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Oscillatory doubly diffusive convection in a finite container 

A.S. Landsberg* and E. Knobloch 
Department of Physics, University of California, Berkeley, California 94720 

(Received 13 March 1995) 

Oscillatory doubly diffusive convection in a large aspect ratio Hele-Shaw cell is considered. The 
partial differential equations are reduced via center-unstable manifold reduction to the normal form 
equations describing the interaction of even and odd parity standing waves near onset. These 
equations take the form of the equations for a Hopf bifurcation with approximate D4 symmetry, 
verifying the conclusions of the preceding paper [A.S. Landsberg and E. Knobloch, Phys. Rev. E 
53,3579 (1996)]. In particular, the amplitude equations differ in the limit oflarge aspect ratios from 
the usual Ginzburg-Landau description in having additional nonlinear terms with 0(1) coefficients. 
Numerical simulations of the amplitude equations for experimental parameter values are presented 
and compared with the results of recent experiments by Predtechensky et al. [Phys. Rev. Lett. 72, 
218 (1994); Phys. Fluids 6, 3923 (1994)]. 

PACS number(s): 47.20.Bp, 47.20.Ky, 03.40.Kf 

I. INTRODUCTION 

In the companion paper [1] we argue that the am
plitude equations describing the bifurcation to traveling 
waves in a finite but large aspect ratio container are more 
complex than suggested by the usual Ginzburg-Landau 
description. In particular we argue that the correct de
scription of the initial instability must be based on the 
even and odd parity standing waves, which are the only 
modes that bifurcate from the trivial state in such a con
tainer. In large aspect ratio systems the even and odd 
modes are nearly degenerate, indicating that their inter
action cannot be neglected. By considering the interac
tion of the first two modes to go unstable we derived 
amplitude equations of the form 

(1a) 

Here (zm' Zm+1) are the (complex) amplitudes ofthe first 
two modes, 8m == f..Lm + iwm , 8m+1 == f..Lm+l + iWm+l rep
resent their linear growth rates and frequencies, and K~, 
K~, K~ are complex coefficients that are close to Kll K 2, 
K3 because ofthe near degeneracy ofthe two modes. The 
relevance of Eqs. (1a) and (1b) to the study of oscillatory 
instabilities in finite containers was recognized already by 
Bestehorn, Friedrich, and Haken [2] and Nagata [3]. The 
amplitude equations are to be thought of as describing 
the double Hopf bifurcation with 1:1 resonance and ap-
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proximate D4 symmetry owing to the near degeneracy 
between the two modes. The equations have stationary 
solutions of the form (zm,O), (0, Zm+1) corresponding to 
the two types of standing waves. Generically, such waves 
take the form of "chevrons," i.e., of patterns consisting 
of left-traveling waves in the left half of the container 
and right-traveling waves in the right half (or vice versa), 
satisfying the requirement that they are either even or 
odd under reflections about the middle. As the bifurca
tion parameter is increased these solutions typically lose 
stability at secondary bifurcations to nonsymmetric sta
tionary states (zm' Zm+t) , ZmZm+l =1= 0, corresponding 
to various types of propagating patterns, as described in 
[1]. In order to compare this formulation of the problem 
with the Ginzburg-Landau description it is illuminating 
to write Eqs. (1a) and (1b) in terms of the amplitudes 
(v, w) ofleft- and right-traveling waves. The appropriate 
transformation is linear, Zm = v + W, Zm+l = V - w, and 
yields, in the large aspect ratio limit, 

dv = (A + iw)v + ~w + alwl 2v 
dt 

+b(lvI2 + Iwl2)v + cvw2 , 

dw - 2 - = (A - iw)w + ~v + alvl w 
dt 

+b(lvI 2 + Iwl 2)w + cv2w, 

(2a) 

(2b) 

where A + iw = ~(8m + 8m+t), ~ = ~(8m - 8m+t), a = 
Kl - K2 - 3K3 , b = Kl + K2 + K 3 , and c = Kl -
K2 + K 3 . In writing these equations we have ignored any 
differences between Kj and Kj, j = 1,2,3. Note that 
we have chosen Zm to be even under reflection, (v, w) -+ 
(w,v), while Zm+1 is odd. 

