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Ginzburg–Landau theory has provided an effective method for understanding the
onset of superconductivity in the presence of an external magnetic field. In this
paper we examine the instability of the normal state to superconductivity with
decreasing magnetic field for a closed smooth cylindrical region of arbitrary cross-
section subject to a vertical magnetic field. We examine the problem asymptotically
in the boundary layer limit~i.e., when the Ginzburg–Landau parameter,k, is
large!. We demonstrate that instability first occurs in a region exponentially local-
ized near the point of maximum curvature on the boundary. The transition occurs at
a value of the magnetic field associated with the half-plane at leading order, with a
small positive correction due to the curvature~which agrees with the transition
problem for the disc!, and a smaller correction due to the second derivative of the
curvature at the maximum. ©1998 American Institute of Physics.
@S0022-2488~98!00203-5#

I. INTRODUCTION

The application of a sufficiently large magnetic field is known to destroy the superconducting
property of a superconductor. If one keeps a sample below some critical temperature, however,
then experiments reveal the emergence of a superconducting state once the external field is low-
ered below some critical value. In addition to a loss of normal resistivity, the material in the
superconducting state gains the ability to expel the applied magnetic field. Here we investigate this
bifurcation using the Ginzburg–Landau theory of superconductivity as a model.1

This problem has been treated analytically in various settings in which the sample is cylin-
drical ~i.e., of constant cross section!, and the applied magnetic field points in the axial direction.
This assumption allows for a two-dimensional approach to the analysis. Saint-James and de
Gennes2 consider the case of a half-plane and infinite slab, and using the Ginzburg–Landau theory
they linearize the equations about the so-called ‘‘normal state’’ in which the applied field totally
permeates the medium. Through an explicit solution, they find the critical value of the applied
field where the normal state loses stability—frequently referred to asHc3

in the literature—to be
approximately 1.7k. Herek is the Ginzburg–Landau parameter, a dimensionless material constant
defined as the ratio of two important length scales in the system. In their analysis and in ours as
well, k is taken to be greater than 1/&, so that the material is a so-called type-II superconductor.
Saint-James and de Gennes also find that the superconducting state concentrates along a thin
neighborhood of the boundary of the sample and then tails off exponentially in the interior, a
property referred to as ‘‘surface superconductivity.’’ More recently, Chapman3,4 carried out a
more detailed formal mathematical treatment of the half-plane problem as part of a general analy-
sis of onset for decreasing fields, starting from a perturbation theory developed by Millman and
Keller.5 ~See also Refs. 6–8 for related rigorous work and more recently,9 for rigorous estimates
on the upper critical field, above which only normal states solve the Ginzburg–Landau equations.!

Following these studies, Bauman, Phillips, and Tang10 studied this bifurcation when the cross
section of the sample is a disc. By separating variables and using a highly nontrivial O.D.E.
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analysis, they rigorously show that the value ofHc3
is raised above the half-plane value of 1.7k by

a quantity proportional to the curvature of the disc. As in the case of a half-plane, they find the
superconducting state concentrates near the boundary of the disc with an exponentially small tail.

It was this last result which caught our attention and lead us to ask the question: what is the
nature of the bifurcating superconducting state when the cross section of the sample has an
arbitrary shape? Here we investigate this problem using formal asymptotic expansions in the
regime wherek is large. We discover that the transition occurs at a value of the external field
associated with the half-plane at leading order, with a small positive correction proportional to the
maximum of curvature~which agrees with the transition problem for the disc!, and a smaller
correction due to the second derivative of the curvature at the maximum. Furthermore, the ampli-
tude of the order parameter measuring the presence of superconductivity is exponentially localized
about the point on the boundary where curvature is a maximum. We note that recently Chapman11

studied a complementary bifurcation problem in which a small applied magnetic field is gradually
raised until it reaches a critical field (Hc1

) at which the purely superconducting state loses stability
to a vortex state. In that setting it turns out that the bifurcating vortex state emerges near the point
of maximum curvature of the boundary as well.

In the section which follows we introduce the Ginzburg–Landau model and then present the
asymptotic analysis leading to the conclusions stated above.

