## Claremont Colleges Scholarship @ Claremont

## Curriculum Maps

**Claremont Colleges Curriculum Tools** 

1-1-2014

## Engineering Curriculum Map 2013-2014

Sean M. Stone Claremont University Consortium

Char Booth Claremont University Consortium

Dani Brecher Claremont University Consortium

M. Sara Lowe Claremont University Consortium

Natalie Tagge Claremont University Consortium

This map displays degree requirements, courses, faculty information, clubs & organizations, and Library resources associated with American Studies across the seven Claremont Colleges (7Cs) for the 2013-14 academic year. It was compiled using public information drawn from Colleges websites, course schedules and catalogs, and the Claremont Colleges Library website. **These maps should be understood as a snapshot of the consortium in time, and not representative of current information beyond 2013-14**.

This project was completed as part of an IMLS Sparks! Ignition grant in 2013-14.

## **Recommended** Citation

Stone, Sean M.; Booth, Char; Brecher, Dani; Lowe, M. Sara; and Tagge, Natalie, "Engineering Curriculum Map 2013-2014" (2014). *Curriculum Maps.* Paper 37. http://scholarship.claremont.edu/ccct\_cmaps/37

This Curriculum Tool is brought to you for free and open access by the Claremont Colleges Curriculum Tools at Scholarship @ Claremont. It has been accepted for inclusion in Curriculum Maps by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

