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ABSTRACT OF THE DISSERTATION 

Continuous Bioprocessing: Technology for Next-Generation Biopharmaceutical 

Manufacturing 

Development of a Python-coded Bench-scale Raman-based Continuous Bioprocess 

Platform 

By Christine Urrea 

Keck Graduate Institute of Applied Life Sciences: 2023 

Current industrial practices for producing biopharmaceuticals include fed-batch 

production with batch isolation and purification. Nonproductive hold-up steps and 

manual offline measurements are common in batch processing which increases 

processing time and contributes to a high cost of production. Current market trends and 

cost pressures in the biopharmaceutical industry are creating a push to innovate 

bioprocessing platforms. Continuous bioprocessing has been considered a solution to 

the current limitations of batch production of biopharmaceuticals. Continuous 

bioprocessing involves intensifying individual processing steps by eliminating hold-up 

steps through a continuous operation to increase productivity, which results in 

advantages such as lower capital and production costs, higher equipment utilization 

efficiencies, smaller facility footprints, and increased manufacturing flexibility. Current 

bottlenecks of implementing continuous bioprocessing include technologies for real-

time monitoring and control of critical/key process parameters and versatile scale-down 

models for process understanding and development. Commercially available platforms 
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for implementing continuous bioprocessing are often expensive and inflexible. 

Technologies including Raman spectroscopy, perfusion cell culture, and continuous 

chromatography are explored in this Ph.D. study to develop a proof-of-concept, versatile 

bench-scale continuous platform driven by open-source software. Real-time, at-line 

monitoring of critical nutrients for cell culture via Raman spectroscopy allows for 

providing feedback control to nutrient pumps to maintain a continuous supply of these 

nutrients to cells for the production of biopharmaceuticals, and the products are 

continuously harvested in a perfusion process to a two-column platform for protein A 

capture. The preliminary data supports that the bench-scale platform is readily 

maneuverable to customized requirements, adaptable for the production of different 

modalities, and much cheaper for implementation. 
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1 INTRODUCTION 

 

1.1 BIOPHARMACEUTICAL PROCESSING MARKET AND TRENDS 

The biopharmaceutical industry is involved in researching, developing, and 

commercializing drugs derived from living organisms such as bacteria, yeasts, and 

animal cells.  These drugs, known as biologics, treat various diseases, including cancer, 

autoimmune disorders, infectious diseases, genetic disorders, and rare diseases. 

Biologic products include molecules such as proteins, nucleic acids, and cells. This 

market is rapidly growing and highly competitive. Companies invest heavily in research 

and development to bring new therapies to market. The biopharmaceutical sector is 

also heavily regulated to meet stringent safety and efficacy testing requirements, 

manufacturing practices, and quality control. (U.S. FDA, 2022) 

The global market for biopharmaceuticals in 2021 was estimated at $389.3 billion, and 

it is expected to grow at a compound annual growth rate (CAGR) of 7.1% between 2021 

and 2030, leading to an expected value of $730.8 billion by 2030(P & S Intelligence, 2023a). 

Several aspects lead to the growth of this industry, including an increasing demand for 

biological drugs due to increasing occurrences of chronic diseases worldwide, the 

growing geriatric population, and a growing number of clinical trials and research and 

development activities on novel biologics and biosimilars. Although novel biologics and 

biosimilars are contributing to the growth of the biopharmaceutical market, monoclonal 

antibodies (mAbs) constitute the largest share of 36% at a $140 billion valuation, and 

they are expected to hold the largest share of the market in the foreseeable future. As 



2 
 

of June 2022, monoclinal antibodies account for the most significant portion of 

approved biologics, with 162 approved by major drug regulatory agencies worldwide. 

Among them, 122 have been approved in the United States(Lyu et al., 2022).  

There are currently several trends in the biopharmaceutical space(BioPhorum 

Operations Group, n.d.). First, from a market perspective, novel biologics and biosimilars 

are continuously introduced. Their market was $6 billion in 2018, and it was expected 

to grow at a CAGR of 30% from 2019-2024 (P & S Intelligence, 2023b). The second trend is 

increased efforts to improve the global reach of these biologics so that more patients 

can benefit from these drugs and improve their life quality. There is also a desire for in-

region manufacturing to mitigate supply chain issues, which could accelerate the time-

to-market by complying with the regulations of local agencies. The cost pressures stem 

from payers, biosimilar competition, and high capital and operation costs for biologics. 

There are also pressures from the uncertainty of product success, market demand, and 

investment. Diversification of products is seen within biologics due to the advances in 

human genetics, cell biology, and gene and cell therapies(El-Kadiry et al., 2021; Sinclair 

et al., 2018). Diverse mAbs products have emerged, including bispecific mAbs, radio-

labeled mAbs, and antibody-drug conjugates (Khongorzul et al., 2020; Pettinato, 2021). 

Manufacturing flexibility has been pursued to allow for the adaption of these trends in 

the biopharmaceutical market, leading to a push to innovate biopharmaceutical 

manufacturing platforms. 
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1.2 CONTINUOUS BIOPROCESSING 

Current industrial practices for producing biopharmaceuticals include manual ten-to-

fourteen-day fed-batch production and batch isolation and purification, which are often 

involved with nonproductive hold-up steps and manual offline measurements, leading 

to an increase in the processing time and a high cost of production. Operating at a large 

volume (5-25 kL) is also typical, which contributes to a high capital cost and an inflexible 

manufacturing facility (Kelley, 2009). These practices are not favorable for unstable 

proteins and may not apply to the new modalities discussed previously. Current market 

trends and cost pressures in the biopharmaceutical industry are creating a push to 

innovate bioprocessing platforms. Continuous bioprocessing has been considered a 

solution to the current challenges of batch production of biopharmaceuticals. It has 

advantages such as lower investment and production costs, increased volumetric 

productivities, more consistent and improved product quality, reduced residence times, 

minimal scale-up requirements, higher equipment utilization rates, and small facility 

footprints, all of which contribute to increased manufacturing flexibility(Pollock et al., 

2017; Warikoo et al., 2012). Process analytical technology (PAT), perfusion 

bioprocessing, and continuous chromatography are considered to be the primary 

enablers for continuous bioprocessing.   

1.2.1 Process Analytical Technology 

PAT is a system for designing, analyzing, and controlling manufacturing through timely 

measurements with the goal of ensuring final product quality(FDA et al., 2004).  PAT is 

developed for real-time and online/at-line measurements of critical quality attributes 
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(CQAs) and/or critical/key process parameters (CPPs) while designing, analyzing, and 

controlling a manufacturing process (Krull et al., 2012). Spectroscopic techniques have 

become the most popular for process monitoring. The most commonly explored 

spectroscopic techniques for bioprocess monitoring are ultraviolet-visible spectroscopy 

(UV-Vis), near-infrared spectroscopy (NIR), mid-infrared spectroscopy (MIR), 

fluorescence, and Raman spectroscopy. High-performance liquid chromatography 

(HPLC)(Tiwari et al., 2018)  and capacitance(Konakovsky et al., 2015) have been used for 

monitoring products and biomass, respectively. Commercial Raman spectroscopy 

technology has gained increasing interest in monitoring cell culture metabolites during 

process development. However, a few commercial software packages are required for 

spectrum acquisition, pre-processing, calibration model construction, and prediction. It 

is time-consuming to develop, implement and validate models. More often, its use 

focuses on monitoring cell culture metabolites rather than for control purposes. 

1.2.2 Perfusion Cell Culture 

Perfusion cell culture involves continuously supplying fresh media to a bioreactor while 

removing spent media containing the product. Perfusion utilizes a cell retention device 

to retain or recirculate the cells within the culture vessel. The device may be a filter 

(depth, cross-flow, hollow fiber), centrifuge, gravity settler, or acoustic wave separator. 

Perfusion is considered a primary solution for continuous cell culture. It has advantages 

over batch bioprocessing, such as higher cell densities, longer culture periods, lower 

product residence times, and increased volumetric productivities.  (Bielser et al., 2018) 

(Suttle et al., 2019) (Voisard et al., 2003) The application of external cross-flow filtration 
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using hollow fiber modules for cell retention is the mainstream method. It offers a direct 

harvest of cell-free permeates for downstream processing. Two different modes of 

operation of cross-flow filtration have been established:  tangential flow (TFF) filtration 

and alternating tangential flow (ATF) filtration. (Karst et al., 2016) During TFF, the 

retentate stream flows tangentially over the surface of hollow-fiber filters, and the 

permeate penetrates through the pore of the filters and enters into a collection tank. 

ATF uses the same principle of tangential flow, but the direction of the flow is cyclically 

reversible to minimize fouling and reduce shear forces on the cells(Suttle et al., 2019). 

Commercial systems for TFF and ATF are available at several scales and allow monitoring 

and controlling perfusion parameters such as recirculation flow rates and pressures over 

the feed stream to the filter, the retentate stream, and the permeate stream. To 

maintain the balance of the working volume in the bioreactor, the same volumetric flow 

rate of the permeate stream is applied to the feed cell culture media stream. However, 

currently there is no control over nutrient conditions in the bioreactor. 

1.2.3 Multi-Column (Continuous) Chromatography 

Challenges with batch chromatography include an under-utilized rate of the resin 

binding capacity, a large volume of resins and buffers, a high equipment cost, and 

product quality variability due to a long process time (Zydney, 2016). Multi-column 

chromatography breaks up the loading zone of one column into a few smaller columns 

and places them in series. The smaller columns are cycled using the same process steps 

in a batch process, resulting in parallel processing of multiple columns. (Arnold, 2018) 

This technology allows continuous loading of the stream containing the product, 
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maximizing the resin utilization rate, reducing resin and buffer requirements, and 

increasing yield and productivity. Periodic counter current (PCC) chromatography and 

simulated moving bed (SMB) chromatography are two continuous chromatography 

techniques used to purify biopharmaceuticals. The control of these systems is generally 

accomplished in a time-based or dynamic control mode. In the time-based control 

mode, the loading step for a column is executed as a function of time, and the variability 

in the performance between columns and changes in the feed concentrations are not 

considered. This method is considered simple, but it often leads to under or overloading 

the columns, which can affect productivity and/or yield. In a dynamic control mode, the 

difference in the ultraviolet signal between the column inlet and outlet is continuously 

monitored. The breakthrough in each column is used to control the loading step. This 

method allows the loading onto a column to a pre-defined breakthrough level 

independently of the variability in the column performance or the feed stream. 

However, the flow rates for different operation steps must be elegantly manipulated to 

maintain continuity in each column. Very few commercial instruments for PCC and SMB 

are available, but they are expensive and challenging for customization. They are often 

designed for pilot-scale, aiming to manufacture clinical trial products. (Cytiva, 2016) 

Process development and understanding of continuous chromatography are pressing 

for small-scale, flexible, configurable instruments for PCC and SMB. 
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1.3 INTEGRATED PLATFORMS 

Several lab-scale integrated continuous platforms have been reported in the literature 

for the production of biologics. Warikoo et al. (2012) reported the first demonstration 

of integrating a perfusion bioreactor (ATF with a 0.2 µm polyethersulfone filter, 12 L 

working volume) and a four-column PCC chromatography system.  Two molecules were 

produced using this system: a monoclonal antibody, a model of a stable protein, and a 

recombinant human enzyme, a model of a complex, less stable protein. High cell 

densities of 50-60 x106 cells/mL were reached in both cases. A bleed was implemented, 

and the extended culture periods were over 60 days. The PCC system, modified from an 

AKTA system, ran continuously for 30 days with no signs of reduced performance or 

fouling. The peak volumetric productivity for the mAb was five-fold greater than that in 

a fed-batch process using the same cell line, and a decline in productivity was observed 

after day 40. More impactfully, the volumetric productivity for the enzyme was 40-fold 

higher when compared to the legacy process. Apart from a higher cell density in the 

perfusion cell culture, the continuous capture step significantly reduced the residence 

time of unstable proteins, thus improving the product quality. The chromatography 

media capacity utilization rate was increased by 20 and 50%, buffer usage was reduced 

by 25 and 46%, and the individual column size was reduced by 75 and 50 folds when 

compared to a batch mode for the capture of the mAb and the enzyme, respectively. 

Godawat et al. (2015) reported an integrated continuous process with an ATF-based 

perfusion process at a 12 L working volume and two PCC chromatography systems for 

producing mAbs. In this platform, the clarified harvest from the bioreactor was pumped 
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into a 2 L surge vessel, and the harvest stream was then subjected to a three-column 

capture step. The eluent from each capture column was pumped into a glass vessel for 

viral inactivation. After viral inactivation, the stream was introduced to the second PCC 

system for further purification, followed by a polishing step. These steps were 

performed continuously in a fully automated manner. The results were normalized to a 

batch process, and an 1100-fold increase in productivity was achieved for the upstream 

process and a 600-fold increase for the downstream process. Advantages in equipment 

use, resin capacity utilization, buffer consumption, and hold-up steps elimination were 

demonstrated. Simplifying the process train was achieved by eliminating multiple hold-

up steps and fully integrating multiple unit operations. Full automation of the 

continuous downstream process was realized over an extended period (31 days), leading 

to constant process flows and consistent product quality.(Godawat et al., 2015) 

Steinebach et al. (2017) also used mAbs as the model molecule for their integrated 

continuous process at a bench scale. The process included continuous harvest of the 

product stream from a bioreactor with a 12 L working volume via a filter-based cell-

retention system, a continuous two-column protein A capture step, a virus inactivation 

step, a semi-continuous polishing step, and a batch-wise flow-through polishing step. 

The process was operated for 17 cycles (3.5 days) and consistent product quality was 

achieved in terms of product-related impurities including different glycoforms, charge 

isoforms, and process-related impurities such as host cell DNA, host cell proteins, and 

leached protein A. In addition to benefits observed in previous platforms, they also 
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reported a 92% yield in the downstream operation and an overall 80% yield after 

considering the loss to cell bleeds, comparable to other integrated processes.  

More recently Gomis-Fons et al. (2020) reported a proof-of-concept of a continuous 

end-to-end monoclonal antibody production platform. A major difference from the 

previously reported platforms was that the working volume for this platform was 200 

mL compared to a working volume of over 10 L in other platforms. This platform 

included a perfusion process equipped with an ATF filtration device and a purification 

process with model-based design and control. Downstream processing consisted of 

periodic twin-column protein A capture, virus inactivation, cation exchange 

chromatography, and anion exchange chromatography. The entire downstream process 

was operated on a single chromatography system. This process produced mAbs for 17 

days at a high cell density between 70 and 90×106 cells/ml. Mechanistic models were 

built for the downstream process, and the models were implemented as a control 

strategy to automatize and optimize the operation of the process. The maximum 

recovery yield observed for this process was 60%. Such a small working volume is 

appealing for the early process development of continuous processing. The models can 

be developed and validated at a small cost, and the process parameters can be 

optimized for high yield and better product quality. 

