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Dynamical effects of partial orderings in physical systems

A. S. Landsberg*

Physics Department, Georgia Institute of Technology, Atlanta, Georgia 30332

Eric J. Friedman†

Fuqua School of Business, Duke University, Durham, North Carolina 27708-0120
~Received 22 November 1995!

We demonstrate that many physical systems possess an often overlooked property known as a partial-
ordering structure. The detection and analysis of this special geometric property can be crucial for understand-
ing a system’s dynamical behavior. We review here the fundamental dynamical features common to all such
systems, and describe how the partial ordering imposes interesting restrictions on their possible behavior. We
show, for instance, that though such systems are capable of displaying highly complex and even chaotic
behaviors, most of their experimentally observable behaviors will be simple. Partial orderings are illustrated
with examples drawn from many branches of physics, including solid state physics, fluids, and chemical
systems. We also describe the consequences of partial orderings on some simple nonlinear models, and prove,
for example, that for general two-dimensional mappings with the partial-ordering property, period 3 implies
chaos, in analogy with the well-known result of Li and York@Am. Math. Mon.82, 985 ~1975!# for ~ordinary!
one-dimensional mappings.@S1063-651X~96!01308-6#

PACS number~s!: 05.45.1b, 02.30.Hq, 03.20.1i, 03.40.2t

I. INTRODUCTION

Physical systems often possess some special underlying
structure or property, which, once recognized, can prove vi-
tal for understanding their dynamical behavior. The two most
common and easily identifiable of these are Hamiltonian
structures and spatial symmetries, which arise in numerous
problems of physical interest. As is well known, each can
have a dramatic influence on the types of behaviors seen in a
system; the former, for example, immediately precludes the
possibility of strange attractors owing to the conservation of
phase space volumes, while the latter commonly gives rise to
conservation laws and multiple bifurcations. This paper is
devoted to understanding a third type of special structure
which frequently emerges in physical systems, called apar-
tial ordering. This special geometric property, though not as
common as the other two, is nonetheless present in a remark-
able number of problems in many diverse areas of physics,
yet it often goes unrecognized, and hence has received sur-
prisingly little attention within the physics community.
When it has been recognized, it has been studied largely on a
case by case basis. We seek here to analyze such systems
within a single unifying framework, and to illustrate explic-
itly the qualitative dynamical features that will be common
to all physical systems with this property.

Partial-ordering structures have previously garnered atten-
tion in the mathematics, biology, and economics communi-
ties, where they arise, for example, in studies of isotone map-
pings of complete lattices~e.g.,@1–5#!. Accordingly, a great
deal is already known about such systems~see @6–8#, in

particular, and@9# for a recent review!. Our primary aim here
is to demonstrate the relevance of partial orderings to sys-
tems of direct interest to the physics community, and to show
how this structure can provide the key to understanding their
dynamical behavior. By design, this paper represents an
amalgam, combining a review of many known theoretical
results~with simplified proofs!, a presentation of additional
results, and explicit illustrations based on physical examples.
We will describe how the partial-ordering constraint imposes
significant restrictions on the dynamics of a system, yet still
allows for interesting behaviors~e.g., chaotic sets, period
doublings, global bifurcations!. For one-dimensional sys-
tems, the partial ordering will reduce to a total ordering, and
the dynamics will prove to be trivial~though still potentially
useful@10–12#!. However in higher dimensions the situation
is much more complicated, and arbitrarily complex~i.e., cha-
otic! behavior can arise. However, unlike what occurs in
other systems, the partial-ordering structure will force all
chaotic motion to be unstable, so that the long-term, physi-
cally observable behaviors in partially ordered systems will
not be chaotic for most initial conditions. We also describe
the geometric implications of partial-ordering structures on
some simple, slightly more abstract nonlinear systems as
well. As an example, we will show that the famous Li-Yorke
theorem@13# for ordinary one-dimensional maps~‘‘period-
three implies chaos’’! also holds for two-dimensional maps
with a partial-ordering structure.

