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Abstract: A mathematical model of competitive binding on a microarray
in real-time yields a planar system of nonlinear ordinary differential equa-
tions. This model can be used to explore dimensionless formulation, linear
approximation, and reduction. Real-time competitive binding is proposed as
an uncommon approach to advance the study of planar systems of differential
equations.

1 Introduction

We suggest an uncommon approach to investigate the planar autonomous system of
differential equations

¤𝑥 = 𝑓 (𝑥, 𝑦),
¤𝑦 = 𝑔(𝑥, 𝑦).

(1.1)

In practice, the model system used to introduce systems of the form (1.1) often relies
on a physical example. For instance, many approaches rely on the physical intuition
gained from the study of a linear, second order, scalar differential equation (e.g. mass-
spring-dashpot or RLC circuit) and use the equivalent first order system of equations as
an introductory example. Other classical approaches use examples like Romeo and Juliet
(see Strogatz [12, p 139]) or predator-prey interactions (see Borrelli and Coleman [3, pp
466-471]) to explore stability of equilibria, nullclines, trajectories, limit cycles, etc., in the
phase plane of the system (1.1). These examples all have the attractive quality that relative
simplicity of the modeling equations allow for analytic or geometric arguments (often
both!) matching intuition gained from considering the actual behavior of the physical
system.

In particular, many biological systems also can be modeled through a system of equa-
tions of the form (1.1). For instance, such modeling equations are used better understand
cellular action potential, relating an excitation variable (𝑥) to a recovery variable (𝑦) in
many contexts, including works by FitzHugh [6] and Mitchell and Schaeffer [10]. Other
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examples relate susceptible individuals (𝑥 ) to infected individuals (𝑦) in a disease epidemic
(the well-known SI model) [8], or the concentration of bromous acid (𝑥 ) to concentration
of oxidized catalyst metal (𝑦) in the classic Belousov-Zhabotinsky reaction [13]. Similarly,
a planar system of the form (1.1) is used to establish existence of traveling waves in the
Fisher equation [5], describing advance of an advantageous gene.

We propose examination of two-species competitive binding as an additional canonical
model to study of planar systems of differential equations. In doing so, we emphasize
kinetic reaction schemes, the law of mass action, conservation laws, linearization, and
dimensionless formulation; all of which are central to applied mathematics but often
uncommon in the classical approaches described previously.

In section 2 we give background appropriate to themodel system, including an example
from the literature as motivation. In section 3 we discuss the modeling equations, the
reduction to a planar system, and approximate solutions via linearization. These modeling
techniques generate a discussion of the ways in which the linearized system matches the
intuition gained by examining the physical system. We close in section 4 with sample
simulations and exercises which might be appropriate for incorporation into a course
covering a planar autonomous system of differential equations.

2 Background

Kinetic reaction schemes are ubiquitious in biological systems, many similar to the classical
example of Michaelis and Menten [7]. Modeling of such schemes relies on the law of mass
action [11], which states that the rate of a reaction is proportional to the concentrations of
the species involved in the reaction. For instance, application of the law of mass action to
the simple reaction

A + B
𝑘→ C (2.1)

yields differential equations describing the rate of change of the concentrations involved
in the reaction,

𝑑 [A]
𝑑𝑡

= −𝑘 [A] [B],
𝑑 [B]
𝑑𝑡

= −𝑘 [A] [B],
𝑑 [C]
𝑑𝑡

= 𝑘 [A] [B],

(2.2)

where 𝑘 is a constant describing the rate of the reaction. It is quick to note that the rate at
which A and B decrease is equal to the rate at which C increases, which is typical of such
reaction schemes. Moreover, the equations illustrate two conservation laws, which are
also typical of such reaction schemes. In this case, we see that

𝑑

𝑑𝑡
( [A] + [C]) = 0 (2.3)
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Figure 1: The microarray contains approximately 40,000 probes. Used according to a
Creative Commons license [4].

so that [A] + [C] is a constant quantity. In many experimental schemes, the initial amount
of complex, [C] is zero, so that the conserved quantity depends only on the initial amount
of [A], given by 𝑎0, as [A] + [C] = 𝑎0. Similarly, we see that the sum [B] + [C] = 𝑏0.
Below, both the law of mass action and corresponding conservation laws will be used to
derive a mathematical model of the model system.

