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Disorder-induced desynchronization in a 2Ã2 circular Josephson junction array

A. S. Landsberg
W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711

~Received 16 August 1999!

Analytical results are presented which characterize the behavior of a dc-biased, two-dimensional circular
array of overdamped Josephson junctions subject to increasing levels of disorder. It is shown that high levels
of disorder can abruptly destroy the synchronous functioning of the array. We identify the transition boundary
between synchronized and desynchronized behavior, along with the mechanism responsible for the loss of
frequency locking. Comparisons with recent results for arrays with rectangular lattice geometries are described.

I. INTRODUCTION

Josephson junction arrays, comprised of multiple Joseph-
son junctions coupled to one another, offer many potential
benefits over solitary junctions in terms of possible device
applications~e.g., Refs. 1–5!. Since many common array
applications require that the junctions oscillate in a coherent
manner, a key design goal is determining which array types
are most amenable to supporting a synchronous mode of
operation. Achieving this goal is complicated, however, by
the presence of disorder in an array~i.e., small variations in
the individual junction characteristics!, which is unavoidably
introduced during the manufacturing process. Such nonuni-
formities can potentially disrupt the coherent functioning of
the array. For this reason, understanding and designing
against the desynchronizing effects of disorder represents an
important yet challenging consideration in array design.

At present, a number of different ways of promoting co-
herent oscillations in arrays with disorder have been identi-
fied. Some involve linking the array in an external fashion
~e.g., coupling the array to an external load, applying a high-
frequency external signal, etc.!, while others rely on various
spatially distributed array designs that demand a somewhat
more sophisticated analysis to properly model~since the
standard ‘‘lump circuit’’ analysis fails!.6–8 Though these ap-
proaches can at times be effective, a basic underlying ques-
tion remains largely unanswered: To what extent does the
lattice geometryof an array determine its intrinsic robustness
against disorder? In particular, are certain array geometries
naturally more conducive to maintaining coherence in the
presence of disorder than others?

While we cannot fully address this larger question, our
intention in this paper is to garner some modest insight into
this problem by examining the behavior of one particular
geometric model~a ‘‘circular plaquette’’!. This model repre-
sents the simplest possible~nontrivial! two-dimensional cir-
cular array, and our aim is to provide a detailed description
of how disorder affects this system’s synchronization prop-
erties. Since our larger objective is to isolate the influence of
lattice geometry on behavior, our model array is highly
stripped down, i.e., the circular plaquette is a ‘‘bare’’ array
which is entirely free of external loads, signals, and spatial-
distribution effects like those described above which might
otherwise obscure the intrinsic contribution of lattice geom-

etry to the overall synchronization process. For this same
reason, we choose to model the individual junctions making
up the array in the simplest possible fashion, i.e., we use the
resistively shunted junction~RSJ! model.2 Although our cir-
cular plaquette model is admittedly quite special, we hope
that it might serve as a prototype and that a number of key
results which come out of our study will prove useful more
generally for studies of other lattice geometries. Specifically,
we will identify the principle physical mechanism respon-
sible for~disorder-induced! desynchronization in this system,
and also analytically construct the transition boundary sepa-
rating sychronized from desynchronized behavior by em-
ploying a useful perturbative approach.

Our focus on the two-dimensional circular-lattice struc-
ture of the plaquette model is motivated by twin consider-
ations: First, recent work suggests that two-dimensional ar-
ray designs might enjoy a significant advantage over their
one-dimensional counterparts in their ability to maintain co-
herence in the presence of disorder.9–15 Second, studies of
prototype two-dimensional arrays with a rectangular lattice
geometry have recently yielded analytic estimations of their
ability to tolerate disorder.14,15Thus, a detailed analysis of an
array with circular geometry will permit a direct comparison
of the relative merits of these two types of lattice geometries.

This paper is organized as follows. In Sec. II we describe
the basic circular plaquette model and construct the equa-
tions of motion. Section III presents a formal asymptotic
analysis leading to the construction of the transition bound-
ary separating synchronized from desynchronized behavior
as a function of disorder. Our theoretical predictions are then
compared with results from numerical simulations. In Sec.
IV we make a direct comparison between 232 arrays with
circular and rectangular geometries, and then discuss gener-
alizations to larger circular arrays as well as limitations of
our model. Section V summarizes our main findings.