This paper is organized as follows. In Sec. II we define
what is meant by a partial ordering, and present a simple
criterion by which it may be recognized in a physical system.
Section III provides examples of partially ordered systems
taken from different areas of physics, and Sec. IV describes
their basic dynamical properties.

II. THE BASICS

In its simplest terms, a physical system is partially or-
dered if, whenever one solution is ‘‘larger’’~in some appro-
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priate sense! than another, it remains larger for all time. We
might consider, for instance, two waves in a fluid, and define
one wave to be larger than a second if the amplitude of the
first wave at each point in space exceeds that of the second at
the corresponding point. If this ranking is preserved under
the flow, the fluid system is said to have a partial-ordering
structure. It is an ‘‘ordering’’ because various behaviors in
the system can be ranked according to size; it is ‘‘partial’’
because not all solutions can be directly compared~e.g., one
wave might be larger than a second in one region of the
container, but smaller in another!.

We can formalize this notion as follows. The dynamical
behavior of a general system can be described in terms of its
time evolution operatorf̂t , taking a pointxPRn in phase
space to a new pointf̂t(x) at time t later, f̂0 being the
identity operator. For simplicity we assume that phase space
is finite dimensional, but allow timet to be either continu-
ous ~e.g., ordinary differential equations! or discrete
tP(0,1,2,. . . ) ~mappings!. ~The generalization to con-
tinuum models described by partial differential equations is
straightforward.! Next definea to be a partial-ordering re-
lation on the phase space of the system; the canonical ex-
ample is the ordering relation defined by:xax8 if xi<xi8 for
all componentsi51, . . . ,n. This simple ordering relation
provides a potential way of comparing two points in phase
space: one point~i.e., vector! x8 is considered larger than a
second pointx if each component of the first equals or ex-
ceeds the corresponding component of the second~Fig. 1!.
Two points that can be compared in this manner are called
orderedor comparable. It is crucial to recognize thata de-
fines apartial ordering, and hence not all points in phase
space can be ordered@e.g., in two dimensions consider points
(2,0) and (3,21)#; such points are said to beunorderedor
incomparable. Note that the ordering relation is transitive, so
that if comparable pointsx,x8 satisfy xax8, and x8ax9,
then xax9. Note too that ifxax8 and x8ax, then x and
x8 are necessarily the same point. We now define a partially
ordered dynamical system as follows.

Partial ordering: A dynamical system has a partial-
ordering structure if, for anyx,x8PRn satisfyingxax8, it
follows that f̂t(x)af̂t(x8) for all timest>0.

This definition requires that the partial ordering on the
phase space be preserved under time evolution, guaranteeing
that if one state is initially ‘‘larger’’ than a second state, then
it remains larger under the dynamics.

Before considering some examples of physical systems
with a partial ordering, we first describe a simple criterion to
more easily test for the presence of this special structure.
Specifically, we show that the~global! partial-ordering prop-
erty defined above implies that a certain local ordering con-
straint must also be satisfied, and further, that this local or-
dering constraint is in fact sufficient to generate the global
partial-ordering structure. Certain distinctions exist between
the cases of discrete and continuous flows, and we note these
accordingly. In particular, we have the following.

Local ordering criterion@14#: For any partially ordered,
differentiable mapx→ f (x), all elements of the Jacobian ma-
trix Df (x) are non-negative for allx. For any partially-
ordered vector field flowdx/dt5 f (x), all off-diagonal ele-
ments ofDf (x) are non-negative for allx.

The proof of these statements follows by considering any
two arbitrarily close, ordered pointsx, x1Dx. For the sake
of argument assume 0aDx. Under one iteration of the map-
ping f , the separation between the two points becomes
Df (x)Dx. Since the original points were ordered, by defini-
tion they must remain ordered, so that 0aDf (x)Dx. Since
this must hold foranyDx satisfying 0aDx, each component
of the matrixDf (x) must be non-negative. The correspond-
ing condition for continuous flows is proven similarly.