II. ASYMPTOTIC ANALYSIS

We consider a sample occupying an infinite cylinder with two-dimensional cross section
consisting of an arbitrary simply connected smooth bounded regionV,R2. The sample is adja-
cent to a vacuum and is subjected to an applied magnetic fieldH pointing in the axial direction, so
that H5H ẑ for some positive scalarH. We use the Ginzburg–Landau theory to model the
superconductor, thus the system is described by two quantities, an order parameterC:V→C and
the magnetic potentialA:V→R2. The pair~C,A! is an equilibrium state for the energy

G~C,A!5E
V
S 1

2 US i

k
¹1ADCU2

1
1

4
~12uCu2!21

1

2
ucurl A2H ẑu2Ddx, ~2.1!

where curlA5(]xA22]yA1) ẑ, k is the Ginzburg–Landau parameter and we have used the pen-
etration depth as a length scale. This energy is well-defined forC belonging to the Sobolev space
H1(V;C) and A belonging to the Sobolev spaceH1(V;R2). Setting the first variation ofG to
zero, one finds that the pair~C,A! satisfies the Ginzburg–Landau equations

S i

k
¹1AD 2

C2C1uCu2C50 in V, ~2.2!

~curl!2A1
i

2k
~C* ¹C2C¹C* !1uC2uA50 in V, ~2.3!

along with the boundary conditions

n̂•S i

k
¹1ADC50 on ]V, ~2.4!

curlA5H ẑ or ]V. ~2.5!

Here n̂ is the inward unit normal to]V and (•)* denotes complex conjugation. We refer to Ref.
12 for more background on the model. We also note that in light of our assumption of smoothness
on ]V, standard elliptic regularity theory shows that solutions to~2.2!–~2.5! are classical (C2)
solutions.

The problem is invariant under the gauge transformation (C,A)→(C8,A8) where

C8[Ceikf, A8[A1¹f ~2.6!
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for an arbitrary real-valuedH2(V) function f. Throughout this analysis it will be convenient to
impose the additional conditions

div A50 in V, A–n̂50 on ]V. ~2.7!

This amounts to choosing a gauge, thus eliminating the degeneracy associated with the gauge
invariance of our problem.

Within the Ginzburg–Landau model the normal state corresponds to the conditions

C[0, A5Ā,

whereĀ satisfies

~curl!2 Ā50 in V,

curl Ā5H ẑ on ]V,

div Ā50 in V,

Ā–n̂50 on ]V.

For a vector with only two components the condition (curl)2Ā50 implies that curlĀ is constant
so the conditions above reduce to simply

curl Ā5H ẑ in V,

div Ā50 in V,

Ā•n̂50 on ]V.

It is convenient to introduce the vector fieldā through the relationĀ5Hā, so that

curl ā5 ẑ in V,

div ā50 in V,

ā–n̂50 on ]V. ~2.8!

We note that obtaining the existence of a classical solution to~2.8! in a smooth bounded domain
is simple. For example, one can obtainā in the form ā5 1

2(2y,x)1¹u, whereu is a harmonic
function satisfying the Neumann condition¹u•n̂52 1

2(2y,x)•n̂ on ]V. The uniqueness ofā
follows from the assumption of simple connectivity onV. That is, letting sayb denote the
difference between any two solutions to~2.8!, one finds thatb must be the gradient of a harmonic
scalar function whose normal derivative vanishes on]V. Thus the scalar function is constant and
b[0.

Since we seek a description of the initial bifurcation of the solution from the normal state
(0,Hā) as the applied magnetic field is decreased, we begin our formal analysis by introducing a
small parametere ~which measures the magnitude ofuCu! and assuming asymptotic expansions for
the quantitiesC, A, andH of the form

C501eC~1!1••• ,

A5hā1e2A~2!1••• ,

H5h1e2H ~1!1•••
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~cf. Refs. 3 and 5!. The relative scalings ofC, A, andH are motivated by the need to balance the
term uCu2C with the terms involvingA2Hā in ~2.2!. Inserting these expansions into~2.2!–~2.5!
yields a linear problem forC (1) at leading order,

S i

k
¹1hāD 2

C~1!2C~1!50 in V, ~2.9!

n̂•S i

k
¹1hāDC~1!50 on ]V. ~2.10!

