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Behavior of coupled automata
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We study the nature of statistical correlations that develop between systems of interacting self-organized
critical automata~sandpiles!. Numerical and analytical findings are presented describing the emergence of
‘‘synchronization’’ between sandpiles and the dependency of this synchronization on factors such as variations
in coupling strength, toppling rule probabilities, symmetric versus asymmetric coupling rules, and numbers of
sandpiles.

DOI: 10.1103/PhysRevE.69.046116 PACS number~s!: 05.65.1b, 45.70.2n, 05.45.2a

I. INTRODUCTION

Automata models displaying self-organized criticality
~SOC! have received enormous critical attention over the last
15 years, and have been used as a paradigm for modeling
statistical behaviors of a vast assortment of physical systems
@1,2#. Given that physical systems are rarely found in com-
plete isolation~e.g., consider a network of weakly interacting
earthquake faults!, it is quite natural to ask how one system
~described by an SOC automaton model! might influence the
behavior of a second automaton if the two are allowed to
interact with one another. Despite our considerable knowl-
edge to date about individual~isolated! SOC automata, sys-
tems of interacting SOC automata have been much less well
studied, and comparatively little is known about the statisti-
cal effects associated with interactions. Recently, it has been
demonstrated that if two two-dimensional ‘‘sandpile’’ au-
tomata are weakly coupled to one another, then the sandpiles
will exhibit a remarkably high degree of synchronization in
their avalanching behavior~cf., in any given avalanche, the
root-mean-square~rms! fractional deviation of the avalanche
size between the two sandpiles approaches zero regardless of
the weakness of the coupling! @3#. This strong correlation
only manifests itself on large spatial scales, and has been
dubbed ‘‘large-scale synchrony.’’ The intention of this paper
is to examine the behavior of interacting automata more fully
and in a wider range of contexts than has been done previ-
ously. Towards this end, we will examine statistical correla-
tions in systems consisting of 2–20 coupled one-dimensional
sandpile automata, and study how the onset of strong
correlations/synchrony is affected by variations in coupling
strength, dynamical toppling rules, number of automata,
symmetric versus nonsymmetric coupling, and identicalness
versus nonidenticalness of the individual automata.

This paper is organized as follows. Section II introduces
the coupled sandpile models, and presents a broad survey of
numerical results. Section III presents several basic analyti-
cal calculations for a two-sandpile system: a description of
the underlying probabilities which define the structure of the
SOC state, the relationship between the avalanching process

in sandpiles and random walks, and a calculation of the two-
point correlation functions for the system. These in turn pro-
vide the basis for the discussion and interpretation of our
numerical findings in Sec. IV. Section V summarizes our key
results, and discusses certain unresolved issues and limita-
tions of the methodology we employed.

II. SURVEY OF NUMERICAL RESULTS

A. Introduction to basic model

Our study will focus on systems of coupled one-
dimensional directed automata~sandpiles! with stochastic
toppling rules. The individual sandpiles are one-dimensional
lattices ~chains! of length M, where each lattice site$ i
51, . . . ,M % contains some integral number of grainshi . If
the number of grainshi at any site exceeds a certain critical
capacityhc ~we takehc54 for convenience!, then that site
will topple, spilling one or more grains to its neighboring
sites~either on its own chain or a neighboring chain! accord-
ing to some probabilistic rules.

We focus for the moment on the operation of a single
chain in isolation~which is solvable@5#!. In this case, the
specified toppling rule is as follows: An unstable lattice site
~i.e., with hi.4) will spill either one grain or two grains to
its neighbor on its immediate right with probabilitiesr1 ,r2 ,
respectively~wherer11r251). The original site will con-
tinue to shed grains through this toppling process until it
eventually stabilizes (hi<4). If the neighboring site to
which the grains have been transferred becomes unstable as a
result of this process, it in turn begins to topple, and the
‘‘avalanche’’ continues its rightwards march along the chain.
The avalanche will either terminate on its own naturally or
will stop when it reaches the right end of the chain~where it
is assumed that any grains spilled from the rightmost lattice
site simply drop off the chain!. We define the total ‘‘size’’N
of an avalanche to be the total number of grains spilled as the
result of the addition of a single grain to the system.

To initially configure the sandpile, we start the lattice off
in an arbitrary, quiescent state (hi<4 for all i ). A single
grain is then added to a randomly selected site and the re-
sulting avalanche~if any! is allowed to run its course. Once
the system returns to a quiescent state, another site is se-
lected at random for seeding. By repeatedly seeding the
sandpile in this manner, transient behaviors are eliminated
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and the system enters the SOC state. In all discussions that
follow it should be assumed that this preliminary seeding
process has been carried out. If additional grains are now
added to the sandpile, the frequency of avalanches as a func-
tion of their size exhibits the familiar power-law scaling be-
havior of SOC@6#, F(N);1/Nd. For the case of a single
isolated sandpile, the critical exponent isd54/3 ~indepen-
dent of the spill probabilitiesr1 ,r2, providedr15” 0,1). The
behavior of this type of one-dimensional SOC sandpile
model appears sufficiently general@8# to serve as a good
basis for a study of interacting SOC automata, as we now
describe.

