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Abstract: The ocean plays a major role in our climate system and in cli-
mate change. In this article we present a conceptual model of the Atlantic
Meridional Overturning Circulation (AMOC), an important component of the
ocean’s global energy transport circulation that has, in recent times, been
weakening anomalously. Introduced by Henry Stommel, the model results in
a two-dimensional system of first order ODEs, which we explore via Math-
ematica. The model exhibits two stable regimes, one having an orientation
aligned with today’s AMOC, and the other corresponding to a reversal of the
AMOC. This material is appropriate for a junior-level mathematical modeling
or applied dynamical systems course.

1 Introduction

That our climate is changing is difficult to dispute. The most recent assessment report of
the Intergovernmental Panel on Climate Change (IPCC AR5) concludes [8]:

Warming of the climate system is unequivocal, and since the 1950s, many of the
observed changes are unprecedented over decades to millennia. The atmosphere
and ocean have warmed, the amounts of snow and ice have diminished, sea level
has risen, and the concentrations of greenhouse gases have increased.

IPCC AR5 also provides strong evidence indicating that human activities, such as the
burning of fossil fuels, have contributed significantly to this warming trend.

The ocean plays a major role in our climate system. For example, the ocean has a
remarkable capacity for absorbing large amounts of atmospheric CO2, a potent greenhouse
gas. It is estimated that the ocean has absorbed 40% of all anthropogenic CO2 emissions
since the beginning of the industrial era, with the rate of uptake by the ocean increasing
in the 2000s [3].

The focus in this article, however, will be placed on a second crucial aspect of the
ocean’s role in shaping our climate, namely, its capacity for transporting vast amounts
of energy. The Thermohaline Circulation (THC) is the major global ocean circulation
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pattern, with the rate of flow determined by density contrasts which, in turn, are functions
of temperature and salinity (thermo–heat; haline–salt).

The Atlantic Meridional Overturning Circulation (AMOC), one component of the
THC, consists of the northward flow of warm, upper-ocean waters to the North Atlantic,
and the deep southward return flow of denser water that forms through the process of
cooling and sinking at high latitudes (this latter phenomenon is known as deep water
formation). Changes in the strength of the AMOC alter this important process of heat
transport to northern latitudes, with cooling in the subtropical North Atlantic and colder
climates along coastal areas of Europe being potential consequences.

The AMOC has indeed weakened over the past 150 years, a change that is anomalous
relative to the preceding 1500 years [10]. Thornalley et al suggest that enhanced freshwater
fluxes from melting glaciers into the North Atlantic in the middle of the 19th century—at
the end of a cool period known as the Little Ice Age—resulted in less dense water and
reduced deep water formation, weakening the AMOC. Currently, with ongoing reductions
in the mass of the Greenland ice sheet (along with other factors), scientists believe further
slowing of the AMOC is very likely in the coming decades [7]. As it stands, the current
weakening of the AMOC is playing an essential role in distressing several marine species
in the Gulf of Maine [2].

Changes in the strength of the AMOC have a profound effect on climate. Going back
further in time, the last ice age saw repeated, millennial climate oscillations—relatively
colder and warmer periods within the ice age itself—the most pronounced occurring
between twenty-five and sixty thousand years ago. Analysis of data from ocean sediment
cores shows the AMOC weakened during every colder phase, while relatively warmer
periods followed a reinvigoration of the overturning circulation [4]. This work of L.G.
Henry et al provides direct evidence of the central role played by the ocean, and the
AMOC in particular, in significant climate change.

The AMOC is driven by density contrasts, with water density a decreasing function
of temperature and an increasing function of salinity. In his pioneering 1961 paper [9],
Henry Stommel introduced a conceptual 2-reservoir ocean box model to investigate
the density-driven flow between the boxes. The water flows through a connecting,
bottom capillary, with a compensating overflow at the top (in sum representing the
“overturning circulation”). Interestingly, Stommel found coexisting stable regimes, one for
each direction of flow through the capillary. The fact these two distinct stable regimes
can occur in such an idealized model lead Stommel to wonder if a similar situation might
occur in nature. If the AMOC, for example, possessed a stable motion having a direction
of flow the reverse of that which we have today, might a sufficient perturbation of our
climate system cause the AMOC to jump to this other regime?

