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Its polytope is the 3-cube. As we can then see, this variety has eight torus
invariant points, and 12 torus invariant lines. The corresponding numbers
for P3 are four and six. Thus, there are 333,327,704,320 possible iterated
blowup configurations of this space, as compared to 31,312. This is the
single biggest hurdle to completing an exhaustive analysis of P1×P1×P1,
and renders this approach computationally intractable. In Chapter 7 we
discuss the beginnings of a taxonomical study of the toric symmetry of
P1×P1×P1.

3.2.2 Toric Symmetry of P2

The same algorithm used in the Section 3.2 can be used in lower dimension.
The polytope of P2, as discussed previously, is a triangle. An exhaustive
study of the toric symmetry of P2 and its blowups yields the following
theorem.

Theorem 40. The Cremona transformation induced by reflection through the ori-
gin on the two-dimensional permutohedral variety is (up to composition with iso-
morphisms) the only nontrivial toric symmetry of a blowup of P2.

The Cremona transform in P2 was studied by Göttsche and Pandhari-
pande (1998). This map sends degree one curves in P2 to conics, and can be
used to provide an elegant Gromov–Witten theoretic proof of the existence
of precisely one conic through five generic points in the projective plane.

3.3 The Computational Setup

In Section 3.2, we computationally analysed the nontrivial toric symmetries
of blowups of CP3. This computation was carried out using SAGE, an
open source computer algebra system. SAGE now has an extensive toric
geometry package that has been developed, but our computational setup
was created before the implementation of this package. In the following
sections we will describe the important aspects of the setup.

3.3.1 Representing Toric Varieties

Given a toric variety X we represent it in SAGE via its fan ΣX. The toric
varieties relevant to this project are CP3 and its blowups, and as a result
are smooth, complete, normal, and projective. Since the fans are complete,
we need to store only the primitive generators of the one-skeleton and the
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highest dimensional cones. Lower dimensional cones can then be gener-
ated by intersecting the higher dimensional cones. Cones themselves were
stored as triples σijk = (vi, vj, vk), where vi, vj, and vk generate the cone σijk.
Thus a toric variety is represented as a pair (P, G), where P was a list of the
generators of the one-skeleton, and G was a list of triples, each representing
a three-dimensional cone.

3.3.2 Computing Toric Blowups

The blowup function takes in a toric variety, along with a locus of torus fixed
points and lines. These points and lines are each given by a cone whose
dimension is equal to the codimension of the variety. Recall that the cone is
stored in terms of its generators. The function works differently for points
and lines.

Points Given a point p corresponding to the cone σ = (vi, vj, vk), the func-
tion first removes σ from ΣX and introduces a new element vijk =
vi + vj + vk into the one-skeleton. It then introduces top dimensional
cones from the subdivision of σ by the introduction of vijk.

Lines In this case there is an additional step. Since any two-dimensional
cone is a common face of two three-dimensional cones, these higher
dimensional cones are also subdivided by the same algorithm.

3.3.3 Finding Aut(ΣX)

Given a matrix M ∈ GL(3, Z), M acts on Z3 and hence the cones of ΣX.
Such a matrix M is an automorphism of ΣX if it permutes the cones of ΣX.
Thus, given a matrix M, we act on the representation of the toric variety, on
each of the primitive and maximal cones. If M permutes these cones, we
flag M as a toric symmetry. Using the observation described in Section 35,
we reduce the automorphism group of ΣX to a subgroup of GL(3, Z3). This
is a finite group in the SAGE libraries, and we can simply scan through the
elements of GL(3, Z3), flagging and collecting each toric symmetry

3.3.4 Characterizing Nontrivial Toric Symmetries

Given a toric symmetry M in matrix form, we use a dictionary between
the primitive generators of the one-skeleton and their indices to identify
an element of the symmetric group that acts on the indices of {vi}. That is
we have the correspondence v1 ↔ (−1,−1,−1), v2 ↔ (1, 0, 0), and so on.
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Given:

• The set of possible torus fixed subvarieties to blow up:
{p123, p124, p134, p234, `12, `13, `14, `23, `24, `34}.

• The primitive generators associated with each index:
v1 = (−1,−1,−1), v2 = (1, 0, 0), v3 = (0, 1, 0), v4 = (0, 0, 1).

Algorithm:

• Collect the loci for all possible toric blowups of P3:

◦ Collect all ordered collections of torus invariant subvarieties—
points first (if any), followed by lines (if any). This leaves 31, 312
collections of interest.

◦ If any two collections are equivalent up to relabeling of the fan
of P3, remove one; their blowups are isomorphic. This leaves
1319 distinct toric blowups.

• For each toric blowup, find all nontrivial toric symmetries:

◦ Generate the blowup space sequentially by subdividing the fan,
as in Chapter 2, for each object in the blowup configuration.

◦ For each element M in GL(F3), check that M maps the set of
primitives to itself. If it does, collect M as a potential symmetry,
and record the permutation gM of the primitive generators.

◦ Check if gM maps the maximal cones to themselves. If it does,
record M as a toric symmetry.

◦ Check if gM is a nontrivial symmetry using Definition 34.

Figure 3.5 The computational technique by which we exhausted all possible
toric symmetries of sequential toric blowups of P3.

Once we have a permutation representation τM of M, we simply check to
see if there is an exchange between each set of one-skeleton elements that
correspond to the various types of divisors described in Definition 34.



Chapter 4

Gromov–Witten Theory

In this chapter we will review the rudiments of Gromov–Witten theory. We
will not treat many of the technical details concerning the construction of
these invariants and the virtual class of moduli space, but we will supply
sufficient details and motivation to familiarize the reader with the subject.
The axiomatic description in the following section should be sufficient for
the reader to be able to understand the results section of this thesis.

4.1 The Idea Behind Gromov–Witten Theory

In ideal cases, Gromov–Witten invariants count the number of curves in
a smooth variety X of given genus g and of a given curve class β, with
specified tangency conditions. Tangency conditions are prescribed by the
data of cohomology classes γi dual to the subvarieties tangent to the curve.
All of this data is usually denoted

〈γ1, . . . , γn〉Xg,β.

Axiomatically, we simply describe the following data to be a rational num-
ber that gives a virtual or quantum count of the curves satisfying the input
data.

The fundamental idea behind Gromov–Witten theory is to probe the
geometry of the target X, using maps from an abstract complex algebraic
curve, whose fundamental class pushes forward to the target class β. To
do this, we form a moduli space of all stable maps f from smooth genus g
curves C representing curve class β. If there are tangency conditions, the
curve C has marked points. That is, we consider the space of isomorphism



36 Gromov–Witten Theory

classes of maps from a curve with n-marked points (C, p1, . . . , pn) to X,
where n is the desired number of tangency conditions,

f : C → X, f?[C] = β, f (pi) ∈ γi.

Two such maps are isomorphic if there is a reparametrization of the do-
main, compatible with the marked points, that takes one map to another.
In other words, points of the moduli space are isomorphism classes of the
maps described above.

This move to consider maps from abstract curves with marked points,
rather than embedded curves with tangencies, was made by Kontsevich,
and is consistent with the notion of nonlinear sigma models. The origins of
these ideas are intricately tied with notions of two-dimensional quantum
field theory coupled to gravity. We denote this moduli space Mg,n(X, β).
In general, there are many obstructions to forming a well behaved moduli
space. Intuitively this is due to the fact that curves may have nontrivial
automorphism groups, and thus points in the moduli space have nontrivial
automorphisms. In general, algebraic stacks provide the right framework
to deal with these difficulties, although the geometry of stacks is formidable
and will largely remain untreated in this document. The condition that the
automorphism group of any point is finite is the key to the definition of
stability.

Finally, we will usually want compactify the moduli space to form the
space Mg,n(X, β). To do this we will allow curves that have (at worst) nodal
singularities, since these can arise as limits of smooth curves. The compact-
ification using this approach space is due to Kontsevich and was central
to the development of the theory. This moduli space is often called the
Kontsevich moduli space of stable maps. Among the many sources for the
beautiful theory are the two books: Hori et al. (2003) and Cox and Katz
(1999).

4.2 Defining Gromov–Witten Invariants

We now begin our exploration stability and stable maps, a key ingredients
of Gromov–Witten theory. We explicitly describe stability conditions on
rational maps from trees to projective space targets, before dealing with
the general case.
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4.2.1 What is a Stable Map?

The points of the moduli space Mg,n(X, β) can often have nontrivial au-
tomorphism groups, as described above. Stability, in this context, is the
condition that this automorphism group is finite. This condition is neces-
sary for the moduli space to have desirable properties. The Gromov–Witten
theoretic moduli spaces are smooth Deligne–Mumford stacks.

The notion of stability can be intuitively understood by considering P1.
Recall that P1 is topologically the Riemann sphere. Consider as a thought
experiment, the automorphism group of a sphere fixing different numbers
of points. It is easy to see that if there are no fixed points, the sphere has in-
finitely many automorphisms. Also notice that fixing one, or two points on
the sphere, there are still infinitely many automorphisms. However, if we
fix three points, the sphere has trivial automorphism group. The spheres
with zero, one, and two fixed points are unstable, while the sphere with
three fixed points is stable. The general conditions described in Defini-
tion 49 impose a similar stability conditions on the domain curve C, to en-
sure that the map to X is stable.

