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Ginzburg—Landau theory has provided an effective method for understanding the
onset of superconductivity in the presence of an external magnetic field. In this
paper we examine the instability of the normal state to superconductivity with
decreasing magnetic field for a closed smooth cylindrical region of arbitrary cross-
section subject to a vertical magnetic field. We examine the problem asymptotically
in the boundary layer limit(i.e., when the Ginzburg—Landau parameter,is
large). We demonstrate that instability first occurs in a region exponentially local-
ized near the point of maximum curvature on the boundary. The transition occurs at
a value of the magnetic field associated with the half-plane at leading order, with a
small positive correction due to the curvatumehich agrees with the transition
problem for the disg and a smaller correction due to the second derivative of the
curvature at the maximum. @998 American Institute of Physics.
[S0022-24888)00203-3

I. INTRODUCTION

The application of a sufficiently large magnetic field is known to destroy the superconducting
property of a superconductor. If one keeps a sample below some critical temperature, however,
then experiments reveal the emergence of a superconducting state once the external field is low-
ered below some critical value. In addition to a loss of normal resistivity, the material in the
superconducting state gains the ability to expel the applied magnetic field. Here we investigate this
bifurcation using the Ginzburg—Landau theory of superconductivity as a rodel.

This problem has been treated analytically in various settings in which the sample is cylin-
drical (i.e., of constant cross sectiprand the applied magnetic field points in the axial direction.
This assumption allows for a two-dimensional approach to the analysis. Saint-James and de
Genne$consider the case of a half-plane and infinite slab, and using the Ginzburg—Landau theory
they linearize the equations about the so-called “normal state” in which the applied field totally
permeates the medium. Through an explicit solution, they find the critical value of the applied
field where the normal state loses stability—frequently referred tlddgsin the literature—to be
approximately 1.K. Herek is the Ginzburg—Landau parameter, a dimensionless material constant
defined as the ratio of two important length scales in the system. In their analysis and in ours as
well, k is taken to be greater thanv®/, so that the material is a so-called type-Il superconductor.
Saint-James and de Gennes also find that the superconducting state concentrates along a thin
neighborhood of the boundary of the sample and then tails off exponentially in the interior, a
property referred to as “surface superconductivity.” More recently, Chaprhaarried out a
more detailed formal mathematical treatment of the half-plane problem as part of a general analy-
sis of onset for decreasing fields, starting from a perturbation theory developed by Millman and
Keller’ (See also Refs. 6—8 for related rigorous work and more recflyrigorous estimates
on the upper critical field, above which only normal states solve the Ginzburg—Landau eqyations.

Following these studies, Bauman, Phillips, and TFémsgudied this bifurcation when the cross
section of the sample is a disc. By separating variables and using a highly nontrivial O.D.E.
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analysis, they rigorously show that the value!-t);‘3 is raised above the half-plane value ofKi¥/

a quantity proportional to the curvature of the disc. As in the case of a half-plane, they find the
superconducting state concentrates near the boundary of the disc with an exponentially small tail.

It was this last result which caught our attention and lead us to ask the question: what is the
nature of the bifurcating superconducting state when the cross section of the sample has an
arbitrary shape? Here we investigate this problem using formal asymptotic expansions in the
regime wherek is large. We discover that the transition occurs at a value of the external field
associated with the half-plane at leading order, with a small positive correction proportional to the
maximum of curvaturgwhich agrees with the transition problem for the glisend a smaller
correction due to the second derivative of the curvature at the maximum. Furthermore, the ampli-
tude of the order parameter measuring the presence of superconductivity is exponentially localized
about the point on the boundary where curvature is a maximum. We note that recently CHapman
studied a complementary bifurcation problem in which a small applied magnetic field is gradually
raised until it reaches a critical fieIcH-I(:1) at which the purely superconducting state loses stability
to a vortex state. In that setting it turns out that the bifurcating vortex state emerges near the point
of maximum curvature of the boundary as well.

In the section which follows we introduce the Ginzburg—Landau model and then present the
asymptotic analysis leading to the conclusions stated above.