II. THE CIRCULAR PLAQUETTE: BASIC MODEL
AND NUMERICAL BEHAVIOR

The circular plaquette model represents a 232 array con-
sisting of six overdamped@i.e., RSJ~Ref. 2!# Josephson junc-
tions. A dc bias currentI is fed in uniformly from the outside
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and extracted uniformly along the inner edge, as shown in
Fig. 1. The governing equations for the array follow from the
dual constraints of current conservation and flux quantiza-
tion. Letting D1 ,D2 ,D3 denote the spontaneously induced
shunt currents in the array, the requirements of current con-
servation together with the fundamental Josephson relations
yield the basic equations of motion

\

2er
ḟc11I c1sin~fc1!5I 2D12D2 , ~1a!

\

2er
ḟc21I c2sin~fc2!5I 1D11D2 , ~1b!

\

2er
ḟa11I a1sin~fa1!5D1 , ~1c!

\

2er
ḟa21I a2sin~fa2!5D2 , ~1d!

\

2er
ḟb11I b1sin~fb1!5D11D3 , ~1e!

\

2er
ḟb21I b2sin~fb2!5D22D3 , ~1f!

where thef ’s denote the phase differences across the vari-
ous junctions. Disorder has been included in the model by
allowing the critical currents of the six junctions
(I c1 ,I c2 ,I a1 ,I a2 ,I b1 ,I b2) to be nonidentical.~Note, how-
ever, that we neglect disorder in the junction resistancesr
here, in keeping with most prior studies; see Ref. 15 for a
discussion of this issue.!

The above equations must be supplemented by the addi-
tional constraints imposed by flux quantization. In particular,
in the absence of magnetic fields, the sum of the phase dif-
ferences around any closed loop must be zero. This yields

fa12fa250, fb12fb250, fa11fc21fb12fc150.

~2!

Together, Eqs.~1a!–~1f!, ~2! constitute our basic model.

An inspection of these governing equations reveals that,
in the absence of disorder, there exists a synchronized solu-
tion in which the two radial junctions oscillate in perfect
synchrony@fc1(t)5fc2(t)#, while the azimuthal junctions
are completely inactive@fa1(t)5fa2(t)5fb1(t)5fb2(t)
50#. This solution, known as the ‘‘in-phase state,’’ is dy-
namically stable when no disorder is present, as a straight-
forward stability analysis reveals. For many potential device
applications involving Josephson junction arrays, the in-
phase state—a state of perfect synchrony—represents the
ideal operating state of the system.

Our main interest in this paper, however, is in the behav-
ior of the system when disorder is present. A numerical sur-
vey of our model for different realizations of the disorder
~obtained by varying the values of the critical currents
I c1 ,I c2 ,I a1 ,I a2 ,I b1 ,I b2) shows that there exist two general
categories of solutions.

~a! Synchronized states. Here, the two radial junctions
overturn at the same average rate:^dfc1 /dt&5^dfc2 /dt&.
Meanwhile, the azimuthal junctions are active, but do not
overturn: ^dfa1 /dt&5^dfa2 /dt&5^dfb1 /dt&5^dfb2 /dt&
50. ~The bracketŝ & denote time averages.! Figure 2 de-
picts a representative example of a synchronized state.

~b! Desynchronized states. In such states, the coherence
between the two radial junctions is lost:̂dfc1 /dt&
Þ^dfc2 /dt&. The azimuthal junctions now overturn~i.e.,
their time averages are no longer zero!. Figure 3 illustrates
this loss of synchronization in the radial junctions.

For a fixed value of the bias currentI, one observes that
the array enters a synchronized state when the disorder is
relatively low, while for high levels of disorder a desynchro-
nized state is realized. If instead one fixes the level of disor-
der and varies the bias current, one finds synchronized be-
havior for high values of the bias current and desynchronized
behavior for low values of the bias current. The transition
between these two states is abrupt, as can be seen from the
I -V plot depicted in Fig. 4.