4.2.2 Stability: Genus-0 Maps from Trees of P1’s to Pn

Before considering the general case of a genus g curve and arbitrary target,
we will first introduce the notion of a genus zero stable map to Pn through
the following examples and definitions. Rather than developing the theory
of algebraic curves, we streamline the treatment as is done by Katz (2006).

A tree of P1’s, defined in Definition 41, is roughly an algebraic curve ob-
tained from finite collections of P1’s, by gluing them together in a manner
that doesn’t introduce cycles. Construct a curve C from C1, . . . , Cn, each be-
ing isomorphic to P1 and a collection of points {pj, qj}where pj ∈ Ck(j) and
qj ∈ C′l(j) for some indexes k(j) 6= l(j). The curve C is obtained by identify-
ing pj and qj. Each Ci is called a component. The points where components
are glued together are called nodes. Now, the no-cycles condition is as fol-
lows. Form the dual graph GC of C by representing each Ci by a vertex, and
introduce an edge between vertices Ci and Cj if they share a node. C has no
cycles if and only if GC has no cycles as a graph.

Definition 41. A tree of P1’s is a curve C which is the union of copies of P1’s
glued along pairs of points, such that GC is a graph theoretic tree.

Some concrete examples of trees can be obtained as follows.
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Example 42. Consider a line pair C ⊂ P2 defined by the vanishing of the homo-
geneous polynomial p(x0, x1, x2) = x1x2. It is clear that this is the union of the
two lines x1 = 0 and x2 = 0. A tree is obtained by gluing at (1 : 0 : 0).

Example 43. The union of three lines in P2 defined by the vanishing of the poly-
nomial p(x0, x1, x2) = x0x1x2 is not a tree due to the presence of cycles. For
instance, there is a cycle going from (1 : 0 : 0) to (0 : 1 : 0), to (0 : 0 : 1), and
back to (1 : 0 : 0).

We now introduce, in this specific case, the concept of a morphism from
a tree C = ∪Ci to Pn.

Definition 44. Let C = ∪Ci be a tree of P1’s with parametrizations φi : P1 → Ci.
A morphism f : C → Pn is a mapping such that each

fi = f ◦ φi : P1 → Pn

is a parametrized rational curve or a constant map. The degree of f is the sum of
those of fi.

Example 45. Let C = P1 with parametrization the identity. Let f be the embed-
ding of a line into Pn:

f (x0, x1) = (x0 : x1 : 0, . . . : 0).

f is a morphism of degree one. The map g : C → Pn defined by

g(x0, x1) = (x2
0 : x2

1 : 0 : . . . : 0)

is a morphism of degree two.

We now have the ingredients necessary to define a stable map.

Definition 46. A genus zero stable map to Pn is a morphism

f : C → Pn

from a tree C such that if f is constant when restricted to a component Ci then Ci
is required to contain at least three nodes of C.

To form our moduli space, we need isomorphism classes of stable maps.
An isomorphism of stable maps is defined below.

Definition 47. Let f : C → Pn and f ′ : C′ → Pn be two genus zero stable
maps with components parametrized by φi : P1 → Ci and φ′i : P1 → C′i . An
isomorphism from f to f ′ is a map g : C → C of domain curves, such that the
following conditions hold:
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• f ′ ◦ g = f .

• For each Ci we have f (Ci) = C′j for some j and this correspondence between
i and j is unique.

• φ′−1
j ◦ g ◦ φi : P1 → P1 is a degree one parametrized rational curve when-

ever g(Ci) ⊂ C′j.

With this machinery, we can now define M0,0(Pn, β). Note that β ∈
H2(Pn) = Z.

Definition 48. The moduli space of stable maps M0,0(Pn, d) is the set of all
isomorphism classes of degree d genus zero stable maps to Pn

4.2.3 Stability: General Case

We now turn our attention to the general case. The stability conditions on
maps from an arbitrary genus curve C to a target X are analogous to the sta-
bility conditions discussed previously. The points of Mg,n(X, β) are triples
(C, {pi}, f ) where C is a genus g complex curve with n distinct nonsingular
marked points p1, . . . , pn and f a map C → X such that f?[C] = β. A stable
map is then defined as follows.

Definition 49. An n-pointed stable map consists of a connected domain curve
with marked points (C, {pi}) and a morphism f : C → X satisfying the following
properties,

1. The only singularities of C are ordinary double points.

2. p1, . . . , pn are distinct ordered nonsingular points of C.

3. If Ci is a component of C, such that Ci
∼= P1, then Ci contains at least three

special points (marked or nodal).

4. If C has arithmetic genus one and n = 0 (i.e., C is elliptic) then f is non-
constant.

Given the first two conditions, the final two conditions are equivalent to
ensuring that the data (C, {pi}, f ) has a finite automorphism group. For the
informed reader familiar with Mg,n the moduli space of stable curves, no-
tice the difference between this notion of stability and the Deligne–Mumford
stability of curves: for a stable map, only components which contract to a
point need to be stable in the sense of stability of curves.
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4.2.4 Fundamental Classes and The Virtual Class

Intuitively, for an smooth orientable manifold M, the fundamental class
corresponds to the homology class of “the whole manifold.” That is, it is
generally the class that generates H2n(X) for a 2n real dimensional mani-
fold. Pairing cohomology classes with this fundamental class can be seen
as an abstract form of integration on this space. In fact if the cohomol-
ogy theory is the de Rham cohomology, this is the standard Riemann in-
tegral. However, if the space is not smooth, or not orientable, the funda-
mental class cannot be defined. That is there is no class that corresponds
to the “whole space.” In general the space Mg,n(X, β) is badly behaved—
extremely singular, not connected, and even nonequidimensional. Thus
there is usually no fundamental class that can be defined except for special
cases such as projective spaces in genus zero. The moduli space usually has
components of higher than expected dimension. However via deformation
theory, the moduli space can be shown to have a perfect obstruction theory.
This obstruction theory can then be used to construct a virtual fundamental
class which behaves much like a fundamental class, and has the expected
dimension. Gromov–Witten invariants are defined by integration against
this virtual fundamental class. We cannot go into the construction in this
manuscript, but it is important to note the existence of such a class. In par-
ticular, the virtual class has degree

vdim Mg,n(X, β) = (dim X− 3)(1− g)− KX · β + n.

Here KX is the canonical class of the target space X. There are only a few
cases where the moduli space admits a fundamental class. In such cases,
the moduli space is said to be homogeneous. For example, for target pro-
jective spaces, with no insertions in genus zero, the moduli space turns out
to be a smooth complex orbifold, which admits a fundamental class. How-
ever, even blowing up at a single point in Pn, the moduli spaces are no
longer orbifold, and a virtual class argument is necessary.

4.2.5 Evaluation Morphisms

Notice that the classes γi are classes on the target space X. Thus, we need
a way to pullback classes from the target space, to the moduli space. The
way this is done is by pulling back via evaluation maps from Mg,n(X, β)
to X. Observe that our maps f : C → X can be evaluated on the marked
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points. Thus, for every map f ∈ Mg,n(X, β), we have

evi : Mg,n(X, β) → X
f 7→ f (pi).

The evaluation morphisms give us a way to a way to pull cohomology
classes back from X to the moduli stack. Finally, we have a definition for a
(primary) Gromov–Witten invariant:

〈γ1, . . . , γn〉Xg,β =
∫
[Mg,n(X,β)]vir

n∧
i=1

ev?
i (γi).

The class
∧n

i=1 ev?
i (γi) is sometimes referred to as the Gromov–Witten class.

Notice that the Gromov–Witten invariant is zero if the sum of the degrees
of the sum of the degrees of the inserted cohomology classes is not equal to
the degree of the virtual class. In particular this means that if we consider
classes without insertions, known as virtual dimension zero or Calabi–Yau
classes,

〈 〉Xg,β =
∫
[Mg,n(X,β)]vir

1.

We can deduce from the dimension formula that −KX · β = 0.

4.3 Gromov–Witten Theory of Blowups at Points

In general, if π : X̂ → X is a blowup of X, there need not be any meaningful
relationship between the invariants of X and X̂. In particular, observe that
the canonical class of X̂ is not the pullback of the canonical class of X,

π?KX 6= KX̂.

In fact, via adjunction, we know that if we blowup a dimension k subman-
ifold Z ⊂ X, then

KX̂ = π?KX + (n− k− 1)E,

where E is the class of the projectivization of the normal bundle of Z in X,
P(NZ/X). The dimension of the virtual class is dependent on the canonical
class, which explicitly tells us that certain invariants are zero, when the
degree of the integrand is not equal to the virtual dimension. The main
result of this thesis follows from a proof that if we can “stay away” from
the locus of the blowup, then these issues are overcome.
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The blowup of the target variety at points turns out to be a more inter-
esting case than the general blowup. In such a case, statements can be made
about certain invariants of classes that pass through the exceptional locus,
namely the points. This problem was first studied by Gathmann for projec-
tive space. A more general case was proved by Bryan and Leung (2000), by
explicitly proving statements about the virtual class of the moduli stacks.
Their results allows us to trade point insertions in the base space, with ex-
ceptional classes in the homology class in the blowup. More formally,

Lemma 50 (Bryan and Leung (2000)). Let Y be a smooth algebraic variety and
p : Ŷ → Y the blowup of Y at a point. Let β ∈ A1(Y) and β̂ = p!(β). Then we
have the equality of invariants,

〈pt〉Yg,β = 〈 〉Ŷg,β̂−ê.

