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Stability of steady cross waves: Theory and experiment
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A bifurcation analysis is performed in the neighborhood of neutral stability for cross waves as a
function of forcing, detuning, and viscous damping. A transition is seen from a subcritical to a su-
percritical bifurcation at a critical value of the detuning. The predicted hysteretic behavior is ob-
served experimentally. A similarity scaling in the inviscid limit is also predicted. The experimental-
ly observed bifurcation curves agree with this scaling.

I. INTRODUCTION

Jones' derived the nonlinear Schrodinger equation
(NLS) which governs the evolution of parametrically ex-
cited inviscid cross waves (see also Miles?). The
coefficients in the NLS are modified by viscous effects due
to the boundary layers on the sidewalls, bottom, and free
surface.> These works only consider the linear stability of
cross waves. Miles and Becker* recently derived an ap-
proximate nonlinear solution to the viscous cross-wave
equations; their work suggests the existence of multiple
steady solutions and suggests the possibility of hysteretic
behavior.

Barnard and Pritchard® were unable to observe steady
cross waves experimentally. Lichter and Shemer® ob-
served steady cross waves at small forcing and modulated
waves at large forcing. The unsteadiness at large forcing
was associated with a soliton which propagated away
from the wave maker. Shemer and Lichter’ identified
steady, quasiperiodic, and chaotic cross waves as a func-
tion of detuning and forcing amplitude. Lichter and Un-
derhill® observed chaotic cross waves under conditions in
which two spatial modes appeared to be unstable.

In this paper, a bifurcation analysis is performed in the
neighborhood of neutral stability. A transition from a su-
percritical to a subcritical pitchfork bifurcation is found,
indicating the presence of hysteresis. In the inviscid re-
gion, a similarity scaling is identified. Experimental re-
sults confirming these predictions are presented. The ex-
periments yield a number of observations (e.g., a bifurca-
tion to quasiperiodic behavior) which, as yet, are un-
resolved.

The equations of motion are presented in Sec. II. A bi-
furcation analysis is performed in Sec. III. The inviscid
similarity scaling is discussed in Sec. IV. The experimen-
tal facility is described in Sec. V. A discussion of the re-
sults and their comparison with experiment are contained
in Sec. VI. These results are summarized in Sec. VII.

II. FORMULATION

The inviscid modulation equations governing the onset
of cross waves in a long channel were first derived by
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Jones.! Lichter and Chen® found it necessary to account
for viscous effects in order to achieve quantitative agree-
ment of theory and experiment; they augmented Jones’s
equation with a linear damping term. Bernoff et al.’ for-
mally derived the viscous modifications due to the
sidewalls, bottom, and free-surface boundary layers.

It is convenient to write the governing NLS for com-
plex cross-wave amplitude, A4, as two real equations, us-
ing A =C +iD (cf. Jones'). Suitably transformed, the
equations and boundary conditions may be written as

Cr=LCH+NC), (2.1a)
C y=BC at X =0 (2.1b)
Here, the vector C is defined by
C
C=1p|- (2.2)
and the operators .£, WV, and B are
—L  —A—0yy
L= Aty _L , (2.3a)
MC)= ~(C22+€2)D , (2.3b)
(C*+D")C
and
1 0
B= 0 —1 (2.3¢c)

The slow spatial and temporal variables are X and T, re-
spectively. The detuning, A, is defined by

4 s
(eR)? | fo

) (2.4)

where the contributions from the progressiving wave!

and viscosity® are ignored as they are small. The nondi-
mensional forcing, €, is given by the wave-maker forcing
amplitude a scaled by the cross-wave wavelength W /N,

1663 © 1988 The American Physical Society
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e——2 ) 2.5) The eigenvectors of Eq. (3.1) can be found as a finite
W/Nm linear combination of complex exponentials. Here, only

where W is the tank width and N is the mode number.
The numerical factor R accounts for wave-maker shape.’
The forcing frequency f is given in hertz, and the cutoff
frequency is given by

3112
_1 [gN7 T (Nm
fo=5- %55 + 2w , (2.6)

where T is surface tension and p is density. Surface ten-
sion effects are presumed to have a negligible effect on
Eq. (2.1) but have a measurable effect on the cutoff fre-
quency at the forcing frequencies used. The effective
damping L,

V2R
N

L= 2
(eR)*R

, 2.7

measures the viscous dissipation scaled by the energy in-
3 . .

put at the wave maker.” The contributions to L from the

bottom- and boundary-layer interaction have been omit-

ted as they are small. The Reynolds number is

2f W?
T wWN?

where v is the kinematic viscosity.

