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Geometrical Phases and Symmetries in Dissipative Systems 

A. S. Landsberg 
Department of Physics, University of California at Berkeley, Berkeley, California 94720 

(Received 13 January 1992) 

A geometrical phase is constructed for dissipative dynamical systems possessing continuous sym
metries. It emerges as the natural analog of the holonomy associated with the adiabatic variation of pa
rameters in quantum-mechanical and classical Hamiltonian systems. In continuous media, the physical 
manifestation of this phase is a spatial shift of a wave pattern, typically a translation or rotation. An il
lustration associated with pattern formation in fluids is provided. 

PACS numbers: 03.40.-t,03.20.+i 

The geometrical phase discovered by Berry [I] has 
been the focus of much attention in recent years, and a 
number of efforts have been made to generalize this no
tion (e.g., [2-4]). Recently, progress has been made in 
extending some of these ideas to an important class of 
systems, those described by classical dissipative field 
theories. In particular, it was shown in [5] that temporal 
phases of a geometric nature can arise in dissipative sys
tems exhibiting stable oscillations. In this Letter, we con
sider nonlinear dissipative systems which possess continu
ous symmetries (e.g., translations, rotations) and show 
how these spatial symmetries can lead to a new type of 
geometrical phase shift. The phase shift described here is 
a very general phenomenon which arises when the control 
parameters of a system undergo cyclic, adiabatic evolu
tion. This new phase has direct physical implications, 
which makes it amenable to experimental observation. 

We begin with a simple qualitative description of the 
effect. Consider any dissipative system with a continuous 
spatial symmetry. One might imagine, for instance, a 
translationally invariant system consisting of an unbound
ed layer of viscous fluid. The presence of a continuous 
symmetry group will have some important physical conse
quences. First note that for any particular wave pattern 
exhibited by the system there exists an entire family of 
"equivalent" patterns generated by the group action (i.e., 
by arbitrary translations of the original pattern). Pat
terns may therefore be grouped into equivalence classes, 
wherein all members of a given equivalence class are re
lated by symmetry. The group action can thus be viewed 

as inducing motion within a given equivalence class. 
The existence of these equivalence classes has impor

tant ramifications for the stability of a wave pattern. To 
see this, consider the effect of a small perturbation on a 
"stable" wave pattern. In a typical dissipative system 
which lacks spatial symmetry, it is expected that the per
turbation will decay exponentially, with the original 
stable pattern reemerging. However, in the presence of 
symmetry, the initial and final patterns need not be iden
tical. Instead, the final pattern need only lie in the same 
equivalence class as the original, and could differ by a 
small translation. In other words, perturbations to a 
wave pattern in the direction defined by the group action 
do not decay away. The continuous symmetry is there
fore said to have generated a "neutrally stable" direction 
or mode for the system. 

Now suppose that one observes a stable wave pattern in 
an experiment for some fixed value of the control parame
ters. For simplicity, assume the wave to be stationary. 
What happens to this pattern if the control parameters of 
the system are varied in an adiabatic manner? To answer 
this, we first assume the existence of a whole range of pa
rameter values (encompassing the initial settings) for 
which stable patterns exist. Each point in parameter 
space is then associated with a particular stable pattern 
(or, more precisely, with the equivalence class of that 
stable pattern). It is assumed that paths through param
eter space connect these stable solutions in a smooth 
manner. (This requirement simply ensures that the ini
tial wave pattern will not undergo a bifurcation when the 
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control parameters begin to vary,} This said, we can now 
understand the evolution of the initial pattern. As the pa
rameters slowly vary, the wave pattern deforms, and a 
particular path in parameter space is swept out. By as
sumption, each point on this path is associated with a 
particular stable pattern. On physical grounds we argue 
that the observed wave pattern should, at each instant, lie 
close to the stable pattern associated with that point of 
parameter space. This can be expected since dissipation 
will bring about a rapid collapse of the wave pattern onto 
these associated stable solutions on a time scale fast rela
tive to the adiabatic time scale. Of course, what is really 
meant here is that the pattern collapses onto some 
member of the equivalence class of each stable solution. 
Thus, when the control parameters are returned to their 
initial settings, the emergent wave pattern will lie in the 
same equivalence class as the original. It will therefore, 
in general, be translated from its initial configuration. 
This translation between the initial and final wave pat
terns may be understood as a geometrical phase shift. In 
this Letter we provide a simple derivation for this spatial 
phase for an arbitrary Abelian symmetry group, and 
demonstrate that the phase is truly geometrical in nature. 