1.4 AIM AND SCOPE 

Previously reported platforms and commercially available technologies have 

demonstrated the great potential of continuous bioprocessing. However, the vast 

majority of them are very expensive, inflexible, and challenging for their configurations 
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for different processes/products. In addition, a high working volume in a bench-scale 

bioreactor (>10 L) is often required for those available continuous chromatographic 

systems. Meanwhile, in-line monitoring of key cell culture metabolites and control of 

key nutrients during perfusion is still in the early development stage. This Ph.D. study 

aims to develop a versatile, Python-code-driven, lab-scale continuous platform for an 

integrated perfusion and capture process (mAb as a model molecule) in a cost-effective 

way, which could be employed for process development and process understanding. The 

platform incorporates a Raman-based PAT system for monitoring critical cell culture 

metabolites such as glucose, glutamine, glutamate, lactate, and ammonium and 

feedback control of the glucose and glutamine concentrations in the bioreactor. 

1.5 ORGANIZATION OF THE DISSERTATION 

Biopharmaceutical market trends are pushing the development of continuous 

bioprocessing platforms. Enablers for continuous bioprocessing are briefly reviewed, 

and their gaps are identified in Chapter 1. Chapter 1 also includes the overall research 

aim of this Ph.D. study and the organization of the dissertation. 

Chapter 2 focuses on the development of methodology and software for building 

Raman-based calibration models for cell culture metabolites. Pre-processing methods 

are screened and evaluated for processing raw Raman spectra. Then, partial least 

squared (PLS) regression models are built in Python and applied to predict these 

metabolites' concentrations. 
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In Chapter 3, the Raman-based system is applied to monitor cell culture metabolites and 

control glucose and glutamine concentrations in a fed-batch process. Through open-

source software, the Raman-based models are seamlessly integrated into a control 

system. The concentrations predicted from Raman spectroscopy are used to trigger the 

pump operations for the control of glucose and glutamine concentrations to their pre-

determined setpoints. 

In Chapter 4, the Raman-based models are applied to a perfusion process. Apart from 

continuous monitoring of critical metabolites, the glucose and glutamine concentrations 

are maintained at a constant level, leading to a reduction in feed media consumption 

and an increase in the product stream at a relatively low exchange rate.  

 The development of a two-column chromatography system and its integration into a 

perfusion/capture process is detailed in Chapter 5. Continuous loading of the permeate 

stream directly from the bioreactor onto two columns are realized. The resin utilization 

capacity of 100% is achievable in the two-column system. 

Conclusions are drawn in Chapter 6. Future directions from the Ph.D. study are 

projected.  
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2 RAMAN-BASED CALIBRATION MODEL DEVELOPMENT 
 

2.1 ABSTRACT 

Process analytical technology (PAT) is a system for designing, analyzing, and controlling 

manufacturing processes through real-time measurements of critical quality attributes 

(CQAs) and critical/key process parameters (CPPs). Raman spectroscopy with 

chemometric analysis has been demonstrated to be a viable and promising PAT for 

manufacturing biopharmaceutical processes. It has successfully been used for 

monitoring media components, cell culture metabolites including amino acids, 

biomasses, and protein-based products. This chapter is devoted to developing Raman-

based calibration models using the concentration of cell culture metabolites obtained 

from a Bioanalyzer such as glucose, glutamine, lactate, glutamate, and ammonium. 

The spectra are processed via the partial least squares (PLS) regression method. The 

established models are then used for predicting metabolite concentrations during a 

cell culture process.   
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2.2 BACKGROUND AND INTRODUCTION 

2.2.1 Process Analytical Technology (PAT) In Biopharmaceutical Processing 

Process analytical technology (PAT) is developed for real-time and online/at-line 

measurements of CQAs and CPPs during the designing, analyzing, and controlling of a 

manufacturing process (Krull et al., 2012). PAT, a framework that uses a combination of 

measurement, analysis, and control, can ensure that a product is manufactured 

consistently and its quality attributes are within the release acceptance criteria. The 

application of PAT to biopharmaceutical processing is broad, including process 

development, drug product manufacturing, real-time product release of commercial 

products, and raw material testing. It is often associated with other initiatives such as 

quality by design (QbD) and continuous manufacturing (FDA et al., 2004). There are 

many benefits to implementing PAT in biopharmaceutical processing. Implementation 

of PAT has the capability of acquiring real-time, potentially actionable data that can be 

integrated directly into a process control system. By contrast, in traditional approaches, 

the process is sampled at pre-determined intervals, and the test result is generated 

using an offline method after sampling. The offline data may not be able to be used for 

real-time tuning of the manufacturing process since the data may be out-of-date for a 

dynamically changing process. Another benefit is the potential to improve process 

understanding through real-time process monitoring. The real-time process information 

can help reveal the cause-to-effect relationship between CPPs or KPPs and CQAs. PAT 

may also help identify inefficiencies in the manufacturing process that, when corrected, 

could lead to cost and waste reductions.  
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Traditional biopharmaceutical manufacturing practices include manual batch processes 

with offline analysis of collected samples to monitor CPPs and evaluate CQAs. Despite 

many opportunities for improving biopharmaceutical development and manufacturing 

through innovation in process development, process analysis, and process control(FDA 

et al., 2004), the biopharmaceutical industry hesitates to introduce innovative systems 

for several reasons, including regulatory uncertainties and technical challenges. To 

encourage the introduction of innovation to improve and modernize pharmaceutical 

process development and manufacturing, the Food and Drug Administration (FDA) 

released a new initiative called “Pharmaceutical CGMPs for the 21st Century: A Risk-

Based Approach” in 2002. In 2004, a guidance named “Guidance for Industry PAT — A 

Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality 

Assurance” was released. This guidance describes a framework based on scientific and 

engineering principles as a tool to mitigate risks related to poor product and process 

quality. The PAT framework (Section IV) defines PAT as “a system for designing, analyzing, 

and controlling manufacturing through timely measurements (i.e., during processing) of 

critical quality and performance attributes of raw and in-process materials and 

processes, with the goal of ensuring final product quality”. This guidance aims to move 

towards real-time monitoring and control of CPPs that influence CQAs of 

biopharmaceuticals(FDA et al., 2004) (Claßen et al., 2017). PAT implementation can 

reduce regulatory risk and improve compliance with regulatory requirements by 

providing a detailed understanding of the manufacturing process and the factors 

affecting product quality. 
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PAT tools can be multivariate tools for the design, analysis, and control of processes, or 

a combination of these. They can also be used for both in-line and at-line 

measurements. In-line measurements are performed directly on the production line. In 

contrast, at-line measurements are performed on samples collected from the 

production line and analyzed within a small proximity of the production line and a short 

period after collection. Both methods have advantages and limitations, and the choice 

depends on the specific needs of the process. Univariate process analyzers have been 

used extensively in biopharmaceutical manufacturing, specifically mammalian cell-

based processes, such as sensors for pH, temperature, dissolved oxygen (DO), and 

pressure. Chemical and biochemical properties such as nutrient and by-product 

concentrations, cell counts, and cell viability are often measured via laboratory or offline 

testing. Current analyzers for metabolite concentrations and cell counts are not 

applicable for in-line continuous monitoring of mammalian cell-based process-related 

metabolites, products, or cells for real-time decision-making. Even though new 

analyzers as PAT tools have emerged, the lack of reliable and robust in situ sensors with 

great sensitivity has hampered the application of PAT in the biopharmaceutical industry 

for advanced process controls.  

Spectroscopic techniques have become the most popular for process monitoring. The 

most commonly explored spectroscopic techniques for bioprocess monitoring are 

ultraviolet-visible spectroscopy (UV-Vis), near-infrared spectroscopy (NIR), mid-infrared 

spectroscopy (MIR), fluorescence, and Raman spectroscopy. These techniques are 

based on the interaction of light with the molecules of interest. UV-Vis, NIR, and MIR 
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spectroscopy techniques detect the intensity of light absorbed and scattered by 

molecules. In contrast, fluorescence spectroscopy measures the intensity of light 

emitted by excited fluorophores, and Raman spectroscopy differentiates the inelastic 

scattering intensity of light by molecules (Claßen et al., 2017). These spectroscopic 

methods have the advantages of being non-invasive and non-destructive. They can 

monitor multiple analytes simultaneously in real-time without reagent or sampling 

requirements and do not interfere with cellular metabolism, making them suitable for 

monitoring bioprocesses. However, spectroscopic techniques encounter challenges 

such as the requirement of chemometric analysis through spectra interpretation, a low 

ratio of signal-to-noise, and measurement interference from cells and cell debris 

(Whelan et al., 2012). Raman has a weak water signal compared to other spectroscopic 

techniques such as NIR and MIR, and it has become a promising candidate for 

monitoring mammalian cell culture processes in media whose main component is water. 

2.2.2 Raman Spectroscopy 

The Raman spectroscopic technique is used to reveal characteristic vibrational, 

rotational, and other low-frequency movements in a molecule by filtering the scattered 

signal from a sample. The scattered Raman signal is generated when a sample is 

irradiated by a high-intensity monochromatic laser in the UV-visible region. Raman 

(inelastic) scattering occurs when a photon interacts with a molecule to induce a change 

in its vibrational energy. The scattered photon has a different energy level from the 

incident photon, the change in the energy level can be detected and assigned to a 

specific molecule. There are two types of light scattering: Rayleigh scattering (the 
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majority of the scattered light has the same frequency as the incidence light (νo)), and 

Raman scattering (a small portion of the scattered light has the frequencies of νo ± νm, 

where νm is the vibrational or rotational frequency of a molecule). Raman scattering can 

be divided into Stokes and anti-Stokes types. Stokes Raman scattering occurs when the 

frequency of the Raman scattering signal is lower than that of the incidence light, which 

is typically acquired for molecular analysis, while anti-Stokes scattering occurs when the 

frequency of the Raman scattering signal is higher than that of the incident light, and 

the intensity of the anti-Stokes signal is generally much weaker than that of the Stokes 

signal(John R. Ferraro, 1994). Raman spectra are generated by plotting the intensity of 

the scattered signal at different wavelengths that correspond to unique chemical 

“fingerprints” of molecules in the sample. The fingerprint information includes the 

vibrational or rotational frequencies and intensities of the molecular bonds in the 

sample, and a linear correlation is expected between the intensity of the Raman signal 

and the concentration of the molecule in the sample.  

2.2.3 Raman-Based PAT in Bioprocessing 

Raman spectroscopy has been applied in biopharmaceutical processing, applications 

range from raw material testing for cell culture media, monitoring metabolites and 

amino acids, measuring cell density, and quantifying monoclonal antibody titer. Raman 

spectroscopy has been employed to identify, characterize, and quality test cell culture 

media components, allowing rapid in-house sample testing, tracking, and quality 

control. In-house testing of these raw materials reduces assay costs and their rapid 

release shortens the batch duration(Li et al., 2010). Real-time monitoring of cell culture 
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processes would eliminate the need for daily, offline, and manual measurements, 

leading to better process understanding and the development of more robust and 

consistent processes. Bhatia et al. assessed Raman-based calibration models to measure 

four amino acids including tyrosine, tryptophan, phenylalanine, and methionine, in cell 

culture media, which are essential in cell growth and product formation. They 

demonstrated the potential for quantifying these amino acids in cell culture media with 

the exception of methionine, which has Raman peaks masked by water (Bhatia et al., 

2018). In-line Raman probes have been explored to monitor multiple parameters 

simultaneously (Abu-Absi et al., 2011), including the concentration of glutamine, 

glutamate, glucose, lactate, and ammonium, viable cell density, and total cell density 

during mammalian cell culture. Raman calibration models were built for each parameter 

and tested in a 500 L bioreactor. Generally, the predicted parameters from these 

calibration models followed the trend of offline reference values, and 10-30% errors 

were observed. Mehdizadeh et al. built generic calibration models for glucose, lactate, 

and viable cell density. The generic models could be applied to multiple products, 

different Chinese Hamster Ovarian (CHO) media, a variety of CHO cell lines, and scales 

ranging from laboratory to manufacturing. They used a broad data set from several 

mammalian cell culture batches and tested the resulting models in varying 

manufacturing conditions, processes, and scales to validate the robustness and 

scalability of the developed models. The models were demonstrated to perform well at 

multiple scales and conditions (Mehdizadeh et al., 2015). Raman spectroscopy has also 

been used to measure the monoclonal antibody concentration produced from CHO cells 
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(Yilmaz et al., 2020). The model built was able to estimate the concentrations of different 

monoclonal antibody isotypes with prediction errors of 0.2 (g/L). Therefore, Raman 

spectroscopy and chemometric analysis could be a viable and promising method as a 

PAT tool for multiple steps in biopharmaceutical processing. 

2.2.4 Aim 

This chapter aims to develop a methodology for building Raman-based calibration 

models for cell culture metabolites such as glucose, glutamine, lactate, glutamate, and 

ammonium. The established methodology is based on Partial Least Squares (PLS) 

Regression models for predicting metabolite concentrations via in-house developed 

Python software.   

2.3 MATERIALS AND METHODS 

2.3.1 Mammalian Cell Culture and Sampling for Model Calibration 

A CHO S cell line was cultured in a 3L Applikon bioreactor (Applikon Inc., Delft, 

Netherlands). The Applikon’s ez-Control was used to control pH, DO, temperature, and 

agitation at 7.0, 30%, 37 °C, and 140 rpm, respectively. All runs were conducted with a 

1.5 L working volume and the ProCHOTM 5 media was supplemented with 4.0 mM 

glutamine. Samples were withdrawn from the bioreactor at pre-determined time points 

throughout the culture period and spun down to prepare cell-free supernatant. The 

supernatant was frozen at -80 °C and stored for processing after the run was completed. 

The cell density and viability were measured once per day offline to monitor the health 

of the culture using a Vi-CELL XR (Beckman Coulter, IN, USA). Three runs were used to 

develop the calibration models for glucose, glutamine, glutamate, lactate and 
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ammonium: the first bioreactor run in a batch mode, while the second and third in a 

fed-batch mode with a concentrated glucose and glutamine feed.  

2.3.2 Raman Spectra Acquisition 

Samples were thawed and analyzed offline using a Roche Cedex Bio Analyzer (Roche 

CustomBiotech, Penzberg, Germany) to measure the concentration of glucose, 

glutamine, lactate, glutamate, and ammonium. These values were used as input to 

calibrate the Raman models. Spectral data was collected offline using 700 µL of the same 

sample as that analyzed by the Cedex Bio Analyzer. The Supsense Raman Bioanalyzer, 

coupled with a fiber-optic Raman probe with an optical excitation of 785 nm, was used 

to generate the Raman spectra. Each spectrum was acquired from five scans after 14 

seconds of exposure. Raw spectra processing, including water spectra subtraction, was 

accomplished using ENLIGHTEN™ spectroscopy software (Wasatch Photonics, Logan, 

UT).  

2.3.3 Spectra Preprocessing  

Spectra were pre-processed using Principal Component Analysis (PCA) to determine the 

fingerprint region and identify outliers. Outliers were identified from the PCA models 

using Hotelling T2 plots with a 95% confidence interval. Smoothing and baseline 

preprocessing methods were screened to reduce noises in the signal and remove 

baseline drifting. PCA modeling, fingerprint region identification, and pretreatment 

method screening were accomplished using Umetrics SIMCA (Ver. 15.0.2).  
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2.3.4 PLS Model Calibration 

Once a preprocessing method was established, Python software was developed in-

house to preprocess and build PLS calibration models. The complete dataset in a CSV 

format was imported. Each dataset only included the established fingerprint region of 

the spectra. A preprocessing method was compared and selected. The optimal number 

of components for the PLS model was determined by minimizing the mean squared 

errors. The optimal number of components was implemented in the PLS model using 

80% of the preprocessed data for a given metabolite. The model was then cross-

validated with the remaining 20% of the dataset, coefficients of determination(R2) for 

calibration (R2C), cross-validation (R2CV), root mean square error of calibration (RMSEC), 

and root mean square error of cross-validation (RMSECV) were calculated before the 

model was completed. 