Stommel’s model results in a pair of first order ODEs and, as such, its study is ap-
propriate for a modeling course or a class focusing on the qualitative and/or numerical
investigation of planar systems of ODEs. (I present Stommel’s model in a climate modeling
course having the sophomore-level ODE course as a prerequisite.) While providing no
real predictive power, Stommel’s conceptual model does allow for investigations into the
manner in which fundamental factors such as water temperature and salinity influence
density contrasts, and thus the strength and direction of an idealized flow between two
basins.
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Motivating 1-box models are introduced in Sections 2 and 3 to investigate the inter-
actions between temperature, salinity, and flow rate as they influence the density of a
water parcel over time. In particular, these simple models help set the stage for Stommel’s
more sophisticated 2-box model, presented in Section 4. As mentioned above, there is a
feedback in the sense that flow rate in turn affects the density. To introduce this feedback,
a second reservoir is added to the model and the corresponding 2-dimensional system of
ODEs is derived in Section 4. The dynamics of the model are investigated, with the aid of
Mathematica, in Section 5. We discuss bifurcations and the associated hysteresis exhibited
by the model in Section 5 as well. Concluding remarks are presented in the final section.

2 A 1-Basin Model

Consider a well-mixed reservoir of water with uniform temperature T = T (t) (◦C) and
uniform salinity S = S(t). The quantity S is defined as a concentration and is measured in
practical salinity units (psu), a dimensionless unit. Porous walls separate the basin from
an outer vessel having constant temperature T ∗ and constant salinity S∗ (Figure 1). The
outer vessel might, for example, represent a neighboring ocean.

Assume the transfer of heat and salt between the reservoir and outer vessel is modeled
simply by

dT

dt
= c(T ∗ −T ) (2.1)

dS

dt
= d(S∗ − S),

where c > 0 and d > 0 are constants. Students can be asked to show the general solution
of (2.1) is

(T (t), S(t)) = (T ∗ + (T0 −T ∗)e−ct , S∗ + (S0 − S∗)e−dt ), (T0, S0) = (T (0), S(0)).

Every solution of (2.1) converges to the equilibrium (T ∗, S∗) as t → ∞ in this setting.

	

stirrer

S∗

T ∗

S∗
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S

T
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Figure 1: The outer vessel has constant salinity S∗ and temperature T ∗. Heat and salinity
are exchanged with the outer vessel through porous walls.

13



2.1 Nondimensionalization

Note system (2.1) contains the four parameters c,d,T ∗ and S∗. The number of parameters
can be reduced by nondimensionalizing; letting x = S/S∗, we have

dx

dt
=

1
S∗

dS

dt
=

1
S∗

(d(S∗ − S)) = d(1 − x).

Similarly, setting y = T /T ∗ yields

dy

dt
=

1
T ∗

dT

dt
=

1
T ∗

(c(T ∗ −T )) = c(1 − y).

Note variables x and y are dimensionless; additionally, we now only have two parameters.
A further simplification can be realized by rescaling time; setting τ = ct yields

dx

dτ
=
dx

dt

dt

dτ
=

1
c
(d(1 − x)) = δ (1 − x) and

dy

dτ
=
dy

dt

dt

dτ
=

1
c
(c(1 − y)) = (1 − y),

where δ = d/c is the (dimensionless) ratio of the rates at which salinity and temperature
approach equilibrium. Letting “ ′ ” denote d

dτ , we have

x′ = δ (1 − x) (2.2)
y′ = 1 − y,

a system with the single parameter δ . Given that thermal energy generally transfers
on a faster time scale than does salinity, Stommel chooses δ = 1/6, so that temperature
equilibrates much more quickly than does salinity (Figure 2).
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)

Figure 2: Phase plane for system (2.2) with δ = 1/6. All solutions tend to (1, 1), with y
(temperature) equilibrating more quickly than x (salinity).
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2.2 Density Anomaly

Recall that temperature and salinity work in an opposing fashion in determining den-
sity. One might ask what happens to the density over time if, for example, salinity and
temperature each increase toward equilibrium. Let Γ denote the solution to system (2.2)
with initial condition (x(0),y(0)) = (0, 0) (so that x(t) and y(t) each increase toward 1 as
t → ∞). Given that density is an increasing function of salinity and a decreasing function
of temperature, a simple approach is to let

ρ = ρ0(1 − αT + βS), (2.3)

where ρ (gm/cm3) is the density, ρ0 is a reference density (here corresponding to the
density at T = S = 0), and α (◦C−1) and β (psu−1) are positive constants. Using T = yT ∗

and S = xS∗, we have

ρ = ρ0(1 − αyT ∗ + βxS∗) = ρ0(1 + αT ∗(−y + Rx)), (2.4)

where R = βS∗/αT ∗ is a positive, dimensionless constant measuring the relative effect of
salinity and temperature on density.