Consider a general nonlinear dissipative system with 
spatial symmetry. We express the partial differential 
equations governing this system in the general form 

d'l1 
Tt(t,X,A) =;J(A)'I1(t,X,A) , 

where '11 is a vector-valued field, and ;J a nonlinear, 
time-independent operator involving spatial coordinates 
x E 9{n and control parameters A E 9{m. By assumption, 
these governing equations admit a one-parameter (lJ) Lie 
group of transformations {r o}, reflecting the underlying 
symmetry of the physical system. Common examples in
clude the translation group T and rotations SO(2). All 
symmetry groups considered here are assumed to be 
strictly spatial in nature, independent of time. 

The invariance of the equations under the group im
plies that for any solution '11 of (1), r 0'11 is also a solution. 
For linear groups this simply implies that the operators ;J 
and r 0 commute. The parametrization of the group may 
be chosen such that 

rO)r02 =rO) +92 ' (2) 

with ro the identity. The boundary conditions for (l) 
will remain unspecified, but are required to respect the 
symmetry of the problem. The generator of the symme
try group will be denoted by X. As noted earlier, any 
solution '11 is only neutrally stable to perturbations along 
the direction determined by the group action. This neu
tral direction is given by X"'. 

Now consider a solution of (I), 'I'(X,AO), representing 
the initial stationary wave pattern observed in the system 
at parameter setting AO, i.e., 
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Assume this solution to be stable for this parameter 
value. Since we are precluding the possibility of bifurca
tions, there will be some region of parameter space for 
which nearby stable stationary solutions exist. At each 
fixed parameter setting A we write the corresponding 
stable solution as 'I'(X,A). However, since each of these 
stable solutions belongs to its own equivalence class, we 
could equally well have chosen a different member from 
each class. We thus write the solution as r g(A) yt(x ,A), 
where g is an arbitrary function of the parameters A. The 
function g corresponds to a specific choice of gauge. 

We now wish to examine the evolution of the initial 
wave yt(x ,AO) as the parameters begin to vary adiabati
cally. Although our formulation will be solely in terms of 
stationary patterns, with only minor modifications, cer
tain propagating wave forms may also be accommodated 
through a transformation to a comoving frame. This will 
be illustrated in an example. We introduce a slow time 
dependence into the parameters [A- A(fl)l, where f 
(<< I) is a measure of adiabaticity. The subsequent evo
lution of the system is studied using a multiple time scale 
analysis of Eq. (l). We set 

r = ft ..!:£ =!l + f!l '11 ='110+ "'11\ + ... , dl Vr Vr, • . 

At lowest order in this asymptotic expansion we recover 
an equation for '110 identical to (l), 

0) 

At this level, the control parameters A appear "frozen," 
since they evolve only on the slow time scale r. There
fore, the stable solution is simply 

'110 =r g(A)'I'(X ,A) . 

For this solution to coincide with the initial pattern 
yt(X,AO) at the starting time, we require ')..(0) =AO and 
g(AO) =0. Apart from this, the function g remains arbi
trary. 

At next order in the expansion we obtain an equation 
for '11\ of the form 

where D':J (r g '1') denotes the linearization of the operator 
;J about the lowest-order solution rg'l'. Several remarks 
are in order. First note that since r g'l' represents a stable 
solution in a dissipative system, the spectrum of the 
operator D;J (r gil') is constrained to lie entirely in the left 
half of the complex plane, bounded away from the imagi
nary axis, save a single isolated zero eigenvalue associat
ed with the direction of the neutral model. This neutral 
direction is Xrgll'. Second, we note that the final term in 
Eq. (4) may be regarded as a driving or perturbing term 
for the system. Not all "directions" associated with this 
perturbation will be relevant, and we may decompose the 
driving term into resonant and nonresonant pieces. In 
particular, only the component of the driving term in the 
direction of the neutral mode will generate secular 
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growth. The growth of the other modes remains bounded 
due to dissipation. This can be seen by defining the 
operator 

{; == - fo' ds esD~(r6") . 