|               | Engineering                          | Clinic   |                                                                            |                                                                                                                                                                                         |                                                                                                                                                                                          |  |  |  |  |  |  |
|---------------|--------------------------------------|----------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| onal Programs | Engineering Internship Program (EIP) |          |                                                                            |                                                                                                                                                                                         |                                                                                                                                                                                          |  |  |  |  |  |  |
|               | Fellowships                          | <b>®</b> |                                                                            |                                                                                                                                                                                         |                                                                                                                                                                                          |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         |                                                                                                                                                                                          |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         |                                                                                                                                                                                          |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         |                                                                                                                                                                                          |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | Design problems are, typically, open-ended and ill-<br>structured. Students work in small teams applying<br>techniques for solving design problems that are, normally                    |  |  |  |  |  |  |
|               |                                      |          | E4: Introduction to Design and Manufacturing (4; Fall & Spring)            |                                                                                                                                                                                         | posed by not-for-profit clients. The project work is enhanced<br>with lectures and reading on design theory and methods,                                                                 |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | and introduction to manufacturing techniques, project management techniques and engineering ethics.                                                                                      |  |  |  |  |  |  |
|               |                                      |          | E59: Introduction to Engineering Systems (3: Fall & Spring)                |                                                                                                                                                                                         | An introduction to the concepts of modern engineering,<br>emphasizing modeling, analysis, synthesis and design.                                                                          |  |  |  |  |  |  |
|               |                                      |          |                                                                            | ,                                                                                                                                                                                       | Applications to chemical, mechanical and electrical systems.                                                                                                                             |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | The basic elements of thermal and chemical processes,<br>including: state variables, open and closed systems, and                                                                        |  |  |  |  |  |  |
|               |                                      |          | E82: Chemical and Thermal Processes (3; Fall & Spring)                     |                                                                                                                                                                                         | for reactive and non-reactive systems; entropy balance,<br>Second Law of Thermodynamics, thermodynamic cycles and                                                                        |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | efficiency.                                                                                                                                                                              |  |  |  |  |  |  |
|               |                                      |          | E83: Continuum Mechanics (3: Fall & Spring)                                | The fundamentals of modeling continuous media, including:<br>stress, strain and constitutive relations; elements of tensor<br>analysis; basic applications of solid and fluid mechanics |                                                                                                                                                                                          |  |  |  |  |  |  |
|               |                                      |          |                                                                            | (including<br>problems a<br>conservati                                                                                                                                                  | beam theory, torsion, statically indeterminate<br>and Bernoulli's principle); application of<br>on laws to control volumes.                                                              |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | Introduction to the fundamental principles underlying                                                                                                                                    |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | electronic and magnetic devices and applications of these<br>devices in circuits. Topics include electrical and magnetic<br>properties of materials: physical electronics (with emphasis |  |  |  |  |  |  |
|               |                                      |          | E84: Electronic and Magnetic Circuits and Devices (2; Fall 8 Spring)       | k E                                                                                                                                                                                     | on semiconductors and semiconductor devices); passive<br>linear electrical and magnetic circuits; active linear circuits                                                                 |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | non-ideal characteristics of operational amplifiers on circuit<br>behavior); operating point linearization and load-line                                                                 |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | selection criteria for motors.                                                                                                                                                           |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | This course provides an introduction to elements of digital electronics, followed by an introduction to digital computers.                                                               |  |  |  |  |  |  |
|               |                                      |          | E85: Digital Electronics and Computer Engineering (3; Fall &               | & =                                                                                                                                                                                     | Topics in digital electronics include: Boolean algebra;<br>combinational logic; sequential logic; finite state machines;<br>transistor-level implementations; computer arithmetic; and   |  |  |  |  |  |  |
|               |                                      | Fall     | Spring)                                                                    |                                                                                                                                                                                         | transmission lines. The computer engineering portion of the<br>course includes computer architecture and micro-<br>architecture: levels of abstraction: assembly-language                |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | programming; and memory systems.                                                                                                                                                         |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | Analysis and design of continuous-time and discrete-time systems using time domain and frequency domain                                                                                  |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | and distinctions between continuous-time and discrete-time signals and systems and their representation in the time and                                                                  |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | frequency domains. Topics include impulse response,<br>convolution, continuous and discrete Fourier series and<br>transforms, and frequency response. Current applications,              |  |  |  |  |  |  |
|               |                                      |          | E101-102: Advanced Systems Engineering (3/semester;<br>Year Long Sequence) |                                                                                                                                                                                         | including filtering, modulation and sampling, are presented<br>and simulation techniques based on both time and frequency<br>domain representations are introduced. In the second        |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | semester additional analysis and design tools based on the<br>Laplace- and z-transforms are developed and the state                                                                      |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | presented. Concepts covered during both semesters are<br>applied in a comprehensive treatment of feedback control<br>systems including performance criteria, stability                   |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | observability, controllability, compensation and pole<br>placement.                                                                                                                      |  |  |  |  |  |  |