The above constraint on the Jacobian represents a local
criterion, guaranteeing that if two neighboring points are or-
dered, they remain ordered under the dynamics provided
they remain close. To show that this local constraint is suf-
ficient to generate the full global structure, we note that any
two ordered points~not necessarily close! can be connected
by a straight line, with all points on the line being ordered
~i.e., comparable!. As this line evolves under the dynamics,
the non-negativity constraint on the Jacobian guarantees that
the ordering will be preserved locally for all points on this
line. Hence, since the ordering relation is transitive, the two
end points of the line will remain ordered.

III. PHYSICAL SYSTEMS WITH PARTIAL ORDER

Partial orderings appear in physical systems in a variety
of settings. We now illustrate this with several examples
taken from different areas of physics, and later describe how
this special structure affects their dynamical behavior.

~1! Charge-density waves: Middleton and Fisher@15,16#
studied a model for sliding charge-density waves~CDW’s!,
and were able to predict some striking results concerning the
sliding behavior of these states. These results were based on
a peculiar property of the system which they dubbed a ‘‘no-
passing rule,’’ indicating that CDW’s cannot pass one an-
other. The model equations are written in terms of variables
f i ,i51, . . . ,N describing the distortion of the CDW at the
N lattice sites, and take the form

FIG. 1. The shaded regions show the points in the plane which
are ordered with respect to the pointx. Those in the upper region
~e.g., x8) are larger thanx, while those in the lower region are
smaller. The pointsx9 and x are incomparable. Note that points
which are ordered with respect tox need not be ordered with re-
spect to each other.
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df i

dt
5hsin~f i2b i !1F1(

$ j %
~f i1 j2f i !, i51, . . . ,N,

~1!

where the first term represents a pinning force, the second
(F) a driving field, and the third the elastic forces between
neighboring lattice sites. A quick inspection reveals this sys-
tem always has non-negative off-diagonal Jacobian matrix
elements~owing to the nature of the elastic forces!, and so by
the local ordering criterion described above, we can imme-
diately conclude that this system has the partial-ordering
property. The no-passing rule is directly related to this spe-
cial structure—the elastic forces prevent CDW’s from pass-
ing one another, thereby setting up a partial ordering. We
observe too that Eqs.~1! also have a discrete symmetry prop-
erty: if all variablesf i are simultaneously increased by
2p, Eqs.~1! remain unchanged~i.e., equivariant!. Using this
fact in conjunction with the no-passing rule, Middleton and
Fisher were able to obtain even stronger results for their
system, showing in fact that all sliding CDW’s will move
with the same average velocity. We will return to this point
later, and show that it is a general feature of partially ordered
systems with certain discrete symmetries.

~2! Mode interaction in fluids: Near an instability, the
behavior of a fluid can often be described in terms of a finite
number of spatial modes. One rather well-known example is
when three modes of the system simultaneously become un-
stable, as might arise in various fluid convection problems
@17,18#. Under appropriate conditions, this process is de-
scribed by equations of the form

dz1
dt

5z2 ,

dz2
dt

5z3 , ~2!

dz3
dt

52lz12nz22hz31az1
3 ,

where z1 , z2 , z3 denote the three modal amplitudes, and
coefficientsl, n, h, a are control parameters of the sys-
tem. For particular values of the control parameters, these
equations are known to exhibit global bifurcations leading to
strange attractors@17,18#. If we now consider the local or-
dering criterion, we see that the Jacobian will have non-
negative off-diagonal elements provideda.0, l,0, n,0.
Hence, for this range of parameters, system~2! possesses a
partial-ordering structure. As will be shown in the next sec-
tion, the presence of a partial ordering will immediately pre-
clude the existence of attracting, chaotic orbits. Thus, with
minimal effort, we have identified a range of parameters for
which there can be no strange attractors anywhere in the
system.~The partial-ordering structure will have other dy-
namical consequences as well, to be described later.!