Here ê is the class of a line above the exceptional locus, and p!(β) = [p?[β]PD]PD.

Here PD denotes the Poincare duality.
Invariants where the insertions are only classes of points, where the

total degree of the insertions is zero, are sometimes known as stationary
invariants. Let X be the blowup of P3 at two points p1 and p2. Then from
Lemma 50, we get the following equality of invariants

〈pt, pt〉P3

0,h = 〈 〉X0,h−e1−e2
= 1.

In fact the invariant on the left corresponds to the class of a line through two
points in P3, of which there is precisely one. Using this result of Bryan and
Leung, we may use Theorem 3 to make statements about the stationary in-
variants on the base spaces and recover enumerative results. In Section 5.4,
we will explicitly use this technique.

4.4 A Note on Donaldson–Thomas Theory

Another modern approach to studying enumerative geometry, is through
Donaldson–Thomas theory (DT) and the closely related Pandharipande–
Thomas theory of stable pairs (PT). Though we will not present proofs of
our main results in these contexts, there are powerful duality theorems be-
tween the Gromov–Witten and Donaldson–Thomas theories. This includes
a proof of duality in the case of toric-threefolds. Although our results are
not proved in the Donaldson–Thomas setting, there is reason to suspect
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that they are true, including an overarching Gromov–Witten Donaldson–
Thomas duality, conjectured by Maulik, Okounkov, Nekrasov and Pand-
haripande (2006b). One natural extension of this work would be to prove
the descent, correspondence and symmetry theorems for the Donaldson–
Thomas invariants. One should note that the toric GW/DT duality does
not immediately force these results to extend to the DT setting. The du-
ality between Gromov–Witten and Donaldson–Thomas theories is at the
level of generating functions, not invariants. For the purposes of this larger
context, we now present a terse overview of DT invariants. The basic ap-
proach of DT theory is to replace the study of maps to a target variety X,
with the study of sheaves on X. Donaldson–Thomas invariants also have a
presence in physics. Sheaves are considered as models for D-branes in the
topological B-model of string theory.

4.4.1 Defining Donaldson–Thomas Invariants

Donaldson–Thomas invariants also virtually count curves in a smooth pro-
jective threefold X of class β ∈ H2(X; Z) intersecting Poincaré duals of
cohomology classes γ1, . . . , γr ∈ H?(X). For an ideal sheaf1 I , there exists
an injection into its double dual

0 −→ I −→ I∨∨.

But
I∨∨ ∼= OX,

so I determines a subscheme Y given by

0 −→ I −→ OX −→ OY −→ 0.

Since I has trivial determinant, Y has components of dimension zero and
one. The weighted one dimensional components of Y determine a homol-
ogy class

[Y] ∈ H2(X; Z).

The moduli space of ideal sheaves I with holomorphic Euler character-
istic χ(OY) = n and class [Y] = β ∈ H2(X; Z) is denoted In(X, β). Similar
to GW invariants, DT invariants are defined by integrating against the vir-
tual class [In(X, β)]vid of dimension

dim[In(X, β)]vir =
∫

β
c1(TX).

1According to the convention in Maulik et al. (2011), an ideal sheaf is a rank 1 torsion
free sheaf with trivial determinant.
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The construction of this virtual class and other foundational aspects of DT
theory may be found in the paper by Maulik and colleagues (2006a) and
Thomas (2000).

In order to integrate against the virtual class, we need to pull back the
classes γi from X to In(X, β). This is done using the universal ideal sheaf
and the associated universal subscheme.

By results from the paper by Maulik and colleagues (2011: Section 1.2),
there exists a universal ideal sheaf

I −→ In(X, β)× X

with well-defined Chern classes2. Let πi denote the respective projection
maps. The DT invariants are defined by push-pulling Chern classes via πi.
For each γ ∈ H?(X), define the operator c2(γ) by, for any ξ ∈ H?(In(X, β)),

c2(γ)(ξ) = π1? (c2(I) · π?
2(γ) ∩ π?

1(ξ)) . (4.1)

For details of this construction, including the pullback of the homology
class ξ in Equation 4.1, see the paper by Maulik and colleagues (2011: Sec-
tion 1.2).

The class (n, β) DT invariant of X with insertions γ1, . . . γr is defined by

DTX
n,β(γ1, . . . , γr) = 〈γ1, . . . , γr〉Xn,β =

∫
[In(X,β)]vir

r

∏
i=1

c2(γi).

2The second Chern class c2(I) is interpreted as the universal subscheme as in Maulik
et al. (2011).



Chapter 5

Cremona Symmetry and the
Permutohedron

One of the classical examples of a birational transformation is the Cremona
birational map on Pn. This map can be resolved via a sequence of toric
blowups of Pn. The polytope of this toric blowup of Pn is a polytope known
as the permutohedron, an object of independent interest in combinatorics.
The permutohedron is part of a larger class of polytopes known as gener-
alised associahedra. For more regarding these combinatorial applications, as
well application as to real moduli spaces, see for instance Devadoss (2009).
The results of this thesis are intimately related to the three-dimensional per-
mutohedron and analogues to the Cremona transformation. In this chapter
we create the framework for the main theorems of this thesis by discussing
the toric geometry relevant to the Cremona transformation and the permu-
tohedron. We will then discuss analogous birational transformations on
(P1)×3, as well as enumerative applications of the results.

5.1 Toric Blowups and the Permutohedron

In this section we will construct the permutohedron and its associated toric
variety. For further treatment regarding the combinatorics and topological
applications of the permutohedron and related polytopes, see the papers
by Carr and Devadoss (2006), Devadoss (2009), and Postnikov (2005). For
more regarding toric blowups, their polytopes and symmetries, see the pa-
per by the author and colleagues (Karp et al., 2011).

Let X be a toric variety with fan ΣX. We will denote torus fixed subva-
rieties in multi-index notation corresponding to generators of their cones.
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XΠ2 XΠ2

P2 (P1)×2

ψ

π2π1

ϕ

Figure 5.1 The variety XΠ2 as a blowup.

For instance, pi1 ...ik will denote the torus fixed point which is the orbit clo-
sure of the cone σ = 〈vi1 , . . . , vik〉, for vi ∈ Σ(1)

X . Similarly `i1 ...ir will denote
the line which is the orbit closure of σ = 〈vi1 , . . . , vir〉, and so on. Fur-
ther, X(Z1, . . . , Zs) will denote the iterated blowup of X at the subvarieties
Z1, . . . , Zs. By abuse of notation, we will denote X(k) as the blowup of X at
k points where it causes no ambiguity.

5.1.1 The Permutohedron in Dimension Two

Recall that the fan ΣP2 ⊂ Z2 of P2 has a one-skeleton whose primitive
generators are

v1 = (−1,−1), v2 = (1, 0), v3 = (0, 1),

and maximal cones given by

〈v1, v2〉, 〈v2, v3〉, 〈v1, v3〉.

Also recall that the fan Σ(P1)×2 ⊂ Z2 of (P1)×2, has one-skeleton gener-
ators

u1 = (1, 0), u2 = (−1, 0), u3 = (0, 1), u4 = (0,−1).

with maximal cones given by

〈u1, u3〉, 〈u1, u4〉, 〈u2, u3〉, 〈u2, u4〉.

In dimension two, the permutohedron Π2 (a hexagon) can be realized
as the dual polytope to two toric varieties. First, of P2(p12, p23, p13), the
blowup of P2 at its three torus fixed points. And second, of the toric vari-
ety (P1)×2(p13, p24). Thus the variety associated to Π2 is a common blowup
for P2 and (P1)×2, providing a birational map between these varieties via
blowup–blowdown. By functoriality of Gromov–Witten invariants, this
gives us a way to relate the invariants on P2 blown up at points to that
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Hdrawn with rotat ion angle 0°LFigure 5.2 The two-dimensional permutohedron.

of (P1)×2 blown up at points. Via Lemma 50 we then have results con-
cerning the stationary invariants on P2 and (P1)×2. The polytope of the
two-dimensional permutohedral variety is depicted in Figure 5.2

Our goal now is to use this combinatorial observation about the permu-
tohedron in higher dimensions.

5.1.2 The Permutohedron in Dimension Three

Recall that the fan ΣP3 ⊂ Z3 of P3 has one-skeleton with primitive genera-
tors

v1 = (−1,−1,−1), v2 = (1, 0, 0),
v3 = (0, 1, 0), v4 = (0, 0, 1),

and maximal cones given by

〈v1, v2, v3〉, 〈v1, v2, v4〉,
〈v1, v3, v4〉, 〈v2, v3, v4〉.

Also note that the fan Σ(P1)×3 ⊂ Z3 of (P1)×3, has one-skeleton generators

u1 = (1, 0, 0), u3 = (0, 1, 0), u5 = (0, 0, 1),
u2 = (−1, 0, 0), u4 = (0,−1, 0), u6 = (0, 0,−1),

and maximal cones given by

〈u1, u3, u5〉, 〈u1, u2, u4〉, 〈u1, u2, u3〉, 〈u1, u2, u4〉,
〈u2, u4, u6〉, 〈u2, u3, u4〉, 〈u1, u2, u3〉, 〈u1, u2, u4〉.