|               |                                      |          |                                                                            | Introductio                                                                                                                                                                             | on to the structure, properties and processing of                                                                                                                                        |  |  |  |  |  |  |
|               |                                      |          |                                                                            | materials<br>material st<br>structures                                                                                                                                                  | ructure (bonding, crystalline and non-crystalline<br>, imperfections); equilibrium microstructures;                                                                                      |  |  |  |  |  |  |
|               |                                      |          | E106: Materials Engineering (3; Fall & Spring)                             | diffusion, r<br>processing<br>steel, cera                                                                                                                                               | nucleation, growth, kinetics, non-equilibrium<br>;; microstructure, properties and processing of:<br>mics, polymers and composites; creep and yield;                                     |  |  |  |  |  |  |
|               |                                      |          |                                                                            | fracture m<br>appropriat                                                                                                                                                                | echanics; and the selection of materials and<br>e performance indices.                                                                                                                   |  |  |  |  |  |  |
|               |                                      |          |                                                                            | articipation                                                                                                                                                                            | in engineering projects through the Engineering<br>asis is on design of solutions for real problems,                                                                                     |  |  |  |  |  |  |
|               |                                      | _        | EIII: Engineering Clinic I (3; Fall & Spring) — in<br>ai                   | nvolving pro<br>nd evaluatio                                                                                                                                                            | blem definition, synthesis of concepts, analysis                                                                                                                                         |  |  |  |  |  |  |
|               |                                      |          |                                                                            | Pa                                                                                                                                                                                      | articipation in engineering projects through the Engineering                                                                                                                             |  |  |  |  |  |  |
|               |                                      | _        | E112-113: Engineering Clinic II-III (3; Fall & Spring)                     | inv<br>an                                                                                                                                                                               | volving problem definition, synthesis of concepts, analysis<br>d evaluation.                                                                                                             |  |  |  |  |  |  |
|               |                                      |          | E121-124: Engineering Seminar (No Credit; Year Long                        |                                                                                                                                                                                         | Weekly meetings devoted to discussion of engineering                                                                                                                                     |  |  |  |  |  |  |
|               |                                      |          | Sequence)                                                                  |                                                                                                                                                                                         | practice.                                                                                                                                                                                |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | Design problems are, typically, open-ended and ill-<br>structured. Students work in small teams applying                                                                                 |  |  |  |  |  |  |
| Engin         | neering Core                         |          | E4: Introduction to Design and Manufacturing (4; Fall & Spring)            |                                                                                                                                                                                         | techniques for solving design problems that are, normally,<br>posed by not-for-profit clients. The project work is enhanced<br>with lectures and reading on design theory and methods,   |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | and introduction to manufacturing techniques, project management techniques and engineering ethics.                                                                                      |  |  |  |  |  |  |
|               |                                      |          | E59: Introduction to Engineering Systems (3: Fall & Spri                   | ing)                                                                                                                                                                                    | An introduction to the concepts of modern engineering,<br>emphasizing modeling, analysis, synthesis and design,                                                                          |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | Applications to chemical, mechanical and electrical systems.                                                                                                                             |  |  |  |  |  |  |
|               |                                      |          | E80: Experimental Engineering (3; Spring)                                  | A laborato<br>the basic                                                                                                                                                                 | bry course designed to acquaint the student with techniques of instrumentation and measurement in substatery and in engineering field measurements                                       |  |  |  |  |  |  |
|               |                                      |          |                                                                            | Emphasis                                                                                                                                                                                | on experimental problem solving in real systems.                                                                                                                                         |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | The basic elements of thermal and chemical processes, including: state variables, open and closed systems, and                                                                           |  |  |  |  |  |  |
|               |                                      |          | E82: Chemical and Thermal Processes (3; Fall & Spring)                     | )                                                                                                                                                                                       | mass balance; energy balance, First Law of Thermodynamics<br>for reactive and non-reactive systems; entropy balance,<br>Second Law of Thermodynamics, thermodynamic cycles and           |  |  |  |  |  |  |
|               |                                      |          |                                                                            |                                                                                                                                                                                         | efficiency.                                                                                                                                                                              |  |  |  |  |  |  |
|               |                                      |          |                                                                            | The fun<br>stress,<br>analysis                                                                                                                                                          | damentals of modeling continuous media, including:<br>strain and constitutive relations; elements of tensor<br>s; basic applications of solid and fluid mechanics                        |  |  |  |  |  |  |
|               |                                      |          | E83: Continuum Mechanics (3; Fall & Spring)                                | (includi<br>problen                                                                                                                                                                     | ng beam theory, torsion, statically indeterminate<br>ns and Bernoulli's principle); application of                                                                                       |  |  |  |  |  |  |