As h is decreased, one expects the instability of the normal state to occur when~2.9!–~2.10! has
a nontrivial solution. Here,h plays the role of an eigenvalue and we defineHc3

to be the largest
positive eigenvalue for the linearized problem~2.9!–~2.10!. Whenk is sufficiently large, nonlinear
analysis suggests that this bifurcation is a supercritical pitchfork~cf. Refs. 3 and 4!.

At this point, we wish to analyze~2.9!–~2.10! via formal matched asymptotic expansions in
the regime where the Ginzburg–Landau parameterk is large. Experiments~both physical and
numerical! indicate that the superconducting state nucleates on the boundary ofV and the factor
of (1/k) in ~2.9! suggests that the order parameterC (1) will vary there with a characteristic length
scale 1/k. Thus, we will seek a boundary layer solution which matches to the normal state in the
interior of the domain.~Indeed, we will find that the modulus of this boundary layer solution
decays exponentially to zero as we depart from]V.!

To this end, we introduce coordinates (s,h) valid in a neighborhood of]V. Here s is
arclength along]V andh is the distance from a point withinV to the boundary. We can arbitrarily
select a point on]V corresponding tos50; without loss of generality we will choose this point to
coincide with the maximum of curvature on the boundary. We will usek5k(s) to denote the
curvature of]V ~not to be confused with the Ginzburg–Landau parameterk! !.

This local coordinate system will be well-defined in the rectangle

S[$~s,h!:2L/2,s,L/2, 0,h,C%,

where L denotes the arclength of the boundary, andC is any positive constant smaller than
@1/k(0)#. We adopt the convention that forV a disck is positive. We denote byt̂5 t̂(s) a unit
tangent vector to]V and we recall thatn̂5n̂(s) denotes the inner unit normal vector. Thus, in
particular, any vector fieldF defined in a neighborhood of]V can be expressed asF(s,h)
5F1(s,h) t̂(s)1F2(s,h)n̂(s). We now proceed to rewrite problem~2.9!–~2.10! in s–h coordi-
nates so that we may pursue a boundary layer construction in the regionS.

For this purpose, we record here that for any scalar-valued functionf 5 f (s,h) one has the
identities,

¹ f 5]h f n̂1
1

12kh
]sf t̂, ~2.11!

¹2f 5]hh f 2
k

12kh
]h f 1

1

12kh
]sS 1

12kh D ]sf , ~2.12!

and for any vector fieldF5F1(s,h) t̂1F2(s,h)n̂ we have

div F5
1

12kh
]sF11

1

12kh
]h@~12kh!F2#, ~2.13!

curl F5div~F2t̂2F1n̂!ẑ. ~2.14!

These identities can be computed using standard planar differential geometry~see e.g., Ref. 13!
and are explicitly derived for example in Ref. 14.

For a general domainV, althoughā–n̂50 on ]V, ā is not purely tangential. That is, writing
ā5ā(s,h) we haveā(s,h)•n̂(s)50 only for h50 but not for 0,h,C. However in the coor-
dinate rectangleS, we can decomposeā into componentsp andq,
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ā5p1q

as follows. We first defineq as the solution to the problem

curl q5 ẑ in S, q–n̂50 in S, and q~s,0!50. ~2.15!

Note in particular thatq will be purely tangential is the sense mentioned above.
Seeking a solution to~2.15! in the formq5q(s,h) t̂, we can solve for the scalarq through the

use of~2.13! and ~2.14!. We find thatq must satisfy the first order differential equation

21

12kh
]h~~12kh!q!51, q~s,0!50,

so that

q~s,h!5q~s,h! t̂~s!52hS 12k~s!h/2

12k~s!h D t̂~s!. ~2.16!

We then definep by the relationā5p1q. Note in particular thatp will then be conservative,

curl p50 in S. ~2.17!