II. ASYMPTOTIC ANALYSIS

We consider a sample occupying an infinite cylinder with two-dimensional cross section
consisting of an arbitrary simply connected smooth bounded re@iaiR?. The sample is adja-
cent to a vacuum and is subjected to an applied magneticHigddinting in the axial direction, so
that H=Hz for some positive scalaH. We use the Ginzburg—Landau theory to model the
superconductor, thus the system is described by two quantities, an order parénfeterC and
the magnetic potentigh: (0 — R?. The pair(¥,A) is an equilibrium state for the energy

1/i
G(\P,A)=Jﬂ(§ ‘(E V+A)\I’

where curIA=(aXA2—ayA1)2, k is the Ginzburg—Landau parameter and we have used the pen-
etration depth as a length scale. This energy is well-define@fbelonging to the Sobolev space
H1(Q:C) and A belonging to the Sobolev spate'(Q);R?). Setting the first variation o6 to

zero, one finds that the pai¥,A) satisfies the Ginzburg—Landau equations

° 1 22, 1 52
+Z(l—|\lf| ) +§|curIA—Hz| dx, (2.1

(iEV—FA 2\1f—\1f+|~1f|2\1r:0 in Q, (2.2
(curl)2A+%(lIf*V\If—\IfV\If*)+|\If2|A=O in Q, (2.3

along with the boundary conditions
ﬁ~<iEV+A ¥=0 on JQ, (2.9
curlA=Hz or 9. (2.5

Heren is the inward unit normal téQ) and (-)* denotes complex conjugation. We refer to Ref.
12 for more background on the model. We also note that in light of our assumption of smoothness
on JQ, standard elliptic regularity theory shows that solutionga®—(2.5) are classical ¢?)
solutions.

The problem is invariant under the gauge transformatiénX) — (¥',A’) where

P'=Peke A'=A+V¢ (2.6)
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for an arbitrary real-valuet?(Q) function ¢. Throughout this analysis it will be convenient to
impose the additional conditions

div A=0 in Q, A-n=0 on Q. (2.7
This amounts to choosing a gauge, thus eliminating the degeneracy associated with the gauge
invariance of our problem.
Within the Ginzburg—Landau model the normal state corresponds to the conditions
¥=0, A=A,
whereA satisfies
(cur)®2 A=0 in Q,
curl A=HZ on 4Q,
divA=0 in Q,
A-A=0 on JQ.

For a vector with only two components the condition (c%ﬁ%o implies that curlA is constant
so the conditions above reduce to simply

curl A=Hz in Q,
divA=0 in Q,
A-A=0 on 4Q.
It is convenient to introduce the vector fiegddthrough the relatior;:HE, so that
curla=z in Q,
diva=0 in Q,
a-N=0 on /1. (2.9

We note that obtaining the existence of a classical solutid2.®) in a smooth bounded domain
is simple. For example, one can obtairin the forma= 3(—y,x)+ Vu, whereu is a harmonic
function satisfying the Neumann conditidhu-n=—2(—y,x)-n on Q. The uniqueness o
follows from the assumption of simple connectivity éh That is, letting sayb denote the
difference between any two solutions(&8), one finds thab must be the gradient of a harmonic
scalar function whose normal derivative vanishes)n Thus the scalar function is constant and
b=0.

Since we seek a description of the initial bifurcation of the solution from the normal state
(0,Ha) as the applied magnetic field is decreased, we begin our formal analysis by introducing a
small parametee (which measures the magnitude|¥f) and assuming asymptotic expansions for
the quantitiesl, A, andH of the form

V=0+eVV+...
A=ha+ AP+ |

H=h+eHM+...
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(cf. Refs. 3 and b The relative scalings o¥', A, andH are motivated by the need to balance the
term | W |2¥ with the terms involvingA —Ha'in (2.2). Inserting these expansions in@2)—(2.5)
yields a linear problem foW (1) at leading order,

: 2
|
(Ev+hﬁ YvO-_pB=0 in Q, (2.9

n-

i
Ev+hﬁw<l>=o on Q. (2.10

As h is decreased, one expects the instability of the normal state to occur(@19r(2.10 has
a nontrivial solution. Hereh plays the role of an eigenvalue and we defifig to be the largest
positive eigenvalue for the linearized problé¢tn9)—(2.10. Whenk is sufficiently large, nonlinear
analysis suggests that this bifurcation is a supercritical pitchfoitkRefs. 3 and %