2.1 Model System

As a model system, we consider the example of competitive binding on a microarray in
real-time. Since coming toward the forefront in the mid 1990s, microarrays have been
seminal in advancement of research to better understand expression of many genes in a
single experiment. In particular, one cannot overemphasize the impact of the microarray
on the advancement of cancer research, for instance, in the work by Khan et al. [9].

A microarray is a chip, containing many spots, used to measure the expression of a
specific gene (or genes). Figure 1 shows an example of a microarray containing approxi-
mately 40,000 probes. A typical use of a microarray is the detection of single nucleotide
polymorphism (SNP). In this case, we examine a mathematical model of a two-species
experiment, described by Blair et al. [2]. In the experimental design, a spot contains probes,
which are specifically designed to correspond to a target DNA sequence. In real time, a
hybridization process containing a target and competitor DNA (where the competitor
DNA mismatch differs by a SNP) bind to the probes. Measurement of bound target is
characterized through collection of fluorescent signal. A typical signal gives fluorescent
intensity as a function of time. As shown in Figure 2, fluorescent signal serves as a proxy
for concentration of target DNA bound to a probe. Although Zhang et al. [14, equations
(9)–(10)] consider a single soluble species on two spots, we use a similar approach for two
soluble species on a single spot. Following Blair et al. [2, system (12.6)], we assume that
two different species (a target and mismatch) bind in competition for the same binding
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Figure 2: The fluorescent signal from a real time microarray experiment serves as a proxy
for the ratio of probes bound by the target DNA. Adapted from Blair et al. [2].

sites in the reactions

𝐶T + 𝑆
𝑘T+
⇆
𝑘T−

𝐵T, (2.4)

𝐶C + 𝑆
𝑘C+
⇆
𝑘C−

𝐵C, (2.5)

where 𝐶T and 𝐶C represent the unbound target and competitor, 𝐵T and 𝐵C represent
bound target and competitor, and 𝑆 represents the binding site on the spot. We seek to
model an experiment in which a fixed initial amount of target competes with a variety of
initial amounts of mismatched competitor.

3 Modeling Equations

Applying the law of mass action and corresponding conservation laws to the reactions
given by (2.4)–(2.5), we obtain the following differential equations for concentrations of
bound target 𝑢 and bound competitor 𝑣 ,

𝑑𝑢

𝑑𝑡
= 𝑘T+ (𝐶T

0 − 𝑢) (𝑝0 − 𝑢 − 𝑣) − 𝑘T−𝑢,
𝑑𝑣

𝑑𝑡
= 𝑘C+ (𝐶C

0 − 𝑣) (𝑝0 − 𝑢 − 𝑣) − 𝑘C−𝑣,
(3.1)

where 𝐶T
0 and 𝐶C

0 are initial amounts of unbound target and competitor, and 𝑝0 is the
number of probe sites. In order to better understand the coupled, nonlinear system of
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differential equations, we consider two different nondimensional scalings. The scalings
are based on the known characteristic concentrations in the experiment, namely the initial
amount of unbound target (𝐶T

0 ) and the initial amount of available probe sites (𝑝0).

3.1 Target Scaling

In the so-called target scaling, we imagine a scenario where the initial amount of available
probes is larger than the initial amount of unbound target (𝑝0 > 𝐶T

0 ) and scale the bound
concentrations 𝑢 and 𝑣 by the initial amount of unbound target as 𝑥 = 𝑢/𝐶T

0 and 𝑦 = 𝑣/𝐶T
0 .

