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PARSIMONY AND QUANTUM MECHANICS: AN ANALYSIS OF THE 
COPENHAGEN AND BOHMIAN INTERPRETATIONS

BY JHENNA VOORHIS

ABSTRACT: Parsimony, sometime referred to as simplicity, is an effective criterion of  
theory choice in the case of Quantum Mechanics. The Copenhagen and Bohmian  
interpretations are rival theories, with the Bohmian interpretation being more  
parsimonious. More parsimonious theories have a higher probability of being true than  
less parsimonious rivals. The Bohmian interpretation should thus be preferred on these  
grounds.

INTRODUCTION

Quantum Mechanics, the response to the discovery of the wave-particle duality of 

matter on the scale of sub-atomic particles, presents a sharp departure from classical 

physics. Probabilities replace  definite values, and the nature of the world becomes a 

puzzle of superpositions and quantum potentials. There exist quite a few interpretations 

of Quantum Mechanics (Baggott 159), but two commonly referred to interpretations are 

the Copenhagen and Bohmian interpretations. The Copenhagen and Bohmian 

interpretations explain all the relevant phenomena that have been observed to date,  

making the two interpretations equally supported by the evidence (Albert 134; Baggott 

157; Bohm A Suggested Interpretation 370;  Allori and Zanghì 1747; Bell 111). Hence if 

we are going to prefer one of these theories to the other we must find some other grounds 

upon which to do so. Parsimony, sometimes referred to as simplicity, has long been 

debated as a criterion for theory choice1 (McAllister; Sober; Quine).  In this thesis I first 

argue that, other things being equal, the more parsimonious interpretation should be 

1 We need not settle the issue of if Copenhagen and Bohmian Mechanics are different theories or  
interpretations of the same theory. We simply need to agree that any criteria we use for  selecting and 
preferring theories also applies to interpretations.

1



preferred. I argue for this on the grounds that the more parsimonious interpretation has a 

higher probability of being true. Finally, I argue that the Bohmian interpretation is more 

parsimonious, and thus should be preferred.

In Section One I present and defend my version of 'parsimony'. I make two 

separate distinctions in my version of parsimony. First, I distinguish ontological 

parsimony from dynamic parsimony. The former concerns the number of (types of) 

entities posited by a theory, while the later concerns the number of (types of) events a 

theory posits. Second, I distinguish quantitative parsimony from qualitative parsimony. 

The former concerns the number of entities/events posited by a theory, while the later 

concerns the number of types of entities/events posited by a theory. I proceed to argue 

that the more parsimonious theory has a higher probability of being true, and should be 

preferred on these grounds.

In Section Two I analyze the Copenhagen and Bohmian interpretations of 

Quantum Mechanics. I measuring their relative parsimony levels by examining their 

respective explanations of the famous 'double-slit' experiment. I conclude the Bohmian 

interpretation should be preferred over the Copenhagen on the grounds of being more 

parsimonious, and thus more probable.

Before proceeding to my argument, as outlined above, it does well to introduce 

the double-slit experiment and the two interpretations of Quantum Mechanics under 

discussion. The traditional double-slit experiment consists of a photon source, S, placed 

in front of a double slit apparatus, consisting of a screen with two slits A and B, behind 
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which is a photographic plate, P (Figure 1). When a photon is emitted from S towards the 

slits, it travels through the double-slit apparatus and registers on the photographic plate.

Figure 1: The set-up of the traditional double-slit experiment.

Should the photographic plate display distinct spots, it can be inferred that particles have 

struck the plate (Figure 2). Should the photographic plate display a continuous 

interference pattern, it can be inferred that waves have struck the plate (Figure 3). These 

results would be in line with the observed results of analogous experiments on the 

classical scale.2 It would thus seem a simple matter of running the experiment and 

looking at the photographic plate to determine if photons behave like waves or particles.

Figure 2: Distinct spots show where particles have 
struck the photographic plate, producing the expected 

pattern if photons in the double-slit experiment 
behave like particles.

Figure 3: A continuous interference pattern on the 
photographic plate that would be expected if photons 

in the double-slit experiment behave like  waves.

2 The particle interpretation is analogous to shooting paintballs at a wall through two slats in a board. One 
expects to see two columns of paint on the wall, with distinct marks from each paintball fired. The wave 
interpretation is analogous to a similar experiment that uses a wave of water incident on a double-slit 
apparatus to produce the expected wave interference pattern.

3

S

A

B

P



The results of the experiment, however, make it difficult to classify the behavior 

of the photons as strictly particle-like or wave-like. Running the experiment, one finds 

that distinct spots form on the photographic plate, along with an interference pattern (Fig 

4). 

