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Abstract

Determining the dynamics and parameter values that drive tumor growth
is of great interest to mathematical modelers, experimentalists and practi-
tioners alike. We provide a basis on which to estimate the growth dynam-
ics of ten different tumors by fitting growth parameters to at least five sets
of published experimental data per type of tumor. These timescale tumor
growth data are also used to determine which of the most common tumor
growth models (exponential, power law, logistic, Gompertz, or von Berta-
lanffy) provides the best fit for each type of tumor. In order to compute
the best-fit parameters, we implemented a hybrid local-global least squares
minimization algorithm based on a combination of Nelder-Mead simplex
direct search and Monte Carlo Markov Chain methods.





Acknowledgments

To Dr. Lisette de Pillis and Dr. Radunskaya, who pointed me in all the right
directions.





Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Assumptions and Methods 5
2.1 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Unit normalization . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 ODE Tumor Growth Models . . . . . . . . . . . . . . . . . . . 6
2.4 Parameter fitting algorithms . . . . . . . . . . . . . . . . . . . 7
2.5 Biologically Motivated Assumptions . . . . . . . . . . . . . . 11
2.6 Fitting evaluation metrics . . . . . . . . . . . . . . . . . . . . 12
2.7 Parameter Sensitivity Analysis . . . . . . . . . . . . . . . . . 12

3 Results 17
3.1 Tumor Growth Parameter Values . . . . . . . . . . . . . . . . 17
3.2 Parameter Sensitivity Analysis . . . . . . . . . . . . . . . . . 22

4 Discussion 27
4.1 Parameter Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Parameter Fitting Algorithms . . . . . . . . . . . . . . . . . . 28
4.3 Parameter Sensitivity Analysis . . . . . . . . . . . . . . . . . 29
4.4 Usage of Least Squares Residuals versus BIC . . . . . . . . . 30

5 Future Work 33
5.1 ODE models for CD47 Treatment . . . . . . . . . . . . . . . . 33



viii Contents

A Supplemental Materials 37
A.1 Sources of Data for Parameter Values . . . . . . . . . . . . . . 37
A.2 Results of Parameter Fittings . . . . . . . . . . . . . . . . . . 40

Bibliography 81



List of Figures

3.1 Logistic Model of Control B16 Data from Agur 2011 . . . . . 23
3.2 Local Parameter Sensitivity Analysis for Five Models, Alter-

ing Parameters by 10% . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Local Parameter Sensitivity Analysis for Five Models, Alter-

ing Parameters by 10% (with Power Law a results removed) 25

A.1 Parameter Fittings to In Vitro Bladder Cancer Trials . . . . . 42
A.2 Parameter Fittings to Individual In Vivo Bladder Cancer Trials 43
A.3 Parameter Fitting to Combined In Vivo Bladder Cancer Trials 44
A.4 Parameter Fittings to Individual In Vitro Breast Cancer Trials 45
A.5 Parameter Fitting to Combined In Vitro Breast Cancer Trials 46
A.6 Parameter Fittings to Individual In Vivo Breast Cancer Trials 47
A.7 Parameter Fitting to Combined In Vivo Breast Cancer Trials . 48
A.8 Parameter Fittings to Individual In Vitro Colon Cancer Trials 49
A.9 Parameter Fitting to Combined In Vitro Colon Cancer Trials . 50
A.10 Parameter Fittings to Individual In Vivo Colon Cancer Trials 51
A.11 Parameter Fitting to Combined In Vivo Colon Cancer Trials . 52
A.12 Parameter Fittings to Individual In Vitro Head and Neck Squa-

mous Cell Carcinoma Trials . . . . . . . . . . . . . . . . . . . 53
A.13 Parameter Fitting to Combined In Vitro Head and Neck Squa-

mous Cell Carcinoma Trials . . . . . . . . . . . . . . . . . . . 54
A.14 Parameter Fittings to Individual In Vivo Head and Neck Squa-

mous Cell Carcinoma Trials . . . . . . . . . . . . . . . . . . . 55
A.15 Parameter Fitting to Combined In Vivo Head and Neck Squa-

mous Cell Carcinoma Trials . . . . . . . . . . . . . . . . . . . 56
A.16 Parameter Fittings to Individual In Vitro Hepatocellular Car-

cinoma Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.17 Parameter Fitting to Combined In Vitro Hepatocellular Car-

cinoma Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



x List of Figures

A.18 Parameter Fittings to Individual In Vivo Hepatocellular Car-
cinoma Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.19 Parameter Fitting to Combined In Vivo Hepatocellular Car-
cinoma Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.20 Parameter Fittings to Individual In Vitro Lung Cancer Trials 61
A.21 Parameter Fitting to Combined In Vitro Lung Cancer Trials . 62
A.22 Parameter Fittings to Individual In Vivo Lung Cancer Trials . 63
A.23 Parameter Fitting to Combined In Vivo Lung Cancer Trials . 64
A.24 Parameter Fittings to Individual In Vitro Melanoma Trials . . 65
A.25 Parameter Fitting to Combined In Vitro Melanoma Trials . . 66
A.26 Parameter Fittings to Individual In Vivo Melanoma Trials . . 67
A.27 Parameter Fitting to Combined In Vivo Melanoma Trials . . . 68
A.28 Parameter Fittings to Individual In Vitro Ovarian Cancer Trials 69
A.29 Parameter Fitting to Combined In Vitro Ovarian Cancer Trials 70
A.30 Parameter Fittings to Individual In Vivo Ovarian Cancer Trials 71
A.31 Parameter Fitting to Combined In Vivo Ovarian Cancer Trials 72
A.32 Parameter Fittings to In Vitro Pancreatic Cancer Trials . . . . 73
A.33 Parameter Fittings to Individual In Vivo Pancreatic Cancer

Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.34 Parameter Fitting to Combined In Vivo Pancreatic Cancer Trials 75
A.35 Parameter Fittings to Individual In Vitro Renal Cell Carci-

noma Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.36 Parameter Fitting to Combined In Vitro Renal Cell Carcinoma

Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.37 Parameter Fittings to Individual In Vivo Renal Cell Carci-

noma Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.38 Parameter Fitting to Combined In Vivo Renal Cell Carcinoma

Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



List of Tables

3.1 Recommended Parameter Values and Ranges for Ten Differ-
ent Types of Cancer and Five ODE Growth Laws . . . . . . . 19

3.2 Model Evaluation Metrics for Combined Experimental Data
Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Model Fit Ranking According to Least Squares Residuals . . 21
3.4 Results of Partial Rank Correlation Coefficient Test for Two-

Parameter Growth Models . . . . . . . . . . . . . . . . . . . . 26

A.1 Sources of Timescale Data by Type of Cancer and Cell Line . 37
A.1 Sources of Timescale Data by Type of Cancer and Cell Line . 38
A.1 Sources of Timescale Data by Type of Cancer and Cell Line . 39





Chapter 1

Introduction

1.1 Introduction

Mathematical models of tumor-immune system interactions are an espe-
cially useful class of dynamical systems model, utilizing a vast range of
mathematical methods to model stochastic biological processes. Many re-
searchers choose to represent tumor-immune system interaction by non-
linear systems of differential equations that account for various interacting
cell populations or concentrations of chemicals (Sanga et al., 2006; de Pil-
lis et al., 2013a; Jackson and Byrne, 2000; Robertson-Tessi et al., 2012; Hart
et al., 1998; de Pillis and Radunskaya, 2006). If pharmaceuticals are also
taken into account, these models allow both for an unlimited number of
patient trials and the ability to vary dosages and combinations of medica-
tions such that the likelihood of eliminating the tumor is maximized.

Although many facets of these models change—underlying assump-
tions, the specific cell populations being modeled, the functions used to
approximate biological phenomena—they all must have a function that ap-
proximates tumor growth. Many researchers make this estimation by either
citing an earlier paper or performing a fitting to one or two experimental
data sets (Sanga et al., 2006; de Pillis et al., 2013a; Jackson and Byrne, 2000;
Robertson-Tessi et al., 2012; Hart et al., 1998; de Pillis and Radunskaya,
2006). It may save a great deal of work and provide a stronger basis for
tumor growth models to have an easily accessible catalog of tumor growth
functions in one place, especially one that provides a range of possible val-
ues and uses a large number of different experimental data sources for the
fittings. We have created such a catalog and encourage its use by mathe-
matical researchers. Our catalog accounts for tumors originating from ten
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different organs, each with a minimum of seven data sets from a minimum
of five different papers each.

In addition to improving the fit with a large amount of published ex-
perimental data, we also test five different tumor growth functions. There
are five widely used growth functions in the field of dynamical systems tu-
mor models: exponential growth functions, power law functions, logistic
growth functions, Von Bertalanffy growth functions, and Gompertz growth
functions (de Pillis and Radunskaya, 2006; Hart et al., 1998). For each of
the ten types of tumor, we fit the experimental data to each of these growth
functions and report several metrics to evaluate the fitting. This informa-
tion will not only suggest which function is best suited to model the growth
of each tumor type, but will provide an experimental basis for determin-
ing whether each individual function truly captures the dynamics of tumor
growth as well.

With access to a large catalog of tumor growth data, we are uniquely
able to implement a series of comparative models using CD47 treatment,
a relatively new form of cancer treatment (Willingham, Stephen B. et al.,
2012; B. Edris et al., 2012; Chen et al., 2005). Researchers have isolated a
protein, CD47, which can be targeted on many different types of tumor
for effective treatment. This is especially significant because cancer treat-
ments are usually tailored according to the organ of origin and nature of
the tumor. Current data on CD47 treatment record its effects on eight of the
ten different types of tumor. We propose a preliminary model that can be
used to explore tumor-specific dynamics with CD47 treatment. In future
work we will take advantage of the data fittings we have made available,
and using the high and low ranges of the tumor growth parameters with
the best-fit tumor growth function we have determined, we will further
develop and test our proposed CD47 treatment model.

1.2 Previous Research

Four of the different tumor growth functions have been studied side-by-
side by de Pillis for human melanoma grown in mice (de Pillis and Radun-
skaya, 2006). By a least-squares residual comparison, this study deter-
mined that Von Bertalanffy and logistic growth models provided the best
fits for the experimental data. Only one set of experimental trials from one
source was used to determine this result.

An earlier study by Hart et al. compared Gompertz, logistic, exponen-
tial and power growth law models in breast cancer (Hart et al., 1998). This
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study concluded that power law growth was the best candidate for the
function governing the growth of breast cancer. However, in a later model
developed in part by Zvia Agur, who worked on the previous paper, logis-
tic growth instead of power law growth was used to represent the tumor
growth equation (Elishmereni et al., 2011).

One of the earliest works comparing different tumor growth functions
was published in 1973, and focuses on fitting tumor growth data to the
Gompertz and logistic models (Aroesty et al., 1973). Rather than determin-
ing which growth function is the better fit to the data using fitting evalua-
tion metrics, Aroesty’s paper mentions the theoretical similarities between
the Gompertz and logistic models. However, no direct comparisons of the
fitting results are provided.

Similar studies have also been performed for comparing bacterial growth
rates (López, S. et al., 2004). Lòpez 2004 used two data sets and nine dif-
ferent growth functions as opposed to four or five, and found that the
most effective models for bacterial population growth were Baranyi, three-
phase-linear, Richards and Weibull growth models. The fact that no direct
comparisons of the fitting results are made demonstrates that large-scale
comparison projects of this character are a relatively recent ordeal.