Our objective is to explain these qualitative numerical ob-
servations and to construct an analytical characterization of
the transition from synchronized to desynchronized behavior.
We describe in the next section how this can be achieved
through an asymptotic~multiple-time scale! analysis.

III. ANALYSIS OF THE PLAQUETTE

To proceed, we must first put Eqs.~1a!–~1f!, ~2! into a
form more suitable for analysis. We begin by noting that
while Eqs.~1a!–~1f! represents a six-dimensional system of
equations~one for each of the six junctions!, the presence of
three constraint relations~2! implies that there are in fact
only three dynamically independent phases in the problem.
We arbitrarily choosefc1 ,fc2 ,fA as the three independent
variables, where we have definedfA[fa15fa2.

Next, we nondimensionalize the equations by rescaling
time @ t→(\/2erI)t# and introduce dimensionless critical
currents

i c15I c1 /I , i c25I c2 /I , i A5
I a11I a2

2I
, i B5

I b11I b2

2I
.

~3!

FIG. 1. The circular plaquette.The crosses mark the locations
of the six junctions. Here,fa1 ,fa2 ,fb1 ,fb2 are the phase differ-
ences across the four azimuthal junctions andfc1 ,fc2 denote the
phase differences across the two radial junctions.I represents the
~imposed! bias current, andD1 ,D2 ,D3 the ~spontaneously induced!
shunt currents.
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Note that this procedure has the effect of normalizing the
bias currentI to unity, so that the~dimensionless! critical
currents (i c1 ,i c2 ,i A ,i B) become small as the bias current
becomes large. This will prove useful for our asymptotic
analysis, which will focus on the high bias current regime,
since the critical currents can then be treated as small param-
eters.

In dimensionless form, the equations for the circular
plaquette become

dfA

dt
52

5

6
i Asin~fA!1

1

6
i Bsin~fc12fc22fA!

1
1

6
i c2sin~fc2!2

1

6
i c1sin~fc1!, ~4a!

dfc1

dt
512

1

3
i Asin~fA!2

1

3
i Bsin~fc12fc22fA!

2
1

3
i c2sin~fc2!2

2

3
i c1sin~fc1!, ~4b!

dfc2

dt
511

1

3
i Asin~fA!1

1

3
i Bsin~fc12fc22fA!

2
2

3
i c2sin~fc2!2

1

3
i c1sin~fc1!. ~4c!

@Note here that the constraint relations~2! have been used to
eliminate three of the six phases in Eqs.~1a!–~1f! and to
reexpress the shunt currentsD1 ,D2 ,D3 in terms of the three
independent phases.#

One final manipulation is needed to prepare the system
for analysis. We introduce new coordinates

FIG. 2. ~a! A synchronized state~for I 53.0, I c152.6, I c2

51.1, I a150.9, I a250.7, I b150.6, I b250.8). The phases of the
two radial junctionsfc1 ,fc2 are shown as a function of time. In the
plot, the curves forfc1 ~dashed line! andfc1 ~solid line! are vir-
tually indistinguishable, consistent with the fact that these two junc-
tions grow at the same average rate@compare to Fig. 3~a!#. ~b! The
corresponding voltage oscillations across the radial junctions
(dfc1 /dt, dfc2 /dt). Note here that the instantaneous voltages
have been plotted, rather than the time-averaged voltages, to better
accentuate the frequency-locked nature of the synchronized state.

FIG. 3. ~a! A desynchronized state~for I 53.0, I c152.6, I c2

51.1, I a150.1, I a250.05, I b150.2, I b250.8). Note that the two
radial junctions~dashed curvefc1, solid curvefc2) have different
average growth rates.~b! The corresponding voltage oscillations
across the radial junctions (dfc1 /dt, dfc2 /dt), illustrating the
lack of coherent oscillations in the desynchronized state.
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fC5
fc11fc2

2
, fDC5

fc12fc2

2
, ~5!

yielding

dfA

dt
52

5

6
i Asin~fA!1

1

6
i Bsin~2fDC2fA!1

1

6
i c2sin~fC

2fDC!2
1

6
i c1sin~fC1fDC!, ~6a!

dfDC

dt
52

1

3
i Asin~fA!2

1

3
i Bsin~2fDC2fA!1

1

6
i c2sin~fC

2fDC!2
1

6
i c1sin~fC1fDC!, ~6b!

dfC

dt
512

1

2
i c2sin~fC2fDC!2

1

2
i c1sin~fC1fDC!.