Analogously to Π2, the three-dimensional permutohedron Π3 can be real-
ized as the dual polytope of the blowup of P3 at its four torus fixed points



48 Cremona Symmetry and the Permutohedron

XΠ3 XΠ3

P3(4) (P1)×3(2)

σ

π2π1

τ

Figure 5.3 The variety XΠ3 as a blowup.

Figure 5.4 The polytope of the
three-dimensional permutohedral
variety.
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Figure 5.5 The fan of the three-
dimensional permutohedral vari-
ety.

and the six torus invariant lines between them,

XΠ3 = P3(p123, p124, p134, p234, `12, `13, `14, `23, `24, `34).

It can also be realized as the dual polytope of a blowup of (P1)×3. In par-
ticular,

XΠ3
∼= (P1)×3(p135, p246, `13, `15, `35, `24, `26, `46).

The above blowup can be viewed as the blowup of two antipodal vertices
on the 3-cube and the six invariant lines intersecting these points. This com-
mon blowup gives us a birational map between the spaces P3 and (P1)×3.
Appealing to the aforementioned relationship between the Gromov–Witten
theories of varieties, and their blowups at points, we will consider these
blowups of P3(4) and (P1)×3(2), respectively. The situation is depicted in
Figure 5.3.

Remark 51. This construction can be generalised to higher dimensions. The
permutohedron Πn is the dual polytope corresponding to the blowup of
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Pn at all its torus invariant subvarieties up to dimension n− 2. Note that
∆(P1)×n , the dual polytope of (P1)×n is the n-cube. Then Πn is the dual
polytope of the variety corresponding to the blowup of (P1)×n at the points
corresponding to antipodal vertices on ∆(P1)×n , and all the torus invariant
subvarieties intersecting these points, up to dimension n− 2.

5.1.3 Chow Ring of XΠ3

We now turn our attention to a description of the cohomology and Chow
ring of these toric varieties. Recall that if X is a smooth projective toric
variety, the H?(X) = A?(X). In particular A?(X) is generated by the di-
visor classes coming from the orbit closures of the elements in Σ(1)

X . We
will use Dα for the divisor class corresponding to vα or uα. Finally, we will
label a new element of the one-skeleton, introduced to subdivide the cone
σ = 〈vi, . . . , vj〉, by vi···j. For a deeper treatment of the Chow ring and in-
tersection theory of toric varieties, see Fulton (1993).

Notation

Note that throughout the rest of this paper, the undecorated classes will be
classes on P3(k), tilde classes, such as H̃i or ẽijk will be classes on (P1)×3(k).
Classes pulled back via the blowup to the variety XΠ3 will be decorated
with a hat.

As a Toric Blowup of P3

The Chow ring of P3 is generated by the first Chern class of hyperplane
bundle on P3. Let Ĥ be the pullback of this class to XΠ3 and Ĥ · Ĥ = ĥ
the class of a general line in A1(X). Let Êα be the class of the exceptional
divisor above the blowup of pα, and êα be the line class in the exceptional
divisor. Let F̂α′ the class of the exceptional divisor above the blowup of the
line `α′ . Note that that this divisor is abstractly isomorphic to P1×P1, so
we let f̂α and ŝα be the section and fiber class, respectively. Observe that

A2(XΠ3) = 〈Ĥ, Êα, F̂α′〉, A1(XΠ3) = 〈ĥ, êα, f̂α′〉.
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The divisor classes corresponding to Σ(1)
XΠ3

, are written in terms of this basis
as

Di = Ĥ −∑
i∈α

Êα − ∑
j∈α′

F̂α′

Dij = F̂ij

Dijk = Êijk.

As a Toric Blowup of (P1)×3

Let ˆ̃H1, ˆ̃H2, and ˆ̃H3 be the three hyperplane classes pulled back from the
Künneth decomposition of the homology of (P1)×3. That is, H1 = pt ⊗
[P1]⊗P1, H2 = [P1]⊗ pt⊗ [P1], and H3 = [P1]⊗ [P1]⊗ pt. Then ˆ̃Hi is the
pullback of Hi through the blowup map. We let ĥij be the line class ˆ̃Hi · ˆ̃Hj

and ˆ̃Eα, ˆ̃eα, ˆ̃Fα′ , ˆ̃fα′ , and ˆ̃sα′ be the aforementioned divisor and curve classes.
These classes generate the Chow groups in the appropriate degree. The
divisor classes corresponding to Σ(1)

XΠ3
are given by

D1 = ˆ̃H1 − ˆ̃E135 − ˆ̃F13 − ˆ̃F15, D2 = ˆ̃H3 − ˆ̃E246 − ˆ̃F24 − ˆ̃F26

D3 = ˆ̃H2 − ˆ̃E135 − ˆ̃F13 − ˆ̃F35, D4 = ˆ̃H2 − ˆ̃E246 − ˆ̃F24 − ˆ̃F46

D5 = ˆ̃H3 − ˆ̃E135 − ˆ̃F13 − ˆ̃F25, D6 = ˆ̃H3 − ˆ̃E246 − ˆ̃F26 − ˆ̃F46

Dijk =
ˆ̃Eijk, Dij =

ˆ̃Fij.

Notice that in Figure 5.3, σ is an isomorphism induced by a relabeling
of the fan ΣXΠ3

. In particular, inspecting σ? on A1(XΠ3), we see that

σ?ĥ = ˆ̃h12 +
ˆ̃h13 +

ˆ̃h23 − ˆ̃e246

σ? ê123 = ˆ̃h13 +
ˆ̃h23 − ˆ̃e246

σ? ê124 = ˆ̃h12 +
ˆ̃h23 − ˆ̃e246

σ? ê134 = ˆ̃h12 +
ˆ̃h13 − ˆ̃e246

σ? ê234 = ˆ̃e135

σ? f̂12 = ˆ̃s46 = ˆ̃h23 − ˆ̃e246 +
ˆ̃f46

σ? f̂13 = ˆ̃s26 = ˆ̃h13 − ˆ̃e246 +
ˆ̃f26

σ? f̂14 = ˆ̃s24 = ˆ̃h12 − ˆ̃e246 +
ˆ̃f24

σ? f̂34 = ˆ̃f 35
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σ? f̂24 = ˆ̃f 15

σ? f̂23 = ˆ̃f 13.

5.2 Cremona Symmetry

The classical Cremona transformation is the rational map

ξ : Pn 99K Pn

defined by

(x0 : . . . : xn) 7→ (x1 . . . xn : . . . : ∏
j 6=i

xj : . . . : x0 . . . xn−1).

Note that the map is undefined on the union of the torus invariant subva-
rieties of codimension at least two, and is resolved by the maximal blowup
of Pn, namely the blowup π : XΠn → Pn. In the language of toric geometry,
the resolved Cremona involution on XΠn is a toric symmetry, namely it is
induced by the reflection through the origin symmetry on ΣXΠn

. Note that
the resolved Cremona map, ξ̂ pushes forward nontrivially to the Chow
ring of XΠn . For a more detailed treatment on toric symmetries the Cre-
mona symmetry in P3 see Bryan and Karp (2005). A result from a previous
paper by the author (Karp et al., 2011) shows that all the automorphisms
ΣXΠ3

are either identity on cohomology, or are equal to ξ̂? (perhaps up to
relabeling). The Cremona symmetry can be stated as follows:

Lemma 52 (Bryan and Karp (2005)). Let XΠ3 be the permutohedral variety as a
blowup of P3. Let β be given by

β = dĥ−
4

∑
i=1

ai êi − ∑
1≤i<j≤6

bij f̂ij ∈ H2(X; Z).

There exists a toric symmetry ξ̂ that resolves ξ, such that ξ̂?β = β′, where β′ =
d′ĥ−∑i a′i êi −∑ij b′ij f̂ij has coefficients given by

d′ = 3d− 2
4

∑
i=1

ai

a′i = d− aj − ak − al − bij − bik − bil

b′ij = bkl ,

where {i, j, k, l} = {1, 2, 3, 4}.
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5.2.1 Descent of Cremona Symmetry

Notice in Lemma 52, that the classes f̂i form an orbit under ξ̂?. In particular
if a curve class β has bα = 0 for all α, then ξ̂?β also has b′α = 0 for all α. The
corresponding equality of Gromov–Witten invariants does not in general
descend to P3(4). However Bryan and Karp (2005) prove that if we blow
up at additional points p5, p6, to X̂ = XΠ3(2)→ P3(6), such that ξ̂? ê5 = ê6,
then for all classes β = dh− ∑1≤i≤6 aiei with a5 or a6 nonzero, there is an
equality of invariants

〈 〉X̂g,β = 〈 〉P
3(6)

g,π?β.

With the above result, it immediately follows that the invariants of π?β are
preserved under pushforward by the birational map ξ. In Chapter 6, we
will recall the proof of descent by Bryan and Karp.

5.2.2 Reinterpreting the Cremona Transform on P3

Let X̂ → P3(4) be the permutohedral variety. The resolved Cremona trans-
formation on X̂ is induced by reflecting the permutohedron through the
origin. On X̂, this map exchanges the classes Ei above the blowups of
points, with the classes corresponding to the faces of the tetrahedron.