Chapter 2

Assumptions and Methods

2.1 Experimental data

We curated a database of timescale tumor growth data sets for bladder can-
cer, breast cancer, colon cancer, head and neck squamous cell carcinoma,
hepatocellular carcinoma, lung cancer, melanoma, ovarian cancer, pancre-
atic cancer, and renal cell carcinoma. Each group of data sets was collected
from at least five peer-reviewed publications, with the smallest-sized group
containing seven data sets and the largest containing 17. In addition, at
least one data set collected for each type of cancer was obtained from in
vitro trials and at least one data set is composed of data collected from
in vivo trials. Along with in vitro trials, the range of target organisms in-
cludes SCID mice, nude mice, normal mice, hamsters and humans. Table
A.1 shows all sources for each timescale data set included in the study, as
well as the cell lines for each trial.

2.2 Unit normalization

Of the papers which reported timescale tumor growth, the units and meth-
ods of measurement varied greatly. At least one paper per type of tumor
was an in vitro trial that reported tumor size as a cell number, the preferred
unit for our purposes, but all data from in vivo and in situ trials were pre-
sented in units of mm3, mm2, mm, cm3, or relative volume. In addition,
instead of assuming a spherical tumor, volume was reported in a majority
of papers as the product of the height, length and width of the tumor, over-
estimating the volume. However, we will also assume that no individual
tumor cells are compressed, which will underestimate the number of tu-
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mor cells. The combination of these two assumptions is presumed to bring
the estimated cell number within reasonable error of the real cell number.

In many cases, we were able to obtain an estimate of the number of
tumor cells in a given volume from murine data sets which reported an ini-
tial cell count along with an initial volume measurement. We then divided
the volume by the cell number, allowing for an estimate of the volume of
a single tumor cell. We used this same estimate for data sets on tumor
growth for tumors originating from the same organ. The most accurate
conversion estimate, requiring the fewest conversions from the original
data, was an estimate of 2.85× 103 cells/µm3 for pancreatic cancer (Kisfalvi
et al., 2009). For types of tumor which did not have a conversion data set
available, we estimated the conversion ratio at approximately 1.82 × 103

cells/µm3 (de Pillis et al., 2013a). Although these two estimates were ob-
tained from different sources and for different cells, it should be noted that
they are the same order of magnitude despite the high variability of cell
size.

This volume estimate of a tumor cell provides a method with which to
convert volume, area or distance measurements to cell number. For those
data sets which reported growth in volume, we normalized each datum by
1

µT
where µT is the tumor cell volume calculated as above. The papers that

reported an area measurement all obtained the values by multiplying the
minor axis of the tumor by the major axis (Ricker et al., 2004; Sunwoo et al.,
2001; Boukerche et al., 1989; Juhl et al., 1997). In this case, we assumed
a cubic tumor with a volume of a

√
a where a is the reported area mea-

surement. This allows us to calculate cell number from volume as before.
Another set of papers reported only the major axis of the tumor (Murgo,
1985; Burke et al., 1997; Fujimoto et al., 1995). Here, we assumed a spheri-
cal tumor with the radius being one-half the major axis, using the volume
of the sphere to estimate the cell number. For those papers that reported
relative volume, we converted the data to cell number using the informa-
tion in the supplemental material sections of each paper (Okegawa et al.,
2001; Fujiwara et al., 1993; Ahonen et al., 2000).

2.3 ODE Tumor Growth Models

We compare fittings of tumor data for five different ODE growth models;
exponential, power law, logistic, Gompertz, and Von Bertalanffy. Let P rep-
resent an arbitrary population and let t represent time. Exponential growth
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models are the simplest ODE growth model, described by

dP
dt

= CP (2.1)

for some constant C. It is a special case of power law growth,

dP
dt

= CPa, (2.2)

where both C and a are parameters that must be fit to the data. Logistic
growth, which incorporates a carrying capacity, is given by

dP
dt

= rP
(

1− P
K

)
(2.3)

where r represents the intrinsic growth rate and K represents the carrying
capacity. Von Bertalanffy growth is the least complex growth model that
incorporates a carrying capacity, given by

dP
dt

= r(K− P). (2.4)

The final commonly used tumor growth model is Gompertz growth,

dP
dt

= r log
(

K
P

)
P. (2.5)

Of these models, we expect logistic growth to provide the best estimation
of experimental data, since it approximates exponential growth at low pop-
ulations while accounting for the resource-limited growth behavior at high
populations. Unfortunately, very few data sets exist that allow tumors to
grow large enough in order to get a proper estimate of the carrying capac-
ity. We specifically sought out data sets that included data for large popu-
lations in order to properly compare the former two models with the latter
three (Fujiwara et al., 1993; Takahashi et al., 1992; Murgo, 1985; Richmond
et al., 1983; Kisfalvi et al., 2009; Reinmuth et al., 2002; Nakata et al., 1998;
Caltagirone et al., 2000; Ricker et al., 2004).

2.4 Parameter fitting algorithms

All fitting results were obtained by minimizing the non-weighted least squares
distance. We refer to the least-squares distance by the quantity d, where

d(p) =
√
(q1 − f (p, t1))2 + · · ·+ (qn − f (p, tn))2
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for each tn representing a time value at which data are collected, qn repre-
senting the experimentally determined data point at tn and f (p, t) repre-
senting the fitting given parameter p and time t. We say that φ is a best-fit
parameter if φ minimizes d(p).

The parameters for each tumor growth model were estimated using at
least two least-squares distance minimization algorithms. For each ODE
model, the ODE with parameters was solved numerically using MATLAB’s
ode45 function, implementing a 4th and 5th order Runge-Kutta solver. We
then minimized a least squares distance function between this solution and
a target set of data using either MATLAB’s built-in fminsearch function or
a Markov chain fitting with simulated annealing. MATLAB’s fminsearch
is a Nelder-Mead simplex direct search function. Nelder-Mead is one of
a class of local-search algorithms, which require that one choose a very
good initial guess, or the method will not converge to a global minimum
but instead iterate toward a nearby local minimum. The local minimum
found may not produce the best fit (Lagarias et al., 1998). This necessitates
the use of an alternate, global, data-fitting method. In the next sections we
provide more detail describing both the local Nelder-Mead algorithm and
a global minimization algorithm that implements a Markov chain fitting
with simulated annealing.