2.4 RESULTS & DISCUSSION 

2.4.1 Spectra Pre-processing 

The fingerprint region for the calibration spectra is identified to be between 350 and 

1750 cm-1 (Figure 2A), as no significant differences between samples are observed 

outside this region. Each data set includes the concentration of each metabolite 

obtained from the Cedex Bio Analyzer and its corresponding spectrum data. Datasets 

for each metabolite (glucose, glutamine, lactate, glutamate, and ammonium) are used 

to generate the PCA models for them. PCA, a dimension-reduction method, reduces 

datasets with a broad range of wavelengths to a dataset with a lower dimension. 

Dimensions are reduced while a high variability is maintained, resulting in a compressed 
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version of the original dataset for visualization and processing. The resulting PCA models 

were used to identify outliers in each dataset. The resulting Hotelling T2 plots with a 95% 

confidence interval for each dataset are shown in Figure 1. Any data points outside of 

the 95% confidence interval are removed. The new spectra are then subjected to 

additional preprocessing methods (Figure 2B). Several smoothing preprocessing 

methods are screened to reduce noises in the Raman signal and remove the baseline 

drifting. It is found that the Savitzky-Golay smoothing method by applying a quadratic 

A B 

C D 

E 
Figure 1. Hotelling T2 plots with a 95% 

confidence interval are used to remove outliers 

from the datasets for A) glucose, B) glutamine, 

C) glutamate, D) lactate, and E) ammonium. 

The spectra dataset is paired with its 

metabolite concentration. 
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polynomial fitting over 25 points (Figure 2C) is the best to reduce the signal-to-noise 

ratio. Methods such as offset correction, row-center correction, moving average and 

derivatives application are screened for adjusting the baseline. A second derivative 

(Figure 2D) is selected for baseline correction, and the other methods do not result in 

drift removal for the entire dataset. The second derivative of each spectrum allows 

retaining the spectral information of signal peaks, while helping normalize the data and 

remove drifts in the baseline.  

 

Figure 2. Spectra preprocessing before applying the PLS method. A) The fingerprint region of the 

spectra is identified between 350 and 1750 cm-1. B) Spectra after removal of outliers from each 

metabolite data set. C) Spectra after applying the Savitzky-Golay smoothing method to reduce the 

signal-to-noise ratio. D) Spectra after implementing a second derivative to remove the baseline drift 

and improve the peak resolution. .Raw spectra were generated from samples withdrawn from bench-

scale bioreactor runs in a batch/fed-batch mode. Samples were taken at pre-determined time points 

during culture periods ranging from 0 to 150 hours. 

A B 

C D 
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2.4.2 PLS Model Construction 

PLS-based predictive models for the cell culture metabolites, including glucose, 

glutamine, lactate, glutamate, and ammonium, are built from pre-processed spectra 

and their corresponding metabolite concentrations. PLS calibration models are 

developed using the steps outlined in the flowchart in Figure 3. The dataset is imported 

and preprocessed before building the PLS predictive models. As described in the flow 

diagram, the optimal number of principal components for the PLS model is then 

determined for the pre-processed dataset. This is obtained by minimizing the MSE, and 

a minimal MSE is often correlated with better predicting ability of the PLS model. Up to 

25 principal components are tested and graphed to display the MSEs against each 

number of principal components. Figure 4 shows the number of principal components 

versus the MSE for glucose, glutamine, lactate, glutamate, and ammonium. The number 

of components increases, and a broad level of variability in the spectra covers, therefore, 

the MSE is often reduced. However, when more components are included in the model, 

the chance of overfitting the model is elevated. For example, similar MSE is seen for 3,4 

and 5 components for glutamine. Sacrificing a slight reduction in the MSE and building 

a model with three components may lead to a more general model with better 

predictability. The red cross on each graph indicates the lowest MSE for each data set 
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and the number of principal components is obtained for the models 

for these metabolites. 80% of the preprocessed calibration data is 

then used to generate the PLS model for each metabolite, while the 

remaining portion of the calibration data is used to test the model. 

Cross-validation plots of the measured values versus the model-

predicted values are shown in Figure 5. The coefficients of 

determination(R2) for calibration (R2C) and cross-validation (R2CV), 

the root mean square errors of calibration (RMSEC), and the root 

mean square errors of cross-validation (RMSECV) are calculated for 

each model, and they are shown in Table 1.  

R2 measures the level of variability between the measured values 

and the predicted values by a model. This value is one or less, and 

a value of one means the predicted values are completely in 

alignment with the measured values.  R2C and R2CV are high for all 

models for these metabolites, indicating each model could 

accurately predict the metabolite concentration using the acquired 

Raman spectra. RMSE measures the total error between the 

predicted values and the actual measured values. A lower (closer to 

zero) RMSE indicates a lower error. RMSEC and RMSECV calculated 

for each model are comparable or better when compared to the 

reported values for similar models(Abu-Absi et al., 2011). R2 and 

RMSE values for cross-validation are lower than those for building 

Figure 3. Flow chart 

for building Raman 

based PLS 

calibration models. 
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the model, which is expected because cross-validation introduces new data to the 

model. Higher RMSECV values are observed for glutamine and ammonium, which could 

result from overfitting. A small calibration dataset or clustered data may also lead to a 

less general model. Nevertheless, the Raman-based PLS model for each metabolite 

B 

C D 

E 

Figure 4. The calculated MSE for an increasing 

number of PLS components for A) glucose B) 

glutamine C) glutamate D) lactate and E) 

ammonium. The lowest MSE is used to 

determine the optimal number of principal 

components in the PLS models for these 

metabolites. 

A 
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could be applied to predict the metabolite concentration during the cell culture process 

within a high R2 value and a low RMSE value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cross-validation plots of the 

measured values versus the model-

predicted values for A) glucose B) glutamine 

C) glutamate D) lactate and E) ammonium 

at an optimal number of PLS components 

determined from Figure 4. 
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Table 1. Summary results of Raman-based PLS calibration models  

Metabolite Range N Components R
2
C R

2
CV RMSEC RMSECV 

Glucose (g/L) 1.3-9.0 93 11 0.995 0.975 0.023 0.115 

Glutamine 

(mmol/L) 
0.2-5.0 30 5 0.983 0.905 0.038 0.213 

Glutamate 

(mmol/L) 
0.6-3.0 88 8 0.949 0.848 0.019 0.058 

Lactate (g/L) 0.4-3.0 80 6 0.961 0.858 0.012 0.045 

Ammonium 

(mmol/L) 
0.7-7.5 96 15 0.991 0.909 0.036 0.367 

 

2.5 CONCLUSION 

Raman-based PAT has the potential to be used in the pharmaceutical industry to ensure 

that the manufacturing processes for biological or small-molecular drugs are efficient, 

reliable, and reproducible. By monitoring the process in real-time, PAT can help identify 

and correct potential issues before they impact product quality, reducing the risk of 

product recalls and improving patient safety.  A methodology for building Raman-based 

calibration models for cell culture metabolites has been developed in this chapter. The 

preprocessing methods for the calibration dataset include reducing the acquired 

wavelength range of each raw spectrum to the fingerprint region, applying Savitzky-

Golay smoothing to improve the signal-to-noise ratio, and selecting a second derivative 
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for baseline correction. The Python-based in-house software is capable of generating 

PLS calibration models for each metabolite, including glucose, glutamine, glutamate, 

lactate, and ammonium, performing cross-validation for these models, determining the 

calibration performance by calculating the coefficient of determination(R2) for 

calibration (R2C), the coefficient of determination for cross-validation (R2CV), the root 

mean square error of calibration (RMSEC), and the root mean square error of cross-

validation (RMSECV). The input for the models is a comma-separated-value file with the 

reference metabolite concentrations and the spectra at the corresponding 

concentrations. The high R2 and low RMSE values for the models suggest that they could 

be applied to predict the metabolite concentration from real-time spectra. In-house 

Python-based software for these models offers the flexibility of its full integration into 

the feedback control software for driving external pumps or other instruments, thus 

providing real-time monitoring/control of cell culture metabolites during the cell culture 

process.  
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3 Raman-Based Control System Applied to a Fed-Batch Process 
 

3.1 ABSTRACT 

Fed-Batch is the most common mode of operation in the biopharmaceutical processing 

industry. Benefits of this cultivation mode include a high cell density, an extended 

culture period, and enhanced productivity compared to a batch process while 

maintaining relatively low operational cost and a low level of operational complexity 

compared to a perfusion process. Bolus feeding, supplying a great amount of 

concentrated feed at a single time point, is the most used strategy. Challenges for bolus 

feeding include nutrient imbalance, sudden pH changes, and heterogeneous cell culture 

conditions that can affect cell viability, productivity, and product quality. An excessive 

feed of glucose and glutamine can lead to an increased level of toxic byproducts such as 

lactate and ammonia, while underfeeding or depletion of critical nutrients for a period 

may lead to decreased cell viability, lower productivity, and reduced product quality. 

Control of glucose and glutamine at a constant concentration has been demonstrated 

to reduce the production of toxic byproducts and improve product quality. A Raman-

based monitoring and control system is developed in-house for monitoring the 

concentration of metabolites in a fed-batch process, including glucose, glutamine, 

glutamate, lactate, and ammonium. The predicted concentrations of glucose and 

glutamine are input into the control system to control the feed of two nutrients. Glucose 

and glutamine are maintained within 0.5 g/L and 0.35 mmol/L of their setpoints, 

respectively.  The proof-of-concept study has demonstrated the potential of this Python-
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driven system for real-time monitoring of the metabolites and automated control of 

critical nutrient concentrations in a fed-batch process. 

3.2 BACKGROUND & INTRODUCTION 

3.2.1 Fed-Batch Processing 

Generally, there are three cultivation modes of operation in bioprocessing: batch, fed-

batch (semi-batch), and continuous. A batch operation introduces all necessary 

components, such as media and inoculum, at the beginning of the run, and no additional 

components are introduced throughout the culture period. In a batch process, the 

product produced is only harvested at the end of the run. Advantages of this mode of 

operation include a lower and fixed cost of operation and operation simplicity. Typical 

optimization in this mode focuses on the initial media composition and running process 

parameters such as pH, temperature, and dissolved oxygen, limiting optimizing 

opportunities. A fed-batch operation starts with a batch phase, then at least one feed 

stream containing nutrients, precursors, inducers, or minerals is introduced periodically 

or continuously to the cell culture vessel. This mode of operation has the advantages of 

reaching a higher cell density and extending the culture time, leading to an increase in 

the product yield. Similar to a batch process, the product is harvested at the end of the 

run. A continuous process, a perfusion process, allows the continuous addition of 

nutrients or other components and removal of wastes and products throughout the 

culture period, while cells are retained within the culture vessel. Continuous cultivation 

can significantly increase volumetric productivity with challenges of run complexity and 

a high operational cost. (Henry C. Lim & Hwa Sung Shin, 2013)(Kadic & Heindel, 2014) 
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The goal of fed-batch operation is to regulate the feed rate of nutrient components to 

prevent nutrient depletion and extend the culture period to prolong product generation.  

A higher cell density, a longer culture period, and increased productivity are often 

achieved from a fed-batch operation compared to batch operation, while there is a 

smaller operational cost and a lower level of run complexity compared to a perfusion 

process, consolidating that fed-batch is the most common mode of operation in the 

current biopharmaceutical industry (Yang & Sha, n.d.). Bolus feeding is the most used 

strategy, where a large amount of the feed media is added at a single time point. 

Typically, bolus feeding happens daily after offline metabolite sampling. The advantages 

of bolus feeding are an infrequent feeding schedule and a simple feeding process, which 

can lead to time and resource savings and reduce the chance of contamination. 

However, bolus feeding of highly concentrated components into the culture vessel may 

lead to nutrient imbalances, pH changes, and other stress-causing conditions that can 

affect cell performance and product quality. The nutrient and metabolite imbalance has 

been one of the main challenges in fed-batch bioprocessing. Excessive feeding of 

glucose and/or glutamine can produce an increased level of toxic byproducts such as 

lactate and ammonia while underfeeding of them or a long period for a low nutrient 

concentration can lead to decreased cell viability, low productivity, and a severe impact 

on the product quality.   

The concentration of critical nutrients (e.g. glucose and glutamine) and by-products (e.g. 

lactate and ammonia) have been known to have an impact on cell culture longevity, 

product quality (Berry et al., 2016), and titer production. For example, glucose and 
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ammonia affect the glycosylation patterns of proteins of interest (Whelan et al., 2012), 

and high glucose increases the glycation of produced proteins (Yuk et al., 2011). 

Therefore, it has been explored in biopharmaceutical operations to monitor and control 

the concentration of critical nutrients and by-products in the cell culture media. 

Improvements in the product quality in CHO cell culture were realized through glucose 

control at 2.5 g/L to reduce the glycation of produced proteins (Berry et al., 2016). Other 

benefits of controlling the feeding rate of critical nutrients include improving cell 

production performance, extending the culture period, and maintaining high viability by 

reducing the excessive buildup of toxic byproducts and maintaining consistent 

nutritional conditions throughout the process. Controlled feeding may also lead to an 

improvement in productivity and a reduction in operation cost as these critical nutrients 

are added as needed and not at a pre-set frequency. Controlled feeding is achieved by 

monitoring the critical nutrient concentration and providing feedback control on the 

feeding pump rate of the nutrient throughout the culture period.  Therefore, online 

sensors for real-time measurements of critical nutrient concentration are needed for a 

controlled feeding process. 