Figure 4: The photographic plate after running the double-slit experiment.

From the distinct spots on the photographic plate, it can be inferred that the photons 

striking the plate have particle-like behavior. However, from the interference pattern it  

can be inferred that photons have wave-like behavior. One might suppose that perhaps the 

photons emitted from S are colliding in a particle-like way with each other to produce 

this pattern. The experiment can be repeated ensuring only one photon is emitted at a 

time, eliminating the chance of photons colliding with each other. After a large number of 

photons have been emitted, the interference pattern emerges yet again. Additionally,  

similar results are obtained if electrons are used in place of photons.

This imparts both particle-like and wave-like properties to the photons, as they 

appear to be interfering with themselves as they pass through both slits simultaneously 

(wave-like behavior), and yet they strike the photographic plate at a specific point 

(particle-like behavior). Photons behaving like particles and waves presents a 
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contradiction that classical mechanics cannot explain. “The classical physicist is  

mystified by this result, thinking that surely a single [photon] passes through one slit or 

the other, and thus cannot understand how a particle like the [photon] can 'interfere' with 

itself” (Townsend, 165). Quantum Mechanics answers the call for an account of the 

bizarre results of this experiment. I now present the Copenhagen and Bohmian 

interpretations of Quantum Mechanics.

The Copenhagen interpretation of Quantum Mechanics was originally devised by 

Niels Bohr and Werner Heisenberg. The Copenhagen interpretation has experienced some 

modifications since its initial construction, and I focus on the modern approach3. Now for 

some terminology that will be useful in explaining the Copenhagen interpretation. State  

vectors represent physical situations or states of affairs. A compilation of possible states 

vectors for a system (that is, the compilation of all the possible physical states of affairs 

for a particular system) comprises the quantum state of a system. The quantum state of a 

system is reflected through its wave function. Thus, a system is completely described by 

its wave function, and, additionally, evolves according to Schrödinger's equation.4 The 

3 Townsend's books explore the modern interpretation quite extensively, refer to his works for further 
exploration and a mathematical grounding.

4 Schrödinger's equation can be represented in many forms, but for the Copenhagen interpretation I am 
referring to the following representation from Townsend:

i ℏ d
dt

∣ψ (t )〉= Ĥ ∣ψ ( t)〉
where Ĥ is the Hamiltonian Operator:

Ĥ =
ℏ2

2 m
∇2+U

with U as potential energy, and ψ (t) ket is the time-dependent wave function:

∣ψ (t) 〉=e−i Ĥ t /ℏ∣ψ (0) 〉
with ψ (0) ket as the initial quantum state of the system (Townsend 94-5).
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measurable properties of a system, such as position and momentum, are referred to as 

observables. 

The Copenhagen interpretation stems from three basic postulates. Postulate 1 is 

that the state of a quantum mechanical system is completely described by the wave 

function (Baggott 43). Postulate 2 is that observable quantities are represented by 

mathematical operators, chosen to be consistent with the position-momentum 

commutation relation5 (Baggott 44). Postulate 3 is that the mean value of an observable is 

equal to the expectation value of its corresponding operator (Baggott 45). This final 

postulate essentially tells one how to use the wave functions and operators to calculate 

the value of an observable. 

These three, rather opaque, postulates can be recast as saying that particles exist in 

quantum states, described by their wave functions, with certain measurable properties. 

Using position as an example, all the possible outcomes of measuring the position of a 

particle are represented in its wave function, and assigned a probability amplitude. Before 

measurement, the particle is in a superposition of states, and it assigns a probability to all 

of its possible states. Upon actually measuring the position of a particle, the particle's 

wave function collapses to reflect the obtained result. This collapse entails the probability 

for finding the particle in the state it was actually found in going to 1, and the 

probabilities for all other possible states going to zero. To demonstrate, take a particle and 

5 The position-momentum commutation relation is commonly known as the 'uncertainty principle' and 
claims the commutation of position and momentum operator will be non-zero. More specifically
[ x , p̂ x]=i ℏ which means that one cannot simultaneously, and with absolute precision, know the 

position and momentum for a quantum object.
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before measurement the particle is in a superposition of states A, B, and C which 

correlate to specific positions. Each state is assigned a probability, less than one, that the 

particle is in the corresponding position. After measurement, the particle is found in state 

B. This leads to a collapse of the wave function, such that P(B) = 1 while P(A) = P(C) = 

0. Such is the nature of the collapse of a wave function for the Copenhagen interpretation. 

It is a peculiar occurrence without precedence in classical mechanics.