Systems of interacting automata may be constructed by
coupling together two or more of the basic one-dimensional
sandpiles described above. Coupling is achieved by modify-
ing the toppling rules so that a site on a given sandpile is
capable of spilling grains not only to a neighbor on its own
chain, but also to neighboring sites on nearby chains as well.
We consider first the case of two interacting sandpiles: Take
two one-dimensional lattices, each of lengthM, and place
them side by side, as shown in Fig. 1.~Call these chainsA
andA8.! As in the previous case of a single isolated sandpile,
assume all sites are stable provided they contain no more
thanhc54 grains. The toppling rules are as follows: If a site
i on chainA topples, it can spilla grains to sitei 11 on A
and b grains to sitei 11 on A8 with probability rab . the
analogous spill probabilities for a toppling site onA8 are
denoted as rab8 . For simplicity we assume that
r10,r20,r11,r22,r108 ,r208 ,r118 ,r228 are the only nonzero spill
probabilities, although this will not affect the generality of
our results.

When rab5rab8 for all a,b, the two sandpiles are gov-
erned by the same probabilistic rules and we will refer to this
as thesymmetriccase. Lastly, we will often work with a
special case of the above toppling rule, whereupon we intro-
duce four free parametersr,g andr8,g8 @all of which lie in
the range~0,1!#, and demand that our eight toppling prob-
abilities rab ,rab8 are of the special formr105r(12g),r20

5(12r)(12g),r115rg,r225(12r)g, and similarly for
the primed variables. The parametersr,g and r8,g8 lend
themselves to a simple interpretation:g is the probability that
spilling grains from a toppling site on chainA will cross over
and hit the other chainA8 ~hence 12g is the probability that
the spill does not cross over!. r is a probability associated
with one-grain spills onA; 12r is associated with two-grain
spills on A. The quantitiesr and g should be viewed as
independent. So, for example, the probability that when a
site onA topples it spills one grain to its own chain and none
to the other isr~12g!, while the probability that it spills one

grain to each isrg. ~The parametersr8,g8 are the analogous
quantities defined for when the toppling site is on chainA8.!
The virtue of this formulation is that the parametersg,g8
provide convenient measures of the coupling strength be-
tween the two sandpiles, since ifg5g850 the sandpiles are
dynamically independent of one another, while ifg5g851,
then they are ‘‘fully coupled’’~in that whenever any site
topples, it spills the same number of grains to each sandpile.!
By choosinggÞg8 we can explore the case of asymmetric
coupling as well. We mention that while the special case we
are considering here for the toppling rule~based on four
independent parametersr,g,r8,g8! is more restrictive than
our original formulation~which employs six independent pa-
rameters!, it is only nominally so, in that the overall meth-
odology is easily generalizable.~In fact, while most of our
numerical simulations will employr,r8,g,g8 for conve-
nience, all of our analytical calculations will use the more
generalrab ,rab8 formulation.!

We now turn to numerical observations about the statisti-
cal behavior of interacting automata.

B. Synchronization in a two-chain system with weak,
symmetric coupling

As a prelude to other results which follow, we review the
basic synchronization behavior of two sandpiles which are
weakly coupled to one another in a symmetric fashion
~g5g8!1! as studied for a deterministic model in Ref.@3#.
Grains are dropped one at a time onto randomly selected
sites on either sandpile, and the resulting avalanches are
monitored. For each drop, we record the sizeN of the result-
ing avalanche~i.e., the total number of grains spilled!, as
well as the individual contributions to this total coming from
each of the two chainsNA ,NA8 ~where NA1NA85N). A
representative plot ofNA vs NA8 is shown in Fig. 2. The high
concentration of data points along theNA andNA8 axes for
small avalanche sizes indicates that small avalanches on each
sandpile are essentially uncorrelated with one another. For
larger avalanches, the correlation in the avalanching between
the two sandpiles not only becomes stronger~as one might
also naturally expect!, but in fact becomes so strong that a
large event on one sandpile is almost always concomitant
with an approximatelyequal sizeevent on the other sandpile,
as evidenced by the pronounced tendency towards the diag-
onal in the graph at large scales. The graph thus depicts the
emergence of the phenomenon oflarge-scale synchronyfor
large avalanches~i.e., NA'NA8). ~We remark that this isnot
a saturation effect associated with finite lattice size.!

Note that reducing the strength of the coupling~g! be-
tween the sandpiles does not destroy the large-scale syn-
chrony, but merely delays its onset~as can be analytically
demonstrated through a dynamical renormalization analysis
as described in Ref.@3#!. What happens is that even though
on a microscopic level the two chains are only weakly
coupled@4# via the local toppling rules~0,g!1!, a renor-
malization analysis shows that the effective coupling
strength between the sandpiles increases as one views them
on larger and larger spatial scales, thereby producing the ob-
served synchrony.