3.2.2 Controlled Fed-Batch 

Controlling key metabolites such as glucose and glutamine through optimized feeding 

strategies in mammalian cell culture has shown benefits such as increased cell growth 

and productivity (Mehdizadeh et al., 2015), reduced glycation (Berry et al., 2016), and 

more consistent product quality. A few PAT tools coupled with process control software 

have been developed to enable maintaining the critical nutrient concentration at a pre-
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determined setpoint. The PAT tools can be used to measure the concentration of 

nutrients directly or provide measurable values which could be directly or indirectly 

correlated with the nutrient concentration. The in-situ glucose sensor from CITSens Bio, 

for example, is developed for mammalian cell culture for real-time monitoring of glucose 

and lactate concentrations, and a micro pump is activated when the glucose is below 

the setpoint.  At-line PAT tools, such as an HPLC system, can be installed within close 

proximity of the culture vessel to measure the concentration of critical nutrients, and 

the values are then used to control the feed pumps of these nutrients. Kurokawa et al. 

used an at-line HPLC system to maintain lower concentrations of glucose and glutamine 

at 0.2 g/L and 0.1 g/L, respectively, for a hybridoma cell culture process, resulting in a 2-

fold increase in viable cell density and monoclonal antibody titer compared to that at a 

higher glucose and glutamine concentration of 2.0 g/L and 0.6 g/L, 

respectively(Kurokawa et al., 1994). An online predictor for glucose concentration was 

developed and implemented based on a relationship between the oxygen transfer rate 

and the glucose consumption rate, the fluctuation of the glucose concentration could 

be mitigated during the CHO cell culture process (Zhou et al., 1995) (Goldrick et al., 

2018). A pH-based method was explored to control the glucose concentration and 

reduce the effect of accumulated lactate in the cell culture media. An increase in pH 

indicates lactic acid is consumed by cells since the glucose supply is below the threshold 

in the media.  An increment in the pH triggered the addition of a small amount of glucose 

to the bioreactor, thus preventing bolus feed of highly concentrated glucose (Gagnon et 

al., 2011). Another commercially available dissolved oxygen biosensor was applied to 
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develop a model for online monitoring of glucose concentration(Tric et al., 2017). The 

readings from this sensor were used to control the feed of glucose to the 

bioreactor(Lederle et al., 2021).  Raman spectroscopy-based calibration models can be 

used to real-time predict the concentration of critical nutrients. Raman sensors were 

employed to be integrated into a control system for maintaining a constant glucose 

concentration in the bioreactor. Berry et al. developed a Raman-based automated 

process enabling control of glucose concentration at a setpoint of 0.24 g/L. A 

commercially available Raman instrument was used, and the prediction model was built 

from the built-in software package for the instrument.  The product quality, including 

glycation, was found to be significantly improved compared to that of bolus glucose 

feeding. (Berry et al., 2016)  

3.2.3 Aim 

Previous studies have demonstrated the benefits of controlling cell culture feeds such 

as glucose and glutamine. While one or two metabolites are controlled during the fed-

batch process, other metabolites are still monitored via offline sampling. pH or DO 

sensors are often used to maintain a constant setpoint of pH (e.g., 7.0) and DO (e.g., 

40%), respectively. While these sensors are used to monitor the glucose concentration, 

the key process parameters such as pH and DO cannot be controlled. In this chapter, a 

Raman-based monitoring and control system was developed for monitoring the 

concentration of glucose, glutamine, glutamate, lactate, and ammonium and controlling 

the glucose and glutamine concentrations in a fed-batch process. The Raman-based 

calibration models were coded in Python. The code for monitoring metabolites via 
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analyzing their Raman spectra was seamlessly integrated into the Python code for 

controlling the pump speed to feed glucose and glutamine. The in-house developed 

system is very flexible, which can be tuned for bench-scale instruments to realize a 

constant nutrient concentration in a fed-batch process.  

3.3 MATERIALS & METHODS 

3.3.1 Raman-Spectroscopic Calibration Models 

Cell culture samples were withdrawn from a bioreactor using a CHO-S cell line with 

ProCHOTM 5 media (Sartorius Stedim Biotech, Göttingen, Germany). Samples were 

centrifuged to remove cells and cell debris. 0.7 mL of the cell-free supernatant was 

transferred to a 3.0 mL quartz cuvette for Raman analysis. A Supsense Raman 

Bioanalyzer, coupled with a fiber-optic Raman probe at an optical excitation wavelength 

of 785 nm, was employed to irradiate the sample and collect the scattered Raman signal. 

Each spectrum was acquired by co-adding five scans after 14 seconds of exposure. Water 

spectra subtraction, co-addition, and acquisition were accomplished using ENLIGHTEN™ 

spectroscopy software (Wasatch Photonics, Logan, UT). Meanwhile, the samples were 

analyzed via a Roche Cedex Bio Analyzer (Roche CustomBiotech, Penzberg, Germany) to 

obtain the reference concentrations of glucose, glutamine, glutamate, lactate, and 

ammonium. Both the Raman spectra and reference values were used to build separate 

PLS calibration models for glucose, glutamine, glutamate, lactate, and ammonium, and 

the detailed procedure was described in Chapter 2. 
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3.3.2 Development of a Raman-based Monitoring and Control System 

A Raman spectrum was generated from a cell culture sample in a similar procedure to 

that in Section 3.3.1. The Raman spectrum was fed into the PLS calibration models to 

predict the concentrations of glucose, glutamine, glutamate, lactate, and ammonium. A 

Mettler Toledo SB8001 scale (Mettler Toledo, Columbus, OH) was used to monitor the 

bioreactor weight. The bioreactor weight, the concentrations of glucose and glutamine 

from the PSL models, and the feed concentrations of glucose and glutamine were used 

to estimate the volumes of concentrated glucose and glutamine feed needed to reach 

the pre-set setpoints for glucose and glutamine in the bioreactor.  The volumes of 

concentrated glucose and glutamine were delivered by two New Era NE-9000G 

peristaltic pumps (New Era, Farmingdale, NY) to the bioreactor within a specified 

duration.  

3.3.3 Fed-Batch Operation 

The Raman-based monitoring and control system was tested in a fed-batch process 

using a 3.0 L glass Applikon bioreactor with a working volume of 1.5 L (Applikon Inc., 

Delft, Netherlands). The Applikon ez-Control was used to control pH, dissolved oxygen, 

temperature, and agitation at 7, 30%, 37 °C, and 140 rpm, respectively. A CHO-S cell line 

was cultured in the ProCHOTM 5 media. The glucose and glutamine setpoints in the 

bioreactor were set at 5 g/L and 1 mmol/L, respectively. The concentrations of glucose 

and glutamine in the feed bottles were 400 g/L and 200 mmol/L, respectively. The Roche 

Cedex Bio Analyzer was used for offline measurements of glucose, glutamine, 

glutamate, lactate, and ammonium. In addition, viable cell density (VCD) and viability of 
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cell culture samples were measured offline to monitor the health of the cells using a Vi-

CELL XR (Beckman Coulter, IN, USA). The bioreactor was sampled every four hours 

starting at 24 h post-inoculation.  The Raman-based monitoring and control system was 

applied to control the glucose and glutamine concentrations at their setpoints. The 

bioreactor run lasted 76 h.  

3.4 RESULTS & DISCUSSION  

3.4.1 Design and Implementation of the Raman-Based Monitoring and Control 

System 

The Raman-based calibration models were combined with an in-house developed 

system to monitor the concentrations of glucose, glutamine, glutamate, lactate, and 

ammonium in the cell culture media and control the glucose and glutamine 

concentration in a fed-batch process. The flowchart in Figure 1 describes the software 

(in Python) used for monitoring and controlling cell culture metabolites. The software is 

initiated with inputs, including the starting working volume of the bioreactor, the file 

name for the predicted concentrations of metabolites, the file name for feed volumes 

dispensed and the bioreactor weight, and the glucose and glutamine feed 

concentrations and their pre-determined setpoints. Once the software is initiated, the 

software monitors an “active” folder where spectra are saved after they are generated 

from the ENLIGHTEN™ spectroscopy software. Once a file is detected in the “active” 

folder, the software imports the raw spectra as a CSV file. The spectrum is pre-processed 

by removing any signal outside the fingerprint region (350-1750 cm-1), smoothing to 

reduce the signal-to-noise ratio by implementing the Savitzky-Golay smoothing 
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technique and applying a second- derivative for drift removal. The Raman-based 

calibration models for glucose, glutamine, glutamate, lactate, and ammonium imported 

are activated. The pre-processed spectrum is fed into each model to predict the 

Figure 1. Flowchart for a Raman-based monitoring 

and control system in Python for monitoring cell 

culture metabolites (glucose, glutamine, glutamate, 

lactate, and ammonium) and controlling the glucose 

and glutamine concentrations at their setpoints in a 

fed-batch process. 
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concentrations of these metabolites. Predicted values for each metabolite are printed 

on the screen and saved to a file with a timestamp. The predicted glucose and glutamine 

values are checked against the preset setpoints.  If the concentration is above the 

setpoint, a message is printed on the screen stating that the metabolite is above the 

setpoint and no pump action is initiated. The software monitors the “staging” folder to 

receive the next saved spectrum. If the metabolite concentration is below the setpoint, 

the volume of concentrated glucose or glutamine to reach the setpoint in the bioreactor 

is calculated from the process information, including the current volume in the 

bioreactor, the glucose and glutamine feed concentrations, and the setpoints of glucose 

and glutamine. The software reads the input from a scale that  

monitors the bioreactor weight to determine the updated working volume in the 

bioreactor. The weight of the bioreactor, the calculated bioreactor volume, the calculated 

feed volume for glucose and/or glutamine, and a timestamp are saved to a file. The arrival 

of the new file triggers the activation of the pump for glucose or glutamine or both pumps, 

and the calculated feed volume is added to the bioreactor within a few seconds.  The raw 

spectra file is moved from the “active” folder to an “archive” folder, and the software 

continues monitoring the “active” folder. The hardware required for this system and layout 

is described in Figure 2. The system is comprised of two New Era NE-9000G peristaltic 

pumps, a Mettler Toledo SB8001 balance, the Supsense Raman Bioanalyzer, and a 

computer.  

 

3.4.2 Application of The Raman-based System to a Fed-Batch Process 
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The Raman-based calibration models for the fed-batch process are built in a similar way 

to those in Chapter 2, while the reference values are obtained from the Cedex. The 

model parameters are shown in Table 1. The model performance parameters, including 

R2C, R2CV, RMSEC, and RMSECV suggest these models could have a strong predictive 

power for the spectra acquired during the fed-batch process.  

 

 

 

Table 2. Summary of Raman-Based Calibration Models  

Metabolite Range #Components R
2
C R

2
CV RMSEC RMSECV 

Glucose (g/L) 0.5-8 7 0.997 0.952 0.014 0.265 

Glutamine (mmol/L) 0.2-5.0 3 0.965 0.88 0.092 0.316 

Glutamate (mmol/L) 0.6-1.3 5 0.984 0.88 0.001 0.008 

Lactate (g/L) 0.2-2.5 5 0.992 0.926 0.006 0.052 

Ammonium (mmol/L) 0.8-6 3 0.967 0.904 0.15 0.436 
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The VCD and the viability were monitored during the 76-hour bioreactor run, and they 

are shown in Figure 3. The VCD and viability for a batch operation mode as a control are 

also included in Figure 3. Both VCD and percent viability are very similar between the 

batch and fed-batch operations. Both runs result in a final 5.2-fold increase in the cell 

density at the end of 76 culture hours. The initial cell growth rate for both runs is 

equivalent since the nutrients are adequate for cell growth, maintenance, and product 

formation.  When nutrients in the batch operation become depleted more significantly 

than those for fed-batch operation, cells start to grow much slower. It is noted that the 

fed-batch process was inoculated at a higher density so that the set points for glucose 

and glutamine could be reached earlier in the run.   

  

Figure 3. VCD and percent viability for a fed-batch bioreactor run with a Raman-based monitoring and 

control system.  A batch bioreactor run and  
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The Raman-based system was used to monitor the glucose and glutamine 

concentrations and feedback-control them at 5.0 g/L and 1.0 mmol/L, respectively. The 

Cedex Bio Analyzer reference values and predicted values from the Raman spectra via 

the calibration models are shown in Figure 4 for glucose (A) and glutamine (B). The 

glucose and glutamine concentrations for the batch operation measured via the Cedex 

are also included in Figure 4. In the batch process, the glucose concentration falls below 

5.0 g/L after 56 h. However, the Raman-based control system could maintain the glucose 

concentration within 0.5 g/L of the setpoint (5.0 g/L) in the fed-batch process from the 

culture hour of 44 h through the end of the run. A correction factor of multiplying by 0.6 

was applied to the glutamine prediction model to compensate for glutamine  
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A 

B 

Figure 4. A Raman-based monitoring and control system to monitor glucose 

(A) and glutamine(B) concentrations throughout the culture period and 

control glucose at 5.0 g/L from the cell culture hour of 20 to 76 and 

glutamine at 1.0 mmol/L from the cell culture hour of 20 to 59. Samples 

were withdrawn from a 3L Applikon bioreactor every four hours in fed-batch 

mode. A decline in the glucose or glutamine concentration below the 

setpoint triggers the feed pump to supplement concentrated glucose or 

glutamine.   
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over predictions observed from a small dataset obtained from shake flask samples (data 

not shown). In the batch process, the glutamine concentration drops below 1.0 mmol/L 

after 36 h, which is slightly later than that in the fed-batch process, since the initial 

glutamine concentration is higher and the inoculation cell density is lower for the batch 

process. Control of the glutamine concentration was implemented between the culture 

hour of 32 and 49 h. The glutamine concentration is controlled within 0.35 mmol/L of 

the setpoint (1.0 mmol/L). The glutamine control is terminated at 49 h to reduce the 

glutamine concentration in the bioreactor to strengthen the glucose consumption so 

that the glucose concentration can reach the setpoint and the glucose control can be 

realized.  

The Cedex Bio Analyzer was used for obtaining reference values for glucose and 

glutamine. These values were used to determine the predictive accuracy of the Raman-

based calibration models. Both the root mean square error (RMSE) and the mean 

absolute percentage error (MAPE) were calculated between the reference values from 

the Cedex Bio Analyzer and the predictive values from Raman calibration models. The 

RMSE measures the total error between the model-predicted values and the reference 

values; a lower RMSE indicates a lower error, and an RMSE of zero means a perfect 

prediction power of the calibration model. The MAPE, the absolute percentage error 

between the model-predicted values and the reference measured values, reveals the 

average deviation between two sets of values. The RMSE and MAPE calculated for 

glucose are 0.27 g/L and 4%, respectively, indicating that the predicted values agree with 

the reference values obtained from offline measurements. An RMSE of 0.27 g/L suggests 
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the model is not overfitted, and no clustering data contributes to the predicting bias as 

the RMSE for cross-validation of this calibration model is 0.265 g/L, very close to the 

value of 0.27 g/L for the fed-batch control process. The RMSE of prediction has been 

reported to be around 0.28 ±0.09 g/L, which is estimated from the reported RMSE 

values in Table 3 of the review paper by Esmonde-White et al. (the value from reference 

80 in that table is not included since the RMSE is up to 0.936 g/L).  The RMSE from the 

model built for glucose in this study is very close to the mean value from the literature, 

suggesting that the model could accurately forecast the glucose concentration from the 

acquired Raman spectra of the samples in a fed-batch process. A MAPE of 4% further 

supports that the predicted values are within 4% of the measured values. Therefore, the 

calibration model built has great predictive power for the concentration of glucose in a 

cell culture vessel. 

The calculated RMSE and MAPE calculated for glutamine are 0.41 mmol/L and 21%. The 

RMSE of prediction is very close to 0.42-0.44 mmol/L reported by Li et al. (2018). 

However, a MAPE of 21% indicates that there is great variability between the predicted 

values and the measured values for glutamine. This could be due to variations from the 

reference values measured by Cedex as well as interference signals in the Raman 

spectra. The accuracy specification for the analyzer is around 15%, which may contribute 

to a high variation of MAPE of the calibration model. Since glutamine shares similar 

carboxyl and amino groups with other amino acids and proteins, the vibrations in the 

molecular bonds of glutamine may be interfered with those from other amino acids and 
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proteins, resulting in a high prediction error. The interference could be diminished by 

increasing the data points for the calibration model. 