Motivated by the gauge invariance, and utilizing~2.17!, we now introduce a phaseF on the
rectangleS through the relation¹F5hp. Hence, for any (s,h)PS, we let

F~s,h!5hE
g
p•dr , ~2.18!

whereg is any path inS joining ~0,0! to (s,h). We then introduce the functionc by writing the
solutionC (1) to ~2.9!–~2.10! near]V in the form

C~1!5ceikFeikbs, ~2.19!

whereb is a constant to be determined. Through the gauge transformation it becomes apparent
that the complex exponential ofF eliminatesp, the conservative component ofā. The factoreikbs

represents a contribution to the phase evident in the earlier investigations of Saint-James and de
Gennes2 and Chapman3 that arises when the problem is posed on the half-plane. Our motivation
for this change of variables is to make the leading-order balance conform with the known results
for the half-plane problem. In particular this is not a polar decomposition; althoughc will have
real solutions at leading order, the higher-order corrections may be complex in nature.

Using ~2.6!, we find that in a neighborhood of]V, the problem~2.9!–~2.10! for C (1) as a
function of x transforms to the following problem forc as a function ofs andh,

S i

k
“1hq2b“sD 2

c2c50 in S, ~2.20!

n̂•S i

k
¹1hq2b¹sDc50 on h50. ~2.21!

Then using~2.11! to compute¹s and exploiting the fact thathq2b¹s has non̂ component, we
see that~2.20!–~2.21! can be written as

S i

k
¹1S hq2

b

12kh D t̂D 2

c2c50 in S,

¹c•n̂50 on h50.

A further expansion of this equation yields
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S 1

k2 D1
i

k

2V

12kh
]s1

i

k

Vs

12kh
112V2Dc50 in S, ~2.22!

ch50 on h50, ~2.23!

where

V~h,s!5
hh~12kh/2!1b

12kh
. ~2.24!

So far we have simply rewritten the linearized problem~2.9!–~2.10! in terms of the function
c ~introduced via the changes of variables~2.19!! and in terms of the independent variabless and
h to obtain a convenient formulation of the problem valid near]V. At this point, we wish to begin
a process of formal matched asymptotic expansion~based on the assumptionk@1! by introducing
stretched coordinates to solve a boundary layer problem which will then be matched to the normal
state in the interior.

As we are seeking a boundary layer solution and we have a factor of (1/k2) multiplying the
Laplacian in~2.22! it is natural to seek a solution which depends not on the normal variableh but
on the stretched variable

j5kh. ~2.25!

What is not so obvious, but nonetheless necessary, is that we must stretch the tangential variable
as well, by introducing

t5k1/4~s2s0!. ~2.26!

Heres0 is a value of arc length along the boundary which remains to be determined. The trans-
verse length scale (1/k1/4) represents a balance between the quadratic nature of the curvature at the
maximum and the transverse modulation of the amplitude, a fact best explaineda posteriori.
Putting it another way, any expansion which fails to incorporate this stretched tangential
dependence—that is, which fails to sufficiently promote the appearance of tangential derivatives
of the solution as we expand—will lead to inconsistencies later in the asymptotic analysis.

Once one resolves to seek a solution depending onj and t, however, one is obligated to
pursue a solution which is not only localized near]V, but localized near the~so far arbitrary!
point corresponding tos5s0 as well. Accordingly, this solution must be matched to the normal
state both in the interior ofV ~j large! and along the boundary away from s5s0 ~utu large!.

Thus, we assume an expansion forc of the form

c5c0~j,t!1
1

k1/4 c1~j,t!1
1

k1/2 c2~j,t!1
1

k3/4 c3~j,t!1••• ~2.27!

and an expansion forh5h(k) of the form

h5h0k1h1k3/41h2k1/21h3k1/41h41••• . ~2.28!