(2.8)

III. BIFURCATION ANALYSIS

In this section, a bifurcation analysis is performed in
the neighborhood of the neutral stability curve. The sta-
bility of the zero state is governed by the linear stability
problem,

oC=.LC,

szﬁg atX=0,

where o is the eigenvalue.

This eigenvalue problem can be used to define a projec-
tion formalism that will allow the evolution in the direc-
tion of particular eigenvectors to be examined.>!%!!
First, define an inner product,

(3.1a)
(3.1b)

(€ €)= ["(C'C+D'DIX . (3.2)
The adjoint problem is defined as

Lic=acC, (3.3a)

cx=38'c, (3.3b)
which must satisfy the identity

(cLe)y=(L'C,C) . (3.4)
Integration by parts yields

Li=pP-LP, (3.5)

B'=P" '8P, (3.6)
where 2 is the matrix which transposes C and D,

01
=11 ol- (3.7)

the most unstable eigenvector, C ,, needs to be con-
sidered. Following Jones' and Bernoff et al.,® C , takes
the form

i(a*—1)e*® tc.c.

—(a*—1)e*tc.c.
172

Co=k ) (3.8)

k=g |14 |12 , (3.9)

where k has been chosen to normalize | C ;| =1 at X=0,
and

1 — —
=——((V1=— iV
a \/2( 1—A4+iV1I4+A). (3.10)

The associated eigenvalue is given by

go=—L +(1-2H)1"2. 3.11)

The bifurcation analysis is considered in the neighbor-
hood of the neutral stability curve (oy,=0). Here,
|og| <<1 and, consequently, a perturbation in the C ,
direction will evolve slowly. The remaining eigenvalues
of .L have negative real parts of order L and, as such, cor-
respond to relatively rapidly damped modes. Given an
initial condition of small amplitude, the portion of the
solution corresponding to the damped eigenvectors will
decay quickly. The solution will become attracted to a
one-dimensional center manifold!> tangent to C, at
C=0. Therefore, the amplitude C can be approximated
at leading order by

C=r(t)C,, (3.12)

where r(?) is a time-dependent amplitude. The equation
of motion for r(¢) can now be found by substituting Eq.
(3.12) into Eq. (2.1) and projecting onto the direction of
C ;. This can be done by defining the adjoint eigenvector

ci
Lici=0,Ct, (3.13)

and then using the operator (C 3;) to project onto the
C , subspace. This yields the Landau equation,

r,—ogr =Hr®, (3.14)
where the Landau constant H is defined by
(CHLMC )
B (3.15)

(chcy

and WV is defined in Eq. (2.3b). Equations (3.5) and (3.6)
yield the identity

cl=pc,, (3.16)
which allows the evaluation of Eq. (3.15),
1= 1 (3.17)

- 5—-3A (1___}\2)1/2 .

Note that as W is cubic at leading order, the damped
eigenvectors will not contribute to the Landau equation
until order r> (Ref. 13).
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AO'O for the |r | <r;, the solution will decay to zero; for
LU LU |r | >r,, the solution will grow due to the influence of
the nonlinear terms.
NS NU For | H | <<1, the fifth-order correction to Eq. (3.14)
will become important. In the case when this term is sta-
_H bilizing, the subcritical branch terminates in a saddle-
.............. NU node bifurcation [Fig. 2(b)]. The locus of the saddle-node
bifurcation is given by o,= —yH? for some constant
LS LS N y >0 (Ref. 12) (cf. Fig. 1).
NS NS IV. INVISCID THEORY

FIG. 1. Behavior of the Landau equation as a function of the
eigenvalue o, and the Landau constant H. The regimes of
linear stability (LS), nonlinear stability (NS), linear instability
(LU), and nonlinear instability (NU) are shown. The dotted
curve indicates the locus of the saddle-node bifurcation in the
case when the fifth-order correction is stabilizing.