FIG. 1. Depiction of two interacting lattices. The arrows indi-
cate the possible spilling directions for an above-critical site~rep-
resented by a filled circle!.
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Numerically, one can examine the root-mean-square frac-
tional deviation betweenNA and NA8 as a function of total
avalanche sizeN,

f rms5AK ~NA2NA8!
2

~NA1NA8!
2L , ~1!

where the bracketŝ•& indicate an average over all ava-
lanches of a given total size@9#. Figure 3 clearly depicts how
uncorrelated small avalanches (f rms'1) give way to statisti-

cally synchronous behavior (f rms'0) at large spatial scales.
~We point out that since the generation of reliable statistical
data for very large avalanche sizes is a numerically taxing
process, it proved useful to employ a binning procedure of
the data when generatingf rms plots like the one shown. In the
figure, avalanches between sizen and 2n were binned to-
gether.! Note that the rms fractional deviation is chosen for
simplicity; other more sophisticated measures of correlation
could also serve this purpose, and might be interesting to
study.

We now turn to our main focus, an examination of how
such statistical correlations between automata are affected by
various systematic changes, e.g., modifications to toppling
rules, system parameters, boundary conditions, number of
automata, etc.

C. Coupling strength effects in a symmetric two-chain system

If the coupling strength in a symmetric two-chain system
~above! is varied, the onset of large-scale statistical syn-
chrony will be affected. Figure 4 illustrates this relationship
in terms of the associatedf rms plots; a delay in onset of
synchrony as the coupling is reduced is clearly seen. To
quantitatively study this dependency we choose some thresh-
old f onset, and define the onset of large-scale synchrony to be
when thef rms curve drops below this cutoff. In the discussion
which follows we usef onset50.5 unless otherwise indicated.
A plot of avalanche size at onsetNonsetas a function coupling
strengthg is shown in Fig. 5~a!. As noted, decreasing the
coupling strength pushes back the onset of synchronization
to progressively larger length scales. The asymptotic shape
of this curve in the weak-coupling regime is shown in Fig.
5~b!. The curve~at least superficially! appears to be fit rela-
tively well by a power law:Nonset;g2q, where q51.4
60.1. This point proves to be somewhat subtle and we will
return to this issue in more detail in the analytical discussion
of Sec. IV. We mention here that exploring this weak-

FIG. 2. Large-scale synchrony. Plot illustrates dependence of
avalanche composition on size in a two-chain model for
g5g850.05, r5r850.5. Note in particular the strong correlations
~i.e., NA'NA8) for large avalanches despite the weak coupling; the
much more frequent smaller avalanches are relatively uncorrelated.
Typical lattice sizes used in the simulations ranged from 50 000 to
200 000.

FIG. 3. The root-mean-square fractional deviation betweenNA

and NA8 vs the total avalanche size (N5NA1NA8), for
g5g850.05, r5r850.5. Note that the fractional deviation ap-
proaches zero at large avalanche size, corresponding to the devel-
opment of the strong correlations seen in Fig. 2.

FIG. 4. The effect of coupling strength onf rms, in the symmet-
ric case withg5g8, r5r850.5. As the coupling between sandpiles
is reduced, the onset of large-scale synchrony between sandpiles is
pushed back to progressively larger length scales.
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coupling regime is a numerically intensive process, since
synchronization only sets in at very large avalanche size, and
large avalanches occur only infrequently. Yet good statistical
data for the large avalanches is precisely what is required for
a reliable determination off rms and Nonset. Additionally, as
one decreases the coupling strength, the lattice sizes used in
the simulations~to accommodate the increasingly large ava-
lanches! must also be increased to ensure that boundary ef-
fects do not distort the results@7#.

D. Synchrony in an asymmetrically coupled two-chain system

We next consider the system’s behavior when the cou-
pling between the two sandpiles is not symmetric,gÞg8. For
convenience we still assumer5r8 ~this proves to be a rather
mild restriction, and in the analysis of Sec. III we take up the
general case whererÞr8!. Our numerical findings for asym-
metric coupling are illustrated in Fig. 6. Figure 6~a! shows
the f rms curves for one set of coupling-strength values. Ob-
serve that while thef rms curves tend to decrease with increas-

ing avalanche size, they no longer asymptotically approach
zero at large spatial scales. Rather, they each eventually pla-
teau at some value between 0 and 1, indicating that during
large avalanches more grains are spilled from one chain than
the other. Qualitatively this is as expected, since the unequal
coupling strengths imply that one chain is more ‘‘generous’’
with its spilled grains than the other. Figure 6~b! depicts the
f rms curves for a different set of coupling-strength values.
Here, we again see the eventual plateauing behavior at large
scales, but now a pronounced dip with subsequent rebound is
clearly visible before the plateau is reached.~A simple ex-
planation for this numerical result is described in Sec. IV B.!

