, and 50 m length) were 

purchased from GE Lifesciences (Marlborough, MA, USA). Reagent alcohol 95%, Fetal Bovine 

serum, heat inactivated (sigma), PowerUp Sybr Master Mix (life technologies Corporation), Pierce 

BCA Protein Assay UE, PBS, RNASEOUT Recomb, Yeast tRNA 500 UL (life technologies 

Corporation). 

 

Samples and Genomic RNA: 

At the Naval Medical Research Center (NMRC), DENV1-4 virus reference strains were 

individually propagated in Vero cells from African green monkey kidney, and viral concentrations 

in PFU/mL in the cell culture supernatant were determined via plaque assays. To obtain genomic 
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DENV RNA to develop and optimize our DENV RT-LAMP assay, NMRC sent us nucleic acids 

extracted from the cell culture supernatant of DENV grown inside mammalian host cells; 

therefore, the DENV RNA is mixed with mammalian host DNA/RNA.  

Escherichia coli bacteriophage MS2 was obtained from ATCC® (15597B1) in pre-quantified 

dry form and was rehydrated according to the manufacturer’s instructions. Quantified MS2 

genomic RNA was obtained from Sigma Aldrich.   

 

G-blocks Template for In Vitro Transcription to obtain DENV RNA standards 

To create a template for in vitro transcription, we used a synthetic G-block DNA sequence 

representing the 3’ UTR region of DENV1/3, DENV2, DENV4 (Table 4). DENV g-blocks were 

cloned into a TOPO plasmid (Twist Bioscience, San Francisco). Then we preformed E. coli 

transformation to introduce the DenV plasmid DNA into bacterial cells to allow us to replicate the 

plasmid of interest in the bacteria. First we aliquoted the E. coli DH5 alpha Chemical Competent 

cells (ThermoFisher) once they were delivered but before usage, to avoid multiple freezing and 

thawing cycles that would reduce competent cell viability; then they were stored in -80°C. We 

thawed the required amount of cell by placing them on ice for 30 minutes. Then we introduced the 

plasmid by adding 1µL of plasmid to the melted cells on ice and mixed them by flicking with a 

finger a couple of times. Samples were again left on ice for 30 minutes. Then samples were placed 

in a heat shock bath at 42°C for 45 seconds. We placed the samples back on ice for 2 minutes. The 

change of temperature increases the permeability of the bacterial cell membrane and allows the 

plasmids to enter the cells.  We added 1mL of SOC medium (Sigma-Aldrich) and closed tight. The 

S.O.C. Medium is used in the final step of bacterial cell transformation to obtain maximal 

transformation efficiency of E. coli. S.O.C. Samples were placed horizontally on a shaker at 37°C 
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for an hour. Samples were vortexed and we pipetted 50µL of each sample to plate them. LB agar 

plates must contain an antibiotic to which the plasmid of interest will provide resistance.  In our 

case the plasmids are ampicillin resistance, therefore we platted 1 plate of LB agar with 100 µg/ml 

of ampicillin (Sigma-Aldrich) per strain, a total of 4 plates including the negative control. We 

labelled the plates and incubated overnight at 37°C.  The next day we picked a few colonies of 

each strain and incubated them into a tube with 5mL of LB broth and 100 µg/ml of ampicillin 

liquid media and left overnight to grow on a shaker at 225 rpm at 37°C. The next day we collected 

the grown cells and stored in sterilized glycerol stock at -80°C for long-term storage of transformed 

bacterial cells containing the plasmids. In order to extract the plasmid, we used a QIAprep Spin 

Miniprep Kit (Qiagen). Then we linearized the plasmids by digestion using BamHI (New England 

BioLabs) and XbaI (New England BioLabs) in CutSmart Buffer (New England BioLabs) for 3 

hours at 37°C. We prepared agarose gel in 1X TAE buffer and 5µL of ethidium Bromide and let 

it sit for 30 minutes to harden. Then we added 6µL of 6x DNA loading dye into 60µL of sample 

and used 100bp ladder (New England BioLabs). Samples were run on gel at 100 Volts for 3hours. 

After observing the fragments of interest on gel, we cut them and extracted them using GIAquick 

Gel Extraction Kit (Qiagen). Once DNA is extracted from gel, it needs to be purified.  We used a 

Zymo purification kit. (Thermo Scientific).  
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Table 21. G Block Sequences for DENV Serotypes Inserted into Topo Vectors 

 

 

DENV Serotypes G Block Sequence 

DENV 1/3 

3’-CGGCGGTGTGAGCGGATAACAATTCCCGGATCCTAATACG 

ACTCACTATAGGGGTAAAATGAAGTCAGGCCGAAAGCCACGG 

TTTGAGCAAACCGTGCTGCCTGTAGCTCCATCGTGGGGATGTA 

AAAACCCGGGAGGCTGCAAACCATGGAAGCTGTACGCATGGG 

GTTGCAGACTAGTGGTTAGAGGAGACCCCTCCCAAGACACAA 

CGCAGCAGCGGGGCCCAACACCAGGGAAAGCTGTACCCTGGT 

GGTAAGGACTAGAGGTTAGAGGAGACCCCCCGCATAATAATA 

AACAGCATATTGACGCTGGGAGAGACCAGAGATCCTGCTGTC 

TCTACAGCATCAATCCAGGCACAGAGCACCAGAAAATGGAAT 

GGTGCTGTTGAATCAACAGGTTCTTCTAGACCGCTGAGCAATA 

ACTAGCATCGCGCC-5’ 

DENV 2 

3’-CGGCGGTGTGAGCGGATAACAATTCCCGGATCCTAATACG 

ACTCACTATAGGGGTTAAAAGAAGTCAGGCCATTACAAATG 

CCATAGCTTGAGTAAACTATGCAGCCTGTAGCACCACCTGA 

GAAGGTGTAAAAAATCTGGGAGGCCACAAACCATGGAAGCT 

GTACGCATGGCGTAGTGGACTAGCGGTTAGAGGAGACCCCTC 

CCTTACAAATCGCAGCAACAATGGGGGCCCAAGGTGAGATGA 

AGCTGTAGTCTCACTGGAAGGACTAGAGGTTAGAGGAGACCC 

CCCCAAAACAAAAAACAGCATATTGACGCTGGGAAAGACCAG 

AGATCCTGCCGTCTCCTCAGCATCATTCCAGGCACAGAACGCC 

AGAAAATGGAATGGTGCTGTTGAATCAACAGGTTCTTCTAGAC 

CGCTGAGCAATAACTAGCATCGCGCC-5’ 

DENV 4 

3’-CGGCGGTGTGAGCGGATAACAATTCCCGGATCCTAATACGA 

CTCACTATAGGGATTGAAGTCAGGCCACTTGTGCCACGGTTTG 

AGCAAACCGTGCTGCCTGTAGCTCCGCCAATAATGGGAGGCGT 

AATAATCCCCAGGGAGGCCATGCGCCACGGAAGCTGTACGCGT 

GGCATATTGGACTAGCGGTTAGAGGAGACCCCTCCCATCACTG 

ATAAAACGCAGCAAAAGGGGGCCCGAAGCCAGGAGGAAGCTG 

TACTCCTGGTGGAAGGACTAGAGGTTAGAGGAGACCCCCCCAA 

CACAAAAACAGCATATTGACGCTGGGAAAGACCAGAGATCCTG 

CTGTCTCTGCAACATCAATCCAGGCACAGAGCGCCGCAAGATG 

GATTGGTGTTGTTGATCCAACAGGTTCTTCTAGACCGCTGAGCA 

ATAACTAGCATCGCGCC-5’ 
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In Vitro Transcription RNA 