By applying this operator to the driving term, we obtain 
the formal solution of (4), i.e., 'l't -{;aTrgyt. Now note 
that {; acting on any stable eigenvector of the linear 
operator D':J(rgyt) yields only bounded growth, which 
will prove negligible in the asymptotic limit. However, {; 
applied to the null vector (i.e., the neutral mode Xr gyt) of 
the linear operator produces linear (secular) growth. 
Thus, on a time scale long compared to the dissipative 
time scale of the problem but short relative to the adia
batic time scale, the evolution of the system is dominated 
by this resonant component. One may therefore replace 
the driving term arr g 'II by its projection onto the null 
space of D':J(rgyt), i.e., 

(vg,arrgyt) 
arrgyt- ( r ) Xrgyt. 

Vg,X . g 'II 

Here Vg is the adjoint null vector satisfying D':J (r g 'II) t Vg 
=0, and (.,.) denotes an inner product which is invari
ant (see [6]) under the group action. Applying {; to this 
projection yields the asymptotic form of '1',. We find 

_ _ (vg,arrgyt) 
e'l't - et ( r ) Xrgyt. 

vg,X gyt 

To make the meaning of this expression more transpar
ent, first notice that for times t« lie, the term et above 
plays the role of a differential dr. We can thus reexpress 
e'l't as 

(Vg , arr g 'II) 
e'l't = d9X'l'o, d9= -dr ( r ) 

Vg,X gyt 

The complete asymptotic solution (to order E) becomes 

'I' ='1'0+ E'I't = '1'0 + d9X'I'0 . 

One recognizes that the solution 'I' represents an 
infinitesimal transformation of the initial wave '1'0 by an 
amount d9. Hence, after some long time T when the 
control parameters complete their cycle through parame
ter space and return to their initial values, the accumulat
ed phase shift of the wave pattern becomes 

~9= f d9= - iT dr (vg,arrgyt) . (5) 
o (Vg,Xrg 'II) 

We now demonstrate that this spatial phase shift is 
geometrical in nature. We start by showing that this ex
pression for .19 is in fact independent of the choice of 
gauge g. First, note that the term Orrgyt appearing in (5) 
may be expanded using the chain rule 

!!K. drg 
orrgyt .... dr dgyt+Drg(yt)oryt. 

Here, Drg(yt) represents the linearization of the operator 
rg about'll. The integral in (5) may therefore be decom
posed into two pieces. From the identities 

drg ( ) 
dg yt-Xrgyt=Drg 'II Xyt, 

which follow directly from (2), one can show that the in
tegrand of the first term constitutes a perfect differential, 
yielding no contribution to the phase when the parame
ters return to their initial values. The second term of the 
integral becomes 

9 i Td (Vg,Drg(ytMryt> 
~ = - r ---:-'''----'''-:'-~--'7-

o (vg,Drg(yt)xyt)· 

Since we have assumed that the inner product is invariant 
under the symmetry, it follows that 

(vg,Xr g 'II) = (vo,Xyt), V g , 

where Vo satisfies D':J(yt)tvo"'O. Combining this with 
the identities (6), it follows that 

.19= - fT dr (VO,Oryt) . (7) 
J 0 (vo,Xyt) 

As claimed, the phase shift does not depend on choice of 
gauge. 

We next show that the phase is also independent of 
time, and depends only on the path taken through param
eter space. This follows trivially by writing 

d'A. 
aryt-V'J..ytd; , (8) 

where V'J.. denotes the derivative with respect to the pa
rameters 'A.. The phase thus takes the final form 

.19= -p (vo,V'J..yt) dA.. (9) 
(vo,Xyt ) 

The spatial phase shift of the wave pattern, described 
by Eq. (9), is geometrical in that it is both independent of 
parametrization by time and choice of gauge g('A.). It fol
lows from Stokes' theorem that the phase may also be re
garded as an integral of a two-form over a surface bound
ed by a closed path in parameter space. 