E. Sandgrain distribution

We consider again the case of a symmetrically coupled
two-chain system, and examine the distribution of sandgrains
in the SOC state. LettingFi denote the fraction of sites con-
taining i grains (i 51, . . . ,4), Table I below illustrates some

FIG. 5. ~a! Onset of synchronization as a function of coupling
strength for the symmetric two-chain case withr5r850.5, ~b!
Blow-up of graph in weak-coupling regime~on a log-log scale!. A
numerical power-law fit is shown.

FIG. 6. ~a! Plateauing rms curves for systems withr5r850.5
for the asymmetric case~gÞg8!. Note that the plateauingf rms value
increases asug2g8u increases,~b! Same as in~a!, but for different
choices of coupling parametersgÞg8, r5r850.5. In addition to the
asymptotic plateauing behavior already noted, local minima~dips!
in the f rms curves are clearly visible in the intermediate range ofN.
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sample numerical results for several different values of the
coupling-strength parameterg ~at fixed r50.5!. Numerical
values given are reproducible to an accuracy of'60.004.
~The theoretical predicted values appearing in the table will
be discussed in Sec. III B.!

F. Multichain systems, site restrictions, and related
observations

We have also studied several other generalizations which
we briefly describe here. More details on these special cases
can be obtained directly from the authors; all can be ana-
lyzed using the same general framework developed in this
paper.

We first mention 9site-restricted: automata, which are
identical to those studied here except that now only some
fraction r ,1 of the lattice sites are capable of spilling grains
to the other chain; the remainder can only spill to neighbor-
ing sites on their own chain. The sites capable of cross spills
can be periodically or randomly located along each chain.
The motivation for studying site restrictions comes from
considering spatially distributed SOC systems which happen
to only be linked at a few select sites, as might naturally be
expected to occur in real physical systems. Numerical obser-
vations show that strong correlations between site-restricted
automata develop at large scales even for the case of severe
site restriction (r !1), a result which might be anticipated in
light of the analysis to be presented in Secs. III and IV. For
such systems, the effective coupling strength between the
automata is determined by the quantityrg.

We also considered the statistical correlations between
three interacting sandpiles~non-site-restricted! where the top
and bottom chains can spill grains directly to the center
chain, though not to each other. The center chain can spill to
either the top or bottom chain. In this case numerical simu-
lations show that the chains synchronize, with the middle
chain having twice the number of events as either the top or
bottom chain, due to the effect of the middle chain having
twice the linkages of the top~or bottom! chain.

Lastly, we simulated models with 10 and 20 chains with
symmetric, nearest-neighbor coupling between chains for
both periodic and nonperiodic boundary conditions. As ex-
pected from general considerations to be described later,
large-scale synchrony was observed in all these systems,
with the synchrony between any two chains setting in at
progressively larger avalanche sizes the farther the two
chains were from each other.

III. ANALYTICAL CALCULATIONS AND RELATED
RESULTS

We next present several analytical results along with plau-
sibility arguments that will prove useful for understanding
the behavior of a system of two interacting sandpiles. We
note that the formal calculations all readily generalize to
higher-dimensional systems of interacting sandpiles~of simi-
lar type!, in support of our earlier contention that the one-
dimensional automata that we study here are sufficient to
capture many of the important features of higher-
dimensional interacting automata. These results will then be
used in Sec. IV to interpret many of our earlier numerical
findings.

A. Spill probability calculation

In this section we calculate spill probabilities associated
with the critical sites (hi54) of the two-sandpile model of
Sec. II A. This in turn will provide us with a description of
the underlying structure of the SOC state of the interacting
automata.

Let wk be the probability that if we dropk grains onto a
critical site on chainA it will spill out exactly k grains, while
xk , yk , andzk are defined as the probabilities that the site
will spill exactly k11, k12, or k13 grains, respectively.
@Equivalently,wk is the probability that a critical site will
return to criticality following the addition ofk grains;xk is
the probability that it will end up one grain below criticality
~at hi53), yk that it ends at two below criticality, andzk at
three below criticality.# This accounting is sufficient, since,
for the models we are considering, a site that isk grains
above criticality will always spill at leastk, and at mostk
13, grains. We define spill probabilitieswk8 ,xk8 ,yk8 ,zk8 for
critical sites on chainA8 analogously. Our goal is to calcu-
late these spill probabilities in terms of the underlying top-
pling rule probabilitiesr10,r20,r11,r22,r108 ,r208 ,r118 ,r228 .

We start with the observation that addingk grains to a
critical site is equivalent to first addingk21 grains to the
site and then adding one additional grain. Thus, for example,
the probability that the addition ofk grains to a critical site
results in exactlyk grains spilled out iswk5wk21r10
1xk21. Continuing this procedure yields:xk5wk21(r20
1r11)1yk21 , yk5zk21 , zk5wk21r22. ~The corresponding
recursion relations for critical states on chainA8 are gener-
ated analogously.! Note thatwk1xk1yk1zk51 for all k and
that the ‘‘initial conditions’’ for these relations arew1
5r10,x15r201r11,y150,z15r22. Since these recursion

TABLE I. Depicts the fraction of lattice sites containing 4, 3, 2, and 1 grain, respectively. Note the good
agreement between the theoretically computed values and the simulation results across a broad range of
coupling-strength values.