At the equilibrium point (x,y) = (1, 1), ρ′ = ρ0(1 + αT ∗(−1 + R)). The density at
equilibrium will thus be greater than at (x,y) = (0, 0) if R > 1; following Stommel, we set
R = 2.

One might then ask if the density increases monotonically along Γ as x andy approach
equilibrium. Using (2.4) and equations (2.2), note

ρ′ = ρ0αT
∗(−y′ + Rx′) = ρ0αT

∗(−1 + y + Rδ (1 − x)).

When x = y = 0, ρ′ = ρ0αT
∗(−1 + Rδ ) < 0 since R = 2 and δ = 1/6. Thus, starting at

(x,y) = (0, 0), the density first decreases, due to the larger time constant for temperature,
as T rapidly approaches equilibrium. Given sufficient time, however, salinity becomes
the dominant factor as it increases toward equilibrium (via long-term evaporation, say),
resulting in an eventual increase in density.

The interplay between temperature and salinity vis-à-vis density described above can
be viewed in the (dimensionless) density anomaly

σ =
1

αT ∗

(
ρ

ρ0
− 1

)
= −y + Rx, (2.5)

which follows from (2.4). The term anomaly is used as σ is proportional to ρ − ρ0 so
that, starting at x = y = 0, whether the water becomes more or less dense over time is
indicated by whether ρ − ρ0 > 0 or ρ − ρ0 < 0. Level sets of σ , along with the trajectory
Γ, are plotted in Figure 3. Note the density anomaly σ < 0 on (0, t̂) due to the influence
of increasing temperature, and σ > 0 on (t̂,∞) as salinity continues to increase (t̂ as in
Figure 3).

While model (2.1) has been introduced to investigate the dynamics of the density as
temperature and salinity evolve in the simplest of settings, the following section presents
an augmented model incorporating flow rate and the effect flow rate has on density.
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Figure 3: Level sets of the density anomaly σ (2.5) (colored lines) and the trajectory of
the solution Γ starting at (x,y) = (0, 0). The water in the basin is less dense than at
(x,y) = (0, 0) for t ∈ (0, t̂), and more dense for t > t̂ .

3 A 1-Basin Model with Inflow and Outflow

To consider the effects flow rate may have on density, imagine an external inflow of water
having fixed temperature T = Tin and fixed salinity S = Sin at a rate q (s−1). Basin water
having temperature T and salinity S exits the reservoir at the same rate q (see Figure 4).
The equation for the temperature of the basin water is now

dT

dt
= c(T ∗ −T ) + qTin − qT .

To simplify matters, shift the origin of the temperature axis toTin by settingu = T −Tin.
Note

du

dt
=
dT

dt
= c(T ∗ − u −Tin) + qTin − q(u +Tin)

= c(u∗ − u) − qu,

	

S∗

T ∗

S∗

T ∗S

T

porous wallsA
AK

�
��

inflow q - outflow q-

T = Tin, S = Sin

Figure 4: The 1-box, inflow/outflow model. The incoming water has fixed temperature
T = Tin and fixed salinity S = Sin.
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where u∗ = T ∗ − Tin . Similarly, after setting v = S − Sin and letting v∗ = S∗ − Sin, the
salinity equation becomes

dv

dt
= d(v∗ −v) − qv .

Note that in the (u,v)-coordinate system it is the evolution of temperature and salinity
relative to Tin and Sin, respectively, that is being modeled.