Scaling time by the characteristic forward reaction rate for the match, 𝜏 = 𝑘T+𝑝0𝑡 and
taking ¤[ ] = 𝑑

𝑑𝜏
, we find that

¤𝑥 = (1 − 𝑥) (1 − 𝜀𝑝𝑥 − 𝜀𝑝𝑦) − 𝐾𝑝𝑥,
¤𝑦 = 𝑘𝑎 (𝛾 − 𝑦) (1 − 𝜀𝑝𝑥 − 𝜀𝑝𝑦) − 𝑘𝑑𝐾𝑝𝑦,

(3.2)

where the parameters are 𝐾𝑝 =
𝑘T−
𝑘T+𝑝0

, 𝑘𝑎 = 𝑘C+ /𝑘T+ , 𝑘𝑑 = 𝑘C−/𝑘T−, 𝛾 = 𝐶C
0 /𝐶T

0 , and 𝜀𝑝 = 𝐶
T
0 /𝑝0.

We immediately see the implication of such a scenario, namely that 𝑝0 > 𝐶T
0 implies

that the constant 𝜀𝑝 < 1. In the case where 𝑝0 ≫ 𝐶T
0 (so that 𝜀𝑝 ≪ 1), we formally set set

𝜀𝑝 = 0 and find that the coupled, nonlinear system of differential equations completely
decouples,

¤𝑥 = 1 − (1 + 𝐾𝑝)𝑥,
¤𝑦 = 𝑘𝑎𝛾 − (𝑘𝑎 + 𝑘𝑑𝐾𝑝)𝑦,

(3.3)

to a linear, nonhomogeneous system. It is quick to interpret this mathematical limit as a
complete misunderstanding of the model system. In order to guarantee that the target
and mismatched DNA compete for binding sites on the probe, there may not be more
probe available than unbound DNA. If so, the competitive model system is not actually
competitive at all, as illustrated by the decoupled system.

3.2 Probe Scaling

In the so-called probe scaling, we imagine the experimentally interesting scenario where
the initial amount of unbound target is greater than the initial amount of available probe
(𝐶T

0 > 𝑝0) and scale the bound concentrations 𝑢 and 𝑣 by the initial amount of available
probe as 𝑥 = 𝑢/𝑝0 and 𝑦 = 𝑣/𝑝0. Scaling time by the characteristic forward reaction rate
for the match, 𝜏 = 𝑘T+𝐶T

0 and again taking ¤[ ] = 𝑑
𝑑𝜏
, we find that

¤𝑥 = (1 − 𝜀T𝑥) (1 − 𝑥 − 𝑦) − 𝐾T𝑥,

¤𝑦 = 𝑘𝑎 (𝛾 − 𝜀T𝑦) (1 − 𝑥 − 𝑦) − 𝑘𝑑𝐾T𝑦,
(3.4)

where 𝐾T =
𝑘T+
𝑘T−𝐶

T
0
, and the constants are as above, except that 𝜀T = 𝑝0/𝐶T

0 .

In analogy to the previous subsection, we can examine the case 𝐶T
0 ≫ 𝑝0 (so that

𝜀T ≪ 1) by formally setting 𝜀T = 0. In this case, the system maintains its competitive
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Figure 3: Curves show numerical approximation to the mathematical model of a typical
hybridization experiment with varying initial concentration of unbound mismatch, 𝐶C

0 .

nature,

¤𝑥 = 1 − (1 + 𝐾T)𝑥 − 𝑦,
¤𝑦 = 𝑘𝑎𝛾 − 𝑘𝑎𝛾𝑥 − (𝑘𝑎𝛾 + 𝑘𝑑𝐾T)𝑦,

(3.5)

as the coupled nonlinear system of differential equations reduces to a linear, nonhomoge-
neous system, maintaining competition through the coupling.

4 Model Exploration

Parameter values for the forward and backward reactions are described by Zhang et al. [14]
as 𝑘T+ = O

(
10−5

)
M−1s−1 and 𝑘T− = O

(
105

)
s−1. In an experiment where the mismatched

competitor differs by a SNP, it is common to assume that the forward reaction rates
are approximately equal, so that 𝑘C+ ≈ 𝑘T+ and that the backward reaction rates differ
approximately by at least an order of magnitude, so that 𝑘C− = O

(
10𝑘T−

)
(or larger).