Chain parameters F4
numeric F4

theory F3
numeric F3

theory F2
numeric F2

theory F1
numeric F1

theory

g50.0 0.669 0.667 0.332 0.333 0 0 0 0
g50.04 0.641 0.641 0.333 0.333 0.0125 0.0128 0.0136 0.0128
g50.07 0.622 0.623 0.334 0.333 0.0233 0.0218 0.0212 0.0218
g50.7 0.396 0.392 0.329 0.333 0.137 0.137 0.138 0.137
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relations are linear, they are readily solvable and thus exact
expressions for (wk ,xk ,yk ,zk) in terms of the initial condi-
tions can be found. However, we are primarily interested in
the large-k limit ~corresponding to the SOC regime in which
large avalanches exist!. For our purposes then, it suffices to
note that if the recursion relations are reexpressed in matrix
notation, then the associated recursion matrix has one eigen-
value equal to unity; its three other eigenvalues all have
modulus less than unity, and hence are unimportant in the
asymptotic regime k→`. Consequently, the solutions
(wk ,xk ,yk ,zk) become independent ofk for largek. We find

~wk ,xk ,yk ,zk!'
1

22r1012r22
~1,12r10,r22,r22! ~2!

~This approximate equality becomes exact in the limit
k→`; we denote the limiting values asw` ,x` ,y` ,z` .)
These are the spill probabilities for the critical sites of the
automata upon the addition ofk grains. As described next,
this result will prove useful for understanding the structure of
the SOC state.

B. Grain distribution in the SOC state

We show here how result~2! above can be used to extract
information about the underlying structure of the SOC state
of the system. Recall first that the spill probabilities
(wk ,xk ,yk ,zk) were originally defined solely in terms of
how acritical site ~at hi54) would respond to the addition
of k grains:wk was the probability that it would return to
criticality, xk that it would end up one below criticality~at
hi53), etc. However, since these probabilities are indepen-
dent ofk for largek, these results also hold forany site (hi
51, 2, 3, or 4!—not just for critical sites. To see this, con-
sider a site that is initiallym grains below criticality, athi
542m. If k grains are added to it, the firstm grains will
simply bring the site up to criticality. So when the remaining
k2m grains are added, the probability that the now critical
site will return to criticality when it sheds the excess is
wk2m . However, sincewk2m'wk for large k, wk in fact
describes the probability that an arbitrary site~initially at or
below criticality! will end up being critical after a large num-
ber of grains are added to it, as claimed. In turn, it follows
that if the automata is in the SOC state, we can interpret the
asymptotic spill probabilityw` in result ~2! to be the prob-
ability that a randomly selected site on chainA will be criti-
cal, while x` ,y` ,z` give the probabilities that a site on the
chain contains 3, 2, or 1 grains, respectively. Thus the under-
lying distribution of states of the automata is fully revealed.
A comparison between the predicted fraction of critical sites
and numerical simulations is given in Table I.~Note that
minor discrepancies between theory and numerics are ex-
pected owing to finite lattice size and finite sample size.!

In addition, we note that due to the directed nature of the
system the grain distribution is independent between sites.
This can be shown formally by constructing the Markov
chain representing the grain size distribution at all sites and
showing that the invariant distribution for the entire system
can be written as a product of the invariant distributions of

the individual sites. Note however that this does not prove
that successive avalanches are uncorrelated, something
which is generally not true for deterministic SOC systems,
although it might appear plausible for this specific case.

C. Connection to random walks

We next indicate how avalanching in asingle one-
dimensional directed sandpile can readily be interpreted as a
stochastic process. Given a drop~of a single grain! onto
some site letXt>0 be the random variable representing the
number of grains spilled by the sitet steps away from the
drop site. Note that the infinite sequenceX
5(X1 ,X2 ,X3 , . . . ) can beviewed as a random walk with 0
as its absorbing state, since ifXt50 then Xs50 for all s
.t. By the analysis in Sec. III AuXt2Xt11u<3, and, be-
cause of grain conservation, the expected number of spills at
a site conditional on the number of spills at the previous site
is given by,E@Xt11uXt#5Xt ~whereE@•u•# denotes the con-
ditional expectation!, so the sequence corresponds to a fair
random walk.@Note that one can show this directly by com-
bining the analysis in Sec. III A with that in the preceding
section, by explicitly computing E@Xt11uXt5 j #
5(k51

4 E @ Xt11 u Xt , ht11 5 k # Pr ( ht115k) 5 j 1(23wj 23

2 2xj 23 2 1yj 23 2 0zj 23 ) z`1 (22wj 22 2 1xj 22 2 0yj 2 2

11zj 22 ) y`1(21wj 2110xj 2111yj 2112zj 21 ) x`1(0wj

11xj12yj13zj )w` .] Hence, for large values ofXt ~as
arise in large avalanches! this sequence can be approximated
by a Brownian motion@15#.