Raman-based calibration models were also built and tested for monitoring glutamate, 

lactate, and ammonia. Figure 5 shows the comparison of the model-predicted values for 

glutamate (A), lactate (B), and ammonia (C) with the reference values obtained offline 

(Cedex). The Cedex measurement values for these metabolites for a control batch 

operation are also shown in Figure 5, and. Both batch and fed-batch operations result in 

a similar trend for glutamate and ammonia production because the batch operation 

starts at a higher glutamine concentration, while the fed-batch operation receives 

glutamine feed during the glutamine control period. The calculated RMSE and MAPE 

Figure 5. The Raman-based monitoring system 

for monitoring glutamate (A), lactate(B) and 

Ammonium (C) in a fed-batch process. The 

measured values from Cedex for the fed-batch 

process as well as the control batch process are 

also included for comparison. Analyzer reference 

values and Raman calibration model predictions. 

A B

C
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values for glutamate are 0.41 mmol/L and 12%, respectively. The glutamate calibration 

model underpredicts the glutamate concentration after the culture hour of 60 because 

the accumulated glutamate concentration is at or above the upper limit of this model 

(1.3 mmol/L). Generally, the model predicts the glutamate concentration within its 

range (Table 1). The calculated RMSE and MAPE values for ammonium are 2.8 mmol/L 

and 32%, respectively, in line with errors observed in reported models(Abu-Absi et al., 

2011). The ammonium calibration model underpredicts the ammonium concentration, 

especially when the reference values are above 6.0 mmol/L after the culture hour of 40, 

which is the upper limit for this model. However, considering the samples taken before 

40 h, the calculated RMSE and MAPE values are reduced to 0.87 mmol/L and 17%. The 

RMSE range is very similar to 0.819 mmol/L, and 0.76-0.77 mmol/L reported by Rafferty 

et al. (2020) and Li et al. (2018), respectively. Another contributing factor for high RMSE 

and MAPE values is the smallest datasets available for the ammonia model, and more 

valid data points for ammonium could be collected to improve its calibration model  

One of the benefits of controlling the glucose concentration in a fed-batch process is to 

maintain a low lactate concentration in the bioreactor since only a small amount of 

glucose feed is added at a time for cellular consumption. Lactate accumulation in cell 

culture has been associated with a lower cell growth rate and reduced culture longevity. 

The lactate concentration in the batch operation becomes higher than that in the fed-

batch operation since the culture hour of 45. It is continuously elevated as the culture 

prolongs, while the concentration of lactate in the fed-batch operation fluctuates at 

around 1.0 g/L (Cedex) The calculated RMSE and MAPE values for lactate are 0.35 g/L 
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and 25%, respectively. The RMSE for the lactate prediction is close to the reported values 

of 0.18 g/L and 0.21-0.23 g/L reported by Rafferty et al. (2020) and Li et al. (2018), 

respectively, but it is much lower than 1.16 g/L reported by Goldrick et al. (2020).  

The prediction power of the current calibration models for the metabolites in Table 1 

could be improved by (1) increasing the number of data points used to calibrate the 

models; (2) screening and removing clustering data points; (3) optimizing the number 

of principal components for calibrating each PLS model to reduce the probability of 

overfitting each model, and (4) expanding the concentration range for each metabolite. 

These models were built from the data points obtained from a batch process, either 

from shake flasks or bench-scale bioreactors. These data points have a narrow 

concentration range, depending on the concentration of nutrients in the media, the cell 

growth rate, and the culture days. The datasets obtained from the fed-batch operation 

could be included in the calibration models to build reinforcement learning models for 

these metabolites, which could increase the number of samples for the calibration 

model, and expand the range of the metabolite concentrations, ultimately enhancing 

the prediction capability of these calibration models. Fluctuations around the setpoint 

for glucose and glutamine could be diminished by reducing the sample intervals, 

especially during the rapid consumption period, such as the exponential phase. This can 

be achieved by incorporating an in-line Raman emersion probe, allowing for real-time 

continuous monitoring of these metabolites and offering simultaneous feedback to 

control the concentration of glucose and glutamine.   
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3.5 CONCLUSION 

An in-house Raman-based monitoring and control system is successfully developed for 

a fed-batch process. Separate PLS calibration models are built for glucose, glutamine, 

glutamate, lactate, and ammonium from the datasets obtained from batch and fed-

batch processes. The concentrations of glucose, glutamine, glutamate, lactate, and 

ammonium are continuously monitored throughout the culture period. All PLS models 

are able to predict the metabolite concentrations within the model concentration 

ranges. The concentrations of glucose and glutamine are controlled within 0.35 g/L of 

the setpoint (5.0 g/L) and 0.35 mmol/L of the setpoint (1.0 mmol/L), respectively, in a 

fed-batch operation. The monitoring system could be improved by increasing the 

calibration sample size, optimizing the number of components, and increasing the 

concentration range, while the control system by implementing an immersion probe to 

reduce the sample interval and smoothen the fluctuations around the setpoints.  

Impressively, the system is developed using in-house software without expensive 

commercial software packages to enable the construction of calibration models, pre-

processing of raw Raman spectra acquired from the process, prediction of metabolites 

concentration, and instant feedback to control the feed of critical nutrients.  
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4 Raman-Based Control System Applied to a Perfusion Process 
 

4.1 ABSTRACT 

Perfusion cell culture, a leading continuous bioprocessing technology, has been 

explored and adopted to address issues for batch and fed-batch processing. A higher 

volumetric productivity in a perfusion process suggests that smaller bioreactors could 

be used to achieve the same product throughput, resulting in a lower capital cost, a 

smaller facility footprint, and fewer scale-up steps from clinical to commercial 

production. Real-time monitoring of nutrients and metabolites in the bioreactor in a 

perfusion process could allow the feeding of critical nutrients to the bioreactor in 

addition to a continuous supply of the perfusion media, potentially reducing media 

consumption and culturing cells in a homogeneous cell culture environment for 

product formation. A Raman-based monitoring and control system is developed and 

applied to a perfusion process. The PLS calibration models for glucose, glutamine, 

glutamate, lactate, and ammonium are built and calibrated from the batch/fed-batch 

datasets in Chapter 3. The model predictions for these metabolites are well aligned 

with the reference values from Cedex for the culture period between 0 and 100 h, 

while these models generate inaccurate predictions for these metabolites beyond 100 

h because a high cell density of 20x106 cells/mL could interfere with the molecular 

vibrations of these metabolites upon exposure to laser irradiation.  The Raman-based 

system is also employed to control glucose and glutamine concentrations at 4.0 g/L 

and 0.5 mmol/L, respectively, by activating the feeding of concentrated glucose and 

glutamine solutions when they are below the setpoints, while a constant perfusion 
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rate of 0.5 VVD is maintained during the perfusion period. A constant monoclonal 

antibody (mAb) concentration is obtained under this perfusion condition, suggesting 

improved productivity could be realized at a low perfusion rate and at a constant 

concentration of glucose and glutamine through the Raman-based monitoring and 

control system, thus reducing the media consumption and the operation cost for the 

perfusion process.   

 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

4.2 BACKGROUND & INTRODUCTION 

4.2.1 Perfusion 

Increasing demand for a lower cost and a higher level of quality for biopharmaceuticals 

has led to a push to innovate current production methods. (Henry et al., 2008) Batch, 

fed-batch, and continuous operation are the three cultivation modes in 

biopharmaceutical processing. The simplest mode of operation is batch, which involves 

introducing all necessary components at the beginning of the run. Batch bioprocessing 

has the benefits of a low cost, simple operation, and a closed system, which reduces the 

chance of contamination. The finite nutrient availability after a few culture days in a 

batch process prevents cell growth and product production, leading to lower 

productivity. Fed-batch processing begins with a batch period. A concentrated fed is 

then introduced to extend the period for the availability of nutrients to cells. This leads 

to an increased cell density and higher productivity when compared to batch processing. 

However, this mode of operation can result in an increased level of waste which can 

affect cell viability and product quality. Fed-batch processing is a currently dominant 

mode of operation in the biopharmaceutical industry. (Wlaschin & Hu, 2006) In a 

continuous operation, nutrients from a feed stream are constantly introduced while 

cells, products, and wastes are continuously removed at an equal volumetric flow rate 

of the feed stream, thus maintaining a constant concentration for the biomass, 

nutrients, products, and wastes. (Henry C. Lim & Hwa Sung Shin, 2013) Continuous culture 

has been explored as a mode of operation since the 1980s. In the 1990s, the industry 

shifted from this method of operation back to fed-batch processing due to the lack of 
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technology and equipment, the complexity of implementing continuous operations, and 

high failure rates due partially to contamination and volume imbalances. Meanwhile, 

advances in expression systems, culture media, and feed supplements contribute to 

significant breakthroughs in batch and fed-batch processing. These advances lead to a 

doubling of the yield every five years, directing the focus to fed-batch processing.(Langer 

& Rader, 2014) 

Instead of maintaining a constant concentration for all components during the 

continuous operation, the perfusion process is developed to become the leading 

continuous bioprocessing technology. During the perfusion process, a cell retention 

device is employed to retain the cells within the culture vessel, and the spent media, 

including products and wastes, are constantly removed at the same flow rate as the feed 

media. A cell bleed may also be implemented to maintain a constant cell density after 

the cell density reaches a pre-determined target value. Several commercial products 

produced from perfusion culture systems have been approved since the 1990s (Pollock 

et al., 2013).   The cell retention device clarifies the harvest stream. It may take the form 

of a filter (depth, cross-flow, hollow fiber), a centrifuge, a gravity settler, or an acoustic 

wave separator(Bielser et al., 2018) (Suttle et al., 2019) (Voisard et al., 2003).  The 

selection of a cell retention device depends on the type of cells, the type, and size of 

products, and the scale of the process (Willard et al., 2017). Two primary cell retention 

methods, settling and filtration, are often used for suspension cell culture. Settling 

methods include passive settling, acoustic separation, and centrifugation. The 

advantages of settling methods include a lower level of fouling risk and a reduced cost, 
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while the disadvantages of these methods consist of a lower separation efficiency and a 

longer operation time than filtration methods. Examples of filtration methods include 

tangential flow filtration (TFF), tangential flow depth filtration (TFDF), and alternating 

tangential flow filtration (ATF). The benefits of the filtration method are ascribed to its 

scalability and a high cell retention efficiency, but it may have a high risk of fouling. The 

clarified material from filters may be fed directly to a downstream operation. (Gibco, 

2020) Advances in bioprocessing development, perfusion instrumentation, cell 

retention devices, single-use technologies, and process automation, as well as 

regulatory supports have fueled an interest in perfusion processing in the 

biopharmaceutical industry.   

A perfusion process is often accompanied with a higher cell density and an extended 

culture period (up to 90 days) (Bonham-Carter & Shevitz, 2011)(Willard et al., 2017), 

resulting in a higher volumetric productivity when compared to batch and fed-batch 

processing. A higher volumetric productivity indicates the same product throughput 

could be accomplished in a smaller bioreactor, which leads to a lower capital cost, a 

smaller facility footprint, and fewest scale gaps from clinical to commercial 

production(Bielser et al., 2018). The product of interest during the perfusion process 

often has a short residence time during the perfusion process, which is preferable for 

unstable products in the cell culture environment. In this context, the perfusion process 

could help improve the product quality (Warikoo et al., 2012). This method of operation 

can be applicable to multiple biotherapeutic modalities and it is flexible for 

manufacturing. Challenges of a perfusion process include an increased chance of 
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contamination, equipment failure due to a long operation duration, and an increased 

cost of materials such as cell culture media.  

As the viable cell density in a perfusion process becomes high, the nutrient supply 

should increase. The perfusion media is often fed into the bioreactor to ensure an 

adequate amount of nutrients in the bioreactor. To maintain a constant volume in the 

bioreactor, the feed rate of the perfusion media is matched by the rate at which material 

is removed from the bioreactor in the form of cell bleed and spent media. The flow rate 

is typically expressed as vessel volumes per day (VVD). An increase in the VVD is applied 

when the cell density is increased to keep a constant cell-specific perfusion rate (CSPR, 

pL/cell/day), for example, a CSPR of 30-50 pL/cell/day is suggested for CHO cell culture 

perfusion process. However, an increase in the VVD leads to an increased cost for the 

consumed media and dilution of the product. Real-time monitoring of cell culture media 

components or metabolites in the bioreactor can map the nutrient/metabolite 

landscape in the bioreactor. Preventing depletion of critical nutrients in the bioreactor 

can be achieved by either increasing the VVD for the perfusion media stream, 

alternatively, by adding concentrated critical nutrient solutions at a low VVD. The latter 

operation could potentially reduce media consumption, leading to a saving on the 

operation cost.  

4.2.2 Aim 

In this chapter, A Raman-based system is developed in-house and applied to monitor 

the concentrations of glucose, glutamine, glutamate, lactate, and ammonium in the 

bioreactor during a perfusion process. It is integrated with a feedback control system to 
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maintain a constant concentration for both glucose and glutamine in the retentate, 

while a constant and relatively low VVD is used for the feed media stream. 

4.3 MATERIALS & METHODS 

4.3.1 Raman-Based Control System 

An in-house Raman-based monitoring and feed control system was developed using 

separate PLS calibration models built for glucose, glutamine, glutamate, lactate, and 

ammonium. The system was based in Python. It was designed to monitor glucose, 

glutamine, glutamate, lactate, and ammonium via a Raman spectroscopic method and 

use the concentration of both glucose and glutamine from the Raman method to 

provide a feedback control on the feed rate of glucose and glutamine during the 

perfusion process.  

Cell culture samples withdrawn from the retentate in the bioreactor were analyzed at-

line via a Supsense Raman Bioanalyzer coupled with a fiber-optic Raman probe with an 

optical excitation wavelength of 785 nm. Samples were spun down and 0.7 mL of the 

cell-free supernatant was transferred to a 3.0 mL quartz cuvette for analysis. Each 

spectrum was acquired by co-adding five scans after 14 seconds of exposure. Water 

spectra subtraction, co-addition, and acquisition were accomplished using ENLIGHTEN™ 

spectroscopy software (Wasatch Photonics, Logan, UT). The pre-processed spectrum 

was read into the PLS calibration models and the concentration for glucose, glutamine, 

glutamate, lactate, and ammonium was predicted. 
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A Mettler Toledo SB8001 scale (Mettler Toledo, Columbus, OH) was employed to 

monitor the weight of the bioreactor. The bioreactor weight, the predicted glucose and 

glutamine concentrations and the feed concentrations of glucose and glutamine were 

used to calculate the volume of glucose and glutamine required to reach their pre-

determined setpoints. Two NE-9000G peristaltic pumps (New Era, Farmingdale, NY) 

were used to feed the calculated amount of glucose and glutamine to the bioreactor, 

respectively.  

4.3.2 Perfusion Operation 

The models and the control system developed were tested in a perfusion process using 

a 3L Applikon bioreactor with a working volume of 2 L (Applikon Inc., Delft, Netherlands). 