At this point, we wish to analyz€.9)—(2.10 via formal matched asymptotic expansions in
the regime where the Ginzburg—Landau paramktés large. Experimentgboth physical and
numerical indicate that the superconducting state nucleates on the boundénanfl the factor
of (1K) in (2.9 suggests that the order paramelt) will vary there with a characteristic length
scale 1k. Thus, we will seek a boundary layer solution which matches to the normal state in the
interior of the domain(Indeed, we will find that the modulus of this boundary layer solution
decays exponentially to zero as we depart fréh)

To this end, we introduce coordinates, ) valid in a neighborhood ofQ. Heres is
arclength alongQ) and » is the distance from a point withif} to the boundary. We can arbitrarily
select a point or@() corresponding te=0; without loss of generality we will choose this point to
coincide with the maximum of curvature on the boundary. We will gsex(s) to denote the
curvature ofd) (not to be confused with the Ginzburg—Landau paramietgr

This local coordinate system will be well-defined in the rectangle

S={(s,7): —L/2<s<L/2, 0<y<C},

where L denotes the arclength of the boundary, ahds any positive constant smaller than
[1/k(0)]. We adopt the convention that fé} a disc is positive. We denote bi=t(s) a unit
tangent vector ta)) and we recall thah=n(s) denotes the inner unit normal vector. Thus, in
particular, any vector field= defined in a neighborhood afQ) can be expressed d4s,7)
=F,(s,)t(s) +F,(s,7)A(s). We now proceed to rewrite problef@.9—(2.10 in s—# coordi-
nates so that we may pursue a boundary layer construction in the r8gion

For this purpose, we record here that for any scalar-valued funétiof(s, ) one has the
identities,

Vi=a,fn+ =7 dsft, (2.11)
Vofmg fo gt o o 2.1
ST 1—kp " 1—kn S\1—kp| (212

and for any vector fieldF=F (s, 7)t+ F,(s, 7)h we have

, 1 1
div F—mﬁsFl‘Fl_—ma”[(l—Kﬂ)Fz], (213)
curl F=div(F,t—F,n)z. (2.14

These identities can be computed using standard planar differential gedisetre.g., Ref. 13
and are explicitly derived for example in Ref. 14.

For a general domaif2, althougha-n=0 on A}, a is not purely tangential. That is, writing
a=a(s,#) we havea(s,7)-n(s)=0 only for =0 but not for 0< <C. However in the coor-
dinate rectanglé, we can decompos&into componentp andqg,
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a=p+q
as follows. We first defing as the solution to the problem
culg=z in S, g-n=0 in S, andq(s,0)=0. (2.15

Note in particular thag will be purely tangential is the sense mentioned above.
Seeking a solution t€2.15 in the formg=q(s, »)t, we can solve for the scalgrthrough the
use of(2.13 and(2.14). We find thatg must satisfy the first order differential equation

T=ry Ot(Imxma)=1, a(s0=0,

so that
A 1-«k(s)nl2)\.
a(s, m)=d(s, ”)“S’:‘"(W) ). (2.16

We then defing by the relatiora=p+q. Note in particular thap will then be conservative,
curl p=0 in S (2.1

Motivated by the gauge invariance, and utilizi(®17), we now introduce a phas® on the
rectangleS through the relatio’’Vd =hp. Hence, for any §,7) € S, we let

<I)(s,77)=hJ’ p-dr, (2.18
Y

wherey is any path inS joining (0,0) to (s, 7). We then introduce the functio# by writing the
solution ™ to (2.9 —(2.10 neardQ in the form

WD = yeikPgiks, (2.19

where B is a constant to be determined. Through the gauge transformation it becomes apparent
that the complex exponential df eliminatesp, the conservative componentafThe factore'#s
represents a contribution to the phase evident in the earlier investigations of Saint-James and de
Genne$ and Chapmahthat arises when the problem is posed on the half-plane. Our motivation
for this change of variables is to make the leading-order balance conform with the known results
for the half-plane problem. In particular this is not a polar decomposition; althgugfil have
real solutions at leading order, the higher-order corrections may be complex in nature.

Using (2.6), we find that in a neighborhood @K}, the problem(2.9—-(2.10 for ¥ as a
function of x transforms to the following problem fap as a function ok and #,

; 2
(IEV+hq—,3Vs) Yy—¢=0 in S, (2.20
I

n~k

V+hq—,8Vs) =0 on n=0. (2.2)

Then using(2.11) to computeV's and exploiting the fact thadiq— Vs has non component, we
see that(2.20—(2.21) can be written as

2
hg— 1—Bm;>f> y—=0 in S

i
(E V+
Vi¢-n=0 on n=0.