It is key to note the superposition of states in the Copenhagen interpretation, as it 

is from this superposition that the particle is said to interfere with itself and produce the 

interference pattern observed in the double-slit experiment (Townsend 165). The wave 

function can be seen to change upon measurement of an observable under the 

Copenhagen interpretation. No such change from observation is posited under the 

Bohmian interpretation.

The Bohmian interpretation was first explored by Louis deBroglie, later 

resuscitated by David Bohm and supported by John Bell.6 The Bohmian interpretation of 

Quantum Mechanics is based on two basic premises. Premise 1 is that particles exist with 

definite positions (Bell 162). Premise 2 is that the wave function serves to guide these 

particles, which evolves according to Schrödinger's equation7 (Allori and Zanghi 1744-5; 

Cushing et al 236). “We then have a deterministic system in which everything is fixed by 

6 The works of Bohm and Bell are good references for further exploration of Bohmian Mechanics and 
provide the mathematical grounding that I am foregoing.

7 For the Bohmian interpretation, take Schrödinger's equation as being expressed in the form: 

i ℏ ∂ψ
∂ t

=
−ℏ2

2 m
∇ 2ψ+Vψ

where ψ  is the wave function, and V is the classical potential (Bohm The Undivided Universe, 28).
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the initial values of the wave [function] and the particle configuration.” (Bell 128) This 

deterministic characteristic of the Bohmian interpretation Quantum Mechanics sets it  

apart from the Copenhagen interpretation, which is indeterminate.8 

It should also be noted that the wave function here represents more of a 'field' than 

a 'wave' and I will use the term quantum field as interchangeable with wave function. The 

quantum field is in a manner analogous to an electromagnetic field, and “just as the 

electromagnetic field obeys Maxwell's equations, the [wave function] field obeys 

Schroedinger's equation” (Bohm A Suggested Interpretation 373).9 When combined with 

Schrödinger's equation this quantum field will produce the quantum potential, Q, which 

actually exerts the force on the particle to guide it.10 

Bohm's quantum potential does not diminish with distance, being purely 

dependent on the form of the wave function. In this way, Bohmian Mechanics is a non-

local hidden variable theory. 'Non-local' in that its wave field is a non-local variable, 

present and potent at any point in space while also a reflection of the state of all space. 

'Hidden' in that the position of particles are not known, and thus hidden, although they do 

8 'Deterministic' is referring to causal determinism, where the world is seen as being the outcome of prior 
states. A particle's motion is the outcome of knowing all the initial conditions of the particle and the 
forces acting upon the particle. Indeterminism is thus the notion that the world is not the outcome of 
prior states, for whatever reason. The Copenhagen interpretation's indeterminism stems from not being 
able to know the initial conditions or forces with certainty, such a thing is simply impossible.

9 In polar form the general form of the wave function can be written as:

ψ=R e(iS /ℏ)

where R is the amplitude and S is a phase factor (Bohm The Undivided Universe, 28).
10 Using the general form of the wave function, Q is:

Q=
−ℏ2

2 m
∇ 2 R

R
where R is the amplitude of the wave function (Bohm The Undivided Universe, 28).
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exist.11 

The Bohmian interpretation can then be summarized as claiming that particles 

exist with definite positions in space and are influenced by their quantum fields, which 

are inseparable from the particles, characterized by their wave functions. This quantum 

field changes continuously and is causally determined, satisfying Schrödinger's equation 

(Bohm The Undivided Universe 29). A particle can thus be thought of as a ship on 

autopilot being guided by radio waves. The radio waves act as the quantum field, and 

have the effect of guiding the ship (Bohm The Undivided Universe 31-32).

The Copenhagen and Bohmian interpretations present an indeterminate and a 

determinate interpretation of quantum mechanics, respectively, and differ greatly on their  

explanations of quantum phenomena. Now that the basic tenants of each theory have 

been explored, it is time to examine parsimony as a means of choosing between the two 

interpretations.

11 Alternatively, it can also be considered a hidden variable theory in that it attempts to complete the 
Copenhagen interpretation by claiming that particles have definite positions at all times. This view is in 
line with the traditional connotation of hidden variable theories attempting to find that missing link 
which could transform the indeterminate Copenhagen interpretation into a determinate one.
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SECTION ONE: PARSIMONY AND PROBABILITY

It is my aim in this section to argue that the more parsimonious of competing 

scientific theories should be preferred. The more parsimonious theory will have a higher 

probability after the discovery of new evidence, for which both theories account.