The dynamics of the Landau equation [Eq. (3.14)] may
be studied as a function of the independent parameters o,
and H (Fig. 1). For H<O0 (i.e., A > }), the bifurcation is a
supercritical pitchfork [Fig. 2(a)]. For 0,<0, the solu-
tion is both linearly and nonlinearly stable. For o,>0,
the solution is linearly unstable, and the nonlinear term is
stabilizing and leads to saturation. The saturation ampli-
tude, 7, of the cross wave can be computed by setting
r,=0in Eq. (3.14) and solving to yield
172

70 (3.18)

When H> 0 (i.e., A < 1), the bifurcation is a subcritical
pitchfork [Fig. 2(b)]. When o,>0, the nonlinear term
augments the linear growth term and the solution grows
without bound. When o, <0, the behavior is hysteretic:

(a)

)

— e e e e ol

(b)

(o7
0

FIG. 2. Wave height squared of the most unstable eigenvec-
tors as a function of the eigenvalue o, for (a) supercritical
(H <0) and (b) subcritical solutions (H >0). Solid lines show
stable solutions, and dashed lines are unstable solutions.

In the limit L <<A, the dynamics of cross waves are
dominated by the inviscid effects.® For fixed Reynolds
number, this corresponds to the limit of large forcing, ¢.
If this limit is regular, bifurcations should only depend
upon A at leading order. Assuming that a bifurcation
occurs at some A, then it follows from Eq. (2.4) that,
considered as a function of £ and f, the bifurcation will
occur on the curve

Ly
fo

This suggests that (f/f,—1,e?) may be convenient ex-
perimental parameters; with these coordinates, bifurca-
tion curves should asymptote to straight lines in the limit
of large €.

In this limit, comparison can also be made to the work
of Miles and Becker.* They derived an exact solution to
the steady cross-wave profile in terms of a trapped soliton
when —A>1 (corresponding to 0,<0, H>0). When
A— —1 (0,—0), the solution reproduces the subcritical
branch described above [Eq. (3.18)] and, as such, this
branch is unstable near the bifurcation point.

2
€=
AR?

V. EXPERIMENTAL FACILITY

Experiments were carried out in a wave tank 120 cm
long and W=30.97. The wave maker is a paddle-type,
where the hinge of the paddle is at a depth of 14.1 cm on
a pedestal which is raised 13.1 cm from the bottom. The
wave maker is driven by a moving coil linear actuator.
The input sine wave is computer generated with 100
points per period, passed through a digital-to-analog con-
verter and then amplified. Frequency stability was better
than one part in 10°. Wave-maker displacement is mea-
sured by a noncontact inductance transducer. This trans-
ducer also serves as input into a feedback loop providing
proportional and derivative feedback to ensure that the
input sinusoidal waveform is faithfully reproduced.
Wave height is measured by a capacitance-type wave
probe. The probe wire is only 0.8 mm in diameter, so
wave interference is negligible even for the shortest pro-
gressing waves generated at a forcing frequency of 8.16
Hz (3.0 cm wavelength). The probe was positioned one-
half cross-wave wavelength away from one sidewall (and
so at the location of a cross-wave crest) and 1.7 cm dis-
tant from the mean position of the wave maker. Experi-
ments were carried out over a range of frequencies,
7.6-8.16 Hz, for which the dominant spatial mode num-
ber is N=6.
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To reduce capillary effects at the walls and on the wave
maker, Kodak Corporation’s Photo-Flo was added to the
water. Sufficient Photo-Flo was added so that additional
solution had a negligible effect on surface tension. This
limiting value of 33.3-dyn/cm surface tension was mea-
sured by the DuHouy ring technique.

V1. DISCUSSION AND COMPARISON
WITH EXPERIMENT

In contrast to the analytical theory where o, and H
arise naturally, it is most feasible to conduct an experi-
ment at constant forcing amplitude or constant forcing
frequency. The results in Fig. 3 are considered as func-
tions of € and f; all other experimental parameters were

0.002 T =
(a)
aVv
~N
£ A
]
o~ A v Al
-]
3 A A
= 0001} .
g v’
= s &Y . A
kS v IN- 4
A
v v v
v
0
-002 0 002
f_
fo !
0.004 T

0.0021-

(forcing amplitude)? (cm?)