The above example can be used to illustrate another im-
portant point: the partial-ordering relation (a) used here is
not preserved under coordinate transformations. In some
sense, this is a shortcoming, since coordinate-free definitions
are often preferable. In practice though, this is seldom a
problem and can even be exploited, since a system which

does not seem to possess a partial-ordering structure may in
fact have a hidden ordering structure which can be revealed
through a coordinate transformation. The essential point is
the following: if a system can be shown to possess a partial
ordering in some coordinate system, then all essential dy-
namical properties of partially ordered systems~to be de-
scribed! will hold, regardless of reference frame.~This fol-
lows since most of these dynamical properties will be
topological in nature.! In Eqs.~2!, for example, upon making
the coordinate transformationu15z1 ,u25z3 ,u35z22hz3 ,
we find that the system (u1 ,u2 ,u3) will be partially ordered
provideda.0, l,0, n2h2/4,0, and hence we have lo-
cated a second parameter regime in~2! for which there can
be no stable chaotic motion in the fluid@19#.

~3! Reaction-diffusion systems: Subject to certain restric-
tions, one can show that scalar reaction-diffusion models,
such as the Huxley equation@20# for signal propagation, ad-
mit a partial-ordering structure. This application of the no-
tion of a partial ordering to continuum systems described by
partial differential equations requires a slight generalization
of the concepts introduced previously—we cannot directly
apply the local ordering criterion described above—but is
relatively straightforward. In the case of the Huxley model,
the governing equation for the scalar fieldC takes the form

] tC5rC2C31D]xxC, D.0. ~3!

To prove the partial-ordering property, we show that if one
wave formC1(x,t) is initially larger than~or equal to! a
secondC2(x,t) for all x, then it remains larger under the
flow. This is most easily seen graphically. Assume that after
some time the two waves become equal at a pointx0 ~Fig. 2!.
Both waves will continue to evolve according to~3!, and
though their heights at the pointx0 are momentarily equal,
their growth rates atx0 will clearly differ owing to the dif-
fusive termD]xxC in ~3!. Since the diffusion term effec-
tively measures the curvature of these two wave forms, it
follows ~Fig. 2! that the growth rate ofC1 at x0 will exceed
that ofC2 . Hence the curves will again separate, withC1
remaining larger.

We next describe the fundamental dynamical properties
shared by all physical systems which possess a partial-
ordering structure. For completeness, we include in our dis-
cussion several results which have appeared previously in

FIG. 2. The wave formsC1(x,t), C2(x,t) are plotted as a
function of position. The waveheight of the first exceeds that of the
second everywhere except at the pointx0 , where the waves kiss.
Observe that the curvature ofC1 ~given by its second derivative at
x0) is larger than that ofC2 , leading to a larger growth rate@Eq.
~3!# for C1 . Hence the curves can never cross.
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somewhat different contexts@6–8#. We restrict attention pri-
marily to finite-dimensional systems described by ordinary
differential equations and mappings, and will stress the geo-
metric aspects of the partial-ordering structure.

IV. DYNAMICAL PROPERTIES OF PARTIALLY
ORDERED SYSTEMS

In analyzing the dynamical behavior of these systems, the
key idea will be the notion of ordered and unordered orbits,
which display markedly different behaviors. The orbit pass-
ing through an initial pointx0 is determined by the time
evolution operatorf̂t . An orbit is calledorderedif at least
two points on the orbit are comparable, otherwise it isunor-
dered. @By a straightforward generalization, any set of points
in phase space~not necessarily orbits! may be classified as
being ordered or unordered, according to whether or not they
contain at least two comparable points.# The partial-ordering
structure will impose very different geometric constraints on
these two types of orbits. We begin with the ordered orbits,
and show that they have some very simple properties.

Let x and f̂p(x) represent two comparable points on an
ordered orbit. The quantityp denotes the time separation
between the two, and assumexaf̂p(x). @The case
f̂p(x)ax follows similarly.# Since by definition these points
must remain ordered under time evolution, it follows that
xaf̂p(x)af̂2p(x)af̂3p(x)a . . . . Thus, this sequence
cannot decrease with time, implying the following.

Property 1:All ordered orbits converge to a fixed point, a
periodic state, or else run off to infinity.