An important definition to make clear is exactly what I mean by 'parsimony.' I 

focus on ontological and dynamic parsimony. In general, ontological parsimony claims 

that theories which entail the existence of fewer entities, or kinds of entities, are better  

than theories which entail the existence of more entities, or kinds of entities, other things 

being equal (Huemer 216). Dynamic parsimony, on the other hand, makes a similar claim 

but about the number and types of events an entity experiences. Parsimony is further 

separable into quantitative and qualitative parsimony. Qualitative parsimony is concerned 

with types of entities/events, and quantitative parsimony is concerned with the total 

number of entities/events (Nolan 330). As an example, qualitative parsimony would be 

concerned with the number of different elements (each different element is a different 

type of entity) which make up the water molecule, while quantitative parsimony would be 

concerned with the total number of atoms of each of those elements present (each atom is 

a specific entity of a certain type).

Throughout my argument, the term 'parsimony' refers to the overall parsimony of 

a theory. The overall parsimony is found through summing the number of entities/events 

which a theory postulates. To be clear, a more parsimonious theory posits fewer 

entities/events than a less parsimonious rival theory.
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This interpretation of parsimony, however, naturally leads to the issue of deciding 

what constitutes an 'entity,' and what constitutes an 'event.' Following the work of E. C. 

Barnes, I take 'entities' to be constituted by physical things with distinct and independent 

existences, for example specific light waves (Barnes 354). The parsimony of such entities 

is the ontological parsimony of a theory. Additionally, I consider events involving those 

entities as contributing to a theory's parsimony, comprising a theory's dynamic 

parsimony. An event consists in a change in an entity's properties, excepting changes in 

time and, for the purposes of this paper, position.12 

Each entity/event additionally belongs to a 'type.' These 'types' describe the 

properties of the entities/events which can be posited under the examined theory. As a 

simple example let's adopt a 'type of entity' which describes shmoranges. That is to say 

the entities posited from this description are of 'type shmorange' and share the property of 

being a shmorange, whatever that should mean. For the purpose of this demonstration, let 

us suppose we know the defining characteristics which all shmoranges share. A thing of 

type shmorange has the properties of being a physical thing with mass, a roughly round 

shape, and which is orange in color and edible. Following from this, any specific 

shmorange we posit will have these properties, since it is of type shmorange. Although 

my view of parsimony makes no appeal to 'types' it is instructive to make the 

qualitative/quantitative distinction in order to clarify the bounds of my claim. In 

12 The condition regarding time prevents changes in time from being considered an 'event.' An entity 
existing at 1AM and then continuing to exist at 2AM does not constitute a dynamic change, and so is 
not considered an event. The condition regarding position prevents an entity's moving through space 
being considered an event. Note: this condition only applies to changes in position, but not to 
momentum, velocity or any other position dependent property of an entity.
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summary, the term 'entity' refers to a specific physical thing, while 'event' refers to 

changes which entities experience. Now that those terms have been clarified, I return to 

the argument from overall parsimony.

In general, less parsimonious theories fit a wider range of possible evidence than 

their more parsimonious competitors. That is to say, theories with a higher total number 

of posited entities and events are capable of explaining a larger pool of possible evidence. 

As a demonstration, let's consider an shmorange on a table. The shmorange is of an 

arbitrary size, for ease take the shmorange to be 'size 1.' Take Theory A to posits that 

shmoranges are found as one object of size 1, while Theory B posits that shmoranges are 

found as compilations of sub-objects, each of size ¼. Both theories can be used to explain 

the observed phenomena of there being one shmorange on a table. Theory B, however, 

does so by positing the existence of more entities than Theory A, since four of the sub-

objects would be necessary to explain there being a size 1 shmorange on the table. 

Additionally, while Theory B can explain the existence of one shmorange on a table, it  

can also be used to describe the existence of a size ¾ shmorange on the table, or any 

other shmorange whose size is a multiple of ¼. 

This is an example of a less parsimonious theory, Theory B, fitting a wider range 

of possible evidence, namely accounting for any shmorange of a size that is a multiple of 

¼. While most cases of competing scientific theories have this characteristic, of less 

parsimonious theories fitting a wider range of possible evidence, I do not stand to claim 

that all cases of competing scientific theories must have this characteristic. Without  
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having any reason to believe that the case I present in Section Two, involving the 

Copenhagen and Bohmian interpretations, lacks this characteristic, I apply my argument 

to it in good conscience. 