0
-0.035 0 0.035

FIG. 3. Stability diagram for the experimental results. The
open symbols denote that the cross waves were modulated on a
long time scale. The solid symbols denote unmodulated waves.
The up-pointing (down-pointing) triangles indicate that the
forcing amplitude was increased (decreased) at constant forcing
frequency. (a) Close-up of the hysteresis region and the theoret-
ical prediction A:% (— — —). (b) The straight lines converg-
ing to the inviscid cutoff frequency reveal the similarity scaling
of the inviscid limit.
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held constant. It is convenient to choose (f /f,—1,€%) as
coordinates (cf. Sec. IV). Curves of constant A appear as
lines radiating from the origin. The neutral stability
curve, on which o,=0, can be rewritten using Egs. (2.4)
and (2.7) as
2 2
L) |
fo

With these coordinates, this curve is a hyperbola with
asymptotes on which A=x+1. The slope of the asymp-
totes yields the experimental value of R. In Fig. 3(a), the
solid line is the theoretical prediction of A=1; to the left
of this line, hysteresis is expected in the neighborhood of
the neutral stability curve.

The solid upward-pointing triangles in Fig. 3(a) indi-
cate the appearance of cross waves for increasing wave-
maker amplitude, whereas the downward-pointing trian-
gles mark the disappearance of cross waves with decreas-

V2R
N

2

4_
(eR)*—16 7
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FIG. 4. Wave height squared as a function of forcing ampli-
tude for (a) 8.1 Hz showing behavior similar to the supercritical
case, Fig. 2(a), and (b) for 7.81 Hz showing behavior similar to
the subcritical solution, Fig. 2(b). The dashed line is hy-
pothesized.
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ing wave-maker amplitude. To the left of the line A=1,
these two curves diverge, indicating the appearance of
hysteretic behavior in agreement with the prediction of
Sec. III. Figure 4 shows cross-wave amplitude as a func-
tion of wave-maker forcing at constant detuning. In Fig.
4(a), a detuning to the right of the hysteretic transition is
shown; note that a bifurcation to a steady cross wave is
observed, in agreement with Fig. 2(a). In Fig. 4(b), a de-
tuning to the left of the hysteretic transition is shown;
here, a stable zero solution and a stable steady cross wave
exist at the same parameter values, in agreement with
Fig. 2(b).

Although the results discussed in Fig. 4 qualitatively
reproduce the behavior predicted in Sec. III, a quantita-
tive agreement between the prediction and observed
cross-wave amplitude cannot be produced. This indicates
that the Landau analysis may be quantitatively valid only
in a narrow band along the neutral stability curve. It is
speculated that, in the inviscid regime, a slowly decaying
cnoidal solution to the full NLS may provide better
agreement.

In Fig. 3, the open triangles denote a transition to
quasiperiodicity. The upward-pointing triangles to the
left of A=0 indicate a transition from the zero state to a
quasiperiodic cross wave, i.e., modulated on a slow time
scale. This transition is hysteretic; if the forcing ampli-
tude is decreased after the quasiperiodic cross waves ap-
pear, the waves persist. The downward-pointing open
triangles indicate the forcing amplitude below which the
quasiperiodic cross waves decay.

A second boundary indicating the transition from
steady to quasiperiodic cross waves is also shown by open
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triangles. A smaller hysteretic effect is also observed on
this boundary. Similar behavior was observed by Shemer
and Lichter.’

For A >>L, the analysis in Sec. IV indicates that invis-
cid effects should dominate and the various bifurcation
curves may be approximated by straight lines. Figure
3(b) shows that all the transition curves qualitatively
agree with this scaling.

VII. CONCLUSIONS

An analysis has been presented revealing a bifurcation
from supercritical to subcritical behavior for viscous
cross waves as a function of forcing amplitude and detun-
ing. The bifurcation occurs at a detuning of A=1. In the
subcritical region, there is a range for which the cross
waves are linearly stable but nonlinearly unstable, yield-
ing a hysteretic stability boundary. In the region where
A>>L, A is the single parameter relevant to cross-wave
growth, and bifurcations appear as lines when graphed as
functions of (f/f,—1,e?). The theoretical predictions
are in qualitative agreement with experiment. The exper-
iments also suggest, however, that the range of validity of
the Landau analysis is restricted to the proximity of the
neutral stability curve.
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