A further expansion of this equation yields
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1 i 2v YA

+_
77075 kl—«xn

— —_— — —_ 2 = i
k2A+k1— +1-V°|¢=0 in S, (2.22

¢,=0 on =0, (2.23
where

hn(l—kn/l2)+ B
l1-«ky '

V(n,s)= (2.29

So far we have simply rewritten the linearized probl&®)—(2.10 in terms of the function
 (introduced via the changes of variabl@s19) and in terms of the independent variabseand
7 to obtain a convenient formulation of the problem valid n&@r At this point, we wish to begin
a process of formal matched asymptotic expangi@sed on the assumptite 1) by introducing
stretched coordinates to solve a boundary layer problem which will then be matched to the normal
state in the interior.

As we are seeking a boundary layer solution and we have a factor k) (hultiplying the
Laplacian in(2.22) it is natural to seek a solution which depends not on the normal varipbie
on the stretched variable

£=k7. (2.25

What is not so obvious, but nonetheless necessary, is that we must stretch the tangential variable
as well, by introducing

r=kY4(s—s). (2.26

Heres, is a value of arc length along the boundary which remains to be determined. The trans-
verse length scale (¥“) represents a balance between the quadratic nature of the curvature at the
maximum and the transverse modulation of the amplitude, a fact best expkipedteriori
Putting it another way, any expansion which fails to incorporate this stretched tangential
dependence—that is, which fails to sufficiently promote the appearance of tangential derivatives
of the solution as we expand—uwill lead to inconsistencies later in the asymptotic analysis.

Once one resolves to seek a solution depending and r, however, one is obligated to
pursue a solution which is not only localized ne#, but localized near théso far arbitrary
point corresponding te=s; as well. Accordingly, this solution must be matched to the normal
state both in the interior of) (¢ large) and along the boundary away from=s, (|7 large.

Thus, we assume an expansion §oof the form

U= Yol E1)+ L1 (1) (0 Ya£,7) + (Vi) 227
and an expansion fdr=h(k) of the form
h=hok+ hk¥*+h,kY?+ hkY4+hy+ - . (2.289
To carry out the analysis, we need an expansion for the expregsiopowers ofk. To this end,

we first express the curvatukeas a function ofr, sayK (), and Taylor expand abost= s, using
(2.26) to obtain

1 1 7 — 01— 1 _77 (1
K(7)=K(So)+ j1m ks(So) 7+ (1 Ksd(So) 5+ 7| jam| = K+ (a7 ksT+ (12 Kss 5 + | (3
(2.29

wherek, kg, and ks denotex(sy), s(So), andks(Sy), respectively.
To expandV, we substitutg2.25 and (2.29 in (2.24 to find
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1 1 1
V=(hoé+pB)+ PRL (hé)+ PRl (hpé)+ P (h3é)

1 ho 1 h, . [hg _
)| haét 7§2+’8§)d+k_5’7‘[ h5§+?§zk+ ?§2+B§ KsT
1 hz — hl — ho 5 — ’7'2 i 1
+W§ h6§+?§ K+?§ KT+ ?g + B¢ Kss? + @ W . (2.30
Using (2.12 and(2.27), we expand the Laplacian
1, 1 1 _ 1 — 7 (1
i2 A:é"fg— K Kdg— P KsTdgt PEL: 07— KSSE dgp+@ i) (2.3)

The imaginary terms ii2.22 can be expanded using.13, (2.25 and(2.26

i 2v i Ve i (1
2V(9T+—3771V7+(7“/ k—7/' . (233

i
El—lmyas-i-El—K?y_E3771 k

We can now proceed to expand and solve for successive orders in the expansion for

A. Leading order balance: The half-plane problem

The basis for our expansion is that the leading-order balance in the problem is exactly equiva-
lent to the instability problem for the half-plane. This problem was first considered by Saint-James
and de Gennesand yields an exponentially localized superconducting region near the boundary.
In the general domain we will construct a solution whose leading order structure is equivalent to
the solution of the half-plane problem with an amplitude that varies along the boundary.