Later in my argument I discuss more parsimonious theories, paired with their 

evidence, having greater 'likelihoods' than less parsimonious theories, when paired with 

their evidence. In order to understand such a claim about 'likelihood,' or later a claim 

about 'prior probability,' a quick look at Bayesianism is necessary. Bayes' Theorem is, in 

itself, a mathematical derivation of probability calculus, which shows that for a 

proposition 'p,' given 'q,' the following relations hold:

P ( p∣q)=
P ( p & q)

P(q)
=

P ( p)⋅P (q∣p)
P(q)

By adapting Bayes' Theorem, Bayesians posit the following formula as a means of 

determining the new probability that a theory, T, is true based on the discovery of new 

evidence, E:

PN (T )=
P 0(T )⋅P0(E∣T )

P0(E)

This description of how probabilities changes over time, as new evidence is acquired, 

holds the key to more parsimonious theories being more preferable. To be clear about the 

meaning of the terms involved, I shall run through each of them. The term 'PN (T)' 

represents the 'new probability' of a theory once new evidence has been discovered, 

hence the sub-script 'N.' In the denominator, 'P0 (E)' represents the probability that the 

evidence would have been observed, before it was actually observed. When this term is 
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inverted, it comes to represent how improbable observing the evidence was, before it was 

observed. In the numerator, 'P0 (T)' represents the 'prior probability' that the theory T was 

true before the evidence was discovered, while 'P0 (E|T)' represents what is called the 

'prior likelihood.' This 'P0 (E|T)' factor expresses how likely the theory makes the 

evidence, before the evidence is observed. 

To clarify the meaning of the 'likelihood' factor, let's look at an example involving 

flipping a coin. Theory 1 claims there is a 50% probability for both outcomes, the coin 

landing heads up and the coin landing tails up. Theory 2 claims there is a 100% 

probability for the coin landing heads up, and thus a 0% probability for the coin landing 

tails up. Given these theories, if the coin is flipped once and lands heads up, it can be 

seen that none of the three theories have been shown to be false. On the other hand, 

Theory 2 assigned this outcome the highest prior likelihood, since if Theory 2 is true, as 

the likelihood factor assumes, the coin landing heads is the only possible outcome. 

Theory 1 assigns the coin landing heads up a lower likelihood, and thus as a result 

Theory 1's new probabilities will increase by a smaller amount than that of Theory 2. 

Now that the terms of Bayesian formula for the new probability of a theory, after the 

discovery of new evidence, have been explored, it is time to explain how parsimony 

affects them. 

It is important to note that the parsimoniousness of a theory has no impact on the 

prior probability of observing the evidence. In fact, the prior probability of observing the 

evidence is entirely independent of any theory which attempts to explain the evidence. A 
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coin will land either heads or tails without being influenced by there existing a theory 

which claims it will land heads. The prior probability of observing the evidence is thus of 

little importance to this argument. The other factors, prior probability and prior 

likelihood, on the other hand are impacted by the parsimoniousness of a theory. In order 

to compare the affects of the discovery of new evidence on two theories, I shall compare 

the ratio of the two new probabilities:

PN (T 1)
PN (T 2)

=
(

P0(T 1)⋅P0(E∣T 1)
P(E)

)

(
P0(T 2)⋅P0(E∣T 2)

P(E)
)
=

P0(T 1)⋅P0(E∣T 1)
P0(T 2)⋅P0(E∣T 2)

This ratio is only impacted by  the prior probability and the likelihood factor. As was just 

explained, the parsimoniousness of a theory has no impact on the prior probability of 

observing the evidence, and so its absence from the above ratio is of no consequence. I 

will start by arguing that more parsimonious theories experience greater increases in their 

likelihood factors when new evidence is discovered.13

As I briefly described earlier, less parsimonious theories fit a wider range of 

possible evidence than their more parsimonious competitors. Michael Huemer makes an 

excellent point that entities have a similar role for theories as adjustable parameters have 

for an equation. Each additional adjustable parameter in an equation allows for the 

equation to be a better fit for larger possible sets of data. Take three random points in the 

x-y plane. A linear equation, with two adjustable parameters, will have fewer sets of three 

such random points for which it will provide a good fit than a parabolic equation, with 

13 I am only taking into consideration the affects of new evidence which is allowed for, or accounted for,  
by the theory.
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three adjustable parameters.14 A similar result can be found in most cases where a new 

entity is posited since “suppositions about each of the additional entities can be adjusted 

to accommodate the data” (Huemer 222). As a result, a theory with more entities can 

account for a wider range of observations, by accommodating more data, than a rival 

theory with fewer entities. However, by accounting for a wider range of observations, a 

less parsimonious theory assigns a lower average probability to each of the observations 

it allows. 