Equations (2a) and (2b) differ from the usual 
Ginzburg-Landau equations in the presence of new non
linear terms (vw 2 , v2w) as well as the linear terms 
(~w, .t..v). The presence of the latter is a natural conse
quence ofthe breaking oftranslation invariance [4]; these 

3601 © 1996 The American Physical Society 
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terms have a small coefficient and thus represent a small 
perturbation of the Ginzburg-Landau equations for an 
unbounded system [5J. In [lJ we argue, however, that 
the coefficients of the new cubic terms should be of order 
unity, and hence that their appearance does not repre
sent a perturbation of the equations for the unbounded 
system. 

In the present paper we focus on the problem of doubly 
diffusive convection in a large aspect ratio Hele-Shaw cell. 
The motivation for this study is twofold. First, we seek 
to demonstrate, by explicit computation on a continuum 
system in a box of aspect ratio L, that the dynamics near 
onset is described by Eqs. (la) and (lb), and that, in the 
limit L -+ 00, all the coefficients ofthe nonlinear terms do 
remain finite. In particular we show that the coefficient c 
in Eqs. (2a) and (2b) also remains finite. The Hele-Shaw 
problem is particularly well suited for this purpose, owing 
to the analytical tractability of the corresponding linear 
stability problem, and in particular the simple form of 
the unstable modes. Second, recent and extensive exper
imental studies of this type of system by Predtechensky 
et al. [6J have provided a wealth of data on the behav
ior of this system in the weakly nonlinear regime. Given 
that the dynamics described by Eqs. (la) and (lb) show 
good qualitative resemblance with the behavior found in 
binary fluid convection [7, 8J and in numerical simula
tions [9, lOJ, including the so-called confined and blinking 
states as well as repeated transients, a calculation of the 
actual coefficient values offers the scope for a comparison 
between theory and experiment. Moreover, by means of 
these analytic calculations we can address the question 
of whether or not the "standard" model for this doubly 
diffusive system, in which "secondary" effects like cross 
diffussion are neglected, suffices to capture the experi
mentally observed behavior. 

The paper is organized as follows. In Sec. II we de
scribe the problem, introduce the governing partial dif
ferential equations, and use these to derive Eqs. (la) and 
(lb), obtaining explicit expressions for the coefficients in 
terms of the physical parameters. In Sec. III we present 
numerical results obtained by integrating Eqs. (la) and 
(lb) for parameter values corresponding to those of the 
experiment. Our conclusions are summarized in Sec. IV. 

II. DOUBLY DIFFUSIVE CONVECTION 
IN HELE-SHAW GEOMETRY 

The recent experiments by Predtechensky et al. [6J 
on doubly diffusive convection employ a thin isother
mal rectangular cell. Instead of using thermal forc
ing to destabilize the system, a second diffusing compo
nent with a slighly higher diffusivity and lower molecular 
weight is fed in from the top. This component competes 
with a stabilizing gradient of a lower diffusivity compo
nent fed in from the bottom. Both the top and bottom 
are in contact with fixed concentration reservoirs of the 
respective components via gel-filled membranes that al
low diffusion but no flow. In this way fixed concentration 
boundary conditions are achieved. In the following we 
use the subscripts t, s to refer to the destabilizing and 
stabilizing components, respectively. 

A. Model equations and general considerations 

The governing equations for the above experiment can 
be written in the nondimensional form: 

122 2 -[8t V "p+J("p,V "p)J=Rt 6",-R.¢",-V"p, (3a) 
(J" 

8t 6 + J("p,6) = 8",,,p + V 26, 

8t ¢ + J("p, ¢) = 8.,,,p + TV2¢, 

(3b) 

(3c) 

where "p is the stream function, and 6, ¢ denote the de
partures of the two concentration fields from their re
spective conduction profiles. The operator J satisfies 
J(u,v) = 8",u8z v - 8z u8",v. The Rayleigh numbers R t , 

R. provide a nondimensional measure of the imposed 
destabilizing and stabilizing concentration gradients, and 
are positive. The parameter T denotes the diffusivity 
ratio D./Dt (0 < T < 1), while (J" denotes the ratio 
1/ / D t . Here 1/ is the coefficient of the Darcy viscosity 
term (-V 2"p) used here instead of the usual viscosity 
(which would appear as V4"p in the first equation), as is 
appropriate for the Hele-Shaw (thin cell) geometry. The 
endwalls lie at x = 0, L, and the bottom and top walls at 
z = 0,1. We refer to L as the aspect ratio, and assume 
that it is large. The boundary conditions appropriate to 
the experiment are 

6 = ¢ = 0 at z = 0,1, (4a) 

8",6 = 8",¢ = 0 at x = 0, L, (4b) 

"p = 0 at x = 0, Lj Z = 0, 1. (4c) 

These conditions correspond, respectively, to fixed con
centrations at top and bottom, no concentration flux 
through the endwalls, and no fluid flux through the top, 
bottom, or sides. Note that since the use of a Darcy vis
cosity term changes the order of the equation, there are 
fewer boundary conditions imposed on "p than usually. 