This property states that, asymptotically, all ordered orbits
are dynamically simple@21#. This statement can be refined
and strengthened considerably. For instance, in the case of
continuous~vector field! flows, Hirsch @6# has shown that
most orbits~in a measure-theoretic sense! will converge to
fixed points or infinity, not periodic orbits. We point out that
this is not the case for maps, where, for example, stable 2
cycles are possible@e.g., the partially ordered mapping
x→tanh(x13y), y→tanh(3x1y) has the stable period-2 or-
bit (20.9575,0.9575)↔(0.9575,20.9575)#.

It is useful to reconsider one of the physical examples
cited previously—the case of charge-density waves. Recall
that asymptotically the CDW’s were found to undergo slid-
ing motion. This thus corresponds~in Property 1! to an orbit
running off to infinity. ~Physically this poses no problems
since the CDW variablesf i represent phases.! It was also
noted that all CDW’s had thesametime-averaged velocity,
owing in part to the special discrete symmetry of Eqs.~1!:
f i→f i12p for all i51, . . . ,N. This fact has a simple geo-
metric basis. Consider any two CDW’s, represented as points
fa ,fbPRN in phase space. By adding or subtracting enough
multiples of 2p to fa , new statesfG5fa12pm,
fL5fa22pn can be constructed such that the original
states are both contained in the square region formed by
fG ,fL ~Fig. 3!. Observe, in particular, that
fLafa ,fbafG . Under time evolution the pointsfL ,fG
must move at the same rate due to the discrete symmetry of
Eqs.~1!. As they move, the pointsfa ,fb must remain in the
square formed byfL ,fG , for to leave would violate their
presumed ordering with respect tofL ,fG . Thus the CDW’s

fa ,fb will be constrained to have the same average veloc-
ity. This is particularly important from an experimental
standpoint, since it shows that the long-term behavior of a
CDW will not depend on its history. Hence Middleton and
Fisher’s remarkable result for sliding charge-density waves
is a general feature of partially ordered systems with an extra
discrete symmetry.~A second example of such a system is
the phase-difference equations governing the behavior of a
dc-biased SQUID~superconducting quantum interference
device! with an induced magnetic field. In this case, the volt-
age drop across the superconductor junction plays the role of
the velocity.!

We next consider the unordered orbits of a partially or-
dered system. Since the ordered orbits have been shown to
lead to simple dynamical behaviors~after transients!, any
complex behaviors in the system, if they are indeed possible,
must reside with these unordered orbits. We first note that by
Property 1 and the arguments preceding it, any orbit which
doesn’t converge to a fixed point, periodic state, or infinity,
or any orbit which is itself periodic, is necessarily unordered.
We now show that not only do such orbits exist, but that they
can displayarbitrarily complicateddynamics.

Property 2: Partially ordered systems can display all pos-
sible varieties of complex behaviors~e.g., chaotic dynamics,
period-doubling sequences, homoclinic connections, etc.!
through their unordered orbits.

We demonstrate this in a constructive fashion. Consider
first the following example of a two-dimensional mapping:

x→rx~11y!,

y→ry~12x!, ~4!

defined on the unit squarexP@0,1#, yP@21,0#, where for
ease of exposition we assume that points mapped out of this
domain are projected back to the boundary. The parameter
r lies in the interval@0,4#. The Jacobian matrix is non-
negative everywhere on the domain, and hence by the local

FIG. 3. Two arbitrary statesfa ,fb ~not necessarily ordered!
can always be contained within a square region with vertex points
fG ,fL defined by ~respectively! adding or subtracting suitably
many multiples of 2p from one of the original points (fa or fb).
Under the flow, this square region moves but cannot deform, with
pointsfa ,fb always confined to this square by the partial-ordering
constraint.
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ordering criterion, this map admits a partial ordering. The
key observation is that the linex1y50 is invariant under
the dynamics, and that on this~unordered! line the mapping
~4! reduces to the well-known logistic map@22#, with all its
concomitant behaviors~e.g., period doublings, chaos!. More
generally, other systems displaying arbitrarily complex be-
haviors can be similarly constructed by noting that, as long
as all derivatives remain bounded, we have the following.

Property 3: Any n-dimensional dynamical system can be
embedded in an (n11)-dimensional partially ordered dy-
namical system.