To make this last point more clear, consider a theory which claims that any coin 

must land either heads up or tails up. This theory is compatible with, and accounts for, the 

observation that a coin lands heads up and the observation that a coin lands tails up. That 

is to say, the possible range of observations for this theory consists of the coin landing 

either heads up or tails up. Now taking this theory as true, then the probability of 

observing the coin to land either heads up or tails up is 1. This is precisely what taking 

the likelihood over the range of observations compatible with the theory means. So, the 

likelihood of the observations, given the theory, over this range is 1. 

As noted earlier, a less parsimonious theory has a wider range of possible evidence, or 

observations. As a result, a less parsimonious theory assigns a lower average likelihood to 

the possible observations it allows (Huemer 223). A more parsimonious theory, on the 

other hand, assign a higher average likelihood to the possible observations it allows, since 

14 If the three points are in roughly a straight line, the linear equation would provide a closer fit than the 
parabolic equation, but given a random distribution of three points in a plane they will not frequently by 
in a straight line. They will be scattered in a way that the parabolic bell curve could more closely fit. 
Adding in even more adjustable parameters will lead to even higher degrees of accuracy with curve  
fitting, but as pointed out this also leads to a wider possible range of evidence for which can be 
accounted.
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it allows for fewer possible observations but still has a likelihood of 1 over the range of 

observations it allows. The average likelihood factor increases the probability that the 

theory is true. Thus, the probability that a more parsimonious theory is being true will 

increase by more than a less parsimonious rival, in the light of evidence for which both 

theories can account. 

To clarify this I shall use an example similar to one  Huemer uses (Huemer 223). 

Take a case of two theories, M and L, where M is more parsimonious than L. M equally 

accounts for the possible, mutually exclusive, observations O1 and O2, while L equally 

accounts for the possible, mutually exclusive, observations O1, O2, O3, and O4. Looking at 

the probability of observing O1 given each of the theories, we see that P0 (O1|M) = ½ and 

P0 (O1|L) = ¼. The likelihoods say that M will be supported twice as strongly, compared 

to L, by the observations of either O1 or O2. This makes sense, since observing either O3 

or O4 will refute M, and so M takes a greater risk with greater possible payoff. This 

example shows that a more parsimonious theory has a greater increase in its likelihood 

factory, P0 (E|T), than a less parsimonious rival upon the discovery of new evidence for 

which both theories account. Thus, a more parsimonious theory will experience a greater 

increase in its new probability, PN (T), than a less parsimonious theory upon the discover 

of new evidence for which both theories account.

The influence of parsimony on the likelihood factor has been explored, and a 

positive correlation has been discovered. It appears that as the parsimoniousness of a 

theory increases, so too does its likelihood factor, with respect to evidence for which the 
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theory accounts.15 In cases where two theories have equal prior probabilities, this 

correlation would allow one to conclude that the more parsimonious theory is more 

highly confirmed by the evidence and is thus preferable over less parsimonious rivals, all 

else being equal. However, in the case of the two theories of Quantum Mechanics, which 

I will explore in Section 2, the two theories have equal likelihoods for any evidence 

considered. As a result, I turn to examine whether relative levels of parsimony affect the 

prior probabilities of competing theories, and thus influence the new probabilities of 

these theories. I argue that if the probability of containing the true theory is distributed 

over 'parsimony levels,' then less parsimonious theories will have lower prior 

probabilities.

An argument against more parsimonious theories having higher prior probabilities 

claims that such a result is the product of assuming that the world is simple (Huemer 

221). This essentially claims that a bias exists in Nature towards more parsimonious 

theories. No such assumption need be made in order to show that more parsimonious 

theories have higher prior probabilities than their less parsimonious rivals. Rather, this 

result can be shown by assuming that the world is biased neither towards parsimony nor 

complexity. In this case there is no inherent bias in nature towards more or less 

parsimonious theories. In order to make the assumption that there is no inherent bias in 

Nature towards more parsimonious theories, let us examine 'parsimony levels' which are 

all assigned an equal probability of containing the true theory. 

15 That is not to say that every theory, paired with its evidence, which is more parsimonious than a rival 
has a greater likelihood factor than that rival, paired with its evidence. Rather that is to claim that there 
is a positive correlation between parsimony and likelihood in the mathematical sense. An increase in 
parsimoniousness results in a increase in the likelihood factory of a theory paired with its evidence.
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Based on the number of entities/events a theory posits to explain a phenomenon, 

each parsimony level has a numerical value. The value associated with a parsimony level 

reflects the total number of entities and events posited by a theory. Lower parsimony 

levels posit fewer entities/events and thus contain more parsimonious theories. I argue 

that theories belonging to lower parsimony levels have higher probabilities of being true 

because there are fewer theories to distribute the level's probability over at lower 

parsimony levels.