~6c!

Equations~6a!–~6c! are in final form. The impetus behind
coordinate transformation~5! has to do with the question of
synchronization. Since we are interested in understanding
whether the radial junctionsfc1 ,fc2 remain synchronized
when disorder is present, the phase differencefDC5(fc1
2fc2)/2 is the natural variable to monitor. In particular,
when this phase difference remains bounded in time, the
plaquette is synchronized; iffDC grows in time, synchroni-
zation is lost.

To analyze our model, we employ a variation of a
multiple-time-scale perturbation scheme~see Ref. 16 for a
description of the basic method!. We will work in the high-
bias-current regime, so that the rescaled critical currents~3!
may now be regarded as small. We make this explicit by
letting e denote a dimensionless small parameter and writing

i c1→e i c1 , i c2→e i c2 , i A→e2i A , i B→e2i B . ~7!

Note here that we use different scaling factors for the various
critical currents. This is motivated by our desire to capture
the transition from synchronized to desynchronized behavior
in the array, which only occurs if there is sufficient variation
in the critical currents.~Recall that for weak disorder, the
array remains locked in a synchronized state.! Hence, if iden-
tical scaling factors had been used in Eq.~7!, one would have
found that the disorder would never have been large enough
to force the system out of a synchronized state. In effect
then, by choosing different scaling factors in Eq.~7!, we are
able to describe a wider range of behaviors in the array than
would otherwise have been possible.~This situation is not
unusual; it is well known from general asymptotic theory
that a judicious choice of scaling factors often provides the
key to understanding a system’s behavior.! The choice of
scalings in Eq.~7! can also be justified by physical argu-
ments, since the radial and azimuthal junctions in a circular
array play very different roles~this point will be discussed in
more detail later!.

We next introduce fast, slow, and superslow time scales
t05t, t15et, t25e2t such that

d

dt
5] t0

1e] t11e2] t2
~8!

and expand the phases

fA5fA01efA11efA2 , ~9a!

fDC5fDC01efDC11e2fDC2 , ~9b!

fC5~v0t01v1t11v2t2!1fC01efC11e2fC2 . ~9c!

Note that in the expansion forfC we have explicitly in-
cluded a linear growth term (v0t01v1t11v2t2). This is
because, unlike the other phase variables, we expectfC to
grow approximately linearly with time@see Eq.~5! and Fig.
2~a!#.

The general procedure is now as follows: We substitute
Eqs. ~7!, ~8!, ~9a!–~9c! into Eqs.~6a!–~6c! and collect like
powers ofe. In this manner we obtain an entire hierarchy of
equations. From these we extract so-called ‘‘nonresonance
conditions,’’ which serve to suppress terms which might oth-
erwise grow without bound and destroy the validity of our
asymptotic expansion~see Ref. 16!. We now carry out this
procedure.~Since these calculations are somewhat lengthy,
we present only the key landmarks in this construction.!

At leading order in the expansion we find

] t0
fA050; ] t0

fDC050; ] t0
fC0512v0 . ~10!

The nonresonance condition associated with the third equa-
tion impliesv051. Solving Eq.~10! yields

fA05fA0~ t1 ,t2!, fDC05fDC0~ t1 ,t2!,

fC05fC0~ t1 ,t2!, ~11!

indicating that thefA0 ,fDC0 ,fC0 do not evolve on the fast
time scalet0.

At O(e), the resulting equations are

FIG. 4. I -V plot for the circular plaquette. The time-averaged
voltage across each radial junction^dfc1 /dt&, ^dfc2 /dt& as a
function of imposed currentI is shown. The transition from a de-
synchronized to synchronized state nearI 52.2 is clearly seen.
~Here, I c150.3, I c251.5, I a150.06, I a250.11, I b150.4, I b2

50.2.!
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] t0
fA152] t1

fA02
1

6
i c1

sin~ t01v1t11v2t21fC01fDC0!