As above, we nondimensionalize by letting x = v/v∗, y = u/u∗ and τ = ct to reduce
the number of parameters. One can easily check these substitutions result in the system

x′ = δ − (δ + f )x (3.1)
y′ = 1 − (1 + f )y,

where δ = d/c as before, and f = q/c is a (new) dimensionless flow rate.
Note the equilibrium solution of (3.1) has the form

(x∗,y∗) =

(
δ

δ + f
,

1
1 + f

)
. (3.2)

Let ρ0 denote the density of the basin water when (u,v) = (0, 0), that is, when (T , S) =
(Tin, Sin). Setting ρ = ρ0(1 − αu + βv) and proceeding as in the previous section, the
density anomaly at equilibrium becomes

σ ∗ =
1

αu∗

(
ρ

ρ0
− 1

)
= −y∗ + Rx∗ = −

1
1 + f

+
Rδ

δ + f
. (3.3)

Note that we have made use of (3.2).
If we set f = 0 in (3.2) and (3.3) (so q = 0 and the inflow and outflow are turned off),

we recover (x∗,y∗) = (1, 1) and σ ∗ = −1 + R = 1 > 0, as in Section 2. As the flow rate
f → ∞, however, (x∗,y∗) → (0, 0) and σ ∗ → 0. We thus see that the density anomaly at
equilibrium varies with the flow rate. Indeed, plotting the density anomaly at equilibrium
σ ∗ as a function of the flow rate f (Figure 5), we see the outflow is more dense than
the inflow water if f ∈ (0, 1/4), while the outflow is less dense than the inflow water if
f ∈ (1/4,∞).

This simple model illustrates the role flow rate plays in determining water density
in the basin. For a very slow inflow/outflow, an incoming parcel of water resides in the
basin for an extended time, during which the salinity comes to dominate the density as
discussed in Section 2. For fast inflow/outflow rates, temperature has the dominating
short-term effect and the outflow water is then less dense than the inflow.

The AMOC is driven by density contrasts, as mentioned above. In this section we
have seen the flow rate influences density, so that there is a feedback between flow rate
and density. To investigate this feedback a second basin will be added to the model, as
described in the following section.
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Figure 5: The density anomaly at equilibrium as a function of flow rate f . Left: 0 < f < 20.
Right: 0 < f < 1. Small flow rates lead to outflow more dense than the inflow; larger flow
rates lead to outflow less dense than the inflow.

4 Stommel’s 2-Box Model

4.1 Model Equations

Consider two well-mixed basins of water connected at the bottom by a capillary, with a
corresponding overflow at the top so as to maintain constant volume in each basin. There
is an exchange of heat and salinity with outer vessels having constant temperature T ∗

i
and salinity S∗i , i = 1, 2 (see Figure 6).

Let Ti(t) and Si(t) denote the temperature and salinity of the water in box i, i = 1, 2.
The direction and strength of the flow through the capillary is driven by the difference in
densities of the two boxes. If S1 = S2, for example, the colder box will contain denser water
and the flow will be from the colder to the warmer box. This would then correspond to a
flow of water from the cooler high latitudes to the warmer low latitudes (as is currently
the case with deep water formation and the AMOC).

If T1 = T2, however, then salinity will determine the difference in densities. Due to

High LatitudesLow Latitudes

overflow

capillary

�
q

-
q

S∗
1

T ∗
1

S∗
1

T ∗
1

S∗
2

T ∗
2

S∗
2

T ∗
2

S1

T1

S2

T2

Figure 6: Stommel’s 2-box model. The direction of flow through the capillary is driven
by density differences. As pictured here, the capillary (deep water) flow is from the low
latitude (warm) box to the high latitude (cold) box.
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increased evaporation in lower latitudes, with a resulting increase in salinity of the ocean
water, the lower latitude box will be the saltier of the two. Hence ifT1 = T2, the saltier box
will contain denser water and the flow will be from the warmer to the colder box. This
would then correspond to a flow of water from the warmer low latitudes to the cooler
high latitudes.

We note that water in the high latitude box is colder but less salty, while the water in
the low latitude box is warmer but saltier, so the direction of the flow is, generally, not
clear.

Let’s first derive the temperature equations for the 2-box model. Referring to Figure 6,
the equations are

dT1
dt
= c(T ∗

1 −T1) + qT2 − qT1 (4.1)

dT2
dt
= c(T ∗

2 −T2) − qT2 + qT1.