To guarantee competition, we may not have 𝐶T
0 < 𝑝0, however, it is typically not the

case that 𝐶T
0 ≫ 𝑝0. In the first of two experiments described by Blair et al. [2, Figure

12.4], the microarray surface was spotted with probes matching the target (wild type), and
the competitor (SNP) concentration was varied. These values correspond to 𝐶T

0 = 1 nM,
𝑝0 = 1 nM and𝐶C

0 varying between 0 and 1 nM. We find a numerical approximation to the
solution of the system (3.4) using the parameter values 𝑘T+ = 1×106 M−1s−1, 𝑘T− = 4.5×10−6
s−1, 𝑘T+ = 1 × 106M−1s−1, 𝑘C− = 7.5 × 10−4 s−1, as described by Bishop et al. [1]. Solution
curves for bound target (match) and bound competitor (mismatch) are shown in Figure 3.
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4.1 Exercises

The following exercises might be useful to better investigate this topic.

Problem 4.1. Apply the law of mass action to the reaction scheme given by (2.4)–(2.5) to
find differential equations for the concentrations of bound target and competitor. What
are the conservation laws? Use those conservation laws to derive the coupled system of
nonlinear differential equation given by (3.1).

Problem 4.2. Explore numerical solutions of the system (3.1) with the file Competitive-
Binding.ode for a variety of parameter values.

Problem 4.3. Use the target scaling 𝑥 = 𝑢/𝐶T
0 and 𝑦 = 𝑣/𝐶T

0 , and scale time by the
characteristic forward reaction rate for the match, 𝜏 = 𝑘T+𝑝0𝑡 to show that the system
(3.1) can be converted into the system (3.2). Why does this scaling make sense in the case
𝐶T
0 < 𝑝0?

Problem 4.4. Consider the limiting case 𝐶T
0 ≪ 𝑝0. Find the analytical solution of the

system (3.3). Compare values of the analytical solution to values obtained from from
CompetitiveBinding.ode for a variety of value of 𝑝0. For what values do the graphs
appear similar? At what value of 𝑝0 do they begin to differ?

Problem 4.5. Use the probe scaling 𝑥 = 𝑢/𝑝0 and 𝑦 = 𝑣/𝑝0, and scale time by the
characteristic forward reaction rate for the match, 𝜏 = 𝑘T+𝐶T

0 to show that the system (3.1)
can be converted into the system (3.4). Why does this scaling make sense in the case
𝐶T
0 > 𝑝0?

Problem 4.6. Consider the limiting case 𝑝0 ≪ 𝐶T
0 . Find the analytical solution of the

system (3.5). Compare values of the analytical solution to values obtained from from
CompetitiveBinding.ode for a variety of value of 𝐶T

0 . For what values do the graphs
appear similar? At what value of 𝐶T

0 do they begin to differ?

Problem 4.7. Consider the behavior (so-called competitive displacement [2]) observed
in Figure 3, where the bound competitor concentration peaks then declines toward its
equilibrium value. Explain how the parameter values lead to these two phases of behavior.

Problem 4.8. In the second experiment described by Blair et al. [2, Figure 12.4], the microar-
ray surface was spotted with probes matching the SNP DNA instead. The hybridization
experiment then proceeded as with the first case, namely that a fixed initial amount of
wild type DNA was placed with varying initial amounts of SNP DNA. How would the
mathematical model change in this case? Derive a system in analogy to system (3.1)
and use a probe scaling to find a dimensionless version in analogy to system (3.4). How
would the parameter values change? Experiment numerically using another version of
Competitive-Binding.ode.
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5 Conclusion

We have presented a mathematical model of a biophysical experiment that can be used to
illustrate nondimensional scalings, and linear approximation of nonlinear dynamics. To
the extent that many investigations of planar systems use physical intuition and phase
plane behavior to contextualize solution trajectories of model systems, our model is an
uncommon approach to the study of such planar systems. Exercises are intended to further
study of planar systems by exploring scaling of parameters, numerical approximation
to solutions of nonlinear differential equations and limitations of linearization as an
approximate solution.
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