We used the Promega IVT kit and the purified plasmid as a DNA template for in vitro 

transcription, according to the manufacturer’s instructions. Then we purified the IVT RNA by 

adding 1ml of Trizole and 200µl Chloroform, vortexed samples and centrifuged at full speed for 

15 minutes. Then we removed 600ul upper aqueous phase (contains RNA & DNA) into a new 

tube and added 1:1 volume 4M Lithium Chloride LiCl then placed on ice for 2 hours then 

centrifuged at full speed for 15 minutes and removed supernatant (contains DNA) carefully 

without disturbing pellet (invisible) into a new tube. Then we added 250µl of nuclease-free water 

to the pellet that contains the RNA. We then added 500µl RNA binding buffer plus 250µl Ethanol 

to the 250µl re-suspended RNA pellets and moved to the Zymo Spin column for a wash. Lastly, 

we added 30µl Nuclease Free water to the column and elute the RNA.  

 

Use IVT RNA to quantify DENV 1-4 stock from NMRC 

To quantify the IVT RNA standards we used the Quant-iT™ RiboGreen™ RNA Assay Kit 

(ThermoFisher). For a standard curve, we used 16S ribosomal RNA. We prepared a low-range 

standard curve ranged between 1- 50 ng/mL. Then we determined the RNA concentration on the 

basis of absorbance at 260 nm (A260) in a plate. 

The quantified IVT RNA standards were then used to quantify the DENV1-4 RNA from 

NMRC via RT-qPCR. We used 3 reactions for each serotype. We made four different standard 

concentrations and started with 1E8copies/reaction, 1E7, 1E6 and 1E5 copies/reaction. We 

purchased the itaq universal SYBER Green Kit. (Bio-Rad). For each reaction, we added 10µL of 

the Itaq Universal SybreGreen Mix, 0.4µL of F3 and B3 primers, 0.2µL of Iscript Reverse 

Transcriptase, 8µL of nuclease free water and 1µL of the target RNA.  
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RT-LAMP Primers 

To detect MS2 bacteriophage, we used primers that target the replicase gene, described by 

Chander et al.46 To detect DENV RNA, we used pan-serotype LAMP primers, described by Teoh 

et al, targeting the 3’ untranslated region (3’UTR) of the DENV1-4 genome. 47 Primer sequences 

are shown in Table 5, where FIP and BIP are the forward and backward inner primers, F3 and B3 

are the forward and backward outer primers, and LF and BF are the forward and backward loop 

primers. Primers were purchased from Integrated DNA technologies (San Diego, CA, USA) and 

Eurofins (Louisville, KY, USA).   

 

Figure 37. Dengue virus versus MS2 Bacteriophage 
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Table 22. RT-LAMP Primer Sequences for detecting DENV47 and MS246 

Primer Name  Sequence (5′–3′) 

DENV F3/134 CAAACCGTGCTGCCTGT 

DENV F3/2 TGAGTAAACTATGCAGCCTGT 

DENV B3/123 ACCTGTTGATTCAACAGCACC 

DENV B3/4 ACCTGTTGGATCAACAACACC 

DENV FIP/123 AGGGGTCTCCTCTAACCRCTAGTCTTTCAAACCRTGGAAGCTGTACGC 

DENV FIP/4 AGGGGTCTCCTCTAACCRCTAGTCTTTTTTGCCACGGAAGCTGTACGC 

DENV BIP/123 ACAGCATATTGACGCTGGGARAGACGTTCTGTGCCTGGAATGATGCTG 

DENV BIP/4 ACAGCATATTGACGCTGGGARAGACGCTCTGTGCCTGGATTGATGTTG 

DENV BLP/1234 CAGAGATCCTGCTGTCTC 

MS2 F3 TGTCATGGGATCCGGATGTT 

MS2 B3 CAATAGAGCCGCTCTCAGAG 

MS2 FLP CCAGAGAGGAGGTTGCCAA 

MS2 BLP TGCAGGATGCAGCGCCTTA 

MS2 FIP GCCCAAACAACGACGATCGGTAAAACCAGCATCCGTAGCCT 

MS2 BIP GCACGTTCTCCAACGGTGCTGGTTGCTTGTTCAGCGAACT 

 

DENV RT-LAMP Liquid Assay 

After quantifying the DENV RNA of all four serotypes, we tested our liquid assay method 

using the quantified RNA. The RT-LAMP protocol was designed for a total of 25µL per reaction. 

The master-mix reactions contained a final concentration of 0.10µM each of F3/134, F3/2, B3/123 

and B3/4, and a final concertation of 0.8µM each of FIP/123, FIP/4, BIP/123, BIP/4 and 0.5µM 

each of BLP/1234. In addition, the master-mix contained 1.4mM dNTPs, 4mM MgSO4, 800mM 

betaine, and 1x Isothermal amplification buffer (IAB, prepared as shown in Table 3), 0.1x of 

SYBR green and 0.50 U/μL of GspSSD2.0 DNA Polymerase was obtained from OptiGene Ltd 

(Horsham, UK). The RT- LAMP master-mix was prepared on ice without target RNA. After 



89 

 

adding all reagents, we added 1µL of target RNA to make a total volume of 25µL per reaction for 

the positive control and 1µL of nuclease free water to make a total volume of 25µL per reaction 

for the negative control. The mixture was pipetted into Roche LAMP strips (Bio-Rad) with 25µL 

in each well and amplified using the Roche LightCycler® 96 for 45–60 min at 63 °C. 

 

DENV Primers Optimization in Liquid RT-LAMP  

We optimized the primer concentrations in the liquid RT-LAMP assay to obtain earlier 

detection of DENV, targeting in particular DENV serotype 2 and 3. We tested the selected primers 

shown in table 6 at three different concentrations. We tested 9 different conditions (Table 8), for 

each we created positive master-mix containing 5e3 copies/reaction of DENV 2 or 3, along with 

master-mix for the negative NTC controls. We tested three positive replicates and three negative 

replicates. The mixture was pipetted into Roche LAMP strips (Bio-Rad) with 25µL in each well 

and amplified using the Roche LightCycler® 96 for 60 min at 63 °C as described above.  

 

Table 23. DENV Primers Liquid RT-LAMP Optimization 

Primer 

Name B3/123 

FIP/123 BIP/123 

Condition 1 0.10 µM 0.6 µM 0.6µM 

Condition 2 0.2 µM 0.80 µM 0.8µM 

Condition 3 0.3 µM 1 µM 1µM 

Original 0.10 µM 0.8µM 0.8µM 
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DENV Liquid RT-LAMP Assay with NMRC RNA 

We tested the liquid RT-LAMP assay for all four serotypes of NMRC quantified RNA. The 

Master-mix was made as described above with a final concentration of 0.10µM each of F3/134, 

F3/2, B3/123 and B3/4, and a final concertation of 0.8µM each of FIP/123, FIP/4, BIP/123, BIP/4 

and 0.5µM each of BLP/1234. We ran three replicates for each serotype at 1e5copies DENV 

RNA/reaction. Next, we ran a liquid RT-LAMP master-mix as described above to perform an LOD 

study for all four serotypes at 1e4, 1e3 and 1500 copies DENV RNA /reaction. Due to the positive 

amplification of NTC controls shown on real time amplification, we ran another liquid DENV 

LAMP assay with DIG labeled FIP/123 primer for DENV serotype 1, 2 and 3 at 1e4copies/reaction 

plus 3 NTCs to differentiate false positives due to primer dimer amplification or contamination.   