Note equations (4.1) remain unchanged if the direction of the flow is reversed, due to the
compensating overflow at the top of the basins. We thus have

dT1
dt
= c(T ∗

1 −T1) + |q |(T2 −T1) (4.2a)

dT2
dt
= c(T ∗

2 −T2) − |q |(T2 −T1). (4.2b)

It is once again convenient to shift the temperature axes, here setting ui = Ti −T ∗
ave ,

i = 1, 2, where T ∗
ave =

1
2 (T

∗
1 +T

∗
2 ). Equation (4.2a) becomes

du1
dt
=
dT1
dt
= c(T ∗

1 − u1 −T ∗
ave) + |q |(u2 +T

∗
ave − u1 −T ∗

ave)

= c(T ∗
1 −T ∗

ave − u1) + |q |(u2 − u1),

while (4.2b) becomes

du2
dt
=
dT2
dt
= c(T ∗

2 − u2 −T ∗
ave) − |q |(u2 +T

∗
ave − u1 −T ∗

ave)

= c(T ∗
2 −T ∗

ave − u2) − |q |(u2 − u1).

Letu∗ = T ∗
1 −T

∗
ave , and noteT ∗

2 −T
∗
ave = −u∗. Hence in (u1,u2)-coordinates the temperature

equations become

du1
dt
= c(u∗ − u1) + |q |(u2 − u1) (4.3a)

du2
dt
= c(−u∗ − u2) − |q |(u2 − u1). (4.3b)

The net effect of the (u1,u2)-change of variables is that one may assume the temperatures
in the outer vessels are the opposite of each other.
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In an entirely analogous manner, the salinity equations are

dS1
dt
= d(S∗1 − S1) + |q |(S2 − S1) (4.4a)

dS2
dt
= d(S∗2 − S2) − |q |(S2 − S1). (4.4b)

If we let vi = Si − S∗ave , i = 1, 2, where S∗ave = 1
2 (S

∗
1 + S

∗
2), and v

∗ = S∗1 − S∗ave , the salinity
equations in the (v1,v2)-coordinate system become

dv1
dt
= d(v∗ −v1) + |q |(v2 −v1) (4.5a)

dv2
dt
= d(−v∗ −v2) − |q |(v2 −v1). (4.5b)

Note that addition of the equations in system (4.3) yields d
dt (u1+u2) = −c(u1+u2). We see

that for any initial condition, (u1 + u2)(t) → 0 as t → ∞. We will thus simplify matters
by assuming u1 = −u2 = u in all that follows.

In a similar fashion, addition of the equations in system (4.5) yields d
dt (v1 + v2) =

−d(v1 + v2). Hence, given that (v1 + v2)(t) → 0 as t → ∞ for any initial condition, we
assume v1 = −v2 = v henceforth. Making these substitutions into (4.3a) and (4.5a) results
in the two dimensional system of equations

du

dt
= c(u∗ − u) − 2|q |u (4.6)

dv

dt
= d(v∗ −v) − 2|q |v .

Solving system (4.6) will yield the temperature and salinity of the water in basin one as a
function of time, with each of the temperature and salinity of the water in basin two then
the opposite of that in basin one.

As in previous sections, nondimensionalizing proves helpful. Letting x = v/v∗,y =
u/u∗ and τ = ct , the reader is invited to show that system (4.6) becomes

x′ = δ (1 − x) − | f |x (4.7)
y′ = 1 − y − | f |y,

where “ ′ ” denotes d
dτ , δ = d/c , and f = 2q/c is a nondimensionalized flow rate.

4.2 Density Driven Flow

The reader may note (4.7) and the 1-basin model (3.1) each contain a “flow” parameter. The
advantage of incorporating a second basin is that f in (4.7) can now be made to depend
upon density, which in turn is a function of x and y. Following Stommel, assume the flow
rate is proportional to the difference in densities in the two boxes, that is, kq = ρ1 − ρ2,
where k (s gm/cm3) is a positive constant (we take the capillary flow orientation depicted

20



in Figure 6 to represent q > 0). Recalling relation (2.3) and our symmetry assumption
u2 = −u1 and v2 = −v1, we have

kq = ρ0(1 − αu1 + βv1) − ρ0(1 − αu2 + βv2) (4.8)
= ρ0(−α(u1 − u2) + β(v1 −v2))