Considering ˆ̃X as a blowup over (P1)×3(2), the reflection through the
origin symmetry simply exchanges the classes Ẽ1 and Ẽ2 of divisors above
the blowups of the points. In particular, the reflection through the ori-
gin symmetry is a trivial symmetry when ˆ̃X is viewed as a blowup over
(P1)×3(2). The blowup over P3 sends a curve class of degree 1 to a class of
degree 3. Thus, a trivial toric symmetry of ˆ̃X composed with the induced
isomorphism to X̂ induces a nontrivial symmetry on X̂. This illustrates that
the base space of the blowup is crucial in our definition of nontrivial toric
symmetries.

5.3 An Analogue of Cremona Symmetry

We now show that the blowup XΠ3 → (P1)×3, also has a nontrivial toric
symmetry analogous to Cremona involution. For this next lemma we will
view XΠ3 as a blowup of (P1)×3, and will use the homology discussed in
Section 5.1.3. We will however label the classes in single index notation,
e1, e2, and f1, . . . , f6 following the previously discussed order for blowup.
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Consider the rational map

ζ : (P1)×3 99K (P1)×3

defined by

((x0 : x1), (y0 : y1), (z0, z1)) 7→ ((x1y0z0 : x0y1z1), (y0 : y1), (z0, z1)).

Lemma 53. Let β = ∑1≤i≤j≤3 dij
ˆ̃hij− a1 ˆ̃e1− a2 ˆ̃e2−∑6

i=1 bi
ˆ̃fi ∈ A?(XΠ3). XΠ3

admits a nontrivial toric symmetry ζ̂, which resolves ζ, whose action on homology
is given by

ζ?β = β′

where β′ = ∑1≤i≤j≤3 d′ij
ˆ̃hij − a′1 ˆ̃e1 − a′2 ˆ̃e2 −∑6

i=1 b′i
ˆ̃fi has coefficients given by

d′12 = d12 + d23 − a1 − a2 − b2 − b5

d′23 = d23

d′13 = d13 + d23 − a1 − a2 − b1 − b4

a′1 = d23 − a2 − b4 − b5

a′2 = d23 − a1 − b2 − b2

b′1 = b5, b′2 = b4

b′3 = b3, b′4 = b2

b′5 = b1, b′6 = b6.

Proof. Observe that choosing ζ̂ to be the toric symmetry

ζ̂ =

−1 0 0
−1 1 0
−1 0 1

 ,

ζ? on A?(XΠ3) has the desired action on homology, and the natural blowup–
blowdown composition with ζ̂ gives the birational map ζ.

Just as for the Cremona symmetry, observe in Lemma 53, we see that
the classes f̂α also form an orbit under ζ?. Paired with the discussion in
Section 5.1.3, observe that the proofs of Theorems 3 and 4, amount to prov-
ing the descent of nonexceptional invariants from XΠ3 to (P1)×3(4) when ã3
or ã4 is nonzero, where p̃3 and p̃4 are points that are not fixed by the torus
action. In Chapter 6, we will prove descent in such cases.
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XΠ3 XΠ3

(P1)×3 (P1)×3

ζ̂

ζ

Figure 5.6 The rational map ζ and its resolution.

5.4 Results in Enumerative Geometry

In this section we illustrate the use of the Cremona symmetry on P3 and
its analogue on (P1)×3, to prove basic enumerative results on these spaces.
We also will use the main result of this paper, Theorem 3, to recover clas-
sical enumerative consequences through the machinery of Gromov–Witten
theory.

5.4.1 Lines in (P1)×3

Observe that given a line class, say h̃12 in (P1)×3, there exists only one line
of this class through a fixed point. That is

〈 p̃1〉(P
1)×3

0,h̃12
= 1.

This result is not obvious, and we will use by using Theorem 3. Using
the result of Lemma 50, we can write this stationary invariant as a virtual
dimension zero invariant of a blowup at four points, p1, . . . , p4,

〈 p̃1〉(P
1)×3

0,h̃12
= 〈 〉(P

1)×3(4)
0,h̃12−ẽ1

= 1.

Now using the correspondence in Theorem 3, we know that

〈 〉(P
1)×3(4)

0,h̃12−ẽ1
= 〈 〉P

3(6)
0,h−e1−e2

.

Again using Lemma 50, we write this as a stationary invariant, and see that

〈p1, p2〉P
3

0,h = 1.

The final inequality is evident from the fact that there is precisely one line
through two points in P3.
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Figure 5.7 The curve of class h12 + h13 + h23 through three given points.

5.4.2 The Rational Normal Curve in P3

Another classical result in P3 is that there exists precisely one cubic curve
through six general points. This cubic is in fact the twisted cubic, and is
an example of a rational normal curve. We will prove this result using the
correspondence theorem.

Observe from the above result that there is precisely one curve of class
h̃12 + h̃13 + h̃23 through three given points. This can be combinatorially seen
from the polytope of (P1)×3.

In fact, this result can be derived by using the Cremona analogue sym-
metry on (P1)×3. Observe that from Theorem 4, given the class h̃12 − ẽ3,
the symmetry gives us equality of the following invariants

〈 〉(P
1)×3

0,h̃12−ẽ3
= 1 = 〈 〉(P

1)×3

0,h̃12+h̃13+h̃23−ẽ1−ẽ2−ẽ3
.

Using the correspondence in Theorem 3, we get

〈 〉(P
1)×3(4)

0,h̃12+h̃13+h̃23−ẽ1−ẽ2−ẽ3
= 〈 〉P

3(6)
0,3h−e1−···−e6

.

Rewriting this in terms of stationary invariants,

〈pt⊗6〉P3

0,3h = 1.

This gives a Gromov–Witten theoretic proof of the existence of a unique
cubic through six general points in P3. The “real cartoon” of this curve is
depicted in Figure 5.8.

5.5 The Permutohedron in Higher Dimensions

In general the permutohedron can be constructed purely combinatorially.
Consider the vector (1, 2, . . . , n). By permuting the coordinates in all pos-
sible ways, and taking the convex hull of the resulting collection of points,
one arrives at the permutohedron. As we have discussed above however,
the permutohedron also arises as the truncation of lattice polytopes cor-
responding to toric varieties. The constructions in the preceding sections
extend to the higher dimensional cases naturally and are stated below.
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Figure 5.8 The unique cubic through six general points.

Theorem 54. Let X be the sequential blowup of Pn at each of its torus fixed
subvarieties up to dimension n − 2. The polytope ∆X of X is combinatorially
equivalent to the permutohedron. The reflection through the origin toric symmetry
corresponds to the resolved Cremona transform.

A similar construction exists for (P1)×n.

Theorem 55. Let Ỹ be the blowup of (P1)×n at p1 and p2, the orbit closures of
antipodal vertices of the polytope ∆(P1)×n . Let Y be the blowup of Ỹ at all torus
fixed subvarieties containing p1 and p2. The polytope ∆Y of Y is combinatorially
equivalent to the permutohedron.

This reproves a combinatorial result due to Carr and Devadoss (2006).

Corollary 56. The permutohedron can be obtained via truncations of the cube.

Ỹ above also has a nontrivial toric symmetry analogous to the map dis-
cussed previously. This map is given by the following lattice isomorphism
of Zn:

σ =


−1 0 · · · 0
−1 1 · · · 0

...
...

. . .
...

−1 0 · · · 1

 .



Chapter 6

Nef Divisors and Descent via
Blowup

We now turn our attention to the proofs of the main results of this thesis.
The results are proved through a study of divisors on P3, the permutohe-
dral variety and (P1)×3. These divisors allow us to investigate intersection
properties of the images of stable maps. These properties have implications
to the moduli space and its virtual class, and force the moduli spaces of the
base space and its blowup to be isomorphic for nonexceptional invariants.
We will introduce the notions of effective curves and nef divisors, and re-
view some of their basic properties. We will then formulate our problem
for the descent of toric symmetry. First we review the proof by Bryan–Karp
of the descent of the Cremona symmetry in P3, and then via methods of
birational geometry, provide a proof of descent of the Cremona symmetry
in the case of (P1)×3 and thus proofs of our main theorems.

6.1 Numerically Effective Divisors and Effective Curves
Classes

Simply speaking, a divisor is an object of codimension 1. In more detail,
let X be a smooth projective variety. Then a divisor D is given by a formal
sum of hypersurfaces

D = ∑
Vi

aiVi,

where ai is zero for almost all i, and the sum is taken over all hypersurfaces
Vi. D is thus an element of the free abelian group generated by the divisors.
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Note that in the general case, what we are describing are Weil divisors, as
opposed to their counterparts, Cartier divisors, but for smooth projective
varieties, the notions coincide. Since each hypersurface Vi defines an ele-
ment of the Chow ring A1(X), D also defines a class in the Chow ring, [D].
A divisor is said to be effective if ai ≥ 0 for all i.

A divisor D is said to be numerically effective, or nef, if for any curve
C ⊂ X, the product D · C ≥ 0. The product here is interpreted as the
intersection product in the Chow ring.

Given a class β ∈ An−1(X), β is called effective if there exists a dimen-
sion 1 subvariety C ⊂ X whose class is β. For instance, in P3, there exists
no curve of class dh for d < 0. Effective curve classes are not in general well
behaved under blowup. For instance, let X = P3(p123, p134) be the blowup
of P3 at the two specified points. Let `13 be the proper transform of the
line between p123 and p134. Now let Y = X(`13). The class h− e123 − e134 is
clearly effective in X, but its pullback is not effective in Y, since there is no
longer a curve of that class—the single curve of that class has been blown
up.