 

DENV RT-LAMP Dry Reagents  

DENV RT-LAMP concentrated master-mix was likewise prepared in two parts, of which 

~10ul were dispensed onto pre-treated paper pads that were later reconstituted in 100uL buffer as 

described below. Upon reconstitution in 100uL, the Part 1 master-mix (primer paper) yields final 

1x concentrations of 1.40 mM dNTPs, 6.00 mM MgSO4, 0.10uM of F3/134, F3/2, B3/123 and 

B3/4, 0.80uM of DIG-labeled FIP/123, DIG-labeled FIP/4, BIP/123 and BIP/4, and 0.50uM of 

biotinylated-BLP/1234, while the Part 2 master mix (enzyme paper) yields a final 1x concentration 

of 0.7 U/uL GspSSD2.0 DNA polymerase. Of the 10x isothermal amplification buffer (IAB), 10% 

was included in the primer paper, while 90% was included in the enzyme paper. The final 1x IAB 

concentration was 20 mM Tris-HCl pH 9.2, 10 mM (NH4)2SO4, 50 mM KCl, 2 mM MgSO4, and 

0.1.% Triton X-100. 
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One primer paper and one enzyme paper were placed in a 1.5 mL microfuge tube, and master-

mix reagents were reconstituted by adding 160ul of reconstitution buffer (25mM Tris pH 8.5 and 

1mM EDTA) with 1X SYBR green. For positive reactions, DNA or RNA was added to the 

reconstitution buffer at the concentration indicated below.  The mixture was incubated for at least 

1 min, vortexed briefly, centrifuged for 30 sec in a desktop microfuge, and the final master mix 

solution was transferred to fresh tubes and kept on ice until testing. From each reconstitution 

solution, two 60uL replicates were pipetted into PCR strips or plates, and isothermal amplification 

was performed at 63C for 80 min using a Roche LightCycler 96, with fluorescence detection at 

488 nm every minute. The threshold time for isothermal amplification onset was determined using 

LightCycler 96 V1.1 software automated parameter for Cq (base line correction- where the 

amplification curve crosses the threshold value). Real time fluorescence results were considered 

positive if at least one amplification replicate had a threshold time ≤ 60 min. Each batch of the 

paper-based reagents were tested for quality control (QC) with three negatives NTC and three 

positives. 

 

MS2 Liquid RT-LAMP Assay  

The LAMP protocol was designed for a total of 25µL per reaction. The MS2 master-mix 

reactions contained a final concentration of 0.10µM each of F3 and B3, and a final concertation of 

0.3µM each of FL and BL and 0.5µM each of BIP and FIP. In addition, the master-mix contained 

1.4mM dNTPs, 4mM MgSO4, 800mM betaine, and 1x Isothermal amplification buffer (IAB, 

prepared as shown in Table 3), 0.1x of SYBR green and 0.50U/μL of GspSSD2.0 DNA 

Polymerase that was obtained from OptiGene Ltd (Horsham, UK). The RT- LAMP master-mix 

was prepared on ice without target RNA. After adding all reagents, we added 1µL of target RNA 
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to make a total volume of 25µL per reaction for the positive control and 1µL of nuclease free water 

to make a total volume of 25µL per reaction for the negative control. The mixture was pipetted 

into Roche LAMP strips (Bio-Rad) with 25µL in each well and amplified using the Roche 

LightCycler® 96 for 60 min at 63 °C. 

MS2 Dry Reagents 

The MS2 RT-LAMP dry reagent master-mix was prepared similar to the LAMP reagent pad 

preparation as described above. Part 1 of the master-mix (primer paper) contained a final 

concentration of 1.40 mM of dNTP mix, 6.00 mM of MgSO4, 0.10 µM of F3 and B3, 0.40 µM of 

FLP and BLP, and 0.70 µM of FIP and BIP 200 mM of Tris-HCl pH 8.5, 100 mM of (NH4)2SO4, 

500 mM of KCl, 20 mM of MgSO4, 1% of Triton X-100. Part 2 of the master mix (enzyme paper) 

includes 0.70 U/uL GspSSD2.0 DNA polymerase in IAB buffer 200 mM of Tris-HCl pH 8.5, 100 

mM of (NH4)2SO4, 500 mM of KCl, 20 mM of MgSO4, 1 % of Triton X-100. In the preparation 

for the primer and enzyme papers, 17.68 µL Part 1 was aliquoted on primer paper and 17.68 µL 

part 2 was aliquoted on each enzyme paper respectively. Enzyme papers and primer papers in 24 

well tissue culture plates were frozen at -80oC for 1 hour before freeze drying using a Freezone 

4.5 lyophilizer (Labconco) for 4 hour at <200mbar pressure. The freeze-dried reagent papers were 

stored at -20°C in airtight aluminum pouches with desiccant and oxygen scavenger bags until 

further use. 

Protocols for rehydration of the dry RT-LAMP reagent pads are as described above. Two 45 

µL replicates were pipetted into PCR strips or plates, and isothermal amplification was performed 

at 68C for 60 min using a Roche LightCycler 96. Then it detected via later flow detection strips.  
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Inhibition Studies 

Hemoglobin Inhibitor Studies 

To quantify the amount of hemoglobin in the plasma eluate via UV-VIS absorbance, we 

prepared a standard curve containing various hemoglobin concentrations from 0-2 mg/mL. The 

hemoglobin stock solution was prepared in phosphate buffer pH 7 containing 0.5mg/mL ascorbic 

acid. This solution was incubated at 4°C overnight to reduce met-hemoglobin to the ferrous 

hemoglobin form 48. Our hemoglobin is in the methemoglobin (contains Fe 3+) form and we need 

to convert it to hemoglobin containing Fe2+ with the use of 0.5mg/mL ascorbic Acid. To evaluate 

the effect of hemoglobin on the RT-LAMP assay performance, we ran MS2 RT-LAMP reactions 

at 1e3copies/reaction spiked with 0.1mg/mL, 0.25mg/mL, or 0.5mg/mL hemoglobin in triplicate 

following the MS2 liquid RT-LAMP protocol described above.  

To determine the amount of hemoglobin introduced by the plasma separation device into the 

plasma obtained from the device, we pooled the plasma eluates from 4 devices and then measured 

the average hemoglobin concentration present in the sample based on the absorbance at 500 nm, 

relative to a standard curve of known hemoglobin concentrations using a SpectraMax plus 384 

plate reader. 

Protein Inhibition and Removal Studies:  

We utilized the BCA assay Sigma Aldrich (St. Louis, MO, USA) to quantify the protein 

concentration in 10% plasma and in the eluates obtained from the plasma separation device, these 

samples were incubated on ice for 30 seconds, then vortexed for 30 seconds and spun down for 1 

minute. The supernatant was collected and used for the BCA assay. Mixtures of BCA reagent and 

either standards (20-2,000 g/mL BSA) or unknown samples in triplicate were prepared following 
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the manufacturer’s microplate procedure instructions, and the absorbance at 562nm were recorded 

using a SpectraMax plus 384 plate reader.  