We can now expand the problem at leading or@der(1)); Egs.(2.22 and(2.23 yield

¢o§§+(1_(h0§+3)2)¢020 for 0<é<<ee,
$0,0)=0, o (*)=0, (2.33

where the second boundary condition allows us to match the boundary layer solution to the normal
state in the interior of). This is exactly the half-plane problem considered formally in Refs. 2 and
3, and treated rigorously in Refs. 6 and 7.

Recall that we seek the first appearance of a nonzero state as the magnetic field is decreased.
Hence we view2.33 as a double eigenvalue problem fgyand 8 in which 8 is to be determined
so as to yieldh, the largest possible value bf,. Note thatB corresponds to a transveréee.,
parallel to the boundajywave number, which in the half-plane problem arises naturally through
separation of variables. We now tabulate a set of results known for this problem, which will form
the basis for our perturbation expansion. With the exception of identi&@4)—(2.36) below, the
proof of the Lemma can be found, for example, in Ref. 15. See also Refs. 6 and 7. The derivation
of (2.349—(2.36) can be found in the appendix. o

Lemma: There exists a largest value qf{ B), denoted by hfor which (2.33) possesses a
nontrivial solution. This occurs wheg takes the value-1. The corresponding eigenfunction,
denoted henceforth by(¢), satisfies

E/JJ=O for 0<é<oo,

$:(0)=0, ()=0,

with the normalization7(0)= 1.
The operator” is defined by

S()=9e )+ (1= (hE—1)D)(-),
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and is self-adjoint in the £ inner-product o o
The solutiony decays exponentially ag— and, letting 3=/ ¢?dé, we have thaty
satisfies the following identities

© 1
Ji= fo Eyfdé= =Jo. (2.34)
I Ry S 3

Jo= fo &Y d§—ﬁJo, (2.35

» L — 1 5
Jazfo §3¢2d§:T+

PR ) (2.36

Remark:Through numerical approximation one finds: 1.69461+ andJy=1.00784+.

In light of the absence of any dependence if2.33, we may write

Yol £,7)=Wo( ) (&),
whereW,( 7) is a(perhaps complexamplitude corresponding to a transverse modulatioa(@)

on ther length scale whose behavior will be determined at higher order. This type of modulation
or multiple scale expansion is familiar from many physical syst&#ms.

B. Higher order corrections

At orders (1Y% and ' (1/kY?) we find
() =2 E(E- D) P(E)Wo(7) for =12,

(41)£(0)=0, (4i)(*)=0. (2.37)

If we define thel? inner-product,

<w,¢>=fo°cw*¢d§,

then the Fredholm Alternative Theorem yields necessary and sufficient solvability conditions for
(2.37. That is, orthogonality tay,

(0, A())=0 for i=12,

implies
Jo
hiWO F—: .

Thus we concludé;=h,=0 so that“%(;)=0 and we have

Yr=Wy(n)(€) and g =W,(7) (&)

with the functionsW; andW, yet to be determined.
Proceeding to”? (1/k%%,

S h3) = 2h3E(E— 1) YWo—2i(hé— 1) W, for 0<g<os,

¥3,(0)=0, 3(=)=0. (239
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Application of the solvability condition at this order yields

- Jo
(4, Z(3))=0=h3W, P

henceh;=0. Now note that sinceg(_%(g))=0, one has
L) =2h(hé=1)y. (2.39

One also readily verifies tha;gg(O):Jfg(oo):O (recall that in factJ decays exponentially at
infinity) so that we find

= Wo(r) 9 E) ~ =Wy, (2.40

whereW; remains to be determined.
We now proceed to orde?f (1/k),

F(hg)=hy[26(hE—1) Y] Wo+ k[ £(hE—1)(hE—2) yp+ ] Wo—[ 21 (hE— 1) YW, ,
$,(0)=0, () =0. (2.40

Solvability at this order takes the form,

J
(h4 2 %WO:O, (2.42
h 3

where we have applied the identiti€s34)—(2.395, and integration by parts. Thus

h—h = h 2.4
4—3—‘]0 K—B—JOK(SO). ( . 3)

Note that we seek the largest value lof(hence ofh,) at which a superconducting solution
emerges; clearly we can maximibg by choosing to expand around the point whefs,) is a
maximum, i.e., by choosing,=0. Consequently, we conclude thasttability first occurs at the
point of maximum curvatureso that

k=max k(Sqg)=k(0),
So

k=0,

Kee=O0.
We shall make thégeneri¢ assumption that

Kgs<O.