= 2ρ0(−αu + βv)
= 2ρ0αu∗(−y + Rx),

where we have used x = v/v∗, y = u/u∗ and R = βv∗/αu∗.
Notably, we see the flow rate q is a function of salinity x and temperature y. If y > Rx ,

so that temperature dominates the density difference, q < 0 and the deep water flow is the
reverse of that pictured in Figure 6, from the cold box to the warm box. In this case water
flows from the colder high latitudes to the warmer low latitudes. For Rx > y, however,
salinity plays the leading role and the capillary flow is as in Figure 6 (q > 0), now from the
saltier to the less salty box. In this scenario water moves from the warmer low latitudes
to the colder high latitudes, the reverse of the current orientation of the AMOC.

The dependence of the flow rate f on salinity x and temperature y in system (4.7) can
be made explicit. To that end, since f = 2q/c we have kq = kc f /2, from which it follows
via (4.8) that

− y + Rx = λ f , where λ =
kc

4ρ0αu∗
. (4.9)

System (4.7) becomes

x′ = δ (1 − x) − 1
λ |y − Rx | x (4.10)

y′ = 1 − y − 1
λ |y − Rx |y.

We note that, while not continuously differentiable, the vector field defined by (4.10) is
Lipschitz continuous so (4.10) admits a unique solution for any initial condition (x(0),y(0)).

While a qualitative approach to the analysis of the nonlinear system (4.10) is feasible in
an upper-level course (see [5], Chapter 6), here we make use of theMathematica notebook
in the Appendix to determine model behavior.

5 Dynamics of the 2-Box Model

With a bit of algebra, one can show solving system (4.10) for equilibrium solutions reduces
to the finding of roots of a cubic polynomial in x ; hence (4.10) will typically have one or
three real equilibrium solutions (x∗,y∗). Looking to keep the flow rate involved, note that
at equilibrium

x′ = δ (1 − x) − | f |x = 0
y′ = 1 − y − | f |y = 0,

from which it follows an equilibrium point satisfies

x∗ =
δ

δ + | f |
and y∗ =

1
1 + | f |

. (5.1)
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From equation (4.9),

λ f = −y∗ + Rx∗ = −
1

1 + | f |
+

Rδ

δ + | f |
≡ ϕ(f ,R, δ ). (5.2)

Solutions of equation (5.2) for the flow rate f can then be substituted into (5.1) to determine
the equilibrium point(s) (x∗,y∗).

The black curve in Figure 7 is the graph of ϕ(f , 2, 1/6), while the red line in Figure 7
is the graph of λ f for λ = 1/5; the intersection of these two curves will yield f -values
satisfying (5.2). We see for the given parameters equation (5.2) has three real solutions,
which we label f1 < f2 < f3, while the corresponding equilibrium solutions of system
(4.10) will be denoted (x∗i ,y

∗
i ), i = 1, 2, 3.

Given that fi < 0, i = 1, 2, temperature dominates density differences and the flow
through the capillary is from the cold box to the warm box when the system is in equilib-
rium states (x∗i ,y

∗
i ), i = 1, 2. At equilibrium (x3,y3), however, f3 > 0 and salinity dominates

density differences; the capillary flow is now from the warm box to the cold box as in
Figure 6.

We use Mathematica to investigate the stability of each equilibrium solution via the
file appended to this article. Presented in Table 1 are the eigenvalues of the Jacobian
matrices J (x∗i ,y

∗
i ) when λ = 1/5,R = 2 and δ = 1/6 (we fix R = 2 and δ = 1/6 in all

that follows). For λ = 1/5, we see (x∗1,y
∗
1) is a stable node and (x∗3,y

∗
3) is a stable spiral,

while (x∗2,y
∗
2) is a saddle. This conceptual model exhibits two stable regimes, one in which

temperature drives the density difference and the deep water flow is from the cold box to
the warm box, the other having salinity dominate the density difference with the capillary
flow going from the warm box to the cold box. As mentioned above, this result caused
Stommel to wonder whether such a situation might occur in nature.