Plasma Inhibition Studies 

To test how much plasma the RT-LAMP assay can tolerate, we did a series of dilutions 

containing 0%, 10%, 20%, 30% and 40% plasma in the elution buffer. These plasma dilutions 

were then used to reconstitute the MS2 dry reagent papers. We prepared 3 dry reagent MS2 papers 

for each plasma percentage in the master-mix. We added RNAseout, an RNAse inhibitor, to each 

condition prior to adding the MS2 RNA. All positive conditions were tested at 1e3copies/reaction 

MS2 RNA and to the negative control we added nuclease free water. The master-mix was 

amplified at 63ºC for 80min. The amplified products were run on the lateral flow strips.  

DENV 1 Thermo-stability  

For the DENV1 thermostability study, we freeze dried (lyophilized) the primers on a total of 

30 porous cellulose papers and freeze dried (lyophilized) the enzyme on another 30 porous 

cellulose papers (Whatman No. 1 chromatography). We combined one primer paper with one 

enzyme paper in a 1.5 mL eppendorf tube to make a total of 30 papers pairs in 30 tubes.  We stored 

6 tubes of 6 pairs of papers in a foil pouch with desiccant and oxygen scavenger at room 

temperature (25oC).  A total of 5 pouches were labeled to be tested and analyzed weekly started at 

week 1 then week 2, 3, 4 and 5.  Each week papers were analyzed via isothermal amplification and 

real time fluorescence detection followed by lateral flow detection. Three papers were positive 

(1e5copies/reaction) and three papers were negative NTC. We did a second thermo-stability study, 

were we made 36 pairs of papers divided to 6 pouches. Each pouch contained 6 pairs of papers in 

with desiccant and oxygen scavenger stored at room temperature (25oC). Papers were analyzed 

immediately started at week0 then followed by week 2, week 4, week 6 and 8.   
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RESULTS AND DISCUSSION 

DENV Front to back process Overview 

 

 

Figure 38. DENV Full Process Execution. Starts with whole blood sample preparation followed by filter 

plasma via plasma separation device then RT-LAMP isothermal amplification and lateral flow detection. 

Another key effort in our lab pertains to detection of Dengue Virus, and RNA virus, starting 

from whole blood. In this process, we use blood sample, filter plasma via plasma separation device, 

reverse transcribed- isothermal amplification and lateral flow detection. This was a team effort, 

with Elizabeth Celaya working on sample preparation process, Hsiang Wei working on the plasma 

separation device and other engineering components; I am focusing on reverse transcribed 

isothermal amplification and coupling with upstream sample prep and downstream lateral flow 

detection, and Katie Wilson working on custom lateral flow strip production. 

DENV Genomic RNA: 

To optimize our assay, we need genomic RNA for all 4 DENV serotypes (DENV1-4). As 

mentioned above, we have obtained DENV RNA extracted from cell culture supernatant from our 

collaborators at the naval medical Research Center (NMRC), but this RNA contains host DNA 

and RNA. We need to quantify the amount of DENV RNA present in the sample.  

Template for In Vitro Transcription 

 

To quantify the amount of DENV RNA present in the sample we are using a quantified RNA 

standard generated through In Vitro Transcription (IVT). To generate this RNA standard, we 

started by creating a DNA template. We cloned synthetic G-block DNA sequences representing 

the 3’ UTR regions of DENV1/3, DENV2, and DENV4 with upstream T7 RNA polymerase 
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promoter regions into TOPO vectors that were then transformed into E.coli. Figure 39 shows the 

colonies we obtained from E.coli transformation experiments for all four serotypes.  

 

Figure 39. DENV Bacterial Transformation. Grown colonies of all four DENV serotypes in ampicillin 

resistance agar plate.  

 

In Vitro Transcribed RNA 

We collected the grown colonies from bacterial transformation, expanded them in liquid 

medium, and then purified the plasmid. We then digested the plasmid with BamH1 and Xba1 to 

obtain a linearized DNA template for in vitro transcription (Figure 40).  
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Figure 40. DNA template for DENV IVT obtained via plasmid digestion, showing the fragments of all 

four serotypes of DENV. Each serotype is around 396 base pair.  

We purified the fragments representing the IVT template and used these to run the in vitro 

transcription assay. The product was run on a gel for each serotype to confirm the presence of 

RNA. (Figure 41). 

DENV1/3                DENV2                   DENV4
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Figure 41. In vitro transcription product ran on gel to confirm the RNA present including a positive 

control.  

We washed and purified the product of in vitro transcription then ran q-PCR to confirm 

our RNA product is clean from any DNA template contamination. In qPCR that does not contain 

a reverse transcriptase, only DNA but not RNA is amplified. Therefore, if amplification is 

observed in qPCR, then there is remaining g-block template in the sample. Figure 42 shows no 

amplification for sample RNA, but amplification for the positive, containing the g-block template 

DNA.  
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Figure 42. Amplification of in vitro transcribed RNA for all four serotypes at two different concentration 

to confirm no contamination in all samples at 1:10 and 1:100 dilution via qPCR (A) amplification of 

DENV1/3 g-blocks as positive control and no other amplification from the DENV1/3 sample (B) no 

amplification from the DENV2 sample which confirms sample is clean and (C) no amplification of 

DENV 4 IVT RNA sample means sample is clean. 

We also ran RT-qPCR and confirmed that there is in vitro transcribed RNA after purification 

(Figure 43).  

 

Figure 43. Amplification of in vitro transcribed RNA for all four serotypes at two different concentration, 

1:10 and 1:100 dilution via RT-qPCR (A) amplified DENV1/3 IVT RNA (B) amplified DENV2 IVT 

RNA and (C) amplified DENV 4 IVT RNA.  

Now that we confirmed that there is only RNA in our sample, we moved forward to quantify 

the in vitro transcribed RNA to use as a standard. We used the RiboGreen assay with pre-quantified 

ribosomal RNA as standard as shown in (Figure 44).    
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Figure 44. Quantification of IVT RNA standards using the RiboGreen Assay. The blue dots represent 

tRNA standards and the orange dot is our in vitro transcribed RNA, with absolute concentration indicated 

in each graph (A) DENV1/3 IVT RNA quantification and calculated to 9.9E9copies/ µL. (B) DENV 2 

IVT RNA quantification and calculated to 9.1E9copies/ µL and (C) DENV4 IVT RNA quantification and 

calculated to 6.7E9copies/reaction.  

 

In Vitro Transcribed RNA to quantify DENV 1-4 stock  

After quantifying the standards, we used them to quantify the DENV RNA obtained from 

NMRC via RT-qPCR.  We used the IVT RNA standards to generate a standard curve from which 

we calculated the concentration of DENV RNA serotype 1 within the sample. As shown in (Figure 

45 A) below, the concentration of unknown RNA serotype 1 amplified within our range. Using 

the standard curve calculation as shown in (Figure 45 B) the unknown RNA concentration for 

DENV1 is 3.00E+05copies/µL.  
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Figure 45. Quantifying DENV RNA serotype 1 via RT-qPCR (A) the amplification of standards curves 

made by serial dilution of quantified IVT RNA serotype 1 and unknown RNA. (B) Standard curve 

obtained with quantified IVT RNA relative to unknown RNA. 

. 

Also, we calculated the concentration of DENV RNA serotype 2 within the sample. As shown 

in (Figure 46 A) below, the concentration of unknown RNA amplified within our range. Using the 

standard curve calculation as shown in (Figure 46 B) the unknown RNA concentration for DENV2 

is 2.20E+04copies/µL.  