The problem as posed has two discrete symmetries, 
labeled 1>':1> 1>':2. The first results from the manifest left
right reflection invariance of the system: 

1>':1: x -+ L - x, "p -+ -"p. (5) 

The second, a midplane reflection symmetry, 

1>':2: Z -+ 1 - z, "p -+ -"p, 6 -+ -6, ¢ -+ -¢, (6) 

arises as a consequence of the Boussinesq approximation 
used to derive (3a)-(3c), and is thus peculiar to this par
ticular model. However, the presence of this additional 
(midplane) symmetry does not alter the form of the nor
mal form equations. It should be noted that the bound
ary conditions (4a)-(4c) are of Neumann type and hence 
introduce additional "hidden" symmetries into the prob
lem. It can be shown, however, that these symmetries do 
not introduce any additional restrictions on the normal 
form for the Hopf bifurcation [11J. 
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B. Linear theory 

The first step of the derivation involves solving the 
linearized version of Eqs. (3a)-(3c). With the boundary 
conditions (4a )--( 4c), the oscillatory instability occurs at 
R t = R~opf with the frequency OHopf. These are given 
by (cf. [6,12,13]) 

R Hopf _ a + k 2T R k4(1 + T)(a + k 2T) 
t - + k2 8 + k 2 ' a a x 

(7a) 

02 _ a(1 - T)k;, R T2k4, 
Hopf - a + k 2 B 

(7b) 

where kx = 'l1r, kz = nrr, k 2 = k;, + k;, and m,n =. 
1,2,3, . . .. The corresponding eigenfunction takes the 
form 

where A, B, C are readily determined. One can show 
that R~opf is smallest in magnitude for n = 1. The 
integer mode number m = M, which minimizes R~opf, 
cannot be determined analytically, but will correspond 
to the integer lying closest to the real number m = M* 
satisfying dR~oPf/dm = O. Note that M '" M* '" O(L). 

The linear modes (8) have the following symmetry 
properties: 

(9) 

the crucial feature being that the first two modes of the 
system to become unstable (m, m + 1) will have opposite 
parity under reflections (either left-right or midplane). 
The justification for restricting attention in what follows 
to the interaction of these two modes is discussed in detail 
in [1]. 

C. The Illinhnal systeIll 

The goal now is to derive a set of amplitude equations 
governing the behavior of these first two critical modes 
near onset of the oscillatory instability. In theory, this 
could be done by first writing the fields 'l/J, (), ¢ as an ar
bitrary (infinite) sum of spatial modes, deriving a set of 
coupled modal equations, and then performing a center 
(or center-unstable) manifold reduction [14]. This proves 
inconvenient in practice, however. Instead, we make use 
of the fact that all modes will not contribute equally to 
the reduced center manifold equations. In particular, if 
the center manifold equations are to be truncated at or
der N, then only spatial modes that are of order N -1 or 
less will contribute to the truncated equations. For our 
purposes, since we wish to determine the center manifold 
equations only through cubic order, the relevant spatial 
modes can be determined as follows: first express the 
fields 'l/J, (), ¢ as a linear combination of the critical modes 
m, m + 1 (the vertical mode number will be n = 1 for 
both modes). The second order modes generated from 
the nonlinear interaction terms in equations (3a)-(3c), 
J( 'l/J, "\l2'l/J) , J( 'l/J, ()), J( 'l/J, ¢), are then determined. Only 
these modes need be retained for the modal expansion; 
all other modes can then be neglected. We find (cf. [15]) 

'l/J= arrt(t) sin (~11" x) sin(1I"z) + arrt+1(t) sin ((m ~ 1)11" x) sin(1I"z) 