To further investigate the dynamics of (4.10), we plot the xy-phase plane in Figure 8.
The green line in Figure 8 corresponds to f = 0; above this line the flow is from the
cold box to the warm box, with temperature dominating, and below the flow is from the
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Figure 8: The xy-phase plane for λ = 1/5,R = 2, δ = 1/6. The black dots are equilibria
(x∗i ,y

∗
i ), with x1 < x2 < x3. The red curve is the stable separatrix for the saddle point. The

flow through the capillary reverses direction on each of the blue trajectories.

warm box to the cold box with salinity dominating. Note in particular the existence of
trajectories that cross the f = 0 line (the blue curves in Figure 8 are two such trajectories).
Hence there are initial conditions for which the deep water flow slows down and then
reverses over time.

f equilibrium (x∗,y∗) equilibrium Jacobian J (x∗,y∗) equilibrium
values values eigenvalues type

f1 = −1.068 (x∗1,y
∗
1) = (0.135, 0.484) −3.609, −0.761 stable node

f2 = −0.307 (x∗2,y
∗
2) = (0.352, 0.765) −2.849, 0.761 saddle

f3 = 0.219 (x∗3,y
∗
3) = (0.432, 0.820) −0.921 ± 1.823 i stable spiral

Table 1. Parameters λ = 1/5, R = 2, δ = 1/6.

5.1 Bifurcations and Hysteresis

In this section we briefly discuss bifurcations and associated hysteresis exhibited by
the model. To set the stage, denote by Bi the set of initial conditions for which the
corresponding solution of (4.10) converges to (x∗i ,y

∗
i ) as t → ∞, i = 1, 2, 3 (the sets Bi

are called basins of attraction). Note the stable separatrix of the saddle (the red curve in
Figure 8) separates B1 and B3, the basins of attraction of the two stable equilibria. For
the parameter values used in Figure 8, the system would require a large perturbation to
enable a solution near the stable node (x∗1,y

∗
1) to jump over to B3 (and so cause a reversal

of the deep water flow).
What happens if we vary the parameter λ, a proportionality constant for the flow

rate f via (4.9)? An increase in λ, which may correspond to factors such as increased
bottom friction or greater wind-driven surface turbulence [5], makes it more difficult for
the water to flow from one basin to the other. A decrease in λ, on the other hand, would
make it easier for water to flow through the capillary.
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Figure 9: The xy-phase planes for λ = 1/3 (left) and λ = 2/5 (right).

The blue line in Figure 7 is the plot of λ f for λ = 1/3. While difficult to discern in this
image, there are again three equilibrium flow rates f1 < f2 < 0 < f3 (f1 and f2 are quite
close together). The stability type of equilibria (x∗i ,y

∗
i ), i = 1, 2, 3, remains unchanged

from the λ = 1/5 case, as can be investigated via the Mathematica file in the Appendix.
The left plot in Figure 9 is the xy-phase plane for λ = 1/3. Note the stable node (x∗1,y

∗
1)

and the saddle (x∗2,y
∗
2) are close to merging. Here, a solution near (x∗1,y

∗
1)withinB1 would

need but a slight nudge to jump to B3, with a corresponding reversal of the flow.
The green line in Figure 7 is the graph of λ f for λ = 2/5. There is now but one

equilibrium flow rate f1 > 0. The stable node (x∗1,y
∗
1) and the saddle (x∗2,y

∗
2) merge at

some λ0 ∈ (1/3, 2/5), disappearing as λ increases through λ0 via a saddle-node bifurcation
([1], §9.3). For λ = 2/5 the system is permanently stuck in the regime in which the deep
water flow is from the warm box to the cold box, with salinity dominating the density
difference (right plot in Figure 9).

The bifurcation plot in Figure 10, in which the equilibrium flow rate is plotted as a
function of the flow resistance λ, summarizes the above discussion. The red and green
portions of the curve correspond to stable equilibria for system (4.10) (stable node and
stable spiral, respectively), while the blue portion corresponds to the unstable saddle point.
As λ increases through λ0, the flow rate jumps to the green curve; such a bifurcation is
often referred to as a tipping point by climate scientists.

Interestingly, the model also exhibits the following behavior. If we start on the stable
red curve in Figure 10 at λ = 1/5, and first increase λ through λ0 so that f jumps to the
green stable curve, and then decrease λ back to λ = 1/5, f remains on the stable green
curve. That is, the system is in a different stable regime than the one in which it started,
even though the parameter values are the same. This phenomenon, known as hysteresis,
is presented in [10] as a possible explanation for evidence suggesting that the AMOC has
yet to recover from the weakening of the flow that began at the end of the Little Ice Age.