1
1

6
i c2

sin~ t01v1t11v2t21fC02fDC0!, ~12a!

] t0
fDC152] t1

fDC02
1

6
i c1

sin~ t01v1t11v2t21fC0

1fDC0!1
1

6
i c2

sin~ t01v1t11v2t21fC0

2fDC0!, ~12b!

] t0
fC152v12] t1

fC02
1

2
i c1

sin~ t01v1t11v2t21fC0

1fDC0!2
1

2
i c2

sin~ t01v1t11v2t21fC02fDC0!.

~12c!

The nonresonance conditions are readily extracted and
solved:

] t1
fA050 → fA05fA0~ t2!, ~13a!

] t1
fDC050 → fDC05fDC0~ t2!, ~13b!

v11] t1
fC050 → fC052v1t11f̂C0~ t2!. ~13c!

Solving Eqs.~12a!–~12c! yields

fA15
1

6
i c1cos~ t01v2t21f̂C01fDC0!

2
1

6
i c2cos~ t01v2t21f̂C02fDC0!, ~14a!

fDC15
1

6
i c1cos~ t01v2t21f̂C01fDC0!

2
1

6
i c2cos~ t01v2t21f̂C02fDC0!, ~14b!

fC15
1

2
i c1cos~ t01v2t21f̂C01fDC0!

1
1

2
i c2cos~ t01v2t21f̂C02fDC0!. ~14c!

Lastly, atO(e2), the nonresonant conditions are

] t2
fA05

1

18
~ i c2

2 2 i c1
2 !2

5

6
i Asin~fA0!

1
1

6
i Bsin~2fDC02fA0!, ~15a!

] t2
fDC05

1

18
~ i c2

2 2 i c1
2 !2

1

3
i Asin~fA0!

2
1

3
i Bsin~2fDC02fA0!, ~15b!

] t2
f̂C052S v21

1

6
~ i c1

2 1 i c2
2 ! D2

1

6
i c1i c2cos~2fDC0!.

~15c!

Equations~15a!–~15c! represent the desired equations de-
scribing the basic behavior of the plaquette.

Observe that the first two equations~15a!,~15b! decouple
from the third, and are readily analyzed. When the disorder is
small, there exist four fixed points in the (fA0 ,fDC0) phase
plane: one sink, one source, and two saddles. The system
will be attracted to the sink. Accordingly,fDC0, which mea-
sures the phase difference between the junctionsfc1 andfc2
@Eq. ~5!#, will not grow. This corresponds to the plaquette
being in a synchronized state.

If the level of disorder is increased, one finds that the four
fixed points approach one another in the phase plane. There
is a critical level of disorder at which these fixed points si-
multaneously collide with one another and annihilate~in a
‘‘double saddle-node’’ bifurcation!. Above this critical
threshold, no fixed points exist, and the phase difference be-
tweenfc1 andfc2 begins to grow without bound, indicating
that the system has entered a desynchronized state. The pre-
cise bifurcation point can be determined via a linear stability
analysis of Eqs.~15a!,~15b!. We find

U 1

12

~ i c1
2 2 i c2

2 !

min~ i A ,i B!
U51, ~16!

where min(iA ,iB) denotes the lesser ofi A ,i B . Converting
back to our original parameters@see Eq.~3!#, the transition
boundary separating synchronized from desynchronized be-
havior is given by

U1
6

~ I c1
2 2I c2

2 !

I min~ I a11I a2 ,I b11I b2!
U51. ~17!