+al (t) sin (zx ) sin(211"z) + a2rrt+1 (t) sin ( (2m; 1)11" x) sin(211"z), 

() = brn(t) cos (~7r x) sin(7rz) + brn+1(t) cos ((m ~ 1)7r x) sin(7rz) + bo(t) sin(211"z) + bl(t) cos (zx) sin(27rz) 

+b2rn+1(t) cos ((2m; 1)7r x) sin(27rz) 

( m7r ) . ((m + 1)11" ) . ¢=crn(t)cos LX sm(7rz)+crn+l(t)COS L x sm(7rz) 

+co(t) sin(27rz) + CI(t) cos (zx) sin(211"z) + C2rn+1(t) cos ((2m; 1)11" x) sin(27rz), 

(10) 

where am, brn , Crrt , arn+l, brrt+l , Crn+l, aI, b1 , Cll bo, Co, a27Tl+I, b2rrt + 1 , C2rn+l are the amplitudes for the relevant spatial 
modes. Note that, in contrast to the corresponding equations for an unbounded system [16,17], there are no terms 
representing mean flows and all the amplitudes are real. Substituting into the governing equations and neglecting all 
spatial harmonics not already included now yields a system of 14 coupled equations [15]: 
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dam = -a-a + LmRta- b _ LmR·~c 
dt m (L2 + m2)7r m (L2 + m 2)7r m 

(1 + 2m)( -3L2 + 2m + m 2)7r2 
+ 4L(L2 + m2) a71t+1 a1 + 

(3L2 + 2m + 3m2)7r2 

4L(L2 + m2) am+1 a2m+1, 

db71t m7r (L2 + m 2)7r2 
----a - b dt - L m L2 m 

7r 2 7r2 m7r2 (1+2m)7r2 b (1+2m)7r2 b 
+ 4L a2m+1bm+1 + 4L a=+l b2m+1 + -Ta71t bO + 4L a1 m+1 + --4L--am+1 1, 

dc= m7r (L2 + m 2 )7r 2 7 

dt = Lam - L2 Cm 

7r2 7r 2 m7r2 (1 + 2m)7r2 (1 + 2m)7r2 

+ 4L a2m+1 Cm+1 + 4L am+1C2m+1 + ---y;-amCO + 4L a1 Cm+1 + 4L am+1 C1, 

dam+1 L(m + I)Rt a- b . L(m + I)Rsa- c 
-dt = -a-am+1 + m+1 - m+1 

(L2+m2+2m+l)7r (L2+m2+2m+l)7r 

(1 + 2m)(3L2 - m 2 + 1)7r2 (3L2 + 3m2 + 4m + 1)7r2 

+ 4L(L2 + m 2 + 2m + 1) ama1 + 4L(L2 + m 2 + 2m + 1) a71t a2m+1, 

dbm+1 _ (m + 1)7r _ (L2 + m 2 + 2m + 1)7r2 b 
dt - L am+1 L2 m+1 

7r 2 7r2 (m + 1) 7r 2 b 
- 4L a271t+1 bm - 4L am b2m+1 + L am+1 0 

dCm +1 (m + 1)7r (L2 + m 2 + 2m + 1)7r2 7 

~ = L arn+1 - L2 Cm +1 

7r2 7r 2 (m + 1)7r2 
- 4L a2m+1 Cm - 4iamC2rn+1 + L a=+l cO -

da1 _ -a-a _ (1 + 2m)27r2 a a . _ LR.a- C LRta- b 
dt - 1 4L(1 + 4L2) m m+1 (1 + 4L2)7r 1 + (1 + 4L2)7r 1, 

db1 _ ~a _ (1 + 4L2)7r 2 b _ (1 + 2m)7r2 a b _ (1 + 2m)7r2 b 
dt - L 1 L2 1 4L m+1 m 4L a= m+l, (11) 

dC1 7r (1 + 4L2)7r27 (1 + 2m)7rz (1 + 2m)7r 2 

-dt = L a1 - L2 C1 - - 4L am +1 Crn - 4L a=c=+l, 

da2m+1 L(1 + 2m)Rt a- b 
~ = -a-aZm+1 + (4L2 + 4m2 + 4m + 1)7r 2m+1-

L(1 + 2m)Rs a-

(1 + 2m)7r2 

+ 4L(4L2 + 4m2 + 4m + 1) ama71t +1, 

db2m+1 (1 + 2m)7r (4L2+4m2+4m+l)7r2 7r2 7r2 

~ = L a271t+1 - L2 b2m+1 - 4iam+1brn + 4L am brn+1' 

dC2Tn+1 (1 + 2m)7r (4L2 + 4m2 + 4m + 1)7r27 7r2 7r2 
~ = L a2m+1 - L2 C2=+1 - 4L a=+lCm + 4L amC=+l, 

dbo 2 m7r2 (m + 1)7r2 
dt = -47r bo - 2L a=bm - 2L aTn +1 brn+1, 

These equations constitute the minimal system for the present problem; cf. [17]. 
Note first that, since m ~ O(L) and L is large, several of the terms in these equations will not contribute significantly. 