The Applikon ez-Control system was used to control pH, dissolved oxygen, temperature, 

and agitation at 7, 30%, 37°C, and 140 rpm, respectively. A monoclonal antibody-

producing CHO-S cell line was used with ProCHOTM 5 media (Sartorius Stedim Biotech, 

Göttingen, Germany). The seeding cell density was 2.5 x106 cells/mL. Perfusion was 

initiated at 26 h post-inoculation at a rate of 0.5 VVD (1 L/day), and the ProCHOTM 5 

media was used for the perfusion process. This perfusion rate at 0.5VVD was maintained 

throughout the run. Instead of increasing the perfusion rate to meet the requirements 

for critical nutrients including glucose and glutamine for an incremental cell density, the 

Raman-based control system was used to control the glucose and glutamine 

concentration at a set point of 4 g/L and 0.5 mmol/L, respectively. The feed 

concentration of glucose and glutamine were 400 g/L and 200 mmol/L, respectively. Cell 

retention was realized via a Meissner SepraPor 0.2 μm hollow fiber filter. The Levitronix 
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LCO-i100 console system was used to control the recirculation rate at 0.3 L/min and 

monitor the transmembrane pressure (TMP).  

4.3.3 Offline Measurements  

The Roche Cedex Bio Analyzer (Roche CustomBiotech, Penzberg, Germany) was used for 

offline measurements of the concentration of glucose, glutamine, glutamate, lactate, 

and ammonium. The viable cell density (VCD) and viability were measured to monitor 

the health of the culture via Vi-CELL XR (Beckman Coulter, IN, USA). The forteBIO BLItz 

system with protein A biosensors was used to measure the monoclonal antibody 

concentration in the bioreactor.  

4.4 RESULTS & DISCUSSION  

4.4.1 Model Calibration Summary for Perfusion Process 

Separate Raman-based calibration models for the CHO-S cell line and the ProCHOTM 5 

media were built to monitor the concentration of glucose, glutamine, glutamate, lactate, 

and ammonium during the cell culture process and they were applied to a 150-hour 

perfusion run. The summary of these models is shown in Table 1, including the 

calibration range, the number of components used to build the PLS model, and the 

model performance for glucose, glutamine, glutamate, lactate, and ammonium. The 

model performance parameters, including coefficients of determination(R2) for 

calibration (R2C) and ross-validation (R2CV), root mean square error of calibration 

(RMSEC), and root mean square error of cross-validation (RMSECV) suggest that these 

models could be used to predict these metabolites in the calibration range. 
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Table 3. Summary of Raman-Based Calibration Models  

Metabolite Range #Components R
2
C R

2
CV RMSEC RMSECV 

Glucose (g/L) 0.8-9.0 9 0.987 0.907 0.067 0.488 

Glutamine (mmol/L) 0.2-5.0 8 0.911 0.677 0.245 0.89 

Glutamate (mmol/L) 0.6-3.0 5 0.984 0.88 0.001 0.008 

Lactate (g/L) 0.4-3.0 9 0.997 0.953 0.003 0.039 

Ammonium (mmol/L) 0.7-7 9 0.986 0.857 0.084 0.859 

 

4.4.2 Application of the Raman-Based System to a Perfusion Process 

A diagram for the setup for this perfusion process and the developed Raman-based 

control system is described in Figure 1. The perfusion process at a constant VVD of 0.5 

is controlled via a Levitronix LCO-i100 console system and two Watson Marlow 120U 

pumps. A Meissner SepraPor 0.2 μm hollow fiber capsule filter is employed to 

continuously harvest the monoclonal antibody product stream and recirculate the cells 

back to the bioreactor. A Raman Bioanalyzer at a wavelength of 785 nm is used to 

acquire the Raman spectrum, which is fed into the PLS calibration model to predict the 

concentrations of metabolites, including glucose and glutamine. The control system 

triggers the pumps to feed the amount of glucose and glutamine to the bioreactor 

estimated from the inputs, including the bioreactor weight, the glucose and glutamine 

concentration in the retentate, and the feed concentrations of glutamine and glucose.  
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Since the control system could maintain the glucose and glutamine concentrations at 

their setpoints during a perfusion process at a constant VVD, the consumption of the 

feed media could be significantly reduced, while the viable cell density could be 

increased and high cell viability maintained, thus reducing the operation cost and 

enhancing the productivity.  

 

 

Figure 1. Diagram of a Raman-based monitoring and control system and its application to a 

perfusion process. The system is composed of two peristaltic pumps to dispense the glucose and 

glutamine feeds, a balance to monitor the volume in the bioreactor, a Supsense Raman Bioanalyzer 

to generate Raman spectra, and an in-house software to predict the metabolite concentrations and 

control the pump rates . Two additional peristatic pumps are used for feeding the media and 

collecting the permeate, respectively. A Levitronix LCO-i100 console system is used to control the 

recirculation rate and monitor the TMP, and a Meissner SepraPor 0.2 μm hollow fiber capsule filter 

for cell retention. Blue dashed lines indicate RS-232 serial connections to the computer.  
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4.4.3 Perfusion Process at a Constant VVD  

The viable cell density and viability for the 150-hour perfusion process are shown in 

Figure 2. The bioreactor was inoculated at 2.4 x106 cells/mL to shorten the duration 

before the start of the perfusion process. Perfusion at a rate of 0.5 VVD started at 26 h 

post-inoculation. Exponential cell growth is observed for up to 100 h; after this time 

point, a viable cell density of about 20 x106 cells/mL is maintained at a perfusion rate of 

0.5 VVD and with the feed of concentrated glucose and glutamine. The percent viability 

is above 95% for the entire run. A total of five days of perfusion were achieved. 

 

Figure 2. VCD and percent viability for perfusion mode bioreactor run with controlled glucose and 

glutamine. Perfusion started at 26 hours with a perfusion rate of 0.5VVD. The control setpoints for 

glucose and glutamine were 4 g/L and 0.5 mmol/L, respectively. Percent Viability was maintained 

above 95%, and the peak VCD achieved was 23x106 cells/mL. 



68 
 

 



69 
 

The Raman-based monitoring and control system was applied to estimate the glucose 

and glutamine concentrations, and their concentrations are fed into the control system 

to control the concentration of glucose and glutamine at 4.0 g/L and 0.5 mmol/L, 

respectively. The Cedex Bio Analyzer reference values measured offline are used to 

evaluate the prediction power of Raman-based calibration models and assess the 

accuracy of the control system. Figure 3 displayed the measured Cedex values and the 

Raman model predicted values. The concentration setpoints for glucose and glutamine 

are also added in Figure 3.  An RMSE of 0.2 g/L and a MAPE of 3.8 is estimated between 

the reference values and the model prediction values. The RMSE measures the 

aggregated error between experimental measurements and predictions; a lower RMSE 

indicates a better prediction power of the model. The MAPE, the absolute percentage 

error in a dataset, is an indicator for the average deviation between the model-predicted 

values and the reference measured values. Such a low RMSE for the glucose model 

indicates it has a relatively low error. The RMSE is less than 0.28 ±0.09 g/L, the reported 

RMSE values for glucose in Table 3 of the review paper by Esmonde-White et al. A MAPE 

of 3.8% suggests that the glucose model, on average, is able to predict the glucose 

concentration with an error of 3.8%, which falls within the error range from all 

commercially available offline bioanalyzers. From the culture hour of 94 to 150, the 

glucose concentration is controlled through the Raman model-based control system. 

When the glucose concentration predicted from the Raman model is below the setpoint, 

the pump is activated to supply the concentrated glucose concentration to the 

bioreactor to increase the glucose concentration. During the glucose concentration 
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control period, the glucose concentration in the bioreactor is maintained within 0.3 g/L 

of the setpoint (4.0 g/L). Fluctuations from the setpoint could be smoothened by 

increasing the sampling frequency and improving the accuracy of the pump feeding rate. 

However, an RMSE of 0.2 mmol/L and a MAPE of 50% are estimated from the glutamine 

calibration model. The RMSE of glutamine prediction is much lower than 0.42-0.44 

mmol/L reported by Li et al. (2018) and that for the fed-batch operation in Chapter 3, 

which could be the fed-batch dataset included in the glutamine calibration model. 

However, the model has a much higher MAPE for the perfusion process than that for 

the fed-batch operation. Since the glutamine setpoint is quite low (below 1.0 mmol/L), 

a slight difference between the predicted and measured values could result in a large 

Figure 4. Glutamate (A), Lactate (B), and 

ammonia (C) were monitored using the Raman-

based calibration models. A Cedex Bio Analyzer 

was used for reference values. These values 

were used to determine the accuracy of the 

Raman models. RMSE and MAPE values are 

shown for each metabolite. These values were 

calculated for up to 100 hours and the entire 

process (150 hours).   

A B 

C 
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MAPE. The predicted glutamine concentration from the model is able to provide quite 

accurate feedback to the control system, enabling the glutamine concentration within 

0.3 mmol/L of the setpoint.  

Raman-based calibration models were also built for monitoring the concentrations of 

glutamate, lactate, and ammonia. Figure 4 compares the reference values obtained 

offline (Cedex) and the Raman model-predicted values for glutamate, lactate, and 

ammonia. The RMSE and MAPE between reference values and predictive values were 

calculated for each metabolite. It can be clearly seen that pronounced differences 

between the offline reference values and the Raman model predicted values for these 

three metabolites become distinct at the culture hour of 100 in this perfusion process. 

At around 100 h, the cell density in the bioreactor reaches 20x106 cells/mL (Figure 2). 

Therefore, the culture process could be differentiated into two distinct phases: a batch 

and fed-batch process up to 100-hour, and a perfusion process after 100 hours to the 

end of the process.  It is noted that the calibration models for these metabolites are built 

from the datasets obtained from batch and fed-batch operations from previous 

chapters, and they are applied to the perfusion process. A much higher cell density in 

the perfusion process than that in a batch or fed-batch process could compromise the 

prediction capability of the calibration models built from the batch/fed-batch datasets. 

In this context, two sets of RMSE and MAPE values were calculated: one set for the 

metabolites at the culture hour of 0-100 h and another for the entire culture period.  

An RMSE of 0.01 mmol/L and a MAPE of 7.7% are found for glutamate at the culture 

hour of 0-100, while an RMSE of 0.12 mmol/L and a MAPE of 19.5% for the entire run. 
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The glutamate calibration model has a remarkably low RMSE before 100 h, much lower 

than that for the fed-batch process in Chapter 3. Incorporation of the data points for 

both batch and fed-batch datasets in Chapter 3 into the calibration model significantly 

improves the accuracy of the predicted glutamate concentration, suggesting that a 

reinforcement learning algorithm could be implemented in these metabolite models. 

However, the RMSE and MAPE values increase after the glutamate concentrations for 

the entire culture period are applied to the glutamate calibration model. A similar 

pattern is observed with lactate, with an RMSE of 0.04 g/L and a MAPE of 26% between 

the culture hour of 0 and 100 h, and an RMSE of 0.13 g/L and a MAPE of 69.5% for the 

entirety of the bioreactor run. Interestingly, an RMSE of 3.3 mmol/L and a MAPE of 30% 

Figure 5. A CHO-S, mAb-producing cell line was used in this perfusion run. The forteBIO BLItz system 

was used to measure mAb concentration in the bioreactor using protein A biosensors. Measurements 

were taken periodically from the start of perfusion at 26 hours to hour 129. The mAb concentration 

generally increased and followed a similar trend as VCD. mAb concentration was maintained with a 

perfusion rate of 0.5 VVD and glucose and glutamine control.  



73 
 

are found between the measured ammonium concentrations and the model-predicted 

values for up to the culture hour of 100, while an RMSE of 2.54 mmol/L and a MAPE of 

22% for the entirety of the bioreactor run. It is observed that the ammonium 

concentration after the culture hour of 120 exceeds the upper limit (7.0 mmol/L) for the 

calibration model. The model accuracy in predicting the ammonia concentration could 

be significantly impacted after 120 h, thus the RMSE and MAPE values may not be able 

to precisely capture the errors between the measured ammonium concentrations and 

the predictions for the entire bioreactor run. 

The monoclonal antibody (mAb) concentration in the bioreactor was measured 

periodically. Figure 5 shows the VCD and the mAb concentration over the culture period. 

It can be seen that the mAb concentration increases as the VCD increases, and it appears 

to stabilize as the VCD is maintained at about 20x106 cells/mL. Therefore, the mAb 

concentration could be maintained at a constant perfusion rate and a constant 

concentration for glucose and glutamine by feeding their concentrated solutions. 

Therefore, productivity could be improved without the need to increase the perfusion 

rate, thus reducing a significant amount of perfusion media. 

4.5 CONCLUSION 

A Raman-based monitoring and control system was developed and applied to a 

perfusion process. The PLS calibration models are built from the datasets from both 

batch and fed-batch processes in Chapter 3. These models have a great performance in 

predicting the metabolite concentrations in the initial culture period, during which the 

cell culture process could be considered as a batch/fed-batch process, while less 
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accurate predictions are found from the models at a high cell density of 20x106 

cells/mL. The model performance could be improved by incorporating this perfusion 

dataset into the calibration models and expanding the range of the metabolite 

concentrations. By feeding the predicted glucose and glutamine concentrations to the 

control system, the pump is activated to maintain the glucose and glutamine 

concentration at their setpoints with a range of 0.3 g/L and 0.3 mmol/L, respectively, 

leading to a low perfusion rate and a reduction in the consumption of the perfusion 

media.   Our experimental results suggest that the Raman-based monitoring and 

control system could be applied to improve productivity in a perfusion process with a 

low operation cost. 

 

 

 

 

 

 

 

 

 



75 
 

Abu-Absi, N. R., Kenty, B. M., Cuellar, M. E., Borys, M. C., Sakhamuri, S., Strachan, D. J., Hausladen, M. 

C., & Li, Z. J. (2011). Real time monitoring of multiple parameters in mammalian cell culture 

bioreactors using an in-line Raman spectroscopy probe. Biotechnology and Bioengineering, 

108(5), 1215–1221. https://doi.org/10.1002/bit.23023 

Berry, B. N., Dobrowsky, T. M., Timson, R. C., Kshirsagar, R., Ryll, T., & Wiltberger, K. (2016). Quick 

generation of Raman spectroscopy based in-process glucose control to influence 

biopharmaceutical protein product quality during mammalian cell culture. Biotechnology 

Progress, 32(1), 224–234. https://doi.org/10.1002/BTPR.2205 

Domján, J., Fricska, A., Madarász, L., Gyürkés, M., Köte, Á., Farkas, A., Vass, P., Fehér, C., Horváth, B., 

Könczöl, K., Pataki, H., Nagy, Z. K., Marosi, G. J., & Hirsch, E. (2020). Raman-based dynamic 

feeding strategies using real-time glucose concentration monitoring system during adalimumab 

producing CHO cell cultivation. Biotechnology Progress, 36(6), e3052. 

https://doi.org/10.1002/BTPR.3052 

Gagnon, M., Hiller, G., Luan, Y. T., Kittredge, A., Defelice, J., & Drapeau, D. (2011). High-end pH-

controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch 

cultures. Biotechnology and Bioengineering, 108(6), 1328–1337. 

https://doi.org/10.1002/BIT.23072 

Goldrick, S., Lee, K., Spencer, C., Holmes, W., Kuiper, M., Turner, R., & Farid, S. S. (2018). On-Line 

Control of Glucose Concentration in High-Yielding Mammalian Cell Cultures Enabled Through 

Oxygen Transfer Rate Measurements. Biotechnology Journal, 13(4), 1700607. 

https://doi.org/10.1002/biot.201700607 

Henry C. Lim, & Hwa Sung Shin. (2013). Introduction to Fed-Batch Cultures. In Fed-Batch Cultures: 

Principles and Applications of Semi-Batch Bioreactors (pp. 1–6). Cambridge University Press. 

www.cambridge.org 

Kadic, E., & Heindel, T. J. (2014). Modes of Operation. In An Introduction to Bioreactor Hydrodynamics 

and Gas-Liquid Mass Transfer (pp. 3–9). John Wiley & Sons, Ltd. 

https://doi.org/10.1002/9781118869703.CH2 

Kurokawa, H., Park, Y. S., Iijima, S., & Kobayashi, T. (1994). Growth characteristics in fed-batch culture 

of hybridoma cells with control of glucose and glutamine concentrations. Biotechnology and 

Bioengineering, 44(1), 95–103. https://doi.org/10.1002/BIT.260440114 

Lederle, M., Tric, M., Roth, T., Schütte, L., Rattenholl, A., Lütkemeyer, D., Wölfl, S., Werner, T., & 

Wiedemann, P. (2021). Continuous optical in-line glucose monitoring and control in CHO cultures 

contributes to enhanced metabolic efficiency while maintaining darbepoetin alfa product quality. 