2.4.1 The Nelder-Mead simplex direct search

The Nelder-Mead simplex direct search algorithm implemented in MAT-
LAB’s fminsearch and described in New Computing Environments: Mi-
crocomputers in Large-Scale Computing (Dennis and Woods, 1987), goes
through k iterations. It begins by sampling n + 1 time values, which we
will refer to as x1, x2, · · · , xn+1. These values are sorted in increasing order
of their image under the target function f (x), that is,

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1).

The point with the ith lowest image at the kth iteration will be referred to
as xk

i . We then define a simplex Sk with vertices x1, x2, · · · xn, denoted by
Sk =< x1, x2, · · · , xn+1 >. This simplex is then modified by reflection,
expansion, contraction, or shrinkage, in that order, until a new simplex
Sk+1 which converges more closely to the local minimum is determined.
The first step reflects the largest vertex, xn+1, through the centroid of the
vertices x1, · · · , xn. The new reflected vertex, xr, is calculated by

xr = (1 + α)x− αxn+1
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such that α = 1 and x is the centroid:

x =
1
n

n

∑
i=1

xi.

If f (x1) ≤ f (xr) < f (xn), we move to the next iteration of the search with
Sk+1 =< x1, x2, · · · , xn, xr >. The fact that xr is not in order with the rest of
the vertices is intentional. However, if f (xr) < f (x1), implying that f (xr)
is now the closest point to the local minimum, we continue the step by
producing an expansion vertex

xe = γxr + (1− γ)x

where γ = 2. We choose the expansion vertex if f (xe) < f (x1) and the
reflected vertex elsewise. If neither the reflected or expanded vertices are
accepted, which corresponds to the case where f (xn) ≤ f (xr), we compute
a contracted vertex. This contraction vertex is calculated as

xc = βxr′ + (1− β)x

where β = 1
2 and xr′ = min(xn+1, xr). This new vertex becomes part of

the new simplex if f (xc) < f (xn), and a new iteration begins. However, if
f (xn) ≤ f (c), we move to shrink the simplex by replacing each xi with the
midpoint of the line segment connecting x1 and xi, or

xi(new) =
x1 + xi

2
.

The new simplex Sk+1 is created by rearranging the new xi according to
their images under f (x). This algorithm produces a simplex that moves
toward a local minimum and shrinks if it is unable to locate a deeper local
minimum. Although there are several stopping criteria for this algorithm,
MATLAB stops fminsearch when the distance traveled in parameter space
during the last iteration is under a pre-set tolerance.

2.4.2 Markov Chain fitting with Simulated Annealing

We use a Markov chain Monte Carlo (MCMC) fitting with simulated an-
nealing. The MCMC fitting is non-deterministic alternative and tests a
wider range of values in parameter space than fminsearch, causing it to be
more capable of locating sinks that contain global minima (Winkler, 2003;
Gilks et al., 1996; Brooks et al., 2011). Markov chain fitting itself starts by



10 Assumptions and Methods

choosing an initial condition, a point in parameter space, denoted by p0.
On the ith iteration of the fitting, a vector v of random magnitude and
direction is determined from a set of uniformly distributed values over a
closed disk of radius r, generating a new set of parameters pnew = pi + v.
For a minimization function d′(p) (usually the least-squares distance,) we
determine the output of this step by comparing d′(pi) and d′(pnew). If
d′(pnew) ≤ d′(pi), we let pn+1 = pnew with probability 1. However, if
d′(pnew) > d′(pi), i.e., the least-squares distance is smaller with the older
parameters, we move to the new parameters with probability

d′(pi)

d′(pnew)
.

Although this method seems counterintuitive, the action of moving away
from local minima ensures that the Markov chain fitting function is more
likely to locate global minima. This serves two purposes—to escape more
easily from a local minimum that is not a global minimum, and to allow
repeated iterations of the same algorithm to increase the accuracy of the re-
sults. The stochasticity in the algorithm allows for different outcomes even
among trials with the same initial conditions (Winkler, 2003; Gilks et al.,
1996; Brooks et al., 2011). This process is repeated n times— where n is an
arbitrary number chosen by the user—before stopping. This algorithm has
no standard stopping condition. In our case, we chose n = 200. This num-
ber of runs allowed us to achieve relatively good fits while keeping com-
putational running times reasonable. Implementing this algorithm with a
larger n would increase the chance that a global minimum is located.

Simulated annealing is the process of fitting not to the distance function,
but the distance function raised to successive powers from 0 to 1, where the
result of each fitting is used as the initial condition for the next fitting. This
algorithm reduces the chances that a minimization function will converge
to a local minimum instead of a global minimum, since the act of raising
the distance function to a power less than 1 reduces the prominence of local
minima (Winkler, 2003). In this case, we ran 10 trials with simulated an-
nealing, corresponding to ten iterations. The nth iteration uses the Markov
chain fitting algorithm to minimize the function (d(p))βn for βn = 0.1n.
The fitting for βn = 1, i.e., the parameter values for n = 10, are accepted as
the final parameters for this iteration of the fitting.
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2.4.3 Hybrid Minimization Algorithm

Note that part of the difference in usage and performance between these
two algorithms arises from the fact that Nelder-Mead simplex direct search,
i.e. fminsearch, finds local function-minimizing parameters, but MCMC
and Markov chain methods are more likely to find global function-mini-
mizing parameters (Ashyraliyev et al., 2009). That is, while fminsearch
will return the parameter values that produce the lowest least-squares fit-
ting within a bounded neighborhood of the initial parameters, all Markov
chain methods return the parameter values that produce the lowest least-
squares fitting over a finite number of arbitrary parameters from anywhere
in the parameter space (Ashyraliyev et al., 2009). This difference in the
domain of each algorithm leads to defining behaviors that either help or
hinder the goodness of fit. Since fminsearch is a local minimizer of the
least squares distance, it is excellent at converging to local minima, but is
known to ignore global minima that may produce a better fit. Likewise,
MCMC and Markov chain methods have the ability to locate other minima
that may be far removed from the initial conditions, but are less likely to
hone in on the exact minimum in a local sink.