We have also tacitly assumed that the curvature reaches a unique maximum; in the case of
multiple isolated maximumssuch as an ellipgewe could construct an exponentially localized
solution at each which would interact only exponentially weakly. In the case when the second
derivative vanishes at the maximuisuch as the digcour scaling ansatz will prove to be invalid
at higher order.

In addition, formula(2.43—specifically the fact thah, is positive—bears the information
that onset of superconductivity in a bounded sample occurs at a higher value of applied field than
for the case wher8 is a half-space. This correction agrees with that computed by Baetrei®
for the disc.
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We could proceed to solve fap, at this point(an explicit solution can be obtained via
variation of parameteyshowever we omit this calculation as it will play no further role in our
analysis.

We proceed to the next order and collect termgZgfL/k>?),

S(hs) =hs[ 26(hé— 1) YW+ hy[ 26(hE— 1) YW,
+ k[ E(hé—1)(NE—2) i+ ih ] W1 — [ 2i (hE— 1) YIW,

¥5,(0)=0, ys5,()=0. (2.44

Once again, integration again;tyields the solvability condition. The terms W' anszT in the
solvability condition vanish in an analogous fashion to thost;nandWlT at the previous order

(taking into account the value &f, determined by2.43). Hencehs=0. Once again, we neglect
the calculation ofiy5 as it plays no further role in our analysis.
Finally, we proceed to the next order and collect termg gfl/k*?),

— — Y = — - — 2 -
A w6)=h6[2§(h§—1>w]wo+xss% [£(hg—1)(he—2) y+ lﬂg]Wo_{H—(hf_l)lﬁﬁ‘ Y| Wo

+ha[26(hE— 1) YW, + k] E(hE— 1) (hE—2) g e IWo—[ 20 (hE— 1) ] W ,
¥6,(0)=0, (=) =0. (2.45

Once again, we integrate againgt The terms proportional t&V, and W3 in the solvability
condition vanish in an analogous fashion to those proportionwltaandWZT respectively at the

previous order. However, we obtain a nontrivial solvability condition Wey(7). Applying the
identities(2.34—(2.36 and integrating by parts yields

K
he —— —= 72 | W,=0. 2.4
5T 5 ) 0 (2.46

At this point we see the motivation for the introduction of thiengthscale; on this length scale
the tranverse variation of the amplitudW&T) balances the quadratic variation of the curvature
(kss™12).

Boundary conditions olVy(7) are determined by a need to match to the normal state at large
|7, for which (1) and consequentiW, vanish. Thus, we apply the condition thaf(7) vanishes
in the far-field,

Wy(7)—0 as|7|—x (2.4

with the understanding thatis in the matching region, <| 7| <k Fortunately W,(7) decays
exponentially and consequently this matching will only introduce exponentially small corrections
in the expansion.

Fortuitously, Eq(2.46 is real, and consequently admits real solutionsVir(we expectW,
to be complex in generalWe can rescal€.46) into the standard form for the harmonic oscillator
equation; define

‘]OhG
gzaT! W(g):WO(gla)i )\:_71

where

o L4
5
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remembering that at the maximum of curvature, we hayg<0. Equations(2.46) and (2.47)
become

1
)\——gz)w=0, w({)—0 as|{|—ce.

The eigenvalues and eigenfunctions of this problem are given by
A=n+3, w(O)=He(D)e ¥ n=01.23,..,

where Hg(¢) are the Hermite polynomial&cf. Ref. 17. Note that the smallest eigenvalue is
No=1/2, with corresponding eigenfunctiomo(g)=e‘§2’4. Hence, the largesfleast negative
eigenvalue for(2.46 is given by

1 _ ZFSSh 1/2
he=— 23, ( 3 ) , (2.48
and the corresponding eigenfunction is
Wo(r)=e" @7/, (2.49

The exponential decay ol, away from =0 reveals that the phenomenon of onset is highly
localized near the point of maximum curvature #§2. We have now completely determined the
leading order solution fo?() to the linearized probleni2.9), (2.10 in the asymptotic regime
k>1.

lll. DISCUSSION

In this paper we have examined the instability of the normal state to superconductivity with
decreasing magnetic field for a closed smooth cylindrical region subject to a vertical magnetic
field. We have examined the problem asymptotically in the boundary layer lk®itl]. Insta-
bility first occurs in a region exponentially localized near the point of maximum curvature on the
boundary. The transition occurs at a value of the magnetic field,

H,.= hk h - 1 (z2h)* 1 = 3.1
o=kt 33, x" 23,1 73 ) @k @D

wherehk is the transition value associated with the half-pl&feRefs. 2 and B8 the second term
is a positive constant times the maximum curvatue® that agrees with the correction computed
for the disc(cf. Ref. 10, the third term is a negative correction of order'’?, associated with the
quadratic variation of the curvature at the maximum, and the error term follows from continuing
the expansion documented in the previous section.