To carry out the analysis, we need an expansion for the expressionV in powers ofk. To this end,
we first express the curvaturek as a function oft, sayK(t), and Taylor expand abouts5s0 using
~2.26! to obtain

K~t!5k~s0!1
1

k1/4 ks~s0!t1
1

k1/2 kss~s0!
t2

2
1O S 1

k3/4D5k̄1
1

k1/4 k̄st1
1

k1/2 k̄ss

t2

2
1O S 1

k3/4D ,

~2.29!

wherek̄, k̄s , andk̄ss denotek(s0), ks(s0), andkss(s0), respectively.
To expandV, we substitute~2.25! and ~2.29! in ~2.24! to find
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V5(h0j1b)1
1

k1/4 ~h1j!1
1

k1/2 ~h2j!1
1

k3/4 ~h3j!

1
1

k H S h4j1S h0

2
j21bj D k̄J 1

1
k5/4 H S h5j1

h1

2
j2k̄1S h0

2
j21bj D k̄stJ

1
1

k3/2 H S h6j1
h2

2
j2k̄1

h1

2
j2k̄st1S h0

2
j21bj D k̄ss

t2

2 J 1O S 1

k7/4D . ~2.30!

Using ~2.12! and ~2.27!, we expand the Laplacian

1

k2 D5]jj
2 2

1

k
k̄]j2

1
k5/4 k̄st]j1

1
k3/2 H ]tt2k̄ss

t2

2
]jJ 1O S 1

k7/4D . ~2.31!

The imaginary terms in~2.22! can be expanded using~2.13!, ~2.25! and ~2.26!

i

k

2V

12kh
]s1

i

k

Vs

12kh
5

i
k3/4 2V]t1

i
k3/4 Vt1O S 1

k7/4D . ~2.32!

We can now proceed to expand and solve for successive orders in the expansion forc.

A. Leading order balance: The half-plane problem

The basis for our expansion is that the leading-order balance in the problem is exactly equiva-
lent to the instability problem for the half-plane. This problem was first considered by Saint-James
and de Gennes,2 and yields an exponentially localized superconducting region near the boundary.
In the general domain we will construct a solution whose leading order structure is equivalent to
the solution of the half-plane problem with an amplitude that varies along the boundary.

We can now expand the problem at leading order~O ~1!!; Eqs.~2.22! and ~2.23! yield

c0jj
1~12~h0j1b!2!c050 for 0,j,`,

c0j
~0!50, c0j

~`!50, ~2.33!

where the second boundary condition allows us to match the boundary layer solution to the normal
state in the interior ofV. This is exactly the half-plane problem considered formally in Refs. 2 and
3, and treated rigorously in Refs. 6 and 7.

Recall that we seek the first appearance of a nonzero state as the magnetic field is decreased.
Hence we view~2.33! as a double eigenvalue problem forh0 andb in which b is to be determined
so as to yieldh̄, the largest possible value ofh0 . Note thatb corresponds to a transverse~i.e.,
parallel to the boundary! wave number, which in the half-plane problem arises naturally through
separation of variables. We now tabulate a set of results known for this problem, which will form
the basis for our perturbation expansion. With the exception of identities~2.34!–~2.36! below, the
proof of the Lemma can be found, for example, in Ref. 15. See also Refs. 6 and 7. The derivation
of ~2.34!–~2.36! can be found in the appendix.

Lemma: There exists a largest value of h0(b), denoted by h̄, for which (2.33) possesses a
nontrivial solution. This occurs whenb takes the value21. The corresponding eigenfunction,
denoted henceforth byc̄(j), satisfies

Lc̄50 for 0,j,`,

c̄j~0!50, c̄j~`!50,

with the normalizationc̄(0)51.
The operatorL is defined by

L~• ![]jj~• !1~12~ h̄j21!2!~• !,
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and is self-adjoint in the L2 inner-product.
The solutionc̄ decays exponentially asj→` and, letting J0[*0

`c̄2dj, we have thatc̄
satisfies the following identities:

J1[E
0

`

jc̄2dj5
1

h̄
J0 , ~2.34!

J2[E
0

`

j2c̄2dj5
3

2h̄2
J0 , ~2.35!

J3[E
0

`

j3c̄2dj5
1

6h̄2
1

5

2h̄3
J0 . ~2.36!

Remark:Through numerical approximation one findsh̄51.694611 andJ051.007841.