In order to address the respective shortcomings of global and local pa-
rameter fitting algorithms, we used a hybrid of Nelder-Mead simplex di-
rect search and Markov chain fitting with simulated annealing. We started
with one round of fminsearch fitting, and the resulting parameters were
passed as initial conditions to the Markov chain algorithm. If the resulting
parameters did not meet visual standards or had singularities, the parame-
ters underwent another round of Markov chain fitting. Next, since Markov
chain fitting is effective at breaking out of local minima but less effective
at converging to minima, a second round of fminsearch was performed
using the results of the Markov chain fitting as initial conditions to ensure
convergence to the deepest local minimum. All parameters reported in the
Results section were determined by this sequence of fitting algorithms.

2.5 Biologically Motivated Assumptions

To determine the recommended parameters for each model, we recorded
the parameters of the function that best represented all trials with the same
model organism at once. However, in order to determine the full range
of parameters, we performed fittings to each data set individually and
recorded the extrema of each set of parameters. It is also assumed that
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in vitro trials are better indicators of intrinsic tumor growth rates, due to
the lack of an immune system in the growth environment; and that in vivo
trials are better indicators of animal carrying capacity, since the growth me-
dia are closer to conditions the tumor would encounter in a living organ-
ism. Thus, when relevant, intrinsic growth rates are determined from in
vitro trials only and carrying capacities are determined from in vivo trials
only. In cases where no carrying capacity is given, i.e., the exponential and
power law growth models, only in vitro trials are used to determine the
growth rate, and the in vitro trials are also used to determine the exponent
for the power law model.

2.6 Fitting evaluation metrics

We can compare the goodness-of-fit between the output of fminsearch and
MCMC by noting the least-squares residuals for each data set. Using this
metric, lower residuals will suggest a better fitting. We also use the least-
squares residuals to calculate the Bayesian Information Criterion (BIC) for
each fitting, which accounts for goodness-of-fit as well as the number of
parameters to guard against over-fitting. The particular formula that we
use is

BIC = n · ln
(

1
n− 1

d(p)
)
+ k · ln(n).

where x represents the experimental data, n is the number of data points
in x, and k is the number of parameters which are being estimated in the
model (Priestley, 1981). For our purposes, k = 1 for the exponential model
and k = 2 for the four other models. Note the inclusion of the least-
squares residuals. The primary reason for using BIC in conjunction with
least-squares residuals in model evaluation is to determine the effects of
using more parameters than necessary. The Bayesian Information Criterion
incorporates slightly more information than the least squares residuals, pe-
nalizing models for using a larger number of parameters.

2.7 Parameter Sensitivity Analysis

We use two separate parameter sensitivity analysis techniques: a local-
ized parameter sensitivity algorithm, and the Partial Rank Correlation Co-
efficient (PRCC) test using Latin Hypercube Sampling (LHS). These tech-
niques account for the effects of slight parameter modifications on the over-
all function and accuracy of the model.
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The local parameter sensitivity analysis is used to determine how al-
tering the value of a single parameter affects the behavior of the overall
model Mummert (2010). In order to perform a local parameter sensitivity
analysis, we start with an initial set of parameters p, then choose a per-
centage 0 < p < 1, an initial condition y0 for the ODE model, and a time
t > 0. Then, where pj represents the jth parameter, we let yt be the value
at t of the ODE model with parameters p starting at y0, let y+ be the value
at t of the ODE model with parameters (p1, · · · , pj(1 + p), · · · , pn) start-
ing at y0, and let y− be the value at t of the ODE model with parameters
(p1, · · · , pj(1− p), · · · , pn) starting at y0. We then calculate the percentages
of change, C%+ and C%−, from the previous model output to the new model
output as

C%+ =
y+ − yt

yt
× 100,

C%− =
y− − yt

yt
× 100.

If the model value and the value of an individual parameter are positively
correlated, we expect C%+ to be positive and C%− to be negative. Similarly,
if the model value and the value of an individual parameter are negatively
correlated, we expect C%+ to be negative and C%− to be positive. In addi-
tion, a larger C%+ or C%− value indicates that the parameter pj has a more
significant effect on the behavior of the model.

One of the issues with only using local parameter sensitivity analysis is
that it does not account for interactions between parameters. This is why
we use a second parameter sensitivity analysis technique, the Partial Rank
Correlation Coefficient (PRCC). We begin by using Latin Hypercube Sam-
pling (LHS) to generate a sampling of random vectors in parameter space.
Contrast this with the local parameter sensitivity analysis, which can only
evaluate the model along the axes of parameter space. For some integer
N > 0, LHS attempts to cover parameter space by separating a bounded
subset of parameter space into N sections and choosing a random value in
each section from a uniform distribution Mummert (2010). MATLAB has
a built-in function for performing LHS: lhsdesign. This function returns
a matrix of parameter values between 0 and 1. Since these values are not
viable to use as carrying capacities, we multiplied each set of carrying ca-
pacity parameters by 109. We let M be the matrix returned by lhsdesign.

From the results of the LHS, we generate an output vector, y, where
yj is the model value at time t using the parameters given by the jth row
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of M. The first step to implementing the PRCC test is to rank transform
the matrices, which takes M and y as input and returns a matrix of the
same dimensions, called M and y, where each column contains all of the
integer values from 1 to N. The ordering of these integers corresponds to
the ordering of values in the original matrices, where a 1 in the kth column
of M corresponds to the position of the lowest value in the kth column of M
and N corresponds to the highest value.

We then use the rank transformed matrices to calculate the linear regres-
sion models for each parameter, pk, which expresses the target parameter
pk as a linear combination of all of the other parameters. The equation

pk = c0 + c1 p1 + · · ·+ ck−1 pk−1 + ck+1 pk+1 + · · · cn pn

is solved by

c = (XTX)−1(XT pk); c =

c0
...

cn

 and X = [1, p1, · · · pk−1, pk+1, · · · pn].