We would like later to exploit this direct association be-
tween avalanching behavior in a single sandpile and Brown-
ian motion. Unfortunately, for thecoupledsandpile case this
connection to Brownian motion breaks down. However, as
we will see later, ideas from renormalization theory allow us
to apply these ideas to understand multichain systems.

D. Two-point correlation functions

In this section we derive our final analytical result, the
two-point correlation functions for our system of interacting
sandpiles. These correlation functions describe the expected
number of times a given site will topple as a result of adding
a single grain to some other specified site of the system.
More precisely, suppose we drop a single grain onto a site on
chainA. ThenP( i ,A) is defined to be the expected number
of times that the lattice site onA located exactlyi units to the
right of the initial drop site will topple;P( i ,A8) is defined as
the expected number of times that the corresponding site on
A8 located i units from the initial drop site will topple.
Analogously, if instead a single grain is added to a site on
chain A8, then the correlation functionP8( i ,A8) @resp.
P8( i ,A)] denotes the expected number of topplings induced
at a sitei units away on chainA8 ~resp.A). @Note: by defi-
nition, the correlation functions describe the expected num-
ber of times a site topples, not the total number of grains
spilled from the site. Recall that a site can spill between one
and four grains each time it topples, as described in Sec.
II A. #
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The correlation functions may be derived from the general
observation~as described by Dhar@13#! that, for automata in
the SOC state, the average rate at which grains enter any
given site must equal the average rate at which they leave
~see also@14#!. A straightforward calculation~as in Ref.@3#!
yields

P~ i ,A!5c11c2l i , P~ i ,A8!5c32c3l i , ~3!

where c1 ,c2 ,c3 ,l are constants which are readily deter-
mined. ~For symmetric sandpiles,c1 ,c2 ,c3 are all equal.!
Since ulu,1 ~except for trivial cases!, the limiting behavior
of the correlation functions far from the drop site (i @1) is
transparent.@P8( i ,A8),P8( i ,A) are found similarly.#

IV. DISCUSSION OF NUMERICAL FINDINGS

We now use the analytical results of Sec. III to interpret
many of the original numerical findings of Sec. II. For ex-
ample, we will be able to explain the plateaus and dips seen
in the f rms curves for nonsymmetric sandpiles, and the ob-
served dependence of the onset of synchronization on inter-
sandpile coupling strength.

A. Basic synchronization

First we note that one might anticipate the emergence of
large-scale synchrony between coupled sandpiles as illus-
trated in Figs. 2 and 3 of Sec. II B from the two-point
correlation functions~as in Ref.@3#!. Observe that fori @1
and symmetric coupling, P( i ,A)'P( i ,A8)'P8( i ,A)
'P8( i ,A8). This implies that dropping a grain at some site
affects distance sites on either chain equally strongly~on
average!; i.e., as the avalanche propagates down a chain,
memory of whether the initial drop was onto chainA or
chainA8 is lost. This is constant with~and suggestive of! the
observation of large-scale sync˙hrony between sandpiles
wherein the rms-fractional deviation drops towards zero
~Fig. 3!, though it does not prove it.~A stronger argument
would utilize a dynamical renormalization group analysis, as
in Ref. @3#.!

B. Plateauing in asymmetric sandpiles

The key numerical finding of Sec. II D is that if two sand-
piles are asymmetrically coupled, then the system only par-
tially synchronizes, as evidenced by the plateaus observed at
large length scales in the associatedf rms plots @Fig. 6~a!#.
This behavior can be well explained using the two-point cor-
relation functions, as we now describe.

For simplicity we work with the auxiliary parameters
r,g,r8,g8 ~see Sec. II A! and definenAA8[(22r)g, nA8A
[(22r8)g8, nA[(22r)(11g), and nA8[(22r8)(1
1g8).

To begin, suppose a single grain is initially dropped onto
some site on chainA. ~We will assume that for these sand-
piles r105r108 ,r205r208 ,r11Þr118 ,r225” r228 .! The expected
number of topplings this initial drop will induce at some
distant site on chainA is, according to Eq.~3!, 'c1. Since
each time a site onA topples it spills an average ofnA grains

~as is easily checked!, the average flux of grains emerging
from the distant site isc1nA . Likewise, the average flux out
of a distant site on chainA8 is c3nA8 . ~As an aside, we note
that the average rate at which particles are transferred from a
given distant site onA to A8 is equal to the average transfer
rate at distant sites fromA8 to A, a finding consistent with
the existence of large-scale synchrony between the sand-
piles.! Continuing, the key observation is that the ratio of the
average flux out of a distant site onA to the flux out of a
distant site onA8, namelyc1nA /c3nA8 , is equal to the ratio
of the total number of grains spilled by sites onA to the
number spilled by sites onA8 during a given avalanche,
namelyNA /NA8 . Using this fact along with the readily com-
puted values ofc1 ,c3 in Eq. ~3!, the rms fractional deviation
f rms given by Eq.~1! may be reexpressed as

f rms
asymptote5UnA8AnA2nAA8nA8

nA8AnA1nAA8nA8
U . ~4!