In light of the absence of anyt dependence in~2.33!, we may write

c0~j,t!5W0~t!c̄~j!,

whereW0(t) is a ~perhaps complex! amplitude corresponding to a transverse modulation ofc̄(j)
on thet length scale whose behavior will be determined at higher order. This type of modulation
or multiple scale expansion is familiar from many physical systems.16

B. Higher order corrections

At ordersO (1/k1/4) andO (1/k1/2) we find

L~c i !52hij~ h̄j21!c̄~j!W0~t! for i 51,2,

~c i !j~0!50, ~c i !j~`!50. ~2.37!

If we define theL2 inner-product,

^c,f&5E
0

`

c* fdj,

then the Fredholm Alternative Theorem yields necessary and sufficient solvability conditions for
~2.37!. That is, orthogonality toc̄,

^c̄,L~c i !&50 for i 51,2,

implies

hiW0

J0

h̄
50.

Thus we concludeh15h250 so thatL(c i)50 and we have

c15W1~t!c̄~j! and c25W2~t!c̄~j!

with the functionsW1 andW2 yet to be determined.
Proceeding toO (1/k3/4),

L~c3!52h3j~ h̄j21!c̄W022i ~ h̄j21!c̄W0t for 0,j,`,

c3j
~0!50, c3j

~`!50. ~2.38!
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Application of the solvability condition at this order yields

^c̄,L~c3!&505h3W0

J0

h̄
,

henceh350. Now note that since]j(L(c̄))50, one has

L~ c̄j!52h̄~ h̄j21!c̄. ~2.39!

One also readily verifies thatc̄jj(0)5c̄jj(`)50 ~recall that in factc̄ decays exponentially at
infinity! so that we find

c15W3~t!c̄~j!2
i

h̄
c̄jW0t

, ~2.40!

whereW3 remains to be determined.
We now proceed to orderO (1/k),

L~c4!5h4@2j~ h̄j21!c̄#W01k̄@j~ h̄j21!~ h̄j22!c̄1c̄j#W02@2i ~ h̄j21!c̄#W1t
,

c4j
~0!50, c4j

~`!50. ~2.41!

Solvability at this order takes the form,

S h4

J0

h̄
2

k̄

3
D W050, ~2.42!

where we have applied the identities~2.34!–~2.35!, and integration by parts. Thus

h45
h̄

3J0
k̄5

h̄

3J0
k~s0!. ~2.43!

Note that we seek the largest value ofh ~hence ofh4! at which a superconducting solution
emerges; clearly we can maximizeh4 by choosing to expand around the point wherek(s0) is a
maximum, i.e., by choosings050. Consequently, we conclude thatinstability first occurs at the
point of maximum curvature, so that

k̄5max
s0

k~s0!5k~0!,

k̄s50,

k̄ss<0.

We shall make the~generic! assumption that

k̄ss,0.

We have also tacitly assumed that the curvature reaches a unique maximum; in the case of
multiple isolated maximums~such as an ellipse!, we could construct an exponentially localized
solution at each which would interact only exponentially weakly. In the case when the second
derivative vanishes at the maximum~such as the disc!, our scaling ansatz will prove to be invalid
at higher order.

In addition, formula~2.43!—specifically the fact thath4 is positive—bears the information
that onset of superconductivity in a bounded sample occurs at a higher value of applied field than
for the case whereV is a half-space. This correction agrees with that computed by Baumanet al.10

for the disc.
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We could proceed to solve forc4 at this point ~an explicit solution can be obtained via
variation of parameters!, however we omit this calculation as it will play no further role in our
analysis.

We proceed to the next order and collect terms ofO (1/k5/4),

L~c5!5h5@2j~ h̄j21!c̄#W01h4@2j~ h̄j21!c̄#W1

1k̄@j~ h̄j21!~ h̄j22!c̄1c̄j#W12@2i ~ h̄j21!c̄#W2t
,

c5j
~0!50, c5j

~`!50. ~2.44!

Once again, integration againstc̄ yields the solvability condition. The terms inW1 andW2t
in the

solvability condition vanish in an analogous fashion to those inW0 andW1t
at the previous order

~taking into account the value ofh4 determined by~2.43!!. Hence,h550. Once again, we neglect
the calculation ofc5 as it plays no further role in our analysis.