Addi

|                       |        | E161: Computer Image Processing and Analysis (3; Fall every other year)                  |                                                                                                                            | An introduction to both image processing, including<br>acquisition, enhancement and restoration; and image<br>analysis, including representation, classification and<br>recognition. Discussion on related subjects such as unitary<br>transforms, and statistical and neural network pattern<br>recognition methods. Project oriented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|--------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |        | E171: Dynamics of Elastic Systems (3; Fall)<br>free                                      | e and force<br>tems. Eige<br>tems; natu<br>Indamped<br>edom syste                                                          | ed response of single- degree-of-freedom<br>invalue problem for multi-degree-of-freedom<br>ural modes of free vibration. Forced response<br>and viscously damped, multi-degree-of-<br>ems by modal analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       |        | E173: Applied Elasticity (3; Fall every other year)                                      | Introduc<br>to the th<br>elasticit                                                                                         | ction to the concepts of stress and strain. Application<br>neory of bending and torsion. Topics in elementary<br>y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |        | E175: Dynamics of Rigid Bodies (3; Fall)<br>System<br>System<br>with sin                 | atics, mass<br>as and rigin<br>lewton/Eul<br>work, and<br>ar algebra<br>ing the be<br>is. Compu<br>is. Constru<br>mulation | a distribution and kinetics of systems of<br>d bodies. Formulation of equations of motion<br>er equations; angular momentum principle;<br>d energy methods. Numerical solutions of<br>aic and ordinary differential equations<br>havior of multiple degree of freedom<br>ter simulation of multi-body dynamic<br>uction of physical systems for comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |        | E179: Deformation and Fracture of Solids (3; Fall every other year)                      |                                                                                                                            | Elements of stress and strain, elastic and plastic<br>deformations of solid materials, fracture mechanics,<br>strengthening mechanisms, thermal and thermo-mechanical<br>processing, effects of microstructure, failure modes and<br>analysis of service failures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Engineering Electives |        | E205: Systems Simulation (3; Fall) E Both continue                                       | on of the u<br>behavior c<br>ous and dis                                                                                   | use of high-speed digital computers to of engineering and industrial systems. Screte systems are treated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |        | T<br>E85A: Digital Electronics (1.5; Fall & Spring)<br>b<br>c                            | This course<br>electronics<br>be interest<br>courses the                                                                   | e provides an introduction to elements of digital<br>, intended for non-engineering majors who may<br>ed in pursuing other advanced engineering<br>at require this background.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | Spring | E116: Cost Estimation and Modeling (3; Spring every other year)                          | Ē                                                                                                                          | Principles of cost and schedule estimation and modeling for<br>capital projects, and for estimation and budgeting of<br>operations and maintenance of ongoing processes. Hardware<br>and software and integrated design projects are included.<br>Advantages and disadvantages of different estimation<br>methods are explored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |        | I<br>E118: Engineering Management (3; Spring)<br>a                                       | ntroductio<br>ncluding tł<br>hought, m<br>organizatic<br>areas of st                                                       | n to the concepts of modern management<br>ne scientific, behavioral and functional schools of<br>otivational models, leadership styles,<br>nal structures, project management, and other<br>udent interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |        | E132: Heat Transfer (3; Spring)<br>E132: Heat Transfer (3; Spring)                       | onduction,<br>ion to sele                                                                                                  | convection and radiation phenomena<br>acted problems in several fields of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |        | E134: Advanced Engineering Thermodynamics (3; Spring every other year)                   |                                                                                                                            | The application of classical thermodynamics to engineering systems. Topics include power and refrigeration cycles, energy and process efficiency, real gases and non-ideal phase and chemical reaction equilibria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |        | E136: Mass Transfer and Separation Processes (3; Spring every other year)                |                                                                                                                            | Principles of mass transfer, application to equilibrium-stage<br>and finite-rate separation processes. Extension of design<br>principles to multistage systems and to countercurrent<br>differential contacting operations. Applications from the<br>chemical processing industries and from such fields as<br>desalination, pollution control and water reuse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |        | E138: Introduction to Environmental Engineering (3; Spring<br>every other year)          | ∍≡                                                                                                                         | Introduction to the main concepts and applications in modern<br>environmental engineering. Included are surface and<br>groundwater pollution (both classical pollutants and toxic<br>substances); risk assessment and analysis; air pollution; and<br>global atmospheric change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |        | E140: Introduction to Compressible Flow (3; Spring every other year)                     |                                                                                                                            | The effects of compressibility in the governing integral and<br>differential equations for fluids. The effects of friction,<br>heating and shock waves in steady one-dimensional flow.<br>Unsteady wave motion and the method of characteristics.<br>Two-dimensional flow over air foils, linearized potential flow<br>and the method of characteristics for supersonic flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |        | E156: Introduction to Communication and Information<br>Theory (3; Spring)                | Ξ                                                                                                                          | Comprehensive treatment of explicit and random signal<br>transmission through linear communication networks by<br>generalized harmonic analysis including signal sampling and<br>modulation theories. Treatment of noise in communication<br>systems including design of optimum linear filters and<br>systems for signal detection. Introduction to information<br>theory including the treatment of discrete noiseless systems,<br>capacity of communication channels and coding processes.                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |        | E158: Introduction to CMOS VLSI Design (3; Spring)                                       | Ir<br>w<br>m<br>fa                                                                                                         | ntroduction to digital integrated system design. Device and<br>ire models, gate topologies, logical effort, latching,<br>nemories and timing. Structured physical design and CAD<br>nethodology. Final team project involves design and<br>ubrication of custom chips.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       |        | E164: Introduction to Biomedical Engineering (3; Spring every other year)                |                                                                                                                            | The application of engineering principles to help pose and<br>solve problems in medicine and biology. Focus on different<br>aspects, particularly biomedical measurements, bio systems<br>analysis, biomechanics and biomaterials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |        | E166: High-Speed PC Board Design (3; Spring every other<br>year)                         |                                                                                                                            | This course provides the student exposure to fundamental<br>and practical issues in the design and fabrication of printed<br>circuit boards (PCBs), with primary emphasis on boards for<br>high-speed digital circuits. Students work in teams to design<br>a high-speed PCB, which is then fabricated and subsequently<br>tested by the students. Upon completing this course,<br>students should be able to use appropriate CAD tools to<br>capture a circuit schematic, choose a board cross-section,<br>place components on a board and route wiring. Further, the<br>course should enable students to recognize when circuit<br>speed/size combinations are likely to make "high-speed<br>effects" such as reflections and crosstalk important, know<br>how to quantify these effects and their impact on<br>performance, and to design their boards to reduce the<br>deleterious effects to an acceptable level. |
|                       |        | E168a: Introduction to Fiber Optic Communication Systems<br>(3; Spring every other year) | 3 🔳                                                                                                                        | This course provides the fundamentals of optics and its<br>applications in communication systems. The physical layer of<br>optical communication systems will be emphasized. Topics<br>include optical materials; dispersion and nonlinear effects;<br>polarization and interference; and the basic elements of<br>system implementation such as laser sources, optical<br>amplifiers and optical detectors. The course will include a<br>multiple channel system design                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |        | E172: Structural Mechanics (3; Spring)<br>Stabil                                         | duction to<br>1s. Force a<br>lity. Introc                                                                                  | elementary structural systems: trusses,<br>nd deflection analysis. Energy methods.<br>luction to finite element methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |        | E174: Practices in Civil Engineering (3; Spring every other year)                        |                                                                                                                            | The student is exposed to the practice of civil engineering<br>through a series of case studies discussed within the context<br>of a broad-based engineering curriculum. Engineering<br>fundamentals related to the selection and use of construction<br>materials, stress and strain, and to the analysis and design<br>of structural and transportation systems may be discussed.<br>Types and specifics of case studies vary depending upon the                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Systems Courses 🔳 Course Requirements Engineering Core 🗧 Engineering Science Integrative Experience Humanities, Social Sciences and the Arts Sean Stone - Engineering Liaison Librarian 🔇 Library Resources 😚 Engineering Research Guide 🕥