This result gives the expected plateau levels seen inf rms
plots @e.g., Figs. 6~a! and 6~b!#.

Table II compares the theoretical predicted and observed
values of the plateaus forr5r850.5. ~The observed values
are numerically reproducible to about60.000 02.! The
agreement is strong.~Minor discrepancies will result from
finite lattice size and sampling effects.!

Lastly, recall@Fig. 6~b!# that, for certain ranges of param-
eter values, there appear pronounced dips in thef rms plots
before the asymptotic plateauing behavior emerges. At first
glance this might seem surprising, but the origin of these
dips is readily explained. For illustration, consider two asym-
metrically coupled sandpiles, where sandpileA is very
weakly coupled toA8 ~i.e., 0,g!1!, and sandpileA8 is even
more weakly coupled toA ~i.e., take the extreme case where
g850!. Thus, when a site onA topples, it has a very low
probability of spilling grains toA8 ~during any single
topple!, and when a site onA8 topples, it never spills grains
onto A. Now suppose we drop grains onto sandpileA only.
Any small avalanches that result will almost always be en-
tirely confined toA, in which casef rms @Eq. ~1!# will approxi-
mately equal unity. On the other hand, for very large ava-
lanches, most of the toppling sites will be onA8, notA ~since
A8 receives from, but never spills back to,A). f rms will again
approach unity for this case as well. Now, there must be
some intermediate size avalanches for which the number of
toppling sites on each sandpile is approximately equal; for
this intermediate casef rms will be approximately zero.
Hence, the overall shape of thef rms plot as a function of

TABLE II. Depicts asymptotic value of the rms fractional de-
viation for different realizations of the asymmetric intersandpile
coupling. Note the good agreement between the numerically com-
puted and predicted values.

Values ofg f rms
asymptoteTheory Simulation Result

g50.9, g850.1 0.677 97 0.677 70
g50.9, g850.5 0.173 91 0.173 63
g50.5, g850.7 0.105 26 0.105 17
g50.0, g850.07 1.000 00 0.999 95
g50.04,g850.7 0.829 14 0.828 74
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avalanche size will drop to zero somewhere in the middle.
All of this presumes that the initial grains were dropped onto
sandpileA exclusively. Had the initial drops been onto sand-
pile A8 instead, then no dips would have been seen, since
f rms would have been pinned at unity for all avalanche sizes
~sinceg850!. In our actual simulations, the initial drop site
was chosen randomly from among both sandpiles. Hence we
would expect to see a partial dip~not all the way to zero! in
the f rms curve, as was indeed the case@Fig. 6~b!#.

C. Onset of synchronization vs coupling strength

In Sec. II C we described results from numerical simula-
tions illustrating how variations in coupling strength affect
the onset of synchronization for symmetrically coupled sand-
piles ~Fig. 5!. Using the analytical results of Sec. III, we are

now in a position to understand these numerical findings
more fully.

We begin by noting that one approach to this problem
would be to attempt to directly express the fractional devia-
tion f rms as a function of coupling strength. This proves to be
difficult for the following reason. From the definition of the
two-point correlation functionsP( i ,A),P( i ,A8),P8( i ,A8),
P8( i ,A) of Sec. III D, it follows that the expected number of
grains emerging from a site on sandpileA due to the addition
of a single grain to a sitei units to the left onA is just
P( i ,A)nA , while the expected number of grains emerging
from the corresponding site onA8 is P( i ,A8)nA8 . ~Analo-
gous quantities can be defined if the initial grain is instead
dropped onto sandpileA8.! By summing up the grain contri-
butions from all affected sites, it might thus appear that the
rms fractional deviation could be expressed as

f rms5A1

2 S ( i P~ i ,A!nA2( i P~ i ,A8!nA8

( i P~ i ,A!nA1( i P~ i ,A8!nA8
D 2

1
1

2 S ( i P8~ i ,A!nA2( i P8~ i ,A8!nA8

( i P8~ i ,A!nA1( i P8~ i ,A8!nA8
D 2

, ~5!

where the summation overi runs up to some appropriately
chosen cutoff value~i.e., since the sum should be over af-
fected sites only!. However, while the above expression does
indeed qualitatively reproduce thef rms curves seen in
simulations—including the plateauing behavior and the dips
found for asymmetric-coupling case—it nonetheless fails to
provide a quantitatively accurate description. The underlying
reason is that the quantitiesP( i ,A),P( i ,A8),P8( i ,A8),
P8( i ,A), representing the expected number of topplings at a
particular site if a single grain is added elsewhere, do not
take into account the correlations which exist between top-
pling sites during a given avalanche.~We mention that the
existence of such correlations between the number of grains
spilled by different sites during a given avalanche is not at
odds with our earlier finding that the invariant distribution
for the automata can be written as a product of the invariant
distributions of the individual sites.! Hence an alternate ap-
proach is required.