Finally, we proceed to the next order and collect terms ofO (1/k3/2),

L~c6!5h6@2j~ h̄j21!c̄#W01k̄ss

t2

2
@j~ h̄j21!~ h̄j22!c̄1c̄j#W02F2

h̄
~ h̄j21!c̄j1c̄GW0tt

1h4@2j~ h̄j21!c̄#W21k̄@j~ h̄j21!~ h̄j22!c̄1c̄j#W22@2i ~ h̄j21!c̄#W3t
,

c6j
~0!50, c6j

~`!50. ~2.45!

Once again, we integrate againstc̄. The terms proportional toW2 and W3t
in the solvability

condition vanish in an analogous fashion to those proportional toW1 andW2t
respectively at the

previous order. However, we obtain a nontrivial solvability condition forW0(t). Applying the
identities~2.34!–~2.36! and integrating by parts yields

2
1

h̄
W0tt

1S h6

J0

h̄
2

k̄ss

6
t2D W050. ~2.46!

At this point we see the motivation for the introduction of thet lengthscale; on this length scale
the tranverse variation of the amplitude (W0tt

) balances the quadratic variation of the curvature
(k̄sst

2/2).
Boundary conditions onW0(t) are determined by a need to match to the normal state at large

utu, for whichC (1) and consequentlyW0 vanish. Thus, we apply the condition thatW0(t) vanishes
in the far-field,

W0~t!→0 as utu→` ~2.47!

with the understanding thatt is in the matching region, 1!utu!k1/4. Fortunately,W0(t) decays
exponentially and consequently this matching will only introduce exponentially small corrections
in the expansion.

Fortuitously, Eq.~2.46! is real, and consequently admits real solutions forW0 ~we expectWn

to be complex in general!. We can rescale~2.46! into the standard form for the harmonic oscillator
equation; define

z5at, w~z!5W0~z/a!, l52
J0h6

a2 ,

where

a5S 22k̄ssh̄

3 D 1/4

,
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remembering that at the maximum of curvature, we havek̄ss,0. Equations~2.46! and ~2.47!
become

wzz1S l2
1

4
z2Dw50, w~z!→0 as uzu→`.

The eigenvalues and eigenfunctions of this problem are given by

ln5n1 1
2 , wn~z!5Hen~z!e2z2/4, n50,1,2,3,...,

where Hen(z) are the Hermite polynomials~cf. Ref. 17!. Note that the smallest eigenvalue is
l051/2, with corresponding eigenfunctionw0(z)5e2z2/4. Hence, the largest~least negative!
eigenvalue for~2.46! is given by

h652
1

2J0
S 22k̄ssh̄

3 D 1/2

, ~2.48!

and the corresponding eigenfunction is

W0~t!5e2a2t2/4. ~2.49!

The exponential decay ofW0 away fromt50 reveals that the phenomenon of onset is highly
localized near the point of maximum curvature for]V. We have now completely determined the
leading order solution forC (1) to the linearized problem~2.9!, ~2.10! in the asymptotic regime
k@1.

III. DISCUSSION

In this paper we have examined the instability of the normal state to superconductivity with
decreasing magnetic field for a closed smooth cylindrical region subject to a vertical magnetic
field. We have examined the problem asymptotically in the boundary layer limit (k@1). Insta-
bility first occurs in a region exponentially localized near the point of maximum curvature on the
boundary. The transition occurs at a value of the magnetic field,

Hc3
5h̄k1

h̄

3J0
k̄2

1

2J0
S 22k̄ssh̄

3 D 1/2 1

k1/21O S 1

kD , ~3.1!

whereh̄k is the transition value associated with the half-plane~cf. Refs. 2 and 3!, the second term
is a positive constant times the maximum curvature (k̄) that agrees with the correction computed
for the disc~cf. Ref. 10!, the third term is a negative correction of orderk21/2, associated with the
quadratic variation of the curvature at the maximum, and the error term follows from continuing
the expansion documented in the previous section.