Second, observe that the equations are equivariant under the reflection symmetries 11:1,11:2, whose group actions now 
take the form 

11:1 : [am, b=, Cm, a=+l, bm+1, Cm+1, aI, b1, C1, a2=+b b2=+1, C2m+1, bo, col 
-+ [( --I) 71t a71t , (-1)rnb71t, (-I) rn cm , (-I)71t+l a71t+1, (_I)'n+l b71t+1 , 

(-I)71t+1 C71t+1, -aI, -b1, -C1, -a2=+1, -bZ71t+1, -C2rn+1, bo, col 
(12a) 
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1\;2 : [atn , btn , Cm, am+ll bm+ll Cm+ll all bll Cll a2tn+l, b2m+ll C2m+ll bo, co] 
---+ [( _l)m+1a ... , (_l)m+1b ... , (_l)m+1 c ... , (_l)mam +ll (-l)"'b ... +ll (12b) 

('-:l)mCtn+ll -all -bll -cll-a2m+ll -b2'111+11 -C2m+l, bo, co]. 

Lastly, if Eqs. (11) are linearized about the origin (Le., 
about the trivial conducting solution), then the groups 
of modes indexed by m, m + 1, 1, 2m + 1, 0 decouple from 
one another. For example, the linearized equations for 
mode mare 

One may verify that the above Jacobian matrix has a 
pure imaginary pair of eigenvalues ±in... precisely for 
R t = R~opf given in (7a). Similar expressions, obtained 
by replacing m by m + 1, hold for mode m + 1. 

D. Center-unstable manifold reduction 

We wish to perform, following [14], a center (-unstable) 
manifold reduction for R t close to the critical Rayleigh 
number for the second mode to go unstable. To do so, 
we first put the system into Jordan canonical form. Let 
8m, (} ... , Am denote the eigenvalues of the linear matrix in 
(13), and 8'111+1, (}m+ll A'111+1 be the corresponding eigen
values associated with mode m+ 1. For both modes, since 
R t is close to its critical value for an oscillatory instabil
ity, we have 8m, 8711+1 ~ in. These relations are only 
approximate, however, since the two modes do not bifur
cate simultaneously. Thus when the second mode loses 
stability the nearly pure imaginary eigenvalue of the first 
will in general have a small positive real part. This setup 
forms the basis of the center-unstable manifold reduc
tion to follow. The remaining eigenvalues, A ... , A ... +b are 
strictly negative, and are given by 

A'111 = -[u + 7r2(1 + T)(m2 + L2)/L2], 

with A711+1 obtained by replacing m by m + 1. 
We next define new coordinates (zm' zm, qm) by 

( ;:) = (~~: ~~: ~~:) (;:) , 
Cm C6", CSm C)"m qm 

(14) 

(15) 

where the transformation elements (A6"" ... , C),. ... ) are 
defined as follows: 

BUm = 7rm/L 

C _ 7rRt m 
u", - RsL 

(16a) 

(16b) 

7r(u + u ... )(L2 + m 2)[7r2(L2 + m 2) + L 2u711] 

(16c) 

Similar expressions, obtained by replacing m by m + 1, 
define (Z'111+b Zm+b q'111+d. The inverse transformation 
corresponding to (15) will be denoted by 

(
A- l A-I A_I) 6", Sm ),.'" 