 

Figure 46. Quantifying DENV RNA serotype 2 via RT-qPCR (A) the amplification of standards curves 

made by serial dilution of quantified IVT RNA serotype 2 and unknown RNA. (B) Standard curve 

obtained with quantified IVT RNA relative to unknown RNA. 
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We quantified DENV RNA serotype 3 within the sample. As shown in (Figure 47 A) below, 

the concentration of unknown RNA amplified within our range. Using the standard curve 

calculation as shown in (Figure 47 B) the unknown RNA concentration for DENV3 is 

3.73E+05copies/µL.  

 

 

Figure 47. Quantifying DENV RNA serotype 3 via RT-qPCR (A) the amplification of Standard curves 

made by serial dilution of quantified IVT RNA serotype 3 and unknown RNA. (B) Standard curve 

obtained with quantified IVT RNA relative to unknown RNA. 

 

DENV RNA serotype 4 shown in (Figure 48 A) below, the concentration of unknown RNA 

amplified within our range. Using the standard curve calculation as shown in (Figure 48 B) the 

unknown RNA concentration for DENV4 is 2.45E+06copies/µL. 
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Figure 48. Quantifying DENV RNA serotype 4 via RT-qPCR (A) the amplification of Standard curves 

made by serial dilution of quantified IVT RNA serotype 4 and unknown RNA. (B) Standard curve 

obtained with quantified IVT RNA relative to unknown RNA. 

 

 

DENV RT-LAMP Coupled to LF Detection 

We have implemented in our lab a pan-serotype RT-LAMP assay for detecting DENV1-4 

RNA, based on primers reported in the literature.49 We used previously quantified DENV4 RNA 

to test our RT-LAMP assay with liquid and dry reagents paper assay. We were able to detect the 

target at 1e3copies/reaction early and consistently as shown in (Figure 49 A) and obtained a strong 

signal on lateral flow strips using the dry master mix reagents (Figure 49 B) 
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Figure 49. DENV4 RT-LAMP Liquid and Dry Reagents Assay. (A) Real time fluorescence detection of 

DENV4 RT-LAMP via liquid assay combined with (B) lateral flow detection of DENV4 at 

10E3copies/reaction. 

 

DENV Primers Optimization in Liquid RT-LAMP  

We have optimized the assay starting by changing the concertation of three main primers: 

B3/123, BIP/123, and FIP123, as shown in the method section, targeting DENV2 and DENV3 

RNA. Figure 50 showed the amplification of DENV2 with three concentrations of B3/123, where 

0.1µM is the original concentration. The earliest amplification time of 25.7 minutes shows at a 

final concentration of 0.3µM of B3/123 in the master-mix. However due to the variability between 

replicates the difference in amplification time between the primers concentrations is not 

statistically significant (T-test p-values ≥0.698). Our hypothesis is that the negative replicates that 

amplify are primer dimers due to the large number of primers combined in one master mix, and 

we will confirm this hypothesis in a later experiment.  
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Figure 50. DENV2 RT-LAMP Liquid Primer Optimization. Real time amplification detecting DENV2 

RNA at 5e3copies/reaction via liquid assay with a final B3/123 concentration of A) 0.3µM, B) 0.2µM, 

and D) 0.1µM. C) Average amplification times for each master-mix with standard deviations, showing no 

statistically significant difference in amplification time (T-test p-values ≥0.698). 

Figure 51 shows the amplification of DENV3 with three concentrations of B3/123. The 

amplification and detection of DENV3 was delayed and inconsistent for all three primer 

concentrations. We will need to optimize the assay, but also we need to confirm that there is not 

degradation or inconsistency between aliquots of the NMRC RNA stock. In other studies, we have 

ran some DENV3 and DENV4 liquid RT-LAMP experiments that were repeated using different 

NMRC tubes for the same serotype and concentration, but have observed different results. Another 

possibility is that through operator error RNAses were introduced into the master-mix, so that the 

DENV RNA degrades quickly. However, not all DENV serotypes show delayed amplification 

Perhaps some DENV serotypes RNA are more or less stable than other DENV serotypes.  We 

again hypothesize that amplification of negative replicates entails primer dimers.  
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Figure 51. DENV3 RT-LAMP Liquid Primer Optimization. Real time amplification detecting DENV3 

RNA at 5e3copies/reaction via liquid assay with a final B3/123 concentration of A) 0.3µM, B) 0.2µM, 

and D) 0.1µM. C) Average amplification times for each master-mix with standard deviations, showing no 

statistically significant difference in amplification time (T-test p-values ≥0.734). 

Figure 52 shows the RT-LAMP amplification with three concentrations of BIP/123 targeting 

DENV2 RNA. The earliest amplification (22.7 minutes) was observed at a final concentration of 

0.1µM of BIP/123 in the master-mix. The original concentration of BIP/123 is 0.8 µM.  
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Figure 52. DENV2 RT-LAMP Liquid Primer Optimization. Real time amplification detecting DENV2 

RNA at 5e3copies/reaction via liquid assay with a final BIP/123 concentration of A) 0.6µM, B) 0.8µM 

and D) 1µM. C) Average amplification times for each master-mix with standard deviations, showing no 

statistically significant difference in amplification time (T-test p-values ≥0.679). 

Continuing with the primer optimization experiment, Figure 53 below shows the amplification 

with three concentrations of BIP/123 targeting DENV3 RNA. The earliest amplification (23 

minutes) was observed for a final concentration of 0.6µM of BIP/123 in the master-mix. The 

original concentration of BIP/123 is 0.8 µM, and that master-mix amplified at 31.3 minutes, so the 

difference is quite significant (T-test p-values ≥0.050). Furthermore, this experiment showed much 

better amplification of DENV3 RNA than observed in Figure 51, which supports our hypothesis 

that the DENV3 RNA in some of the aliquots may have been degraded. 
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Figure 53. DENV3 RT-LAMP Liquid Primer Optimization. Real time amplification detecting DENV3 

RNA at 5e3copies/reaction via liquid assay with a final BIP/123 concentration of A) 0.6µM, B) 0.8µM, 

and D) 1µM. C) Average amplification times for each master-mix with standard deviations, showing no 

statistically significant difference in amplification time (T-test p-values ≥0.050). 

Figure 54 below shows the amplification with three concentrations of FIP/123 targeting 

DENV2 RNA. We did not observe statistically significant differences in amplification times for 

the different primer concentrations. 
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Figure 54. DENV2 RT-LAMP Liquid Primer Optimization. Real time amplification detecting DENV2 

RNA at 5e3copies/reaction via liquid assay with a final FIP/123 concentration of A) 0.6µM, B) 0.8µM, 

and D) 1µM. C) Average amplification times for each master-mix with standard deviations, showing no 

statistically significant difference in amplification time (T-test p-values ≥0.884). 

Figure 55 below represent the results for the last condition of the primer optimization 

experiment: The RT-LAMP liquid assay with three concentrations of FIP/123 targeting DENV3 

RNA. The results were very inconsistent, so again a problem with amplifying DENV3 RNA was 

observed, and any differences are not statistically significant.  

In summary, regarding the optimal primer concentration we observed different results for 

DENV2 and DENV 3, and it seemed if we change one primer concentration to benefit one serotype 

then it will negatively impact another serotype. Some results showed no major difference in 

amplification time while others showed earlier amplification time with the original concentration 

such as detecting DENV2 with 0.8µM concentration of FIP/123. Therefore, based on the results 

of the primer optimization experiment, we decided to continue our RT-LAMP assay optimization 

experiments with the original primer concentrations. 
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Figure 55. DENV3 RT-LAMP Liquid Primer Optimization. Real time amplification detecting DENV3 

RNA at 5e3copies/reaction via liquid assay with a final FIP/123 concentration of A) 0.6µM, B) 0.8µM, 

and D) 1µM. C) Average amplification times for each master-mix with standard deviations, showing no 

statistically significant difference in amplification time (T-test p-values ≥0.663). 