At leading order, the superconducting order-parameter satisfies

uC~1!u;c̄~j!e2a2t2/4,

where

j5kh, t5k1/4s, and a5S 22k̄ssh̄

3 D 1/4

.

Here c̄ is the profile associated with transition in the half-plane problem—it is an exponentially
decaying function of the normal distance to the boundary~h! scaled by the boundary layer
thickness (1/k). The amplitude along the boundary is modulated by a Gaussian,e2a2t2/4, wheret

1282 J. Math. Phys., Vol. 39, No. 3, March 1998 P. Sternberg and A. Bernoff

Downloaded 02 Mar 2011 to 134.173.130.140. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



is the arclength measured from the point of maximum curvature~at s50! scaled by a length scale
intermediate between the boundary layer thickness and the characteristic length scale of the do-
main ~unity!.

Physically, this result is a refinement of the corresponding results for the half-plane and the
disc. The half-plane result yields the leading order transition value for the magnetic field and
exponentially decaying boundary layer profile,kh̄ andc̄, respectively. The disc calculation shows
that transition occurs at a higher value of the magnetic field where the correction is of order unity
and proportional to the curvature~i.e., the inverse of the radius!. In contrast to the half-plane and
disc calculation where onset occurs along the entire boundary simultaneously, in a general domain
the profile is exponentially localized near the point of maximum curvature on the boundary on the
t length scale; the transition value is slightly below that of the oscillating disc at the point of
maximum curvature.

An additional effect of this exponential localization of the transition profile is that the peri-
odicity of the boundary apparently has an exponentially small effect on the critical magnetic field
and the various eigenmodes are never degenerate. This is in sharp contrast to the theoretical
calculation for the disc where periodicity ‘‘quantizes’’ the transverse wave numbers and at various
critical parameter values there is a transition between different modes as the most unstable. We
note that this quantization in a disc is captured via formal matched asymptotics in Ref. 18. These
characteristics are also observed experimentally.19,20 We suggest here that this degeneracy occurs
only in the presence of symmetry in the sample geometry.

Finally, we note that the approach here is quite general, and should allow for the incorporation
of nonlinearity, temporal evolution through relaxational effects, etc. The result we believe will be
a Newell–Whitehead–Segal-type equation~cf. Ref. 16!,

WT5WSS1@h2k~S!#W2WuWu2,

where W is a transverse modulation amplitude of the boundary layer profile,S is a scaled
arc length,T is a slow time scale associated with relaxational effects~cf. Ref. 4!, h is a scaled
magnetic field, andk(S) measures curvature variation along the boundary. A model of this sort
could be used to study hysteresis, symmetry breaking and a host of other phenomena which may
lead to better understanding and prediction of the behavior of superconductors.

Note added in proof: After completing our work we learned about Reference 21.
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APPENDIX: DERIVATION OF MOMENT IDENTITIES „2.34…–„2.36…

To derive identities~2.34!–~2.36!, we observe that the operatorL maps the vector space of
functions of the forma(j)c̄1b(j)c̄j , wherea(j) andb(j) are polynomials, into itself. A little
algebra shows that for a polynomialc(j),

L~2cc̄j2cjc̄ !52$cjjj14h̄j~22h̄j!cj14h̄~12h̄j!c%c̄. ~A1!

Multiplying by c̄, integrating over the range and applying integration by parts, we reach the
identity

E
0

`

c̄L~2cc̄j2cjc̄ !dj5cjj~0!. ~A2!

If we now define the moments,
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Jn[E
0

`

jnc̄2dj,

we can derive a recursion relationship forJn by choosingc5jn, substituting into~A1! and
applying the identity~A2!

c51: 0524h̄J014h̄2J1 ,

c5j: 05212h̄J118h̄2J2 ,

c5j2: 25220h̄J2112h̄2J3 ,

c5jn: 052n~n21!~n22!Jn2324h̄~2n11!Jn14~n11!h̄2Jn11 n>3.

The identities~2.34!–~2.36! and expressions forJn in terms ofJ0 can now be found by solving
these relations. j
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