One might object that parsimony has a lower bound but no upper bound,“that is, 

for any given phenomenon, there is a simplest theory (allowing ties for simplest), but no 

most complex theory of the phenomenon: however complex a theory is, it is always 

possible to devise a more complicated one” (Huemer 219). By positing more 

entities/events one can devise an infinite number of parsimony levels, and so the 

probability assigned to each parsimony level is thus infinitesimal. It then does not matter 

how many theories exist at each parsimony level, since those theories will each only have 

an infinitesimal probability of being true. This is exemplified by the point made earlier  

about a linear equation describing three points in a plane. It can be seen that infinitely 

many more adjustable parameters could be added to fit a curve to the points, with each 

additional parameter increasing the parsimony level. However, one needs at least two 

parameters to even be able to produce a curve. This shows that there is a lower bound, but 

no upper bound, to the parsimony levels of theories attempting to explain a particular 

phenomenon. Following from there existing no upper bound on parsimony, one can argue 
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that there exist an infinite number of parsimony levels and the theories contained in these 

levels will each only have an infinitesimal probability of being true.

This objection, however, is only applicable when considering possible parsimony 

levels. When one considers actual parsimony levels, those levels for which theories exist, 

one can see there is a finite number of parsimony levels. With a finite number of 

parsimony levels, each level is assigned a non-infinitesimal probability of containing the 

true theory, and thus each theory contained in these levels has a non-infinitesimal 

probability of being true.

Now that we have a finite number of parsimony levels to work with, and 

distribute probability evenly over, an additional objection arises that there still can exist  

infinitely many theories at each parsimony level. With an infinite number of theories 

existing at each parsimony level, then each theory will still have only an infinitesimal  

probability of being true. To this I counter that there do not exist an infinite number of 

theories at each parsimony level, but rather an infinite number of cases of the theories at 

each parsimony level. To demonstrate this point, consider a theory G which posits that 

two objects with mass experience gravitational attraction to one another. One case exists 

where G = 5, another where G = 27, another yet where G = 2000, and so on ad infinitum. 

There exist an infinite number of cases of a theory, but there do not exist and infinite 

number of theories. Cases can be collapsed to their parent theories by examining the 

types of entities/events they posit. If a case posits the same types of entities/events and 

the same number of entities/events as a theory, then it is merely an instance of that theory.
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This, however, still does not show that there are not an infinite number of theories 

at each parsimony level, but merely distinguishes cases from theories. By examining the 

possible configurations of entities and events at each parsimony level (Table 1), one will 

see that only a finite number of theories can exist to explain a particular phenomenon.

Parsimony Levels:

1 2 3 4

1 Entity, 0 Events 2 Entities, 0 Events 3 Entities, 0 Events 4 Entities, 0 Events

Possible 1 Entity, 1 Event 2 Entities, 1 Event 3 Entities, 1 Event

Configurations 1 Entity, 2 Events 2 Entities, 2 Events

1 Entity, 3 Events

Table 1: The possible configurations of number of entities and events for parsimony levels 1-4.

Let us take the phenomenon of a particle traveling in the positive x direction which 

appears to pass behind an opaque screen and comes back into view at the far end of the 

screen with no apparent changes having occurred behind the screen.16 I challenge the 

reader to attempt to show that the number of theories possible at every parsimony level is 

infinite. Having undertaken this challenge, it is apparent that there exist a finite number 

of theories to explain a particular phenomenon at a given parsimony level. Thus, theories 

belonging to a parsimony level will have a non-infinitesimal probability of being true. 

Additionally, it can be seen from this exercise that as the parsimony level 

increases, so too does the number of theories with in that parsimony level. This is a result 

of additional entities/events being able to cancel one another out. As an example, the 

particle traveling behind the screen might divert from its path, but then experience 

another diversion by which it resumes it original path. This theory belongs to a 

16 Any phenomenon would do for this example, my choice is an arbitrary one.
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parsimony level which is three higher than the theory that the particle simply continues 

its path behind the screen, as perhaps would be observed if the screen was not present. It 

has two canceling events, those involving the particle's deviation from its original path 

and its deviation from that new path, and one additional event, by which it resumes its 

original path. Two parsimony levels higher than this one, another set of canceling events 

can be posited. This practice can be performed repeatedly with entities/events and will  

result in higher parsimony levels containing a larger number of theories than lower 

parsimony levels. Since each parsimony level was assigned the same probability of 

containing the true theory, levels containing fewer theories will assign a higher 

probability of being the true theory to each of those theories. As a result, the more 

parsimonious theory will have a higher prior probability, which will increase its new 

probability. 