This is accomplished by supplementing the original sys-
tem, e.g.,x→ f (x), x[(x1 ,x2 , . . . ,xn), with an auxiliary
equationxn11→Kxn11 , and then transforming to new coor-
dinates yi5xn112xi , (i51, . . . ,n); yn115x11x2
1•••1xn11 . As is easily verified, by choosing constantK
sufficiently large, the Jacobian matrix of the transformed sys-
tem (y1 , . . . ,yn11) can be made non-negative at all points.
Geometrically, this procedure amounts to embedding an ar-
bitraryn-dimensional system in ann-dimensionalunordered
surface inRn11.

Hence partially ordered systems can describe all manner
of dynamical behaviors through their unordered orbits. We
will show, however, that the partial-ordering structure sets
important restrictions on the geometry and stability of these
unordered orbits, and describe some of the experimental
ramifications of this. We begin with a geometric property
peculiar to two-dimensional, partially ordered mappings.

Property 4: If a two-dimensional partially-ordered map
has an unordered orbit of period three~i.e., a 3 cycle!, then
there exist cycles of every periodicity, as well as an uncount-
able set of aperiodic orbits that do not converge to any cycle.

This property is analogous to the well-known Li-Yorke
theorem@13# for ordinary one-dimensional maps, showing
that period three implies chaos. The proof of Property 4,
which we outline here, is remarkably simple. The key step
involves the construction of rectangular regions in the plane
which are mapped onto one another; this allows us to use the
‘‘digraph’’ method of Straffin@23# as described in@24#. Let
a,b,c denote the three consecutive iterates making up the 3
cycle. We assume these unordered points lie as in Fig. 4~a!
~other configurations can be handled similarly!. Construct a
rectangular regionR1 with pointsa,b as vertices, and simi-
larly constructR2 from pointsb,c. Now, owing to the partial
ordering structure, under one iteration of the mapping, region
R1 is mappedonto R2 . ~To see this, consider, for example,
the pt.v, which is smaller than~i.e., ordered with respect to!
points a,b. Since pointsa,b get mapped tob,c, respec-
tively, v must get mapped to a point on or outside the bound-
ary of regionR2 , in order that it still remain ordered with
these points.! In a similar manner, regionR2 can be shown to
be mapped onto bothR1 andR2 . We represent this sche-
matically by a digraph@Fig. 4~b!#. Now consider any finite
symbol sequence allowed by the digraph~e.g.,
$R1 ,R2 ,R2 ,R1 ,R2 ,R1%). We claim that to any such se-
quence there corresponds an actual orbit of the map follow-
ing this path. This is easily seen by starting at the end of the
symbol sequence and working backwards: In the sample se-
quence given above, choose any point in the ending region
R1 . Then since the preceding regionR2 is mappedonto
R1 , there must be some point inR2 which is mapped to the

chosen point inR1 . Continuing this argument backwards
through the sequence proves that the desired orbit exists. The
proof for infinite sequences and periodic orbits follows simi-
larly, using fixed point and limiting arguments.~An even
stronger version of Property 4 is also possible based on the
‘‘Sarkovskii ordering’’ @25# of periodic orbits.!

Next, we consider one of the most significant properties
of the unordered orbits in partially ordered systems from an
experimental standpoint.

Property 5: All chaotic sets are nonattracting~e.g.,
strange attractors cannot exist!.

This result implies that though chaotic unordered orbits
can exist, there is no chaos for ‘‘typical’’ choices of initial
conditions. This has immediate practical significance. Since
the ordered orbits were already shown to be simple,a partial
ordering in a physical system will effectively ensure that all
experimentally observed behaviors will be simple (neglecting
transients). For example, in the case of the three-mode fluid
interaction discussed in Sec. III, we were able to predict
parameter regimes for which no chaotic motions in the fluid
should be observed—though we did not rule out the theoreti-
cal existence of unstable chaotic motions.