@When the left-hand side of Eq.~17! exceeds unity, synchro-
nization is lost.#

Equation ~17! provides a quantitative prediction for the
maximum amount of disorder the circular plaquette can tol-
erate before frequency locking is lost. The only assumption
made in our derivation is that the array is operated in the
high-bias-current regime (I @I c1 ,I c2 ,I a1 ,I a2 ,I b1 ,I b2). We
tested our theoretical prediction against numerical simula-
tions by fixing the values ofI a1 ,I a2 ,I b1 ,I b2 ,I and sweeping
through different values of the critical currentsI c1 ,I c2. In
this manner, we numerically constructed the boundary in the
I c12I c2 parameter plane separating synchronized from de-
synchronized states. These results are illustrated in Fig. 5. As
this shows, the agreement between our numerical results and
the predictions of Eq.~17! is excellent. We remark that this
agreement remains relatively good even if the bias currentI
is reduced so that we are no longer inside the~high-bias
current! regime where the asymptotic analysis is formally
valid ~see, e.g., the transition point in Fig. 4!.
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The transition formula~17! reveals that the plaquette is
robust against even very high levels of disorder. For ex-
ample, variations as large as 50% in the values of the critical
currents from one junction to the next are not sufficient to
desynchronize the array~with present fabrication techniques,
the typical size of variations can be reduced to about the 1%
level!. In this respect, then, the circular geometry of the
plaquette is intrinsically good at fostering coherent oscilla-
tions among the individual junctions even in the presence of
relatively high levels of disorder. The quantification of this
result in the form of Eq.~17! represents a key result of our
asymptotic analysis.

Moreover, the mathematical analysis leading to Eq.~17!
also uncovers the principal physical mechanism responsible
for the onset of desynchronized behavior for sufficiently high
levels of disorder. A stability analysis reveals that the bifur-
cation described above in which the four fixed points collide
and annihilate in the (fA0 ,fDC0) phase plane occurs pre-
cisely when eitherusin(fA0)u or usin(2fDC02fA0)u equals
unity. Now, the variablefA0 represents the phase of the
outer two azimuthal junctions of the circular plaquette, while
(2fDC02fA0) represents the phase of the inner two azi-
muthal junctions@this may be seen by tracing back the se-
quence of transformations that led from Eqs.~1a!–~1f! to
Eqs. ~15a!–~15c!#. Therefore, the quantitiesusin(fA0)u,
usin(2fDC02fA0)u above are simply proportional to the
amount of supercurrent passing through the outer and inner
azimuthal junctions, respectively. Hence, the meaning of the
conditions usin(•••)u51 is that the amount of supercurrent
being passed by any of the azimuthal junctions has attained
its maximum allowed value. In other words,synchronization
is lost when the supercurrent passing through any azimuthal
junction equals the critical current of that junction.This is
the fundamental physical mechanism behind the loss of syn-
chronization in a circular plaquette subject to strong disorder.

IV. COMPARISON TO RECTANGULAR PLAQUETTE
AND GENERALIZATIONS TO LARGER ARRAYS

Despite some distinctions~to be discussed shortly!, the
similarities between the circular plaquette model described
here and previous analytical studies of a rectangular
plaquette model14,15 are both striking and informative. First,
we observe that for both geometries, the arrays are able to
tolerate disorder and remain synchronized, provided the dis-
order lies below a critical threshold level. Second, and much
more revealing, we now know~based on the analysis in Sec.
III ! that the mechanism by which disorder destroys synchro-
nization in a Josephson plaquette with circular geometry is
identical to that found in a plaquette with rectangular geom-
etry ~see Ref. 14!: Synchronization is lost when the super-
current through the azimuthal junctions reaches its maximum
allowed value.~Note: the ‘‘horizontal’’ junctions of the rect-
angular plaquette play the role of the ‘‘azimuthal’’ junctions
in the circular plaquette.! The implications of this are signifi-
cant: This finding suggests that perhaps the principal mecha-
nism underlying disorder-induced desynchronization in a Jo-
sephson junction array is universal, i.e., independent of the
underlying lattice geometry.~We must emphasize, however,
that this suggestion is only speculative at present—we can
claim rigorous results only for the case of plaquettes with
circular and rectangular geometries. Moreover, the precise
manner in which bias current is fed into an array most likely
plays a role here as well, but this issue has yet to be fully
explored.!

It is important to note that while the mechanism by which
disorder destroys synchronization may be the same for both
the circular and rectangular cases, this does not mean that
these two arrays are identical in terms of their ability to
tolerate disorder. Indeed, a comparison of the transition for-
mula ~17! with the corresponding transition formula for the
rectangular-geometry case~see Ref. 14! reveals that the cir-
cular plaquette is the more robust of the two against disorder
~although only modestly more so!. This ability to tolerate
higher levels of disorder comes at a price, however, six Jo-
sephson junctions are required to construct the circular
plaquette, but only four are needed in the rectangular case.