In the case to be explored in Section 2, the two competing theories have equal 

likelihoods so the ratio of new probabilities further reduces:

PN (T 1)
PN (T 2)

=
(

P0(T 1)⋅P0(E∣T 1)
P(E )

)

(
P0(T 2)⋅P0(E∣T 2)

P(E )
)
=

P0(T 1)⋅P0(E∣T 1)
P0(T 2)⋅P0(E∣T 2)

=
P0(T 1)
P0(T 2)

Whichever of the two theories is more parsimonious, all other things equal, will have a 

higher prior probability. This will increase its new probability and the ratio of new 

probabilities will reflect the increase. The more parsimonious theory will be more 

probable, and thus preferable.

In conclusion, relative levels of parsimony affect the new probabilities of two 
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competing theories such that the more parsimonious theory is more probable, all else 

being equal. It should be incontestable that choosing a more probable theory over a less 

probable theory is a justified choice to make. It would seem highly unreasonable to prefer 

a less probable theory, and thus unjustified on epistemological grounds. Thus one should 

prefer a more parsimonious theory over a less parsimonious rival, all else being equal. In 

the next section I proceed to apply this finding to the specific case of two interpretations 

of Quantum Mechanics, the Copenhagen interpretation and the Bohmian interpretation.
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SECTION TWO: ANALYSIS OF THE INTERPRETATIONS

I now look at how the Copenhagen and Bohmian interpretations account for the 

results of the double-slit experiment, as described in the Introduction. I analyze these 

accounts for relative parsimony levels17, and conclude that the Bohmian interpretation is 

more parsimonious than the Copenhagen interpretation and should be preferred. For 

clarity, I will italicize those entities/events which contribute to the parsimony level of  

each interpretation.

Under the Copenhagen interpretation of Quantum Mechanics, particles exist but 

without any definite characteristics until measurement. The particle, however, is 

completely described by its wave function. The wave function is a superposition of all of 

the possible quantum states for the particle. This means that, in terms of position, the 

wave function can be used to find the probabilities for each possible position of the 

particle. In the double-slit experiment, before the particle strikes the photographic paper 

it cannot be considered to be in any particular position, but rather in a superposition of 

possible position states. The particle is simultaneously in every possible state, and in 

none of them in particular. Upon an interaction with the photographic paper, the wave 

function collapses to reflect the certainty with which the position is now known. The 

presence of a measuring device, here the photographic paper, results in the wave function 

collapsing. Without a measurement, there would be no impetus for the wave function to 

collapse, and the particle would remain in a superposition of states. The interference 

17 As explained in Section One, the number associated with a parsimony level reflects the total number of 
entities and events posited by a theory or interpretation. Lower parsimony levels posit fewer 
entities/events and are thus more parsimonious.
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pattern observed in the double-slit experiment is the result of measuring the position of 

particles, according to the Copenhagen interpretation. 

Thus, it seems that the Copenhagen interpretation posits the following: two 

physical entities (the particle/wave function, and the observer/measuring device), and two 

events (the measurement of the particle, and the collapse of the wave function). That puts 

the Copenhagen interpretation at a parsimony level of 4.

Alternatively, under the Bohmian interpretation of Quantum Mechanics, particles 

exist with definite positions and their own guiding wave functions. In the double-slit 

experiment, the particle passes through one slit or the other, as a classical particle would, 

but its motion is determined by the wave function which has passed through both slits. 

The quantum field, characterized by the wave function, passes through both slits and 

interferes with itself, producing a complicated quantum potential on the other side 

(Figure 5). The quantum potential acts upon the particle and determines the possible 

trajectories for its corresponding particle (Figure 6). Each particle strikes the 

photographic paper in accordance with a possible trajectory, and these trajectories create 

the interference pattern that is observed in the double-slit experiment.

Thus, the Bohmian interpretation posits the following in its explanation of the 

double-slit experiment: two physical entities (the particle, and the wave function), and 

one event (the particle striking the photographic paper). That puts the Bohmian 

interpretation at a parsimony level of 3.

From this analysis, and the argument laid out in Section One, the Bohmian 
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interpretation is more parsimonious that the Copenhagen interpretation. The Bohmian 

interpretation should thus be preferred over the Copenhagen interpretation as the more 

probable interpretation.

Figure 5: The quantum potential after the wave function passes through the double-slit apparatus. Taken 
from Jim Baggott in The Meaning of Quantum Theory, 163.
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Figure 6: Theoretical trajectories for an particle passing through the double-slit apparatus, calculated using 
the quantum potential in figure 5. Taken from Jim Baggott in The Meaning of Quantum Theory, 164.
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