|               |                                                     |             | E176: Numerical Method<br>other year)                  | s in Engineering (3; Spring every                                                                          |                                                      | This course focuses on the application of a variety of<br>mathematical techniques to solve real-world problems that<br>involve modeling, mathematical and numerical analysis, and<br>scientific computing. Concepts, calculations and the ability to<br>apply principles to physical problems are emphasized.<br>Ordinary differential equations, linear algebra, complex<br>analysis, numerical methods, partial differential equations,<br>probability and statistics, etc., are among the techniques that<br>would be applied to problems in mechanical, electrical,<br>chemical and civil engineering. Examples are drawn from<br>fluid mechanics, heat transfer, vibration of structures,<br>electromagnetics, communications and other applied topics.<br>Program development and modification are expected as well<br>as learning to use existing codes. |
|---------------|-----------------------------------------------------|-------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                     |             | E206: Optimization Tech<br>Spring)                     | niques in Engineering Design (3;                                                                           | =                                                    | Presentation of techniques for making optimum choices<br>among alternatives; applications to engineering design<br>problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                     |             | E231: Advanced Transpo                                 | ort Phenomena (3; Spring) 🔳                                                                                | Integrat<br>transfer<br>governii<br>drawn fi         | ed approach to the subjects of fluid mechanics, heat<br>, and mass transfer, through the study of the<br>ng equations common to all three fields. Applications<br>rom a wide variety of engineering systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                     |             | E276: Experimental Tecl<br>(3; Spring every other y    | nniques in Dynamics and Vibrations<br>ear)                                                                 |                                                      | Response characteristics of motion transducers and<br>associated signal conditioning circuitry. Digital signal<br>processing, data acquisition and reduction with special<br>reference to structural dynamics. Small- and full-scale<br>vibration tests in laboratory and field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | E278: Advanced Struc<br>year)                       |             |                                                        | ral Dynamics (3; Spring every other                                                                        |                                                      | Free and forced response of continuous systems, including<br>the vibration of strings, rods, shafts, membranes, beams<br>and plates. One dimensional finite element methods:<br>discretization of a continuum, selection of interpolation<br>functions, and determining the element mass and stiffness<br>matrices and the corresponding load vector. Introduction to<br>special topics, including the effects of parameter<br>uncertainties on the dynamics of periodic structures and                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                     | Unspecified | E190: Special Topic<br>E191: Advanced Pro<br>arranged) | An topi<br>topi<br>the<br>oblems in Engineering (Credit hours to                                           | upper divisi<br>ics in engine<br>discretion of<br>be | model updating in structural dynamics.<br>on or graduate technical elective treating<br>eering not covered in other courses, chosen at<br>of the engineering department.<br>Independent study in a field agreed upon by student and<br>instructor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | Not Listed in Current Catalog                       | Commor      | Core [Engineering]                                     | E11: Autonomous Vehicles                                                                                   | ems Engine                                           | erina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L             |                                                     | E177: Ma    | nufacturing Principles                                 |                                                                                                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                                                     |             | Γ                                                      | Produce graduates who are excep<br>engineers whose work is notable<br>for its breadth and its technical ex | tionally cor                                         | npetent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                     |             |                                                        | Provide a hands-on approach to e<br>graduates develop an understandi<br>judgment and practice;             | ngineering<br>ing of engin                           | so that<br>eering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ning Outcomes | Outcomes Harvey Mudd Program Educational Objectives |             |                                                        | Prepare and motivate students for reflective learning;                                                     | r a lifetime                                         | of independent,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                                                     |             |                                                        | Produce graduates who are fully a<br>work on society, both<br>nationally and globally;                     | ware of the                                          | e impact of their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                                                     |             |                                                        | Offer a curriculum that is current, for both students and                                                  | exciting an                                          | d challenging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

faculty but can be completed in four years by any motivated

student who is admitted

to HMC.

Lear