6.2 Effective Curve Classes and nef Divisors on XΠ3

On P3, the first Chern class of the hyperplane bundle, which we have pre-
viously referred to as H, is a numerically effective divisor. Similarly, the
classes H̃i are all nef on (P1)×3. However, when we blowup subvarieties,
the inserted divisors are not nef. In particular, on P3(1), if E is the class of
the exceptional divisor above the blowup, then notice that

E · e = −pt.

Since every line in the exceptional divisor above the blowup has class
e, e is an effective class. Thus E is not nef. It is also interesting to note that
−E is also not nef, since by blowing up at another point p′ in addition to p,

−E · (h− e− e′) = −1,

and clearly the proper transform of the line through p and p′ has class
h− e− e′. For the proof of descent we will need an understanding of the
nef divisors on XΠ3 . In particular, let {j, k} be a two element subset of
{1, 2, 3, 4}. With the notation from Chapter 5, we let

D̂jk = 2Ĥ − (Ê1 + · · ·+ Ê6)− Fjk − Fj′k′ .
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Above, {j, k, j′, k′} = {1, 2, 3, 4}. We now state a result due to Bryan and
Karp (2005) and present their proof of this result.

Lemma 57. Djk is numerically effective.

Proof. We proceed as in Bryan and Karp (2005). Let D̂′ and D̂′′ be the proper
transforms of the planes through the points {pj, pj, p5} and {pj′ , pk′ , p6}.
Then

D̂′ = Ĥ − Êj − Êk − Ê5 − F̂jk

D̂′′ = Ĥ − Êj′ − Êk′ − Ê6 − F̂j′k′ .

To see that D̂jk is nef, it suffices to check that D̂jk ·C ≥ 0 for any C ⊂ D̂′.
Notice that D̂′ is isomorphic to P2(3), and the classes have the following
identification under the standard basis for the Chow ring of P2(3).

h′ = ĥ− f̂ jk, e′j = êj − f jk, e′k = êk − f jk, e′5 = e5.

We know that effective curves in P2(3) have the form

β = dh′ − aje′j − ake′k − a5e′5,

where d and ai are all positive. Note that since h′ − e′5 is a nef divisor in D̂′,
we must have that

d ≥ a5.

The first Chern class of the normal bundle of D′ in XΠ3 is

(Ĥ − Êj − Êk − Ê5 − F̂jk)
2 = ê5 = e′5.

Using this fact, we see that

Djk · C = −a5 + d ≥ 0,

and thus Djk is numerically effective.

6.3 Proof of Main Results

Let π̃ : X̂ = XΠ3(2) → X̃ = (P1)×3(4) as discussed previously. That is,
we blowup two additional points that are not fixed by the torus action, but
otherwise follow the constructions of Section 5.1.2 We will now prove the
descent of nonexceptional invariants for (virtual dimension zero) classes
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of the form β̂ = ∑1≤i<j≤3 d̂ij
ˆ̃hij − ∑4

i=1 âi ˆ̃ei on X̂ via π̃?. We require that
{â3, â4} 6= {0}. We will argue that any stable map in the isomorphism class
[ f̂ ] ∈ Mg(X̂, β̂) has an image disjoint from F = ∪ ˆ̃Fjk where the union is
taken over all the exceptional divisors above line blowups. We will simi-
larly show that any stable map [ f ] ∈ Mg(X̃, β) has an image disjoint from
` = ∪`jk. It then follows that the map on moduli stacks induced by π̃ is an
isomorphism. Note that by abuse of notation we will use capital letters to
denote both subvarieties and their classes.

Let [ f : C → X̃] ∈ Mg(X, β). Suppose that f?C ∩ `rs 6= ∅ where `rs is
one of the six lines in the locus described in Section 5.1.2. Without loss of
generality, since ã3 6= 0, Im( f ) 6⊆ `rs. As a result we may write the class of
the image as

f?C = C′ + b`rs, (b ≥ 0).

Here C′ meets `rs at finitely many points for topological reasons. Let Ĉ′ be
the proper transform via π̃ of C′. Since C′ ∩ `rs 6= ∅, Ĉ′ · F̂rs = m > 0. Thus,
we may write

Ĉ′ = β̂− b( ˆ̃hij − ˆ̃eα)−m ˆ̃frs.

Here α ∈ {1, 2}, or in other words, eα is the exceptional lines above one of
the torus fixed points, and {i, j} is such that [`rs] = h̃ij. Now push forward
this class Ĉ′ via the inverse of the map σ described in Section 5.1.3. Observe
then that we get a curve in XΠ3 , whose class can be written as

σ!Ĉ′ = σ−1
? Ĉ′ = dĥ−

6

∑
i=1

ai êi − b(ĥ− êγ − êδ)−m f̂pq,

where {γ, δ} ⊂ {1, 2, 3, 4}. In particular, using the map in Section 5.1.3, we
see that dh−∑6

i=1 aiei must have virtual dimension zero since β̃ and β̂ have
virtual dimension zero, in other words, 2d = ∑6

i=1 ai. Further, σ? f̂pq = ˆ̃frs.
Now consider the divisor

D̂pq − 2Ĥ − (Ê1 + · · ·+ Ê6)− F̂pq − F̂p′q′ ,

where {p, q, p′, q′} = {1, 2, 3, 4}. From Bryan–Karp (2005) we know that
this divisor is nef. However, clearly D̂pq · σ−1

? Ĉ = mFpq · fpq = −m < 0,
which is a contradiction. Thus, f?C ∩ `rs = ∅.

We argue in similar vein for the Mg(X̂, β̂). Let [ f̂ : C → X̂]. Suppose
Im( f̂ ) ∩ ˆ̃Frs 6= ∅. Since β̂ · ˆ̃Frs = 0, f?C must have a component C′′ com-
pletely contained in ˆ̃Frs, where we have

f?C = C′ + C′′,
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where C′ is nonempty since β̂ · ˆ̃E4 6= 0. Since C′′ ⊂ ˆ̃Frs is an effective class
in ˆ̃Frs ∼= P1×P1, it must be of the form C′′ = a f̂rs + bŝrs for a, b ≥ 0, and
a + b > 0. Writing D̂pq in the basis induced by σ−1 and intersecting, we
see that D̂pq · C′ = −a − b contradicting the fact that Dpq is nef. Thus,
Im( f̂ ) ∩ ˆ̃Frs = ∅, and the result follows.





Chapter 7

Taxonomy of Blowups of
P1×P1×P1

The approach to studying toric symmetry discussed in Section 3.2 can be
adapted, in theory, to any complete toric variety. However, from a view-
point of complexity, the algorithm described previously is not sufficiently
fast to compute all the toric symmetries for many spaces. The naive ap-
proach to compute blowups used in the case of CP3 would have to com-
pute the fans of 333,327,704,320 different blowups and perform an analysis
of GL(Z3) on each of those fans to find all nontrivial toric symmetries. This
is in contrast to 31,312 spaces for P3. Even with considerable improvements
made to the algorithm used in P3 by the author and colleagues (Karp et al.,
2011) in this thesis, this approach to the problem is computationally not
tractable. However, considering a fixed ordering of the 12 lines in (P1)×3,
blowups of this space have been completely studied where the blowup
locus contains fewer than seven torus fixed lines. This chapter contains
the main results of a taxonomical study, under a fixed ordering of the T-
fixed lines, of the manifestations of nontrivial toric symmetry in blowups
of (P1)×3.

7.1 Results of Taxonomical Study

There are eighteen blowups discovered in the analysis described above that
admit nontrivial toric symmetry. The following are a subset of this col-
lection, where the symmetries and their action on the Chow ring are de-
scribed. They are enumerated as in Section 7.3. Note that one of these
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Figure 7.1 The toric blowup locus for Space 1.

eighteen spaces is the blowup of (P1)×3 described in Chapter 5, the permu-
tohedral variety.

Space 1 Consider the space constructed by the following blowup.

X1 = P1 ×P1 ×P1(`13, `24).

This may be viewed as (P1×P1(p13, l24))×P1. The map (183)(274)(56)
on the one-skeleton induces a nontrivial action on the curve classes.
Note that A1(X1) = Z[hij, f1, f2]. The map on A1(X1) is then given
by

h12 7→ h12

h23 7→ h23

h13 7→ h13 + h23 − f1 − f2

fi 7→ h23 − fi.

Observe that two lines classes are fixed, and the third is mapped to a
class of tridegree (0, 1, 1). This will be a theme we will see throughout
this analysis.

Space 2 We now consider the space

X2 = P1 ×P1 ×P1(`13, `35, `24).

Notice that we have added `35 to the locus in X1. Now, the map
(19)(27) induces a nontrivial action on curve classes. In this case

h12 7→ h12

h13 7→ h13

h23 7→ h13 + h23 − f1 − f2

f1 7→ h13 − f3

f2 7→ f2

f3 7→ h13 − f1.

Note that at the level of curve classes, this map is very similar to that
of X1.
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Figure 7.2 The toric blowup locus for Space 2.

Figure 7.3 The toric blowup locus for Space 3.

Space 3 Now consider the space constructed via the following blowup:

X3 = P1 ×P1 ×P1(p136, `13, `35, `24).