As a simple illustration of these ideas, we consider a set 
of amplitude equations known as the Takens-Bogdanov 
equations with circular symmetry. These equations de
scribe the interaction between competing instabilities in a 
variety of physical systems, including convection in a ro
tating layer [71, convection in a horizontal or vertical 
magnetic field [8], and lasers with a saturable absorber 
[91. They take the form [10] 

dzt 
Tt=Z2, 

dZ2 I 2 Tt-AtZt+A2Z2+(A zd +Blz212)zt 

+C(ZtZ2+ZtZ2)Zt +Dlzd 2Z2 , 
(10) 
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where z I,Z2 represent complex mode amplitudes, and 
AhA2 E ~ are control parameters for the system. The 
coefficients A,B, C,D are real. 

These equations are invariant under the group 

SO(2): (ZI,Z2)--+ (ei8zl,ei8z2) , 

reflecting either the manifest circular geometry of the un
derlying physical system or the translational invariance of 
the problem accompanied by periodic boundary condi
tions. 

Equations (\0) admit a time-dependent solution of the 
form 

(ZI,Z2) = (ReiOl,iRneiOI) , 

with 

R2=[~], n2=[A2A-AID). 
D D-A2B 

(I J) 

This solution corresponds to a traveling or rotating wave 
in the physical system. It can be shown to be stable for a 
certain range of parameter values. (See [10] for an ex
tensive analysis of these equations.) 

We wish to examine the behavior of this stable travel
ing wave when a slow time dependence is introduced into 
the parameters 1..1,1..2. Note, however, that this solution 
(J J) depends on the fast time t. We may remove this ex
plicit time dependence by first transforming into a comov
ing frame via 

(ZI,Z2) = [wlexp (i fol ndt ),W2exP (i fol ndt)] . 

The wave now appears stationary, and the preceding 
analysis applies. A straightforward calculation reveals 

(For simplicity, we have expressed this phase as a line in
tegral involving 1..2, n instead of AhA2.) 

In this example, note that the term Ibn dt, obtained 
when transforming into a moving reference frame, may 
be regarded as a "dynamical" phase for the system. This 
dynamical phase is entirely analogous to that found in 
quantum systems during adiabatic transport of parame
ters. In general, such dynamical phases arise in dissipa
tive systems when nonstationary waves are studied. The 
simple trick used here of transforming to a comoving 
frame shows how various propagating waves can be stud
ied within the same general framework as stationary 
waves. This procedure can in fact be formalized, and a 
more complete description will appear elsewhere [111. 

Last, we wish to point out a connection between the 
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spatial phase shift discussed here and the temporal phase 
addressed in [51. Although we have dealt only with spa
tial symmetries of a system, the temporal geometric 
phase may now be seen as corresponding to the special 
case of time-translation symmetry. In particular, adia
batic transport induces motion along the direction defined 
by the group action (time translation), thereby producing 
a temporal shift. For the particular example given above, 
these two notions in fact coincide, since the action of the 
rotation group SO(2) on the solution (J J) is identical to 
that of time translation. 

In summary, we have shown that a geometrical phase 
analogous to that found by Berry presents itself in the 
non-Hamiltonian setting as well. The phase is associated 
with motion along the neutral mode of the system, as 
defined by the continuous symmetry. Dissipation plays a 
prominent role in this scenario by providing for a rapid 
collapse of the system onto the stable solution during adi
abatic transport. The phase shift discussed here, associ
ated with the spatial symmetry of the problem, comple
ments the recent discovery [5] of a temporal phase shift 
in dissipative systems. The geometrical phase should be 
readily detectable through experiment, and an examina
tion of wave patterns in fluids and other continuous media 
should provide an interesting realization of this phe
nomenon. 

The author thanks Michael Crescimanno and Eric 
Friedman for their valuable insights and suggestions, and 
gratefully acknowledges useful discussions with Gregory 
Keaton, Edgar Knobloch, and Robert Littlejohn. 
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