In the previous primer optimization experiments we only tested DENV 2 and DENV3. To 

confirm robust amplification of all four serotypes using the final primer concentrations, we ran a 

liquid RT-LAMP assay targeting all four DENV serotypes. The results show early amplification 

to all four serotypes. DENV 1, 2 and 3 RNA were detected at 1e5copies/reaction and DENV4 

RNA at 1e7copies/reactions. We used a higher concentration of DENV4 RNA due to multiple 

inconsistence and delayed amplified results from previous experiments. Figure 56 shows the 

negative reactions did show on real time amplification; however, our next step was to use labeled 

primers and test the amplified product on lateral flow strips.  
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Figure 56. RT-LAMP liquid assay. Real time amplification detecting DENV1,2,3 and 4 RNA at 

1e5copies/reaction via liquid assay 

 

We needed to confirm the cause of the real time amplification of the negative controls. We 

tested DENV1, 2, 3 and 4 RNA with DIG labeled primer FIP/123 and DIG labeled primer FIP/4. 

Figure 57 shows the positive and the negative replicates of each target amplifying on the real time 

amplification, however when we ran the amplified samples on the later flow strips, we do not see 

the negatives on the LF strip line. The results confirmed our hypothesis: the real time amplification 

of negatives is not due to contamination but is due to primer dimer amplification since there are 

nine primers all in one master-mix. We will need to further optimize the assay to avoid the real 

time false positive amplification. Meanwhile we can move on to testing the DENV serotypes on 

the dry reagents paper assay.  
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Figure 57. RT-LAMP Liquid Labeled Primers Assay Optimization. Real time amplification detecting 

DENV1, 2, 3 and 4 RNA at 1e4copies/reaction via labeled primers liquid assay combined with lateral 

flow detection, wherein the top line represents DENV RNA detection.  
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DENV RT-LAMP Dry Reagents 

We moved on to test DENV RT-LAMP amplification on dry reagent papers at two different 

concentrations of DENV RNA: 1e5 and 1e4 copies/reaction. Figure 58 below shows the 

amplification curves for all four serotypes. At the higher concentration (1e5 copies/reaction) we 

were able to detect DENV 1, 2, and 3 reasonably early and consistent. The amplification was more 

variable at 1e4 copies/reaction. However, a good improvement was that the negative controls did 

not show amplification. For DENV4, the results in Figure 58 D show that only three out of 12 

replicates amplified, and amplification times are inconsistent. The lack of detection of DENV4 

NMRC RNA has been observed in other studies as well. We used different NMRC tubes for the 

same serotype and concentration but have observed different results. This requires further 

optimization and perhaps a new DENV4 RNA preparation at NMRC followed by re-quantification 

and quality control through stability studies. 
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Figure 58. RT-LAMP Paper Assay LOD. Real time amplification detecting DENV1, 2, 3 and 4 RNA at 

1e4 and 1e5 copies/reaction using unlabeled primers. 

 

 

DENV (MS2) Full Process Execution 

Bacteriophage MS2 is used as internal amplification control in our assay, and we are also using 

it to establish the front to back assay process, since it is a BSL1 organism. We have implemented 

an MS2 RT-LAMP assay using primers reported in the literature.49 

We tested the MS2 RT-LAMP assay via liquid and dry reagents. (Figure 59) shows early and 

consistence amplification with real time and lateral flow strip detection.  
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Figure 59. MS2 RT-LAMP via Liquid and Dry Reagent Assay. (A) Real time fluorescence detection of 

MS2 RT-LAMP via liquid assay and (B) real time fluorescence detection of MS2 RT-LAMP via paper 

assay combined with (C) lateral flow detection of MS2 at 10E3copies/reaction. 

 

Inhibition Studies 

After running the MS2 full process execution multiple times we recognized that the eluates 

contain inhibitors which prevent us from detecting the target. Therefore, we ran multiple studies 

to learn what might be causing the inhibition. The plasma separation device’ eluates contain 

hemoglobin, which is a known polymerase inhibitor. To calculate the amount of hemoglobin in 

the eluates we compared the sample against a standard curve derived from hemoglobin that was 

converted into the Fe2+ form via citrate reduction. (Figure 60) shows that we have on average 

between 0.5 and 1mg/mL hemoglobin in our eluates.  
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Figure 60. The Amount of Hemoglobin in MS2 Eluates via BCA Assay. (A, B and C) represent the 

hemoglobin concentration at three different eluates from three separate plasma separation devices. (D) 

The color of the samples. 

To check what concentration of hemoglobin would be inhibiting the assay, we ran an MS2 

liquid RT-LAMP assay with different concentrations of hemoglobin spiked into the master-mix. 

(Figure 61) shows the impact of hemoglobin on amplification time. The higher the concentration 

of hemoglobin the slower the reaction. However, spiking 0.5 to 1 mg/mL hemoglobin into the 

master-mix delayed the amplification by 7-8 minutes.  
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Figure 61. Hemoglobin impacts on MS2 RT-LAMP Liquid Assay with Spiked Hemoglobin at different 

Concentrations. (A) Real time fluorescence detection of MS2 amplification after spiking the master-mix 

with three different concentration of hemoglobin plus a positive control with no hemoglobin in master-

mix with (B) the time of amplification for each condition.  

 

The second inhibitor we tested was the amount of protein in the plasma separation device 

elutes. We used the BCA assay as shown in (Figure 62) to determine the concentration of protein, 

which was found to be between 50-550 g/mL, unexpectedly low. Further investigations are 

underway. 

 

 

Figure 62. The Amount of Protein in MS2 Eluates via BCA Assay. 
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the concentration of protein the slower the reaction. However, amplification was only delayed by 

≤5 minutes, which means that protein inhibition likely is not substantial enough to completely 

inhibit the reaction.   

 

Figure 63 BSA impacts on MS2 RT-LAMP Liquid Assay with Spiked BSA at different Concentrations. 

(A) Real time fluorescence detection of MS2 amplification after spiking the master-mix with two 

different concentration of BSA plus a positive control with no BSA in master-mix with (B) the time of 

amplification for each condition. 

 

Another set of inhibition study was adding plasma to the MS2 RT-LAMP liquid master-mix at 

different percentage. The results in (Figure 64) show the higher the percentage of plasma present 

in master-mix the slower the amplification, in fact even at 10% plasma we see a delay and 

inconsistency in the amplification of the target RNA. However, this concentration appeared to be 

a good compromise between avoiding inhibition and ensuring that a sufficient amount of target 

virus in plasma makes it into the amplification reaction. The engineering team has optimized the 

size of the absorbent pad in the plasma separation device and the amount of elution buffer used to 

wash the plasma separation device to keep the amount of plasma at 10% in the eluate that 

reconstitutes the dry reagent master-mix for amplification.  
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Figure 64. MS2 RT-LAMP Liquid Assay Plasma Inhibition study. Real time amplification detecting 

MS2 RNA at 1e3copies/reaction via liquid assay with a plasma percentage in master-mix of A) 10%, B) 

20%, and C) 30%. D) 40%.   