Lastly, we speculate as to what might occur if we con-
sider generalizations of our circular plaquette~which is a 2
32 circular array! to larger (N3M ) circular arrays. Are the
synchronization properties of larger circular arrays similar to
that of the plaquette, or might new features arise? This ques-
tion is especially intriguing in light of what has been learned
recently about generalizations of the rectangular plaquette
model~a 232 array! to larger (N3M ) rectangular arrays. In
particular, if anN3M rectangular Josephson junction array
~with N.2) is subjected to weak levels of disorder, the array
only partially synchronizes: The junctions across any given
row of the array all synchronize with one another, but there
is no synchronization from one row to the next.9,17,14In other
words, the synchronization mechanism observed in an iso-
lated rectangular plaquette operates across rows in larger ar-
rays, but not between rows. Ultimately, this failure to fully
synchronize traces its origins to a highly unusual mathemati-
cal property possessed byN3M rectangular arrays in the
absence of disorder:neutral stability.18,19,15 In this context,
neutral stability refers to the fact that it is possible to perturb

FIG. 5. The transition boundary separating sychronized from
desynchronized behavior. Synchronized states lie in the interior re-
gion between the upper and lower curves. This plot was constructed
by fixing I 59, I a150.0056,I a250.0111,I b150.30, I b250.07 and
sweeping through theI c12I c2 parameter plane to locate transition
points. The circles mark the numerically determined transition
points, while the solid curves represent the theoretical boundaries
predicted by the transition formula~17!.
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the junctions within any given row of a rectangular array in
such a manner that the system has no natural tendency to
return to its original~preperturbed! configuration~see Ref.
18!. @Indeed, it was the discovery of neutral stability and
related nongeneric mathematical properties~e.g., Ref. 20!
that originally stimulated a great deal of interest in Josephson
junction arrays among the nonlinear dynamics community.#

Hence, to understand the behavior of large circular arrays,
a natural starting point is to first ask ifN3M circular arrays
(N.2) also possess the neutral-stability property. If so, one
might reasonably speculate that such arrays will exhibit only
partial synchronization when subjected to weak disorder, i.e.,
if one pictures the radial junctions in a circular array as form-
ing a series of concentric rings, then the radial junctions
within any given ring should synchronize, but no synchroni-
zation would be expected as one moves radially inward from
one ring to the next.

We offer here a preliminary inquiry into this issue by
considering the 332 circular array depicted in Fig. 6. The
equations of motion are constructed in the usual manner. We
find

\

2er
ḟ l11I l1sin~f l1!5I 2D12D2 , ~18a!

\

2er
ḟ r11I r1sin~f r1!5I 1D11D2 , ~18b!

\

2er
ḟ l21I l2sin~f l2!5I 2D12D22D32D4 , ~18c!

\

2er
ḟ r21I r2sin~f r2!5I 1D11D21D31D4 , ~18d!

\

2er
ḟa11I a1sin~fa1!5D1 , ~18e!

\

2er
ḟb11I b1sin~fb1!5D3 , ~18f!

\

2er
ḟc11I c1sin~fc1!5D5 , ~18g!

\

2er
ḟa21I a2sin~fa2!5D2 , ~18h!

\

2er
ḟb21I b2sin~fb2!5D4 , ~18i!

\

2er
ḟc21I c2sin~fc2!5D6 , ~18j!

together with constraint relations

fa12fa250, fb12fb250, fc12fc250, ~19a!

FIG. 7. I -V plot for the 332 circular array. The time-averaged
voltage across each radial junction̂df l1 /dt&, ^df r1 /dt&,
^df l2 /dt&, ^df r2 /dt& as a function of imposed currentI is shown.
The critical currents were held fixed atI l150.3, I r151.5, I l2

51.6, I r250.2, I a150.06, I a250.11, I b150.4, I b250.2, I c1

50.1, I c250.04. ~a! for low values of the bias current, all four
junctions are desynchronized.~b! at higher bias current, the outer
junctionsf l1 , f r1 become frequency locked, as do the inner junc-
tionsf l2 , f r2. Observe, however, that the outer and inner pairs are
not synchronized, owing to the neutral stability property of the 3
32 array.