B-1 B-1 B-1 
6m S... ),.m .• 

C- l C~1 C- l 
6", 6", ),.m 

(17) 

The transformation (17) diagonalizes to lowest order the 
equations for the critical linear modes, yielding 

d;: = 8 ... z.,. + (higher-order terms) , (18a) 

dZm +l ;: ( • ) ( ) ~ = Um+lZ711+l + hIgher-order terms, 18b 

along with the equations for the slaved modes 

d~: = A'111q'111 + (higher-order terms) , 

dq~+1 = Am +lqm+1 + (higher-order terms) 

(19a) 

(19b) 

(in addition to the 8 other slaved modes ~, ... , ~ ). 
Using symmetry considerations [see (12a)-(12b)] the 
center-unstable manifold can now be written (through 
quadratic order) as 

qm =0, 
qm+l = 0, 
al = 0IZ ... Z ... +1 + 02ZmZm+l + c.c., 
bl = f31zmZm+l + f32Z ... Zm+l + c.c., 
Cl = 1'IZ711Z711+l + 1'2ZmZm+l + c.c., 
a2711+l = 03Z711 Z ... +1 + 04ZmZm+l + c.c., 
b2m+l = f33Z711Zm+l + f34Z711Ztn+l + c.c., 
C2711+l = 1'3Z711 Zm+l + 1'4ZmZm+l + c.c., 

bo = f3sIZ71112 + f3aIZm+112 + {f3rz;' + f3SZ;'+1 + c.c.}, 

Co = l'slZ711l 2 + l'al Zm+11 2 + {')'rz;' + l'SZ;'+1 + c.c.}. 

(20) 

Substituting these equations into the equations of motion 
allows one to find explicitly the center-unstable equa
tions for the critical modes (z ... , Z711+ 1). The resulting 
equations are necessarily equivariant under both reflec
tion symmetries of the original system. These symme
tries now take the form Zm ---+ -Z711 and Ztn+l ---+ -Zm+l. 
(Note that these are both exact symmetries ofthe system, 
but even if the midplane reflection symmetry is absent, 
it will "reappear" as a normal form symmetry.) The 
center-unstable equations can now be put into normal 
form. These calculations are quite lengthy and we do 
not reproduce them here. The final result is equations of 
the form (la) and (lb) where 
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Kl ~ K~ ~ HI + 2H2, 

K2 ~ K~ ~ HI + 3H2, 

K3 ~ K~ ~ HI + H 2· 

The quantities HI, H2 are given by 

_ 11.4 m 2 IA6~ 12 B6~ -1 

H 1 =-4" L2 in+2rr2 Ad~ 
_rr4 m2IA8~12C8~ A-I 

4 L2 in + 2rr2T Am' 

rr2 m 2 
H2 == -16 L2 (A8~B8m + AdmB 8",)A8mA i: 

(21a) 

(21b) 

(21c) 

(22a) 

rr2 m 2 

-16T L2 (A8~ Cd", + Ad", C8",)A8~AA~' (22b) 

In Eqs. (21a)-(21c) and (22a) and (22b) only the leading 
order terms have been included; by explicit computation 
these are all of 0(1) in the limit L -+ 00. The O(I/L) 
corrections to these coefficients have been calculated, but 
are not presented here (though they are included in the 
numerical simulations that follow). 

We mention one remarkable feature of the normal form 
coefficients. The quantity H2 turns out to be purely 
imaginary, and hence the real parts of all the nonlin
ear coefficients are equal [to within O(I/L)]! As a re
sult the coefficients violate the nondegeneracy condition 
ReKI #ReK2 required ofthe D 4-symmetric problem (as
suming IHI12 + 2HIiH2i < 0). When this condition fails 
the even parity standing wave in the D4-symmetric prob
lem has a pair of purely imaginary eigenvalues and con
sequently the system is highly sensitive to perturbations, 
be they higher order terms or ones that break the D4 
symmetry. We speculate that this degeneracy might be 
related to the fact that for doubly diffusive convection in 
an unbounded system, the amplitude of the pure travel
ing wave solutions grows as (Rt - R~opf) l instead of the 
usual (Rt - R~opf)~, owing to a degeneracy in a cubic 
normal form coefficient [6,13,17]. A second possibility is 
that it is associated with the particularly simple nature 
of the linear spatial eigenfunctions for this problem (due 
to the form of the boundary conditions). 