 

DENV RT-LAMP Thermostability: 

Through prior experiments we found that the RT-LAMP dry reagent master-mix is not 

stable upon storage at room temperature or elevated temperature if using Bst polymerase and a 

separate enzyme, AMV reverse transcriptase. Therefore, we changed the master-mix to using Gsp-

SSD2, a polymerase with intrinsic reverse transcriptase activity that exhibits good thermo-stability. 

We examined the stability of the dry reagent RT-LAMP master-mix papers stored at room 

temperature via two separate studies, and for storage at 40ºC through a third study. In each case, 

we used the real time amplification of DENV1 RNA at 1e5 copies/ reaction followed by lateral 

flow detection as indicator for master-mix stability. To assess the stability upon storage at room 
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temperature, the first study tested the papers on a weekly basis over five weeks total and the second 

study tested the papers on upon storage for 1, 2, 4, 6, and 8 weeks. The third experiment tested the 

dry reagent master-mix stability upon storage at 40ºC on a weekly basis over five weeks. The 

compiled results are shown in Table 13, Figure 65, and Figure 66. In each case we observed that 

the dry reagent RT-LAMP master-mix papers are stable at room temperature and 40ºC for the 

duration of each study with strong lateral flow signals as shown below. The amplification onset 

time within the first study at room temperature over 5 weeks stayed relatively constant, while a 

delay in the amplification onset time was observed for the second study over 8 weeks at room 

temperature. For the 5-week study at 40ºC, the amplification onset time was delayed compared to 

the first week. For the real time detection, we did observe NTC amplification, but for lateral flow 

detection all replicates except for week 5 at room temperature. Although further optimization of 

RT-LAMP dry reagent master-mix thermo-stability is required, these results are very promising.  

Table 24. DENV RT-LAMP Thermostability Data. 

 Positive Negative NTC 

 

Threshold Time(a) Fluorescence 

Positive(b) 

Lateral Flow 

Positive(c) 

Threshold Time(a) Fluorescence 

Positive(b) 

Lateral Flow 

Positive(c,d) 

Weeks First Run: Storage at Room Temperature 

1 27.3 ± 5.3 (6/6) (3/3) 3  69.4 ± 2.3 (4/6) (0/3) 0 

2 38.4 ± 5.2 (6/6) (3/3) 3 68.4 ± 5.5 (2/6) (0/3) 0 

3 39.4 ± 8.6 (6/6) (3/3) 3 65.4 ± 5.3 (2/6) (0/3) 0 

4 41.3 ± 4.9 (6/6) (3/3) 3 75.9 ± 7.9 (1/6) (0/3) 0 

5 

 

32.1 ± 4.7 (6/6) (3/3) 3 51.9 (2/6) (1/3) 1 

Weeks Second Run: Storage at Room Temperature 

0 38.7 ± 6.2 (6/6) (3/3) 3  74.4 ± 7.7 (3/6) (0/3) 0 

1 33.3 ± 6.5 (6/6) (3/3) 3 57 ± 30.3 (3/6) (0/3) 0 
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2 38.6 ± 11.5 (6/6) (3/3) 3 NA (0/6) (0/3) 0 

4 34.5 ± 5.6 (6/6) (3/3) 3 59.8 (1/6) (0/3) 0 

6 

8 

  41.7 ± 9 (6/6) 

  46 ± 6.4 (6/6) 

(3/3) 

       (3/3) 

3 

          3 

73.2 ± 1.9 (2/6) 

NA (0/6) 

(0/3) 

       (0/3) 

0 

0 

Weeks Third Run: Storage at 40C  

0 

1 

 43.8 ± 15.5 (5/6) 

  33.9 ± 5 (6/6) 

(3/3) 

(3/3) 

3 

3 

78.6 ± 0.2 (2/6) 

NA (0/6) 

(0/3) 

(0/3) 

0 

0 

2   36.1 ± 6.1 (6/6) (3/3)            3 NA (0/6) (0/3) 0 

3   45.4 ± 10.5 (6/6) (3/3)            3 NA (0/6) (0/3) 0 

4 42.4 ± 4.1 (6/6) (3/3)            3 NA (0/6) (0/3) 0 

5   49.1 ± 3.7 (6/6) (3/3)            3 77.5 (1/6) (0/3) 0 

(a) Average ± Standard Deviation across all replicates (amplified/total) (b) Threshold time ≤ 60 minutes for 

at least one amplification replicate (c) and (d) Lateral flow strips positive signal. 
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Figure 65. Thermostability study involving the storage of RT-LAMP DENV1 master-mix papers at room 

temperature (RT). All amplification replicates are plotted. 

 

Figure 66. Thermostability study involving the storage of RT-LAMP DENV1 master-mix papers stored 

at 40ºC. All amplification replicates are plotted. 

Real time fluorescence amplification and lateral flow images of the first week of dry 

reagent thermostability testing shown Figure 67. The results show early amplification for week1, 

with real time fluorescence amplification of the negative control. However, it does not show on 

the lateral flow images, which is thought to be due to non-specific amplification. 

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5

a
m

p
lif

ic
a

ti
o

n
 t
h

re
s
h

o
ld

 t
im

e

weeks of storage

Storage at 40°C QC



123 

 

 

 

Figure 67. Week 1 Data of the First Run of DENV1 Thermostability RT-LAMP via Dry Reagent Assay 

stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay 

combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 

Real time fluorescence amplification and lateral flow images of the second week of dry reagent 

thermostability testing shown in Figure 68. The results show early amplification for week 2, with 

real time fluorescence amplification of the negative control. However, it does not show on the 

lateral flow images, which is thought to be due to non-specific amplification.  

 

Figure 68. Week 2 Data of the First Run DENV1 Thermostability RT-LAMP via Dry Reagent Assay 

stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay 

combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 

Real time fluorescence amplification and lateral flow images of the third week of dry 

reagent thermostability testing shows delay in amplification (Figure 69) however all positive 

replicates amplified, with real time fluorescence amplification of the negative control. However, 
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it does not show on the lateral flow images, which is thought to be due to non-specific 

amplification. 

 

Figure 69. Week 3 Data of the First Run of DENV1 Thermostability RT-LAMP via Dry Reagent Assay 

stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay 

combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 

Real time fluorescence amplification and lateral flow images of week 4 shown in (Figure 70). 

The results show amplification of DENV1 at 1e5copies/reaction, with real time fluorescence 

amplification of the negative control of one replicate. However, the one replicate does not show 

on the lateral flow images, which is thought to be due to non-specific amplification. 

 

 

Figure 70. Week 4 Data of the First Run of DENV1 Thermostability RT-LAMP via Dry Reagent Assay 

stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay 

combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 
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Real time fluorescence amplification and lateral flow images of week 5 shows a negative 

control amplification in real time fluorescence and lateral flow strips (Figure 71) perhaps due to 

cross contamination,  

 

Figure 71. Week 5 Data of the First Run of DENV1 Thermostability RT-LAMP via Dry Reagent Assay 

stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay 

combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 

Real time fluorescence amplification and lateral flow images of week 0 of the second run of 

the dry reagent thermostability testing shown Figure 72. The results show early amplification for 

week 1, with real time fluorescence amplification of one replicate of a negative control. However, 

it does not show on the lateral flow images, which is thought to be due to non-specific 

amplification. 