Biotechnology Journal, 16(8), 2100088. https://doi.org/10.1002/BIOT.202100088 

Rafferty, C., Johnson, K., O’Mahony, J., Burgoyne, B., Rea, R., & Balss, K. M. (2020). Analysis of 

chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell 

culture. Biotechnology Progress, 36(4), e2977. https://doi.org/10.1002/BTPR.2977 

Tric, M., Lederle, M., Neuner, L., Dolgowjasow, I., Wiedemann, P., Wölfl, S., & Werner, T. (2017). 

Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture. 



76 
 

Analytical and Bioanalytical Chemistry, 409(24), 5711–5721. https://doi.org/10.1007/S00216-

017-0511-7 

Yang, Y., & Sha, M. (n.d.). A Beginner’s Guide to Bioprocess Modes - Batch, Fed-Batch, and Continuous 

Fermentation. 

Zhou, W., Rehm, J., & Hu, W. -S. (1995). High viable cell concentration fed-batch cultures of hybridoma 

cells through on-line nutrient feeding. Biotechnology and Bioengineering, 46(6), 579–587. 

https://doi.org/10.1002/BIT.260460611 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

5 MULTI-COLUMN CHROMATOGRAPHY 
 

5.1 ABSTRACT 

Application of multicolumn chromatography to processes such as protein A capture has 

shown significant improvements in the volumetric productivity, the resin utilization 

capacity, the buffer consumption amount, and the frequency of equipment occupation, 

as well as reduction in the facility footprint. Challenges in applying this technology 

include the high cost of equipment and its associated control software, equipment 

customization requirements, and availability of multi-scale equipment. The aim of this 

chapter is to develop a bench-scale flexible two-column chromatography system free of 

commercial software and apply it to an integrated perfusion and capture process. The 

system was tested with three operations: a single-column operation (equivalent to a 

traditional batch operation), a two-column operation at a loading capacity of 80%, and 

a two-column operation at a loading capacity of 100%. The permeate from the permeate 

line was directly applied to the columns, and a residence time of 1.4 min was applied to 

the feed stream and equilibration, wash, and elution buffers. The offline generated 

chromatograms strongly support of this two-column system for continuous capture of 

products from the permeate during a perfusion process. 
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5.2 BACKGROUND & INTRODUCTION 

5.2.1 Multi-Column Chromatography (MCC) 

The advantages of continuous manufacturing include consistent operation conditions, a 

small equipment size, high volumetric productivity, a streamlined process flow, and a 

low cycle time, leading to reduced capital cost and a small facility footprint (Warikoo et 

al., 2012). These advantages have been a drive to explore continuous bioprocessing 

methods for downstream operations. A packed chromatography column is often used 

for initial product capture in the production of biopharmaceuticals in a batch-operation 

mode. Challenges with batch operation include an under-utilized binding capacity of 

resin, a large amount of resin and buffers, a high equipment cost, a high level of product 

quality variability due to long process times, and non-productive hold-up steps(Zydney, 

2016). Batch chromatography is also challenged by a continuous perfusion process. 

Since the perfusion operation generally produces a large volume of permeate containing 

the product, and the culture period can be significantly extended, the volume of the 

permeate collected from the perfusion process requires a large column and/or multiple 

batch operations, resulting in long hold periods for the clarified permeate and varied 

product quality after the capture step. 

Multi-column chromatography has been demonstrated to be a promising technology for 

continuous capture and purification of biopharmaceuticals. Multi-column 

chromatography breaks up the loading zone of the column into smaller columns and 

assembles these smaller columns in series. The smaller columns are cycled with the 

same process steps used in a batch process, resulting in the parallel processing of 
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multiple columns. (Arnold, 2018) This technology allows continuous feed of the product 

into the column, and maximization of the resin utilization capacity, leading to reduced 

consumption of resins and buffers, and increased yields and productivities.   

5.2.2 Application of MCC 

Applications of continuous chromatography have been seen in the capture and 

purification of biopharmaceuticals (Bisschops et al., 2009) (Pagkaliwangan et al., 2019) 

(Zydney, 2016). Warikoo et al. (2012) described the integration of a perfusion bioreactor 

and a four-column periodic counter-current chromatography (PCC) system for the 

continuous capture of proteins. Continuous capture of proteins from cell culture media 

could help reduce the residence time of unstable molecules in the cell culture media. In 

this study, two model molecules were explored: a monoclonal antibody, a model of a 

stable protein, and a recombinant human enzyme, a model of a complex, less stable 

protein. A custom-modified AKTA system capable of running up to four columns was 

employed for protein capture. The system was operated using a UV-based dynamic 

control strategy. The difference in the UV absorbance between the feed inlet and the 

column outlet triggers the column switching. The automated PCC system ran 

uninterruptedly for 30 days, and the product quality for both molecules was comparable 

to a batch column. Godawat et al. (2015) applied two PCC operations to the downstream 

processing of monoclonal antibodies. The first was a protein A capture process followed 

by cation exchange chromatography as a polishing step. The PCC system used in this 

study was the customized ÄKTA system which can run four columns. The productivity, 

resin utilization, buffer requirements, and equipment utilization were compared 
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between continuous chromatography and batch processing. The productivity was 

enhanced by over 1100-fold, the resins capacity was increased 120-fold, buffer usage 

reduced by 80-fold, and equipment use increased significantly after two PCC operations 

over their corresponding batch operations, eventually leading to a small facility 

footprint. Other two-column systems have been applied to the capture step with 

improved performance(Steinebach et al., 2017). Mechanistic models were implemented 

in multicolumn systems to predict the performance in terms of yield, productivity, and 

capacity utilization, which could allow continuous capture processes to be well 

controlled and become more robust (Steinebach et al., 2016).  

5.2.3 Affinity Chromatography – Protein A 

Affinity chromatography is a type of chromatography used in biopharmaceutical 

processing to purify biomolecules due to their specific binding to ligands on 

chromatographic resins. This method is based on reversible and highly specific 

interactions between two molecules, such as interactions between enzyme and 

substrate or antibody and antigen (Urh et al., 2009). A ligand with specific functional 

groups and/or structural conformation is developed to display specific interactions with 

the target molecule of interest. Affinity ligands are separated into two groups: specific 

ligands that bind to a specific solute, and general ligands that bind to specific groups on 

molecules (Walters, 1985). Affinity chromatography is a widely used technique used in 

bioprocessing, and it is often a primary purification step for the purification of 

biomolecules, such as monoclonal antibodies (mAbs) because of its specificity, high 

yield, and its ability to reduce the virus burden (Magdeldin & Moser, 2012). Protein A is a 
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bacterial cell wall protein that specifically binds to the Fc region of mAbs. In protein A 

affinity chromatography, the protein A ligand is covalently attached to a chromatography 

resin, and the resin is packed into a column.  

A typical chromatogram for protein A purification of mAbs is shown in Figure 1. The 

chromatogram in Figure 1 shows the A280 absorbance over column volumes (CV) or 

process volumes of the operation. The column is first equilibrated in preparation for the 

binding of mAbs. The crude mAbs are then loaded onto the column. The mAbs 

specifically bind to the protein A ligand, and all other impurities including host cell 

proteins, host cell DNA, and viruses in the media pass through the column. After loading, 

the column is washed to remove non-specifically bound impurities. The mAbs are then 

Figure 1. Typical chromatogram for protein A capture. Four distinguished steps: equilibration, loading, 

washing and elution. 
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eluted from the column using a low pH buffer that disrupts the interaction between the 

protein A ligand and the mAbs. Protein A affinity chromatography is a reliable and 

efficient technique for the capture of mAbs in bioprocessing, and it is one of the most 

widely used techniques for the purification of mAbs in the biopharmaceutical industry. 

Protein A purification of mAbs has many advantages, while it is also one of the most 

expensive operations in mAb production. Protein A resin can account for up to 30% of 

the total cost of producing mAbs in a batch process. With the implementation of 

perfusion cell culture, the purification of mAbs in the cell culture media becomes very 

challenging.  A great amount of resin is required to process a large volume of the 

permeate harvested from the perfusion process; a large column is needed for these 

resins, or multiple cycles of a smaller column could be operated; a long holdup time for 

the permeate during multiple cycles could compromise the product quality of mAbs. 

Application of multi-column chromatography to protein A purification has shown 

significant improvement in the yield and reductions in the cost over batch operation. 
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 Table 4. Comparison of protein A Capture- Batch vs Continuous 

Arnold explored the MCC as an alternative to batch chromatography for monoclonal 

antibody capture using protein A. A typical batch capture step utilizes 60-80% of the 

resin’s binding capacity, and loading of products over 80% of the resin capacity often 

results in product loss due to breakthrough. A batch column can typically achieve a 

binding capacity of 35 g mAbs/L of resin while operating in a continuous manner with a 

MCC operation is shown to increase the binding capture to greater than 50 g/L of resin. 

Three scenarios were compared to show the impact of switching from a batch operation 

to a continuous operation.  In this comparison, a volume of 2,000 L spent media with a 

titer of 5 g mAb/L was processed in a batch mode (one 57 L column), a continuous mode 

with four columns (four 7 L columns), and a continuous mode with three columns (three 

3 L columns). Table 1 displays the total resin used per process, the amount of buffer 

required, productivity, the cost for the resin assuming $12,000 /L of resin, and the total 

 Batch 4 -Column MCC 3- Column MCC 

Resin (L) 57 28 9 

Cycles 6 8 25 

Buffer (L) 6,100 4,000 4,200 

Productivity (g/Lresin/h) 20 60 55 

Cost (resin) $648,000 $336,000 $108,000 

Process Time (h) 8 6 20 
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process time. The continuous operations are found to have a significantly higher 

productivity and reduce the buffer and resin requirements. The cost of resin is notably 

reduced from batch operation to continuous processes by 2-6X. The four-column 

operation has the benefits of reduced buffer requirements, a small volume of resins, 

increased productivity, and reduced process time. The processing time for the three-

column system is significantly increased from 8 hours in the batch process to 20 hours. 

This may seem disadvantageous, but this process is applied to a perfusion process which 

often lasts many days longer than a batch cell culture process, in this case the process 

time is no longer an issue. There is an additional advantage of resin cost reduction over 

the four-column process.(Arnold, 2018) Continuous chromatography, especially protein 

A capture chromatography with the most expensive resins, outperforms batch 

chromatography in terms of resources, productivity, cost, and process time. More 

importantly, it can be integrated with the perfusion process, thus laying the foundation 

for establishing an end-to-end continuous bioprocess. 

5.2.4 Aim 

Although there are a very few commercially available continuous chromatographic 

systems including Resolute® BioSMB (Sartorius) and ÄKTA periodic countercurrent 

chromatography (PCC) (Cytiva), they are very expensive and most of them are applied 

to a pilot-scale and manufacture-scale operation. There is a drive to increase the 

availability of a variety of affordable, off-the-shelf continuous chromatographic systems, 

especially at the bench-scale so that biotechnology companies can consider this 

technology from their early process development. Meanwhile, the commercial software 
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is not modifiable thus the customizations of these systems to different processes, 

especially those for new modalities, are often very challenging. The aim of this chapter 

is to develop a bench-scale flexible two-column chromatography system free of 

commercial software and apply it to an integrated perfusion and capture process.  

5.3 MATERIALS & METHODS 

5.3.1 Development of a Two-Column Chromatography System  

The two-column chromatography system was assembled and controlled by an in-house 

developed software. It consisted of four VICI Cheminert 6 position valves (VICI Valco 

Instruments, Houston, TX) with actuators and two Watson Marlow 120U peristaltic 

pumps (Watson Marlow, Devens, MA). Poly(etheretherketone) (PEEK) polymer tubing 

was used for all valve inlets and outlets. Cole-Parmer EW-06424-13 tubing was used to 

replace the PEEK tubing to which the peristaltic pumps were attached to. 

The control software was developed in Python to control the valves using serial 

connections for three different methods. The first method was for a single-column 

operation. The second method was for a two-column operation with a capacity 

utilization efficiency of 80%. The loading and non-loading steps (washing, elution, and 

equilibration) cycled between two columns. The third method was for a two-column 

operation with a capacity utilization efficiency of 100%. The first column was overloaded 

to reach its maximum capacity, and the un-bounded product was redirected as a 

flowthrough to the second column. Non-loading steps were then conducted on the first 

column, and the loading step was on the second column.  
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5.3.2 Application of the Two-Column Chromatography System 

The chromatography system developed was applied to a perfusion process described in 

Chapter 4. The cell line was a monoclonal antibody-producing cell line with a low titer 

between 0.3-0.45 µg/mL. The permeate flow rate for this perfusion process was 0.7 

mL/min. Two 1 mL HiTrap® Protein A High-Performance columns from Cytiva were used 

to capture the monoclonal antibody produced in the permeate. A residence time of 1.4 

min in the column was estimated from the permeate flow rate and the column size. A 

20 mM sodium phosphate buffer at a pH of 7.4 was used for equilibration. A 0.1 M citric 

acid buffer at a pH of 3 was used for elution. A neutralization buffer composed of 1 M 

Tris-HCL at a pH of 9 was used to increase the pH of the elution material for maintaining 

the protein stability.   

To generate purification chromatograms offline, 1-2 CV fractions were collected 

throughout each chromatography run. The fractions were loaded onto a 96-well plate, 

and the absorbance was measured at 280 nm on a Tecan Infinite plate reader. The 

absorbance values were then graphed against the column volumes to generate the 

offline chromatograms.  