With the usual basis for the Chow ring, we have the map

h12 7→ h12

h23 7→ h23

h13 7→ h13 + h23 − f1 − f3

e 7→ h23 + f1 + f2

f1 7→ h23 − f1

f2 7→ e− f2

f3 7→ h23 − f3.

Space 11 The space constructed by the following blowup has the property
that intersecting lines are only blown up after the point in their inter-
section. As a result the order of blowup is irrelevant for this space, as
is the case for the permutohedral spaces. The space below exhibits a
similar symmetry to the Cremona symmetry on XΠ3 discussed previ-
ously.

X11 = P1 ×P1 ×P1(p135, p246, `13, `35, `15, `26, `24).

The map (18)(27)(9, 12)(11, 13) yields a nontrivial map on curve class-
es given as follows. This map can be shown to descend nontrivially to
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Figure 7.4 The toric blowup locus for Space 11.

(P1)×3, and is equal to the descent of the map discussed in Chapter 5.

h12 7→ h12

h23 7→ h23

h13 7→ h13 + h23 + h12 − e1 − e2

e1 7→ h13 + h12 − e2

e2 7→ h13 + h12 − e1

f1 7→ s4 = h13 − e2 + f4

f2 7→ f2

f3 7→ s5 = h12 − e2 + f5

f4 7→ s1 = h12 − e1 + f1

f5 7→ s3 = h13 − e1 + f3.

7.2 Ascent of Toric Symmetry from (P1)×2 to (P1)×3

The symmetry described above on X1 is induced by the lattice automor-
phism

σ =

1 0 0
1 −1 0
0 0 1

 .

Notice that this matrix fixes the z-axis. By composing σ with the projection

π : Z3 → Z2

(x, y, z) 7→ (x, y),

we get an automorphism τ : Z2 → Z2 of the polytope of P1×P1 blown up
at two torus fixed points, shown in Figure 7.5. This polytope ∆̃ is the two-
dimensional permutohedron. As a blowup of P1×P1. Let h1 and h2 be the
line classes in X∆̃ and let e1 and e2 be the classes of lines in the exceptional
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Figure 7.5 The polytope of P1×P1 blown up at two torus fixed points.

divisors above the points. The action of τ? on A?(X∆̃) is given as follows:

hi 7→ hi

e1 7→ h1 − e1

e2 7→ h2 − e2.

Compare this to the classes hij and fi in X1 above. This nontrivial toric
symmetry on P1×P1(2) is thus being lifted to σ? on A?(X1).

In the analysis of toric symmetries of blowups of P3 and (P1)×3, we
observe that a necessary condition for a nontrivial toric symmetry of X̂ a
blowup at points and lines to descend to X, the blowup at just points, is
that lines are separated. That is, if `1 and `2 are part of the blowup locus
and `2 ∩ `2 = p, then p also belongs to the blowup locus. This is the case
for the permutohedral blowups, and X11 described above. In fact, this is
a necessary condition for the classes pulled back from X to form an orbit
under the toric symmetry. An interesting future direction concerning these
results would be to study ascent and descent of the various blowup spaces
described above. That is, if the toric symmetries are descending from a
further blowup of these spaces, or are being lifted.

7.3 Collection of Nontrivial Toric Symmetries

The following is the output of the SAGE program that was written to per-
form the analysis of toric symmetry in (P1)×3.

Note: The following is SAGE output.
All matrices are over GF(3) = {0,1,2}.
We identify 2 with -1.

Space 1 : [’L13’, ’L24’]
There are 16 interesting automorphisms of this fan.

1 (interesting!):
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(1,8,3)(2,7,4)(5,6)
[2 1 0]
[2 0 0]
[0 0 2]

Space 2 : [’L13’, ’L35’, ’L24’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(1,9)(2,7)
[2 0 0]
[2 1 0]
[0 0 1]

Space 2

[’L13’, ’L24’, ’L35’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(1,8)(2,7)
[2 0 0]
[2 1 0]
[0 0 1]

Space 3 : [’p136’, ’L13’, ’L35’, ’L24’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(1,2)(3,8)(4,10)(5,6)(7,9)
[2 1 0]
[0 1 0]
[0 0 2]

Space 4 : [’p245’, ’L13’, ’L35’, ’L24’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(3,10)(4,8)(7,9)
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[1 2 0]
[0 2 0]
[0 0 1]

Space 5 : [’p246’, ’L13’, ’L35’, ’L24’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(3,10)(4,8)(5,6)(7,9)
[1 2 0]
[0 2 0]
[0 0 2]

Space 6 : [’p245’, ’p246’, ’L13’, ’L15’, ’L16’, ’L45’, ’L24’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(1,13)(2,9)(7,10)(8,11)
[2 0 0]
[2 1 0]
[0 0 1]

Space 7 : [’L13’, ’L15’, ’L16’, ’L24’, ’L26’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(3,10)(4,7)
[1 2 0]
[0 2 0]
[0 0 1]

Space 8 : [’p245’, ’L13’, ’L15’, ’L16’, ’L24’, ’L36’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(3,11)(4,8)(5,6)(7,12)(9,10)
[1 2 0]
[0 2 0]
[0 0 2]
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Space 9 : [’p246’, ’L13’, ’L15’, ’L16’, ’L24’, ’L36’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(3,11)(4,8)(7,12)
[1 2 0]
[0 2 0]
[0 0 1]

Space 10 : [’p245’, ’p246’, ’L13’, ’L15’, ’L16’, ’L24’, ’L36’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(1,12)(2,9)(7,10)(8,11)
[2 0 0]
[2 1 0]
[0 0 1]

Space 11 : [’p135’, ’p246’, ’L13’, ’L35’, ’L15’, ’L26’, ’L24’]
There are 2 interesting automorphisms of this fan.
Lines are separated!

1 (interesting!):
(1,8)(2,7)(9,12)(11,13)
[2 0 0]
[2 1 0]
[2 0 1]

2 (interesting!):
(1,8)(2,7)(3,5)(4,6)(9,13)(11,12)
[2 0 0]
[2 0 1]
[2 1 0]

Space 12 : [’p245’, ’L13’, ’L15’, ’L24’, ’L26’, ’L35’, ’L16’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(3,10)(4,8)(7,12)
[1 2 0]
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[0 2 0]
[0 0 1]

Space 13 : [’p245’, ’L13’, ’L15’, ’L24’, ’L26’, ’L35’, ’L25’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(3,10)(4,8)(7,12)
[1 2 0]
[0 2 0]
[0 0 1]

Space 14 : [’p136’, ’p245’, ’L13’, ’L15’, ’L24’, ’L26’, ’L35’, ’L45’]
There are 1 interesting automorphisms of this fan.

1 (interesting!):
(1,11)(2,9)(7,12)(8,10)
[2 0 0]
[2 1 0]
[0 0 1]

Space 15 : [’p135’, ’p246’, ’L13’, ’L15’, ’L24’, ’L26’, ’L35’, ’L46’]
There are 36 interesting automorphisms of this fan.
Isomorphic to Permutohedron

1 (interesting!):
(1,7,3,6)(2,8,4,5)(10,13,12,14)
[1 0 2]
[1 0 0]
[1 2 0]

2 (interesting!):
(1,6)(2,5)(3,7)(4,8)(10,12)
[0 1 2]
[0 1 0]
[2 1 0]

Space 16 : [’p135’, ’p246’, ’L13’, ’L15’, ’L24’, ’L26’, ’L35’, ’L46’,
’L14’]

There are 2 interesting automorphisms of this fan.
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1 (interesting!):
(5,8)(6,7)(10,14)(12,13)
[1 0 2]
[0 1 2]
[0 0 2]

2 (interesting!):
(1,4)(2,3)(5,7)(6,8)(9,11)
[0 2 1]
[2 0 1]
[0 0 1]

Space 17 : [’p135’, ’p246’, ’L13’, ’L15’, ’L24’, ’L26’, ’L35’,
’L46’, ’L14’, ’L23’]

There are 4 interesting automorphisms of this fan.
There are 8 automorphisms of this fan:

1 (interesting!):
(5,8)(6,7)(10,14)(12,13)
[1 0 2]
[0 1 2]
[0 0 2]

3 (interesting!):
(1,3)(2,4)(5,8)(6,7)(10,12)(13,14)(15,16)
[0 1 2]
[1 0 2]
[0 0 2]

5 (interesting!):
(1,4)(2,3)(5,7)(6,8)(9,11)
[0 2 1]
[2 0 1]
[0 0 1]

6 (interesting!):
(1,2)(3,4)(5,7)(6,8)(9,11)(10,13)(12,14)(15,16)
[2 0 1]
[0 2 1]
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[0 0 1]

Space 18 : [’L13’, ’L24’, ’L15’, ’L16’]
There are 2 interesting automorphisms of this fan.

2 (interesting!):
(3,8)(4,7)
[1 2 0]
[0 2 0]
[0 0 1]

3 (interesting!):
(3,8)(4,7)(5,6)(9,10)
[1 2 0]
[0 2 0]
[0 0 2]





Chapter 8

Future Work

The main results of this paper lend themselves to various extensions and
generalisations which we now explain.

8.1 Cremona Higher Dimensions

It is believed, though not proved, that the Cremona symmetry on virtual
dimension zero invariants extends analogously to Pn. Blowing up Pn at all
the torus fixed subvarieties up to dimension n− 2, we get a variety whose
dual polytope is the permutohedron. Reflection through the origin of this
polytope is an involution that resolves the Cremona transform on Pn. This
map is a nontrivial toric symmetry on XΠn , though descent is unknown.