 

Figure 72. Week 0 Data of the Second Run of DENV1 Thermostability RT-LAMP via Dry Reagent 

Assay stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via 

paper assay combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 
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Real time fluorescence amplification and lateral flow images of week 1 of the second run of 

the dry reagent thermostability testing shown Figure 73. The results show early amplification for 

week1, with no real time fluorescence amplification of the negative control. 

 

Figure 73. Week 1 Data of the Second Run of DENV1 Thermostability RT-LAMP via Dry Reagent 

Assay stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via 

paper assay combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 

Real time fluorescence amplification and lateral flow images of week 2 of the second run of 

the dry reagent thermostability testing shown Figure 74. The results show early amplification for 

week1, with no real time fluorescence amplification of the negative control.  

 

Figure 74. Week 2 Data of the Second Run of DENV1 Thermostability RT-LAMP via Dry Reagent 

Assay stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via 

paper assay combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 

In the second study we stored the dry reagents for a longer period of time, we tested the dry 

regents at week 4. Real time fluorescence amplification and lateral flow images of week 4 of the 
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consistence early amplification for week4, with one real time fluorescence amplification of the 

negative control that does not show on the lateral flow images. 

 

 

Figure 75. Week 4 Data of the Second Run of DENV1 Thermostability RT-LAMP via Dry Reagent 

Assay stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via 

paper assay combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 

Real time fluorescence amplification and lateral flow images of week 6 of the second run of 

the dry reagent thermostability testing shown Figure 76. The results show delay in amplification 

for week 6, with real time fluorescence amplification of one replicate of a negative control. 

However, it does not show on the lateral flow images, which is thought to be due to non-specific 

amplification. 

 

Figure 76. Week 6 Data of the Second Run of DENV1 Thermostability RT-LAMP via Dry Reagent 

Assay stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via 

paper assay combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 
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The second study of the thermostability we stored the dry reagents up to 8 weeks. Results show 

slightly delayed real time fluorescence amplification of week 8 Figure 77. However no real time 

fluorescence amplification of a negative control and all positive amplified on the lateral flow strips.  

 

Figure 77. Week 8 Data of the Second Run of DENV1 Thermostability RT-LAMP via Dry Reagent 

Assay stored at Room Temperature. (A) Real time fluorescence detection of DENV1 RT-LAMP via 

paper assay combined with (B) lateral flow detection of DENV1 at 10e5copies/reaction. 

The third thermostability study we stored the dry reagents at 40ºC up to five weeks. Real time 

fluorescence amplification and lateral flow images of week 0 shown Figure 78. The results show 

delay and inconsistency in the amplification. However, all the positive replicates amplified on the 

lateral flow strips. 

 

Figure 78. Week 0 Data of DENV1 Thermostability RT-LAMP via Dry Reagent Assay stored at 40ºC. 

(A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay combined with (B) lateral 

flow detection of DENV1 at 10e5copies/reaction. 
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Real time fluorescence amplification and lateral flow images of week 1 of the dry reagent 

thermostability testing shown in Figure 79. The results show early amplification for week1, with 

no real time fluorescence amplification of the negative control. 

 

 

Figure 79. Week 1 Data of DENV1 Thermostability RT-LAMP via Dry Reagent Assay stored at 40ºC. 

(A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay combined with (B) lateral 

flow detection of DENV1 at 10e5copies/reaction. 

Real time fluorescence amplification and lateral flow images of week 2 of the dry reagent 

thermostability testing shown Figure 80. The results show early amplification and lateral flow 

signals for week 2.  

 

Figure 80. Week 2 Data of DENV1 Thermostability RT-LAMP via Dry Reagent Assay stored at 40ºC. 

(A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay combined with (B) lateral 

flow detection of DENV1 at 10e5copies/reaction. 

Real time fluorescence amplification and lateral flow images of week 3( Figure 81). The results 

show a delay in the amplification for week 1, with real time fluorescence amplification of one 
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replicate of a negative control. However, it does not show on the lateral flow images, which is 

thought to be due to non-specific amplification. 

 

Figure 81. Week 3 Data of DENV1 Thermostability RT-LAMP via Dry Reagent Assay stored at 40ºC. 

(A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay combined with (B) lateral 

flow detection of DENV1 at 10e5copies/reaction. 

Real time fluorescence amplification and lateral flow images of week 4 of the dry reagent 

thermostability testing shown Figure 82. The results show earlier amplification compared to the 

previous week, with no real time fluorescence amplification of a negative control. 

 

Figure 82. Week 4 Data of DENV1 Thermostability RT-LAMP via Dry Reagent Assay stored at 40ºC. 

(A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay combined with (B) lateral 

flow detection of DENV1 at 10e5copies/reaction. 

The last week of the dry reagent thermostability testing shown in Figure 83. An early real time 

fluorescence amplification and lateral flow images.  
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Figure 83. Week 5 Data of DENV1 Thermostability RT-LAMP via Dry Reagent Assay stored at 40ºC. 

(A) Real time fluorescence detection of DENV1 RT-LAMP via paper assay combined with (B) lateral 

flow detection of DENV1 at 10e5copies/reaction. 

In summary the dry reagent papers are stable at both room temperature and 40oC until 8 weeks, 

when tested using 1e5copies/reaction of DENV1. Storing the dry reagent papers at room 

temperature or 40oC has no increase in the non-specific amplification in either the real time or LF 

assays. Although the mean Cq values are higher after 3 weeks at both RT and 40oC when compared 

to the starting values of the dry reagent papers at -20oC, all positive real time reactions were 

positive on the LF strips. 
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CONCLUSIONS 

Our other major effort is DENV detection in blood; in this effort I focused on amplification of 

DENV RNA, and full process execution using MS2 as a surrogate. Regarding amplification and 

detection, I accomplished quantification of DENV RNA via in vitro transcribed standards and 

proof of principle for a pan-serotype RT-LAMP assay coupled to LF for the detection of DENV4 

RNA. In addition, we established an RT-LAMP assay for the detection of MS2 bacteriophage in 

both liquid and dry reagent format, coupled to LF detection. MS2 will serve as the internal 

amplification control for our assay. Through a thermo-stability study, we demonstrated that our 

RT-LAMP dry reagent papers are stable upon storage at room temperature for up to 8 weeks and 

at 40ºC for up to 5 weeks, with a delay in onset of amplification. The next goals regarding DENV 

amplification and detection are to optimize the DENV RT-LAMP assay (liquid and dry reagent) 

and establish suitable LODs for all 4 DENV serotypes. Furthermore, we need to optimize the 

DENV/MS2 duplex assay (liquid and dry reagent) to attain suitable LODs for DENV and ensure 

that MS2 amplifies in the absence of DENV. Regarding full process execution, we designed a 

plasma separation device compatible with integration into the cartridge and ran multiple inhibitor 

characterization studies. The next step entails full process execution, wherein MS2 is spiked into 

whole blood which is then processed through the plasma separation device. The plasma is then 

eluted and used to reconstitute the dry reagent master-mix, followed by amplification and 

detection. Once this process is suitably optimized, we will transfer the technology to NMRC, who 

will perform the same experiment with DENV spiked into blood. Next we will design a cartridge 

that incorporates the plasma separation device, for fully integrated and automated process 

execution, first with MS2, then with DENV, by itself and as duplex assay with MS2. Eventually, 
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we will perform studies with clinical samples to determine the attainable clinical sensitivity and 

specificity.  

We believe that the herein described assay processes and prototype systems can make an 

impact through enabling point of care diagnosis for these and other pathogens in low resource 

settings. 
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