FIG. 6. A 332 circular array. f l1 ,f r1 ,f l2 ,f r2 denote the four
radial junctions, andfa1 ,fa2 ,fb1 ,fb2 ,fc1 ,fc2 the six azimuthal
junctions. An externally imposed bias currentI is fed into and ex-
tracted from the array as shown.D1 ,D2 ,D3 ,D4 ,D5 ,D6 represent
the spontaneously induced shunt currents in the array.
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fa11f r12fb12f l150, fb11f r22fc12f l250,
~19b!

D11D21D31D41D51D650. ~19c!

Owing to the presence of the constraints, Eqs.~18a!–~18j!
may be reduced down to a five-dimensional dynamical sys-
tem. These calculations are lengthy and we do not reproduce
them here.

Observe that if we set all the critical currents in Eqs.
~18a!–~18j! the same~i.e., the zero-disorder case!, then there
exists an ‘‘in-phase’’ solution of the formf l15f r15f l2
5f r25f(t), with all the azimuthal junctions identically
zero. Now, a straightforward check reveals thatf l15f r1
5f(t), f l25f r25f(t1d) is also a solution of these equa-
tions ~with d an arbitrary constant!, indicating that this cir-
cular array does indeed possess the neutral stability property
found previously in a rectangular array~see Refs. 18 and 15
for a more general discussion!.

This result is both significant and~from a mathematical
perspective! somewhat surprising. It is significant because it
suggests that indeed the circular array might exhibit only
partial synchronization when weak disorder is present. It is
surprising because neutral stability is a nongeneric math-
ematical property that in general would not be expected to
persist if one makes changes to a system, and yet it has
survived the change from a rectangular to circular lattice
geometry. We do not yet have a complete understanding of
why this should be the case.

To verify our hypothesis about partial synchronization in
a 332 circular array, we ran a series of numerical simula-
tions. The resultingI -V diagram is shown in Fig. 7. We find
that for low values of the bias current, all four radial junc-
tions f l1 , f r1 , f l2 , f r2 are desynchronized@Fig. 7~a!#. As
the bias current is increased, the outer junctionsf l1 , f r1
eventually synchronize with one another@as in the plaquette
case~Fig. 4!#. Likewise, the inner pairf l2 , f r2 also even-
tually synchronizes~though not at the same time as the outer

pair!. Observe, however, that the outer and inner pairs of
junctions do not synchronize with one another, see Fig. 7~b!.

V. CONCLUSIONS

In this paper we have presented a detailed analytical de-
scription of the behavior of a 232 Josephson junction array
with a circular geometry, culminating in a quantitative as-
sessment of its ability to remain synchronized in the presence
of disorder. The primary physical mechanism responsible for
the loss of synchronization when disorder becomes too large
has also been identified, and has been shown to be identical
to that found previously in a 232 rectangular array. This
finding suggests that the underlying cause of disorder-
induced desynchronization in an array might be more general
than previously believed, and transcend the particular lattice
geometry of the array.

Moreover, our study of the circular plaquette indicates
that larger circular arrays can also synchronize when disorder
is present~provided the disorder is not too large!, but that
this synchronization is only partial, owing to the~somewhat
surprising! existence of the neutral stability property in these
larger arrays. Thus, in terms of theintrinsic ability of lattice
geometry to promote synchronization, we have determined
that acircular lattice geometry is only partially successful in
this regard~i.e., the circular geometry does not naturally in-
duce synchronization in the radial direction, though it does in
the azimuthal direction!. Hence, while it may still be possible
to fully synchronize a circular array by other means~e.g., by
applying a high-frequency external signal, coupling the array
to an external load, or through nonlocal mutual inductance
effects, etc.!, the innate contribution of the~circular! lattice
structure to the synchronization process has been demon-
strated to be somewhat limited. It remains to be seen whether
other lattice geometries might exist that are intrinsically bet-
ter at promoting~full ! synchronization in an array compared
to the circular or rectangular cases.
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