Towards this end, we first observe that the two-point cor-
relation functionsP( i ,A),P( i ,A8),P8( i ,A8),P8( i ,A) all de-
cay asl i , according to Eq.~3!. We thus make the plausible
~though formally unproven! assumption that synchronization
between the sandpiles will set in as the quantityl i becomes
sufficiently small. @Note: an explicit expression forl in
terms of the underlying toppling probabilities is readily ob-
tained by following the steps leading to Eq.~3!. For the case
of symmetrically coupled sandpiles~r5r8,g5g8!, this ex-
pression simplifies nicely tol5~12g!/~11g!.# Setting l i

5e ~wheree!1 represents a small, but nonzero, parameter!
and solving fori, we see thati;21/log(l). Henceforth we
refer to thisi value asi onset, since it should be regarded as
the characteristic length~i.e., number of sites! at which the
two sandpiles first synchronize. For weakly, symmetrically

coupled sandpiles, log~l! scales likeg; hence it follows that
in the limit of weak coupling,i onset;1/g.

Next, we must relate the characteristic lengthi onset to the
characteristic sizeNonsetof an avalanche at onset of synchro-
nization (Nonsetrepresents the total number of grains spilled!.
To do so, we recall our earlier finding~Sec. III C! which
demonstrated that the avalanching process for a single sand-
pile could be viewed as a fair random walk; however, by
renormalizing across the two sandpiles, the large-scale joint
behavior is expected to be that of a fair random walk. Refor-
mulating the problem as a fair random walk, we ask the
following: if a random walker takes a total ofi onset steps
before returning~for the first time! to the origin, what is the
total integrated area~N! of the walker’s position vs time
plot? This is readily estimated~from well known properties
of Brownian motion! as follows: giveni onset steps in total,
the walker’s typical distance from the origin will scale like
Ai onset. So the integrated area will scale asNonset; i onset

3/2 .
Combining this with the preceding result, we therefore pre-
dict that

Nonset;
1

g3/2
. ~6!

This result agrees reasonably well with the numerical scaling
exponent found in Sec. II C@see in particular Fig. 5~b! @17##.

V. CONCLUSION

In the present work we have provided a numerical survey
of observations about the behavior of systems of interacting
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SOC automata, and have shown how many of the essential
features of the emergent statistical synchrony between au-
tomata can be understood using a variety of analytical tools.
We conclude this report by pointing out several features
which our analysis has not adequately addressed, along with
several interesting questions which remain, as of yet, unan-
swered.

First, it has previously been demonstrated~see Ref.@3#!
that self-organized criticality is not in fact an essential fea-
ture of the automata models for the emergence of large-scale
synchrony. Indeed, the introduction of dissipation into these
automata models destroys the SOC but not the large-scale
synchrony; determining the necessary and sufficient criteria
for the appearance of large-scale synchrony in automata re-
mains an open question. Second, although one can use renor-
malization arguments heuristically for certain portions of our
analysis, we do not know of a satisfactory renormalization
procedure for the probabilistic sandpiles studied here. In par-
ticular, certain parts of the techniques used in Refs.@3,18–
20# are not especially well suited to these models and would
need to be significantly modified. Third, our measures of
synchrony between sandpiles have relied primarily on indi-
cators such as two-point correlation functions and mean sca-
lars such as the rms fractional deviation. A deeper under-
standing of the nature of synchronization involving higher-
order correlations among sites, such as multipoint correlation
functions or conditional expectations, would seem to be par-
ticularly valuable. In addition, it would be interesting to
study other measures of synchrony, such as correlations and
conditional expectations involvingNA andNB .

Lastly, our analysis leading to the scaling relation~6! re-
lied on two-point correlation functions and a random walk
analysis, and provided a simple and intuitive heuristic for
understanding the system’s behavior. As suggested by an
anonymous referee, our independence result of Sec. III B
~demonstrating that the invariant distribution for the system
could be written as a product of invariant distributions for
the individual sites! together with the Abelian nature of our
model might be used as a starting point for a potentially
more direct~and perhaps more rigorous! derivation of the
scaling relation, as follows: Drop a grain on sandpileA and
allow the avalanche to complete on that sandpile, ignoring
for the moment any spills onto the other sandpile. Then re-
peat this procedure on sandpileA8 for each of the grains that
had spilled fromA to A8. Continue this process until it stops.
Then one might apply a central limit theorem to compute the
asymptotic spill probabilities. However, the analysis of this
process is nontrivial, as this is a stochastic branching process
wherein the number of random variables in the sum could
depend on the realizations of those variables. In addition, as
noted in Sec. III B, it is not clear that there are no temporal
correlations among sequential avalanches, which would also
induce correlations among the random variables in the sum.
Thus one would need a generalization of the central limit
theorem for the analysis, which is possible but nontrivial.
Nonetheless, we think this approach is extremely promising
despite these nontrivial complications.
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