III. NUMERICAL RESULTS 

We briefly mention some results from numerical inves
tigation of these normal form equations. Our choice of 
system parameter values is based on the experiments of 
Predtechensky et ai. [6,18]. We therefore looked at two 

In interpreting the figures one must bear in mind that 'I/J 
is a pseudoscalar under reflection. Consequently an odd 
parity 'I/J describes an even mode and vice versa, as seen, 
for example, from the physical fields fJ, ¢. Thus Fig. l(a), 

cases: Case 1: T = 0.31, u = 1.3 X 105 , Rs = 139, L = 20; 
case 2: T = 0.63, u = 1.3 X 105 , Rs = 139, L = 20. For 
each case we varied R t over a range of values. In the 
simulations reported below all O(I/L) corrections to the 
normal form coefficients (21a)-(21c) were retained. Only 
bifurcations leading to stable solutions are discussed. 

Several comments are in order. First note that, since 
the Prandtl number is quite large, the mode number m 
that first goes unstable through an oscillatory bifurca
tion is m ~ L. The corresponding critical value of the 
Rayleigh number is R t ~ Rs + 4rr2(1 + T). Since the 
critical Rayleigh number for a steady state bifurcation 
is 4rr2 + Rs/T, the oscillatory instability will set in first 
provided 

4rr2T2 
R s >--· I-T 

In case 1 the first mode to bifurcate from the origin 
has a critical Rayleigh number of 190.705 and wave num
ber m = 20; the second mode (m = 21) bifurcates at 
R t = 190.827. At R t = 190.84, a stable standing wave 
solution (Z20'0) is present; an unstable standing wave 
(0, Z21) exists as well. At Rt ~ 193.2, two pairs of (sta
ble/unstable) nonsymmetric stationary solutions of the 
form (Z20' Z2t}, Z20Z21 # 0, appear through a saddle-node 
bifurcation. As discussed in [1], solutions of this type 
have a variety of appearances, depending on the precise 
values of the real and imaginary parts of Z20, Z21, but 
they all exhibit some propagative dynamics. Although 
in the following we refer to these collectively as traveling 
waves it is possible to distinguish two types of such waves, 
those that approach a pure traveling wave at large am
plitude (zm -+ ±Zm+l) and those that approach a mixed 
parity standing wave (zm -+ ±izm+l)' The stable trav
eling waves created at the saddle-node bifurcation are of 
the latter type. Our theory also contains traveling waves 
of the former type but these are unstable, in contrast 
to the Ginzburg-Landau prediction of stable (pure) trav
eling waves at large amplitude [6]. As R t is increased 
beyond R t ~ 193.2, the unstable traveling waves created 
in the saddle-node bifurcation migrate towards the still
stable standing wave, eventually colliding with it in a 
sub critical pitchfork bifurcation at R t ~ 193.3. There
after only the stable traveling waves remain. Thus in the 
narrow interval [193.2, 193.3] both standing and traveling 
waves are stable, while for larger values of R t only the 
traveling waves are stable. In Figs. 1 and 2 we show the 
oscillations of the stream function 'I/J(x, z, t) for each of 
these states based on the representation (10) 

obtained for case 1, shows an example of an even parity 
standing wave (m = 20), while Fig. l(b) shows an odd 
parity standing wave (m = 21). These modes are the 
two primary modes of the system. Figure 2 shows the 
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FIG. 1. Stable pure parity 
standing waves for case 1, with 

R t = 193.264, in the stream 
function representation. Each 
wave is depicted for one oscil
lation period. (a) The m = 20 
mode with amplitude 2.155; (b) 
the m = 21 mode with ampli
tude 2.139. The velocity field 
(u,w) == (-'l/Jz,'I/J",) correspond
ing to (a) is even under reflec
tion, but odd in (b). 
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mixed parity stream function characteristic of the trav
eling wave created at R t ~ 193.2. 

In case 2, the first mode (m = 20) goes unstable at 
R t ~ 203.348, the second (m = 21) at 203.501. At 
R t = 203.363, a stable standing wave solution is found. 
This solution persists for a range of Rayleigh numbers, 
but becomes unstable at R t ~ 205.70 in a supercrit
ical pitchfork bifurcation that produces a pair of sta
ble traveling wave solutions. These solutions also ap
proach a mixed parity standing wave at large amplitude 
(cf. Fig. 2). In neither of the cases examined have we 
found stable two-frequency "blinking" states of the type 
observed in the experiments. We also did not find any 

15 20 

15 20 

of the more exotic behavior, including period doublings, 
repeated transients, and chaotic behavior seen in exper
iments on binary fluid convection [7,8] and in numerical 
simulation of related partial differential equation [9,10]' 
even though Eqs. (la) and (lb) do allow for such phe
nomena [1]. 