In a similar manner, we define

ypk = a0 + a1 p1 + · · ·+ ak−1 pk−1 + ak+1 pk+1 + · · · an pn,

which is solved by

a = (XTX)−1(XTy); a =

a0
...

an

 and X = [1, p1, · · · pk−1, pk+1, · · · pn].

This allows us to define two sets of residuals; res(pk) = pk− pk and res(ypk) =
y− ypk . We finalize the PRCC algorithm using the MATLAB function corrcoef
to determine the correlation coefficient between res(pk) and res(ypk). These
correlation coefficients are the final result of the PRCC test, and they give
a measure for the strength of the relationship between two parameters. A
correlation coefficient of 1 between two parameters implies a strong posi-
tive linear relationship between the parameters, while a correlation coeffi-
cient of -1 between two parameters suggests a strong negative relationship.



Parameter Sensitivity Analysis 15

If the correlation coefficient is between −0.5 and 0.5, the parameters do not
have a linear relationship.

It should also be noted that PRCC can only be used on models that
have a monotonic relationship on the model output, which is true of all
parameters in our case, and the model must have two or more parameters
in order to perform the test. This excludes the exponential model from
PRCC analysis, as it only needs one parameter.





Chapter 3

Results

3.1 Tumor Growth Parameter Values

In order to determine a set of recommended parameters and appropriate
range for each type of cancer and growth model, we fit the parameters
of each growth equation to a minimum of five data sets per type of can-
cer. These parameters fall into three different classes: intrinsic growth rates
(denoted r), exponents (denoted a) and carrying capacities (denoted K.) It
is assumed that intrinsic growth rates and exponents could be determined
more accurately from in vitro and SCID mouse trials, i.e., due to the lack
of an immune system interfering with growth; and that carrying capacities
for humans are closer to the carrying capacities from in vivo trials, given
that carrying capacities are highly dependent on the organ of origin be-
longing to each type of cancer. Therefore, for all models except the Power
Law model, the intrinsic growth rate is determined from in vitro trials and
the carrying capacity, if it exists, is determined from in vivo trials only. The
Power Law is a special case which is addressed in the discussion section.

To fit the parameters, we used a hybrid of Monte Carlo fitting with sim-
ulated annealing and Nelder-Mead simplex direct search. Nelder-Mead, in
the form of MATLAB’s fminsearch function, was used to initialize param-
eters for the Monte Carlo fitting, which was performed to nudge the results
of fminsearch out of local minima, then a second round of Nelder-Mead
is used to lower the least squares residuals to the closest local minimum.
In addition, two different types of fittings were performed on each set of
related data sets. The in vitro trials for each type of cancer were fitted sep-
arately for the best fit parameters to determine an acceptable parameter
range, then together with different initial conditions to determine the sug-
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gested parameter values.
As a result of the parameter fitting, a catalog of suggested values and

ranges was found for ten types of cancer and five models, in Table 2.1.
The least squares residuals and BIC values for the combined fittings can
be found in Table 2.2. In order to highlight the best fittings and the rela-
tionship between least squares residuals and BIC values, the lowest least
squares residuals values and BIC values in each row have been highlighted
in purple and blue, respectively. Graphs for each individual fitting and
combined fittings, as well as the residuals, parameters and sources for all
fittings, can be found in the Supplemental Data section. We were also able
to determine a ranking of model fit for each cancer type from the evaluation
metrics, displayed in Table 2.3. This ranking was determined by compar-
ing the sum of the least squares residuals for all individual and combined
trials for each type of cancer.
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Cancer Model Ranking
1 2 3 4 5

Bladder Power Law Gompertz Logistic Exponential Von Bertalanffy
Breast Logistic Gompertz Power Law Exponential Von Bertalanffy
Colon Power Law Von Bertalanffy Gompertz Logistic Exponential
HNSCC Gompertz Power Law Exponential Logistic Von Bertalanffy
Liver Logistic Gompertz Power Law Von Bertalanffy Exponential
Lung Logistic Power Law Gompertz Von Bertalanffy Exponential
Melanoma Power Law Logistic Exponential Gompertz Von Bertalanffy
Ovarian Power Law Exponential Gompertz Logistic Von Bertalanffy
Pancreatic Power Law Gompertz Logistic Exponential Von Bertalanffy
RCC Power Law Logistic Exponential Gompertz Von Bertalanffy

Table 3.3 Model Fit Ranking According to Least Squares Residuals

In addition to building a new catalogue, we have tested our methods
on established results as well. Agur et al. 2011 estimates logistic tumor
growth parameters from expermiental data regarding B16 growth, some
of which is reported (Elishmereni et al., 2011). When applied to the given
control B16 data in Agur 2011, our parameter fitting algorithm returned an
intrinsic growth rate of r = 0.5392 and a carrying capacity of 7.4944E8 with
least squares residuals of 8.60E14 for the logistic fit. Agur et al.’s original
result was r = 0.0014 and 1.5E9 (Elishmereni et al., 2011). As their least-
squares residuals and exact data sets used for parameter estimation were
not reported, we were unable to perform a suitable comparison to their
parameters.
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3.2 Parameter Sensitivity Analysis

Two types of parameter sensitivity analysis were performed on the indi-
vidual tumor growth models. The local parameter sensitivity analysis is
performed to measure what the effect on the model would be if a param-
eter were increased or decreased by some percentage of its value, while
the Partial Rank Correlation Coefficient test, commonly referred to as the
PRCC, is intended to measure the statistical influence on the model output
of parameters that have monotonic but nonlinear behavior Gomero (2012).
As it is impossible to determine PRCC values from a model that has only
one parameter, the exponential model is excluded from PRCC analysis.