It can also be shown that the blowup of (P1)×n at the points correspond-
ing to antipodal vertices on the n-cube, and in increasing dimension up to
n− 2, all subvarieties intersecting these points, we get a variety whose dual
polytope is also the permutohedron. This gives us a general birational map
between these two spaces. The analogue of Cremona, that gives rise to the
symmetry of invariants on (P1)×3 can be generalised to n-dimensions as
well. Proof of descent through these blowup maps would prove analogous
results to the main results of this paper, in n-dimensions.

The main difficulties are twofold. First, the standard technique, de-
generation and deformation to the normal cone, discussed briefly in Ap-
pendix A, is much less tractable in higher dimensions. In fact, even in low
dimensions, high genus degeneration computations have many difficul-
ties, though mostly technical ones. Secondly, the use of nef divisors, the
technique used to prove the main results in this paper requires the under-
standing of the intersection theory of the maximal blowup of Pn. Though
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Figure 8.1 The polytope of P2×P1.

in theory this is easily described using toric techniques, choosing the right
basis to describe the intersection theory is crucial in extending the argu-
ment.

It should be noted that both these difficulties are technical ones and can
likely be overcome with an understanding of higher dimensional intersec-
tion theory and choosing the right basis for the Chow ring of the blowups.

8.2 Higher Virtual Dimension

The equality of the Gromov–Witten invariants of Calabi–Yau classes on
P3(6) and (P1)×3(4), and the corresponding equality of stationary invari-
ants of P3 and (P1)×3, can both possibly be extended to non–Calabi–Yau
classes. However the technique of using nef divisors to ensure that the cor-
responding moduli spaces are isomorphic with isomorphic virtual classes
does not extend naturally. The standard technique for this extension is de-
generation and relative invariants.

8.3 Toric Symmetry in Other Spaces

Another first step in extending these results would be to study the Gromov–
Witten theory of the space P2×P1. This is a toric variety whose polytope
is shown in Figure 8.1.

Blowups of this space have known nontrivial toric symmetries ascend-
ing from the permutohedral blowup of P2, by blowing up three torus fixed
lines of a given parallel class. However, the toric symmetries of blowups
of this space at points are unknown. Further, P2×P1 is birational to both
P3 and (P1)×3. It would be of interest to choose a birational map between



Toric Symmetry in Other Spaces 77

these spaces and understand the behaviour of the Gromov–Witten invari-
ants of the threefold projective spaces.





Appendix A

The Degeneration Formula

The main results of this thesis relate the Gromov–Witten theory of a blowup
to that of the base space. The standard technique for such problems is to
use the degeneration formula for relative Gromov–Witten invariants, due to
Jun Li, to derive the conditions under which the invariants are unchanged
under blowup. This appendix describes the essentials of this technique. An
extension of the results of this thesis to the case of invariants with insertions
could require the use of this technique. Note that we do not go deeply
into the background of relative invariants here, and record the technique
here only for its relevance as a technique in analysing the Gromov–Witten
theories of blowups. For the fundamentals of relative invariants see the
groundbreaking papers by Li (2001, 2002).

A.1 The Idea of Relative Invariants

Given X, a nonsingular projective threefold, and a nonsingular divisor
S ⊂ X, one can define Gromov–Witten invariants of X relative to S. Given a
curve class β ∈ A1(X) satisfying S · β ≥ 0, the idea is to use the intersection
points of the curve with the divisor to have relative insertions. These in-
sertions are cohomology classes in the divisor S. By allowing stable maps
to have possibly disconnected domains, one can study a moduli space of
maps from X relative to S of a curve class β. In this case the target X is
allowed to be a degeneration of X along the divisor S. These relative mod-
uli spaces admit a virtual fundamental class, and invariants are defined as
usual by integration against this virtual class.
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A.2 The Idea of Degeneration

We want to study the absolute invariants of a blowup of a subvariety Z ↪→
X using the technique of relative invariants. In the blowup space π : X̂ →
X, let F be the exceptional divisor above Z. To compare the invariants of X
with those of X̂ we use degeneration, and in our case, deformation to the
normal cone. To do this we consider the variety X × C, and the blowup
of Z × {0} ↪→ X × C. Note that C could be replaced by any nonsingular
algebraic curve.

To understand what this blowup of Z × {0} ↪→ X × C we can use the
technique of deformation to the normal cone. This tells us that the section
above a complex number t (in the second factor) is X for all t 6= 0. At t = 0,
we have a normal crossing divisor consisting of two pieces intersecting at
F. The first piece is X̂, while the second piece is given by

P = PF(NZ/X̂ ⊕O),

the total space of the projective completion of the normal bundle of Z in X̂.

A.3 The Formula

With the setup above, the degeneration formula can be expressed in terms
of the Gromov–Witten generating functions as follows. Let λ : χ → C be
a nonsingular fourfold fibered over a nonsingular irreducible curve C (for
our purposes we can let C = P1 or C.) Let X be a nonsingular fiber of
λ and X1 ∪S X2 be a reducible special fiber, consisting of two nonsingular
threefolds intersecting transversely along the the nonsingular surface (the
relative divisor) S. The degeneration formula for the absolute invariants of
X in terms of the relative invariants of X1/S and X2/S, is given as follows:

Z′(X |
r

∏
i=1

τ0(γli)β

= ∑ Z′(
X1

S
|∏

i∈P1

τ0(γli))β1,ηξ(η)u2l(η)Z′(
X2

S
|∏

i∈P2

τ0(γli)β2,ηV .

In the above formula, η is a weighted cohomology partition, and ξ(η) =

∏i ηi|Aut(ηi). Z′ is the Gromov–Witten partition function. The degenera-
tion formula can also be expressed at the level of invariants, as is done be-
low. Geometrically, it expresses the invariants of the ordinary fiber in terms
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of a convolution of the invariants of the two pieces of the reducible special
fiber, namely X̂ and P. For simplicity we express the formula without any
absolute insertions, although it is easily generalised.

〈 〉Xg,β = ∑
β̂1+β̂2=β̂

∑
ϕi∈H?(F)

〈 |ϕi〉(X̂/F)
g,β̂1

〈 |ϕi〉(P̂/F)
g,β̂2

.

where ϕi and ϕi are a dual basis for H?(F). When descent of invariants is
expected, the large numbers of the summands have at least one invariant
equal to zero for degree reasons. An easy way to identify some of these
terms is via the degree axiom for Gromov–Witten invariants. This is stated
below for primary fields only.

Axiom 58 (Degree Axiom). This axiom states that for homogenous classes γi,
the GW invariant

〈γ1, . . . , γn〉g,β

is nonzero only if

n

∑
i=1

degγi = 2((dimX− 3)(1− g)− KX · β + n).

Here degree refers to the cohomological degree (that is the real degree). This says
that the algebraic (in Chow) degree of all the insertions has to match the virtual
dimension of the moduli space Mg,n(X, β).

A.4 The Intersection Theory of PF(NZ/X̂ ⊕O)
One obstacle to using degeneration to analyse the permutohedral blowup
is understanding the intersection theory of P, the projective completion of
the normal bundle of the exceptional locus, as described in the previous
section. We will now describe the intersection theory on this bundle.

The intersection theory is computed using the Chow ring package for
SAGE. The intersection ring on P is abstractly Z⊕Z3 ⊕Z3 ⊕Z. That is,
the ring is torsion free, and divisors and curve classes are both rank 3. The
divisor group is generated by three classes. As seen on the polytope in
Figure A.1, these classes are the orbit closures of the top face, and either
pair of four adjacent planes of the pyramid. Let us call these classes DH,
D1, and D2, respectively. The class DH is the first Chern class of the relative
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Figure A.1 The polytope of P = PF(NF/X̂ ⊕O).

O(1) on the total space of O(−1)�O(−1) over P1 × P1. The canonical
class of this space is largely what we are interested in and it is given by

−KP = ∑
i is a facet

Di = 2Dh + D1 + D2,

where the second equality comes from the Danilov relations. The curve
class group, A1(P) is generated again by three classes, h, f , and s, which
are the line classes on the base (bottom face). We are largely interested in
the classes f and s as these classes must be identified with classes on the
relative divisor F (which corresponds to the base of the polytope). The
intersection pairings for the classes f and s are given by

DH · f = D2 · f = 0, D1 · f = 1
DH · s = D1 · s = 0, D2 · s = 1.

Using several methods (SAGE, Leray–Hirsh, and intersection theory from
ΣP), the pairing with the canonical class was computed to be

−KP · s = −KP · f = 1.

Finally, for a curve class α ∈ A1(P) to have a nonzero relative GW invariant,
it must pair nonnegatively with the class of the relative divisor. Hence, we
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are interested in α · F. However, we find that

F · s = F · f = −1.

The remaining part of the analysis above is to derive the situations in
which β2 6= 0 in the degeneration formula, the invariants of either β1 or
β2 are zero, and thus deduce that the invariants of the blowup and its base
space coincide. This technique was explored, but the method of proof us-
ing nef divisors was more lucrative for this problem. The method of nef
divisors however cannot be used to analyse invariants with insertions and
hence we must use degeneration to extend the results of this thesis.
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