IV. DISCUSSION 

In this paper we have presented a detailed derivation 
of the amplitude equations describing the onset of an os
cillatory instability in a large aspect ratio continuum sys
tem. In contrast to earlier attempts to derive such equa-
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tions as perturbations of the coupled Ginzburg-Landau 
equations describing the nonlinear interaction of left- and 
right-traveling waves in an unbounded system, we have 
considered the corresponding instability in a finite do
main, and then specialized to the large aspect ratio limit. 
The resulting Eqs. (2a) and (2b), appropriate to this 
limit, contain additional nonlinear terms with 0(1) coef
ficients and hence do not constitute a small perturbation 
of the Ginzburg-Landau equations. The calculations of 
this paper thus provide an explicit verification of the con
clusions of Ref. [1]. Although both approaches are able 
to describe qualitatively the type of dynamics that have 
been observed in experiments and in numerical simula
tions, we believe that only the approach adopted in this 
paper can ultimately be used to produce quantitative pre
dictions for the experiments. 

In this respect the direct comparison between the the
oretical predictions made here on the basis of the normal 
form equations (la) and (lb) and the actual experimen
tal observations is disappointing. For example, in the 
experiments the observed traveling waves always eventu
ally evolve into a large-amplitude "blinking state." We 
do not find such stable, two-frequency (modulated) waves 
in the relevant parameter ranges in our numerical integra
tion of the normal form equations (although we have ob
served modulated wavelike behavior in the form of long
lasting transients). Such differences are not unexpected 
at this stage, however, since our simplified starting model 
(3a)-(3c) does not incorporate several physical features 
that are present (to varying degrees) in the actual ex
periments. First, the model assumes an ideal Hele-Shaw 
geometry. However, in the experiments the actual ratio 
of the thickness (w) of the layer to its height (d) was not 
zero, but instead ranged from 0.254 to 0.069. The effect 
of finite w / d could be investigated by introducing a mod
ified viscosity term in Eqs. (3a)-(3c), but we have not 

15 20 

FIG. 2. Stable traveling 
wave for case 1 with R t = 
193.264, shown for one oscilla
tion period. 

done so. In addition to changing the computed values of 
the normal form coefficients such a term would also affect 
the appearance of the spatial wave forms. Second, cross
diffusion terms have not been included in the model. It is 
suspected [18] that in the experiments of Predtechensky 
et al. [6] the off-diagonal elements in the diffusion ma
trix can be as large as 10% of the diagonal one, and hence 
should not be neglected. Third, the degree to which the 
aspect ratio of the experimental system (L = 20) can 
be considered large (in an asymptotic sense) is unclear. 
Finally, as already mentioned, the potential degeneracy 
in the coefficients (22a) and (22b) suggests that in this 
problem the bifurcation behavior may not be completely 
determined by the third-order truncation of the normal 
form equations. We surmise that with the inclusion of 
the above effects, the normal form equations (la) and 
(lb) could describe "blinking states" for the exact exper
imental parameters; such states are known to be present 
in Eqs. (la) and (lb) in the absence of degeneracies [1]. 
In fact, based on our analytical results in the weakly non
linear regime, we are in a position to postulate that the 
aforementioned effects, which are typically considered to 
be of only secondary importance, do indeed play an im
portant role in the experiments of Predtechensky et al. 
[6]. 

In this connection we mention that the modal trunca
tion (11) could provide a good model of the dynamics 
arising from the interaction between the even and odd 
modes even for parameters substantially far from those 
considered here. In particular this should be so for finite 
(or even moderate) aspect ratios, such as those employed 
in the experiments, for which the first two modes set 
in at substantially different Rayleigh numbers and con
sequently their interaction occurs at larger amplitudes. 
Moreover, the usefulness of Eqs. (11) should extend well 
into the Rayleigh number regime in which additional 
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modes are unstable, provided only that there are no sec
ondary instabilities involving these modes. That this can 
be the case is demonstrated in Ref. [19] for a steady state 
instability in a finite domain. Although not exact, models 
of this type have proved in the past to be a valuable guide 
to both the experiments and to the interpretation of sim
ulations of the full partial differential equations [20]. In 
particular the simulations by Jacqmin and Heminger [10] 
of closely related partial differential equations suggest 
that much of the behavior of interest involves a small 
number of spatial modes even relatively far above on-
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