We perform a local parameter sensitivity analysis altering each param-
eter by 10%, with an initial condition of 1× 104 tumor cells, running the
model for 10 days, and starting with the parameters from the individually
determined in vitro colon trials. The results are presented in Figure 3.2 and
Figure 3.3 (where Figure 3.3 has the power law exponent removed to in-
crease readability of the percent changes associated with the other param-
eters.) We also provide a PRCC analysis over 1000 randomized parameter
values using Latin hypercube sampling, which is presented in Table 3.4.
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Figure 3.1 Logistic Model of Control B16 Data from Agur 2011
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Parameter PRCC
Power law r 0.0412
Power law a 0

Logistic r 0
Logistic K 0

Gompertz K 0.0292
Gompertz K 0

Von Bertalanffy K - 0.0104
Von Bertalanffy K 0

Table 3.4 Results of Partial Rank Correlation Coefficient Test for Two-
Parameter Growth Models



Chapter 4

Discussion

4.1 Parameter Fitting

In some cases, the results of the fitting algorithm are misleading. Logistic
growth fittings sometimes ended with a carrying capacity with an order
of magnitude much higher than comparable trials and the same intrinsic
growth rate as the exponential fit to the same data. This occurs with in vivo
trial 3 for breast cancer, in vivo trial 4 for head and neck squamous cell car-
cinoma; in vitro trials 1, 2, and 10 and in vivo trial 1 and the combined in
vivo fit for lung cancer; and in vitro trials 1 and 3 for ovarian cancer. When
this happens, we assume that the exponential fit is a better match to the
data than the logistic fit, so the logistic growth function approximates ex-
ponential growth by raising the carrying capacity to a number high enough
so that it does not affect the fitting. This theory is supported by the least
squares residuals; the least squares residuals from the exponential fit and
the residuals from the logistic fit are the same when this situation occurs.

Another result determined from the parameter fitting process is that it
may not be justifiable to alter power law growth parameters, even within
the range given by repeated fits. This is because the best fit power law pa-
rameters occasionally have uncharacteristically high intrinsic growth rates
(e.g. in vivo breast cancer trials 1 and 2, the combined head and neck squa-
mous cell carcinoma in vivo trial, in vitro lung trial 5) and exponents that are
lower than the exponents in trials in the same cancer. These results suggest
that power law fitting is highly sensitive, where the intrinsic growth rates
rise unpredictably to accommodate lower exponents and vice versa. There-
fore, although power law fits occasionally have lower residuals than the
other growth laws, their unstable nature prevents researchers from being
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able to justifiably change parameters within a certain range. For this rea-
son, we discourage future tumor growth modelers from using the power
law model.

One concern that must be addressed is whether the best-fit parameters
are biologically accurate (Slezak et al., 2010). We note that the best-fit Von
Bertalanffy parameters, which are expected to have intrinsic growth rates
similar to all other models, consistently have intrinsic growth rates that are
two or three orders of magnitude smaller. This is enough of an indication
to doubt the biological veracity of the Von Bertalanffy parameters obtained
by least-squares fitting. In addition, we have reason to question the biolog-
ical relevance of the power law fittings for the same reasons as previously
addressed.

4.2 Parameter Fitting Algorithms

To see that the hybrid fitting algorithm is more effective than either the
Nelder-Mead simplex direct search or Markov Chain method with simu-
lated annealing, we note that a set of parameters is only accepted if the
least squares residuals are lower than they were in the previous fitting.
Since fminsearch is used to provide initial values for the Markov Chain
method, the residuals of a Nelder-Mead simplex direct search on a given
data set bound the residuals of the hybrid search from above. Due to the
nondeterministic nature of the Markov Chain method, the residuals are
not necessarily always greater than those of the hybrid method, but it is
true that the residuals returned by a specific iteration of the Markov Chain
method will always be greater than the results of the hybrid algorithm us-
ing that specific iteration of the Markov Chain method. We have noted the
inability of the Markov chain method to converge on global minima.

What is questionable, though, is the justification of using a much more
complicated fitting algorithm than is necessary when fminsearch would
have been sufficient. One issue with fminsearch is the inability to con-
verge to a better minimum once a local minimum is detected by the al-
gorithm, and to improve the fitting would necessitate changing parame-
ters by hand. Since this project required 20 separate parameter fitting tri-
als each to 70 data sets, not including the 90 combined fittings, manually
altering parameters was not a viable option. Thus, even one instance of
fminsearch converging to a non-global minimum would necessitate the
use of a stronger parameter fitting algorithm. This hybrid method was
adopted after repeated difficulties with fminsearch which would have re-
mained unfixable otherwise.

As a side note, it is possible to fit the equations with carrying capacities
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in two different ways: the first, defining the parameters to be estimated
as r and K, and the second, defining the parameters to be estimated as
r and 1/K. Although theoretically equivalent, these two approaches can
produce different outcomes depending on which fitting metric is used. For
the logistic equation defined as

dP
dt

= rP
(

1− P
K

)
, (4.1)

it is possible that the fitting algorithm may be slower in converging to the
best-fit K, because it is possible for the best-fit K to be several orders of mag-
nitude higher than the initial condition. However, for the logistic equation
defined as

dP
dt

= rP (1− bP) (4.2)

where b = 1
K , both the Nelder-Mead simplex direct search and the Markov

Chain method occasionally produced results where the carrying capacity
was negative. This is a result of the relative distance in parameter space
from the negative real axis; 1× 106 and −1× 106 are much further apart
than 1× 10−6 and −1× 10−6, for example, thus the first condition makes it
more difficult for either algorithm to reach negative values. We recommend
using the first fitting method in order to avoid the fittings from producing
a biologically inaccurate carrying capacity.

4.3 Parameter Sensitivity Analysis

While it may seem odd to perform a sensitivity analysis on a series of mod-
els that each have only one or two parameters, these techniques can be
interpreted to compare the justifiability of tweaking parameters in each
growth model. The PRCC values provide a measure of the strength of the
relationship between two parameters, while the local parameter sensitivity
analysis measures the effect of individual parameters on the model output.
Therefore, while the local parameter sensitivity analysis can be used to es-
timate the effects of changing the value of a single parameter, the PRCC
measure can tell us whether altering a single parameter while leaving the
other constant is justifiable. If the local parameter sensitivity analysis re-
veals that altering a parameter by a small amount changes the output of the
model by a significant amount, possibly 50% or greater, researchers should
be warned against changing these parameters. Furthermore, if the PRCC
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indicates that two parameters have a low correlation coefficient, it indicates
that the parameters have a non-monotonic relationship Gomero (2012).