The fact that no chaotic set can be an attractor can be
understood from a simple geometric argument. Suppose that
a chaotic attractor (A) did exist. Pick any pointa in A. Now
choose a second pointb which is arbitrarily close to but
larger than this first point. Note thatb cannot lie inA ~since
all points inA are incomparable!. Now sincea is part of the

FIG. 4. ~a! The pointa is mapped tob, b to c, and c to a,
forming a 3 cycle. By the partial-ordering constraint, regionR1 is
mapped onto regionR2 , while R2 is mapped onto bothR1 and
R2 . ~b! In the digraph, arrows connect regions which are mapped
onto one another.
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attractor, there exist other points inA arbitrarily close to
a. In particular, one can find a set of points inA neara,
each of which is smaller thanb. Now under the dynamics,
b must converge to the attractor, and so this set of points in
A which are less thanb must shrink ~in order that they
remain ordered with respect tob). However, sinceA is cha-
otic, this set of points inA will expand, leading to a contra-
diction. Thus chaotic attractors are not possible@26#. ~This
result was shown previously in@6,27# by means of a different
argument.! A similar argument, in conjunction with Property
1, leads us to conjecture that almost all trajectories in the
system will eventually converge to either a fixed point, peri-
odic orbit, or infinity.

Lastly, we remark briefly on the role of partial orderings
on the pattern-forming process in physical systems. It is well
known that the formation of patterns and other coherent
structures~in fluids, chemical systems, lasers, etc.! is inti-
mately connected with instabilities in the system~see, e.g.,
@28#!. The two most common forms of instabilities aresteady
statebifurcations andoscillatory ~Hopf! bifurcations, each
giving rise to a different class of patterns. Convection in a
fluid illustrates both types: if a layer of fluid is heated from
below, then for sufficiently low heating rates there is no mo-
tion in the fluid and heat is simply conducted upwards.
Above a certain critical heating rate, however, the conduc-
tion state becomes unstable, and a transition occurs: in the
steady state case, a pattern of stationary Rayleigh-Be´nard
rolls emerges, with fluid upswelling in some regions and
downswelling in others, while in the oscillatory case, rolls
also appear, but now their sense of rotation~clockwise or
counterclockwise! can oscillate in time, or the whole pattern
can start drifting~leftward or rightward!. The former is as-
sociated with a real eigenvalue of the linearized equations of
motion becoming positive, while the latter occurs when the
real part of a complex eigenvalue becomes positive. We ob-
serve, however, that in a partially ordered system, the eigen-
values will be restricted by the non-negativity constraint on
the Jacobian matrix: a well-known result from matrix theory
~see@29#! says that a matrix with non-negative elements will
have a real, non-negative eigenvalue which exceeds all oth-

ers in modulus. From this, it immediately follows that the
first instability to appear in a partially ordered system will
~typically! be of the steady state bifurcation variety—the par-
tial ordering prevents the oscillatory bifurcation from setting
in first.

V. DISCUSSION

Though not often recognized, partial-ordering structures
lie hidden in many physical systems of significant interest,
and have important implications in terms of the possible dy-
namical behaviors of the system. Once a partial-ordering
structure has been identified, it immediately follows that
most observable behaviors in the system will be simple, even
though complicated dynamical behavior is theoretically al-
lowed. In our discussion we have tried to emphasize the
geometric aspects of the theory, which is perhaps the most
natural as well as most versatile approach. This area remains
largely unexplored, however. Particularly interesting are
questions concerning orderings in continuum models such as
fluids and other extended media. Defining a partial-ordering
relation for such continuum systems is a simple matter, and
many of the results described here for finite-dimensional sys-
tems carry over to the continuum case@8#. However, the
analysis becomes much more delicate, and several new fea-
tures can emerge: e.g., an ordered orbit in such systems can
converge to a propagating wave front, in addition to the lim-
iting states noted in Property 1. Lastly, we remark that what
is perhaps most surprising is how simple it is to discover
partial orderings in many well-known physical and math-
ematical systems: for example, subject to certain restrictions,
Burger’s equation@30#, Fisher’s equation@31#, and the Sinh-
Gordon equation@32# all contain partial-ordering structures.
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