The appearance of hysteresis in Stommel’s model is perhaps suggestive of the possi-
bility that, were the AMOC to slow down and switch orientation due to climate change,
any future return to the current transport of warm surface waters to the North Atlantic
will be difficult to realize.
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6 Discussion

Stommel’s 2-box model is conceptual in nature, a greatly simplified model of but one
component of the global ocean circulation. No consideration is given to the coupling of the
subpolar North Atlantic ocean with other oceans or with the atmosphere. Nevertheless,
that such a simple model exhibits stable regimes having oppositely oriented circulation
patterns, and that the passing from one circulation mode to the other can be induced
by changing forcing parameters, has had a significant impact on climate science and
oceanography [5].

L.G. Henry et al found that repeated weakening of the AMOC on a millenial time scale
during cycles of temperature fluctuations in the last ice age occurred during each of the
relatively colder periods, the latter coinciding with immense discharges of freshwater
from melting ice in Canada into the subpolar North Atlantic [4]. Similarly, the work of
Thornally et al suggests that increased freshwater fluxes from melting glaciers and sea ice
roughly 150 years ago served to weaken the AMOC, anomalously so with respect to the
past 1,500 years [10].

The effect of these “freshwater forcings” can be seen in Stommel’s model: assuming
the capillary flow is from the colder to the warmer box, imagine that a parcel of water is
removed from the high latitude box, replaced by a cold, salt-free parcel having the same
volume. Recalling R > 1, where R = βS∗/αT ∗ measures the relative effects of salinity and
temperature on density, the reduced salt content will lead to lower density water in the
cold box and hence a weaker circulation through the capillary.

The focus in this article has been placed on model development, with somewhat less
attention given to the analysis of the system of ODEs (4.10). When teaching this material
in the junior-level course MATH 305Mathematics and Climate, I start with the pencil-and-
paper approach presented in Chapter 6 in [5], teaching linearization at equilibria and the
determination of the eigenvalue type via the trace and determinant of the Jacobian matrix
along the way. Students then reinforce this analysis through their use of Mathematica.

Students are also exposed to introductory bifurcation theory in MATH 305, in which
the Implicit Function Theorem plays an important role. Bifurcations of saddle-node,
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Hopf, and cusp types are typically covered. In terms of Stommel’s 2-box model, using
Mathematica to see that one of the eigenvalues of the Jacobian matrix at the stable node
(x∗1,y

∗
1) approaches 0 as the stable node and saddle point (x∗2,y

∗
2) merge in a saddle node

bifurcation serves to reinforce the theory.
The bifurcation parameter λ is the proportionality constant for the flow rate through

the capillary in Stommel’s 2-box model. The flow resistance increases with λ, eventually
leading to a single stable spiral equilibrium with an associated deep water flow from
the low latitude box to the high latitude box. In this scenario the density difference is
dominated by salinity. Insight into this behavior can be gleaned from the 1-basin model,
where it was seen that salinity is the determining factor if the flow rate is sufficiently
small (that is, λ is sufficiently large in the 2-box model setting).

While not presented here, it would be of interest to investigate how the model behaves
as λ decreases toward 0, so that the flow resistance decreases. Does temperature then play
the dominant role in determining density contrasts, as it does for increased flow rates in
the 1-basin model?

Stommel’s model provides for a wonderful introduction to the fundamental concepts of
ocean circulation patterns. The corresponding ODEs are best analyzed via a combination
of junior-level ODE analysis and the use of technology. This topic would make for an
engaging addition to an upper-level mathematical modeling course.

Acknowledgment. Lecture notes on Stommel’s model from a course offered by Professor
Richard McGehee at the University of Minnesota served to frame the discussion of the
model in MATH 305 as well as the presentation in this article. Professor McGehee’s entire
course on a mathematical approach to conceptual climate modeling—slides and lecture
videos—can be found online [6].
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Appendix

One can analyze Stommel’s two-vessel model with the following Mathematica file. (We
make no claims as to the efficiency of the code!)
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