At leading order, the superconducting order-parameter satisfies

|q;(l)| ~J(§)e’ a272/4,

where

—ZFSSh) 1/4

é=ky, 7=kYs, and az( 3

HereJis the profile associated with transition in the half-plane problem—it is an exponentially
decaying function of the normal distance to the boundayy scaled by the boundary layer

thickness (). The amplitude along the boundary is modulated by a Gaussfé.‘ﬁ?z"‘, wherer
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is the arclength measured from the point of maximum curvaiire=0) scaled by a length scale
intermediate between the boundary layer thickness and the characteristic length scale of the do-
main (unity).

Physically, this result is a refinement of the corresponding results for the half-plane and the
disc. The half-plane result yields the leading order transition value for the magnetic field and
exponentially decaying boundary layer profikdy and, respectively. The disc calculation shows
that transition occurs at a higher value of the magnetic field where the correction is of order unity
and proportional to the curvatutee., the inverse of the radiudn contrast to the half-plane and
disc calculation where onset occurs along the entire boundary simultaneously, in a general domain
the profile is exponentially localized near the point of maximum curvature on the boundary on the
7 length scale; the transition value is slightly below that of the oscillating disc at the point of
maximum curvature.

An additional effect of this exponential localization of the transition profile is that the peri-
odicity of the boundary apparently has an exponentially small effect on the critical magnetic field
and the various eigenmodes are never degenerate. This is in sharp contrast to the theoretical
calculation for the disc where periodicity “quantizes” the transverse wave numbers and at various
critical parameter values there is a transition between different modes as the most unstable. We
note that this quantization in a disc is captured via formal matched asymptotics in Ref. 18. These
characteristics are also observed experimentafyWe suggest here that this degeneracy occurs
only in the presence of symmetry in the sample geometry.

Finally, we note that the approach here is quite general, and should allow for the incorporation
of nonlinearity, temporal evolution through relaxational effects, etc. The result we believe will be
a Newell-Whitehead—Segal-type equatich Ref. 16,

Wr=Wsst[h— x(S)TW—W[W|?

where W is a transverse modulation amplitude of the boundary layer prdiles a scaled

arc length,T is a slow time scale associated with relaxational efféctsRef. 4, h is a scaled
magnetic field, and¢(S) measures curvature variation along the boundary. A model of this sort
could be used to study hysteresis, symmetry breaking and a host of other phenomena which may
lead to better understanding and prediction of the behavior of superconductors.

Note added in proofAfter completing our work we learned about Reference 21.
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APPENDIX: DERIVATION OF MOMENT IDENTITIES (2.34)—(2.36)

To derive identitieg2.34—(2.36), we observe that the operatof maps the vector space of
functions of the forma(&) ¢+ b(&) ¢, wherea(§) andb(&) are polynomials, into itself. A little
algebra shows that for a polynomig(¢),

L(2Che—Ceth) = —{Ceget SNE(2—hE)Cp+ Ah(1—hE)Chyp. (A1)
Multiplying by Z integrating over the range and applying integration by parts, we reach the
identity
fo b A(2¢h— cap)dé=cy(0). (A2)

If we now define the moments,
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3= J:gnﬁdf,

we can derive a recursion relationship i by choosingc=¢", substituting into(A1) and
applying the identityA2)

c=1: 0=—4hJy+4h2J,,
c=¢&  0=—12hJ;+8h2J,,
c=¢2 2=—20hJ,+12h2]5,
c=¢" 0=—n(n—1)(n—2)J,_s—4h(2n+1)J,+4(n+1)h2J,,, n=3.

The identities(2.34—(2.36 and expressions fal, in terms ofJ, can now be found by solving
these relations. ]
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