5.4 RESULTS & DISCUSSION  

5.4.1 Design of A Multi-Column Chromatography System 

A two-column chromatography system was designed and assembled from commercially 

available components. Four VICI Cheminert 6 position valves with actuators and two 

Watson Marlow 120U peristaltic pumps were used for directing the feed stream, and 

buffers for equilibration, elution and stripping. 2 x 1 mL HiTrap® Protein A High-
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Performance columns were employed for the capture step. The diagram in Figure 2 

shows the layout for valves, pumps, and chromatography columns. Valves A and B are 

used to direct the flow streams in and out of column one, while valves C and D for 

column two. The operation procedures for valves A and B are identical to those for valves 

C and D; therefore, the inlets and outlets for one set (valves A and B) are described in 

the context of protein A purification. Protein A capture is carried out in four steps: 

equilibration, loading, washing, and elution. Positions one to six on valve A are inlets for 

the feed stream and buffers. The position one is designated for an equilibration buffer, 

position two for feed stream loading, position three for an elution buffer, positive four 

for a stripping buffer, position five as a standby, and position six for receiving the flow of 

the overloaded feeds to the second column. At the center of valve A is an outlet for all 

inlet streams from positions one to six. This outlet is connected to the inlet of the first 

column, and a pump is placed between the valve and the column. The outlet of the first 

column is connected to the inlet at the center position of valve B. Positions one through 

six on valve B are used as outlets to direct the flow out of the first column to different 

collection bottles. Position one is designated for the waste stream, position two for the 

eluent, position three for unbound materials during the loading step, position four for 

the stream during the washing step, and position five for redirecting the overloaded 

material of the first column to the second column. Position six is a standby.  All valves 

and pumps are controlled via software developed in Python in a time-based mode. This 

two-column system was applied to the perfusion process detailed in Chapter 4, and the 

setup is shown in Figure 3.     
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Figure 2. Diagram of the two-column chromatography system developed. The system consists of four 

VICI Cheminert 6 position valves with actuators and two Watson Marlow 120U peristaltic pumps. The 

system is controlled using software developed in Python. EQ: equilibration buffer; Elu: Elution buffer; 

LFT: load flow through.  
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5.4.2 Single Column Application (Batch)  

A single-column method was developed to test the software and hardware of this 

system. The feed stream was loaded directly from the perfusion permeate line at a flow 

rate of 0.7 mL/min, resulting in a residence time of 1.4 min for the product. The 

operation steps, valve positions, column volumes, and residence times for each step are 

shown in Table 2. The 1 mL protein A column was loaded with 20 CV of the permeate, a 

chromatogram was generated offline by collecting one to two CV fractions throughout 

the run.  

Figure 3. Diagram of the two-column chromatography system applied to a perfusion process described 

in Chapter 4.   
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Table 5.Single Column Chromatography Method 

 

Step Valve Position Stream CV Time (min) 

Equilibration 
A 1 

Equilibration 

Buffer 10 14.3 

B 1 Waste 

Loading 
A 2 Load 

20 28.6 

B 3 Flowthrough 

Washing 
A 1 Wash Buffer 

10 14.3 

B 4 Wash stream 

Elution 
A 3 Elution Buffer 

5 7.1 
B 2 Eluent  
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Figure 4 shows the chromatogram for this method. This chromatogram shows typical 

features similar to those in Figure 1, indicating the system is successful in performing 

protein A capture. During the first 10 CV, the column was equilibrated with the 

equilibration buffer, and a relatively low absorbance was read during this step, indicating 

no protein is present in the equilibration stream out of the first column. During the flow 

volume of 10-30 CV, an increase in the absorbance value is seen, and this correlates with 

an increase in the loading volume of the permeate. A plateau of the absorbance value 

is reached after the permeate is continuously loaded onto the column. After finishing 

the loading, 10 CV of a wash buffer was applied. A gradual reduction in the absorbance 

value indicates unbound proteins are washed out of the column. At a flow volume of 40 

Figure 4. Chromatogram for a protein A single column run with a 20 CV load.  Equilibration, loading, 

washing, and elution steps are distinguishable in the chromatogram generated from this run.  
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CV, the elution of the column started. An elution peak is seen between 40-43 CV. Since 

the cell line used in the perfusion process has a very low titer, the elution peak is quite 

small.  

5.4.3 Double Column Application at 80% Capacity 

The first double-column operation was conducted to mimic the load of the permeate at 

a capacity utilization of 80 % for both columns. In this operation, each column was 

underloaded to prevent product loss due to the breakthrough of the product during the 

loading step. The loading step with 25 CV and the washing, elution, and equilibration 

steps with a total of 25 CV alternated in each column. The process volume, the valve 

position, and the residence time in each step are described in Table 3. The process 

information is programmed to control the operation of valves and pumps. Before 

initiating the two-column operation, an equilibration step is operated in column one. 

After this process step, the loading of the permeate from the perfusion process onto 

two columns is continuously operated. The product stream was loaded directly from the 

perfusion permeate line at a flow rate of 0.7 mL/min, resulting in a residence time of 1.4 

min. Our two-column system allows the product to be captured immediately into the 

resin after it is pumped out of the bioreactor, which could be essential for unstable 

products. Two 1 mL protein A columns were used, and a chromatogram was generated 

offline by collecting one to two CV fractions throughout the run. 
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The chromatogram for one cycle is shown in Figure 5. The cycle begins with a 10 CV 

equilibration in column one, followed by a 25 CV load of the permeate. An increase in 

the absorbance is observed as the sample is loaded, indicating the permeate from the 

bioreactor is loaded onto column one. Upon the completion of the loading of 25 CV to 

column one, the equilibration of the second column with 10 CV of an equilibration buffer 

is finished and the second column is ready for loading. The loading of the permeate was 

switched to column two with a loading volume of 25 CV, meanwhile, the first column 

entered the stages of washing, elution, and equilibration.  At 45 CV in column one, 

elution started, and an elution peak can be observed between 45-48 CV. At a total flow 

volume of 60 CV, column two started a 10 CV wash after completion of 25 CV loading, 

and this step helps remove the unbound proteins, which is indicated by a decrease in 

the absorbance. Elution in column two started at 70 CV, and an elution peak is observed 

between 70-73 CV. This chromatogram in Figure 5 supports that the valves, pumps, and 

Table 6. Double Column Chromatography Method - 80% Capacity (EQ: equilibration) 
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columns are operated successfully to capture and elute the product from two columns, 

importantly, the system developed is capable of operating continuously and directly 

from the permeate stream of a perfusion operation.  

 

5.4.4 Double Column Application at 100% Capacity 

Although continuous capture of the permeate directly from the permeate line through 

the two-column system is realized with the 80% capacity method, 20% of the resin 

capacity in each column is not utilized. To achieve 100% utilization capacity and prevent 

product losses in each column, each column is overloaded with the permeate. One 

column is initially loaded with the permeate and the product is bound to the Protein A 

resin. When the resin in the column is saturated with the product, excess products are 

Figure 5. Chromatogram for protein A capture at 80% capacity using the double-column system 

developed in-house. A280 was measured over 75 CVs (column volumes), which is corresponding to one 

cycle of the method described in Table 3.  
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unable to bind to the resin in the column, and they flow through the column. Rather 

than directing the flowthrough stream containing the product to the waste collection, 

the  

 

 

stream from this column is redirected to load onto the other column. In this way, the 

utilization capacity of the resin in the first column reaches 100%, and excess unbound 

products are loaded onto the second column to avoid product loss. By alternating this 

operation, both columns could have a capacity utilization of 100%. Table 4 describes 

detailed process information to perform this operation. The feed stream was loaded 

onto two columns directly from the perfusion permeate line at a residence time of 1.4 

min. Figure 6 shows the resulting chromatogram from one to two CV fractions collected 

throughout the run. Typical chromatograms are seen for each column. Distinct 

operation steps are differentiated from the absorbance values. An elution peak is 

observed in each column, indicating the product is successfully captured and eluted via 

Table 7. Double Column Chromatography Method at 100% Capacity 
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this two-column system. It is noted that there is an overlapping region from 35 to 45 CV 

for both columns with a high absorbance value. The overlapping occurs when the 

flowthrough from the column one is redirected and loaded onto the column two. In this 

way, products in the permeate stream can be fully captured, while the column resin can 

reach a 100% utilization capacity.  

This proof-of-concept study has demonstrated the potential of the two-column system 

for the application in monoclonal antibody capture via the Protein A resin. The system 

hardware can be improved through (1) the implementation of on-line detectors 

including UV-280, pH and conductivity sensors and air sensors; (2) replacement of two 

peristatic pumps with two piston pumps (metering type); and (3) installation of mixers 

for gradient elution and prefilters. Currently the switch between two pumps is based 

on the equal column volume (or block time) for the loading step in one column and 

Figure 6. Chromatogram for protein A purification using the double-column system developed in-

house. A280 was measured over 85 column volumes which is equivalent to one cycle of the method 

described in Table 3.  
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other steps in the other column. The control system could be refined to allow flexibility 

in varied feed stream compositions, flow rates, different residence times for 

equilibration, wash, and elution buffers. Since the current control system is 

programmed in Python, physical/mechanistic models in combination with artificial 

intelligence models could be integrated into the control system for better automated 

control of the system and a higher resin utilization capacity, leading to a higher 

production yield, and a better efficiency in impurity removal. Ultimately, this multi-

functional two-column system could be used for continuous capture/purification of 

products, especially emerging modalities, directly from the permeate from a 

bioreactor. 

5.5 CONCLUSION 

A flexible two-column chromatography system was assembled from valves, pumps and 

two 1 mL Protein A columns with the control by a Python-based in-house software.  This 

system was applied to a bench-scale process for capturing a mAb in the permeate during 

a perfusion process. Three operations were successfully realized in this two-column 

system, including a single-column operation, a two-column operation with the loading 

of the mAb product to 80% of the resin capacity in each column, and a two-column 

operation with the loading of the product to 100% of the resin capacity in each column.  

The permeate from the permeate line was directly loaded onto the columns without 

any holdup tanks. A residence time of 1.4 min was applied to the feed stream and 

buffers. The offline-generated chromatograms display distinct stages for equilibration, 

loading, washing, and elution. Alternating operations in two columns between loading 
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and non-loading steps are successfully conducted. This proof-of-concept study 

demonstrates the feasibility of using an in-house lab-scale two-column system for 

continuous capture of products in the permeate during a perfusion process, laying the 

foundation for an in-house integrated perfusion and capture system. 
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6 CONCLUSION & FUTURE DIRECTION 
 

Current bottlenecks of implementing continuous bioprocessing include technologies for 

real-time monitoring and control of critical/key process parameters and versatile scale-

down models for process understanding and development. Commercially available 

platforms for continuous bioprocessing are often expensive and inflexible. Technologies 

such as Raman spectroscopy, perfusion cell culture, and continuous chromatography have 

been explored in my PhD project to develop a versatile bench-scale continuous platform 

driven by open-source software as a proof-of-concept.  

Methodology and software for building Raman-based calibration models for cell culture 

metabolites have been developed. The preprocessing methods for the calibration dataset 

include reducing each spectrum to a fingerprint region (350 to 1750 cm-1), applying the 

Savitzky-Golay smoothing technique to improve the signal-to-noise ratio, and selecting a 

second derivative for baseline correction. The Python-based software is capable of 

generating PLS calibration models, performing cross-validation, determining calibration 

performance based on R2C, R2CV, RMSEC, and RMSECV, and predicting the metabolite 

concentrations from pre-processed Raman spectra. No commercial software 

requirements endow this methodology with flexibility and inexpensiveness. Separate 

Raman-based calibration models have been built for glucose, glutamine, glutamate, 

lactate, and ammonium. These models consistently have high R2 and low RMSE values, 

indicating that these models have great predicting capabilities.  



101 
 

An in-house Raman-based monitoring and feed control system was developed using the 

Raman calibration models with R2CV values above 0.7. The system is successful in 

monitoring the concentrations of glucose, glutamine, glutamate, lactate, and ammonium 

during the cell culture process, and controlling the glucose and glutamine concentrations 

at their pre-specified setpoints in a fed-batch and perfusion operation. The predicted 

metabolite concentrations from the PLS models are in alignment with the offline 

measurement values within their model ranges in the fed-batch operation, and their 

RMSE values are 0.27,0.41,0.15, 0.35, and 2.8 for glucose, glutamine, glutamate, 

ammonia, and lactate, respectively. These RMSE values are better than or similar to those 

reported in the literature. These RMSE values could be further improved by increasing the 

calibration sample size, optimizing the number of components, and expanding the model 

range. The glucose and glutamine concentrations are controlled within 0.5 g/L and 0.3 

mmol/L of their setpoints of 5 g/L and 1.0 mmol/L, respectively. The fluctuations could be 

mitigated via the implementation of an immersion Raman probe. Two regions with 

distinguished model performance are seen in the perfusion process. The models perform 

well in the initial culture period in the perfusion process since the media composition and 

VCD in this period are similar to those in a batch or fed-batch process. Deviations of 

metabolite concentration predictions from the offline measurements are found when the 

VCD of 20x106 cells/mL is reached. This deviation could be ascribed to the calibration 

models developed from the batch and fed-batch data at a VCD of less than 9 x106 cells/mL. 

However, these models can be improved by feeding the perfusion data back to the models 

to increase the model range and enhance their predicting capability. Meanwhile, the 
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glucose and glutamine concentrations in the bioreactor at a constant VVD of 0.5 are 

controlled within 0.3 g/L and 0.3 mmol/L of their setpoints of 4 g/L and 0.5 mmol/L, 

respectively, leading to a reduction in the media consumption. 

A flexible two-column chromatography system has been developed along with Python-

based software and applied to a bench-scale integrated perfusion and capture process for 

mAb production. Three different methods are used to test the system, including a single-

column operation, a two-column operation at a resin loading capacity of 80%, and a two-

column operation at a resin loading capacity of 100%.  Chromatograms from three runs 

display four distinct operation steps for each column including equilibration, loading, 

washing, and elution. Continuous loading of the permeate directly from the bioreactor 

without holdup tanks onto the two-column system is achieved via a time-controlled mode. 

Overloading into two columns to reach the loading capacity of 100% could significantly 

reduce the use of resins and buffers.   

The preliminary data support that this bench-scale platform is readily maneuverable to 

customized requirements, adaptable for the production of different modalities, and much 

cheaper for implementation. 

This bench-scale system could be significantly improved by the implementation of a 

Raman immersion probe, which would allow more data points to be generated from 

batch, fed-batch and perfusion processes for building the calibration models and real-time 

in-line monitoring of cell culture metabolites. Increasing the number of data points is 

expected to improve the model predicting capability and the concentration range, while 
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real-time inline monitoring enables frequent sampling, thus realizing automatic control of 

the glucose and glutamine concentrations and reducing their fluctuations.  

The next improvement would be the implementation of UV, pH and conductivity sensors 

to the multi-column chromatography system. With the aid of these sensors, real-time 

chromatograms could be produced to monitor different process steps, meanwhile of the 

two-column system could be operated in a dynamic control mode through which the 

column switch is based on breakthrough instead of time.  

The last improvement is to develop a graphical user interface (GUI) for the Raman-based 

control system and the multi-column chromatography system. For the control system, a 

GUI allows real-time visualization of the predicted values, the weight of the bioreactor, 

and the pumping rates over the culture period. The current system prints the predicted 

values and the amount of feed dispensed on the screen and writes these values to a file. 

This GUI could be more user-friendly when interacting with the system, such as selecting 

different pre-processing methods and setting/changing the concentrated feed 

concentrations and the glucose and glutamine setpoints. The GUI for the chromatography 

system would also be more user-friendly for inputting start-up chromatography values, 

such as the load volume per column. In combination with the UV modules, the GUI would 

allow real-time chromatograms to be visualized.    
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