For our purposes, the sensitivity analyses can be used to provide a ba-
sis for our claim that the power law is not a viable model. Figure 3.2 sug-
gests that a, the exponential component of the power law model, affects
the model output at a much higher percentage than any other parameter
in any other model. In fact, increasing a by only 10% caused the tumor
to grow almost 35000% larger in only 10 days. This suggests that alter-
ing a individually would change the tumor growth behavior at a massive
rate that has no biological justification. An alternative would be to alter
a and r in conjunction, such that the relatively low least squares residuals
for the fitting are preserved. However, as the PRCC results suggest, the
relationship between a and r is highly nonlinear. This is not suggestive in
and of itself—none of the other parameters had significant PRCC results—
rather, we draw the conclusion in light of the results of the local parameter
sensitivity analysis. In practice, a researcher seeking to lower the growth
rate or raise the exponent of some of the less biologically sound power law
fittings would have difficulty determining a relationship between a and r
which allows the parameters to be altered while preserving the behavior of
the original curve. This rigidity and extreme sensitivity is what makes the
power law a less than ideal choice for a tumor growth model.

It should be noted in the local parameter sensitivity analysis that chang-
ing the logistic r appears to have no effect on parameter sensitivity. This
occurs because with the chosen parameters, the model reaches its carrying
capacity by t = 10 for all values in the sampled range of r, and a different
percent growth would be obtained if the tumor growth were sampled at a
different time.

4.4 Usage of Least Squares Residuals versus BIC

Although only using one model evaluation metric would not be thorough,
it was necessary for the purpose of this project to choose one evaluation
metric as the dominant one. The model performance ended up being ranked
primarily by least squares residuals. Although the BIC can be seen as an ex-
tension of the least squares residual and incorporates more information, it
was used as only a secondary evaluative tool for two reasons. Least squares
residuals have the benefit of being easier to interpret and understand. More
importantly, the strength of the BIC is that it penalizes models for having
more parameters, even if more parameters produce a better fitting, because
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increasing the number of parameters also decreases the probability that the
parameters used are statistically accurate. This may be important for larger
models, but, for our purposes, all models either had one or two parameters,
making this feature redundant. It could also be argued that two parame-
ters is the least that a biologically viable tumor growth model can have,
given that tumor growth is limited by the amount of available nutrients
in the local area, so a carrying capacity must always exist. This is why
the ranked model evaluation takes the least squares residuals into account
more strongly than the BIC values for each trial.

Another relation between the evaluation metrics to take into account
is whether the models with the lowest least squares residuals also had the
lowest BIC values. As demonstrated in Table 3.2, the trial with the lowest
least squares residuals also had the lowest BIC values in 65% of the cases,
while the two metrics disagreed on 35% of the cases. While this nontrivial
behavior is expected, given that the function that generates BIC values is a
nonlinear function over the least squares residuals of a model, this differ-
ence serves to highlight the fact that choosing a different model evaluation
metric would produce a different ranked ordering of models.





Chapter 5

Future Work

5.1 ODE models for CD47 Treatment

To develop an ODE model accounting for CD47 treatment, we must first
determine which components of the immune system are affected by CD47
suppressors. Willingham et al. reports that CD47 prevents phagocytosis
of tumor cells by binding to SIRPα, a protein expressed on the surface of
both macrophages and dendritic cells (Willingham, Stephen B. et al., 2012).
Blocking the CD47 protein greatly increases the rate of phagocytosis of tu-
mor cells by macrophages. In addition, anti-CD47 treatment increases the
rate of activation by dendritic cells of tumor-specific cytotoxic lymphocytes
(CTLs). Therefore, along with the usual cell types accounted for in tumor-
immune system interaction models; natural killer (NK) cells, CTLs; we
must also account for changes in the dendritic cell and macrophage popu-
lations. In addition, anti-CD47 treatment is a monoclonal antibody (MAB)
treatment, requiring an additional term for treatment concentration.

We begin with a simplified model from de Pillis 2005, which accounts
for tumor growth, NK cell populations, and CTL populations (de Pillis
et al., 2005). Although future models published by the same authors have
also included interleuken-2 (IL-2) dynamics, accounting for a chemical sig-
nal that affects CTL proliferation, there are many immunotherapies that
affect the IL-2 concentration (de Pillis et al., 2013a, 2009, 2013b). In this
model, because the particular immunotherapy we are studying affects IL-2
concentration only indirectly through the proliferation of other cell lines,
we reference it only indirectly and remove the IL-2 equation. We let T(t)
represent the tumor population, N(t) represent the NK cell population, and
L(t) represent the CTL population. The original model, from de Pillis 2005,
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is given as

dT
dt

= γ(T)− cNT − D (5.1)

dN
dt

= σ− f N +
gT2

h + T2 N − pNT (5.2)

dL
dt

= −mL +
jD2

k + D2 L− qLT + rNT (5.3)

where

D = d
(L/T)λ

s + (L/T)λ
T

and γ(T) is the ODE tumor growth equation which was determined to be
the best-fit model for the target type of cancer by our previous parameter
fittings. To account for dendritic cell dynamics, we can include a new den-
dritic cell paper with all of the compartments (de Pillis et al., 2013b). Our
macrophage dynamics depend both on the total macrophage population,
the localized macrophage population near the tumor cell, and the concen-
tration of chemoattractant near the tumor cell. The macrophage popula-
tion and chemoattracant concentration, denoted M and W, respectively, are
based on a model from Byrne et al. 2004 (Byrne, H.M. and Cox, S.M. and
Kelly, C.E., 2004):

dM
dt

= (M ∗ −M)
aW

1 + bW
− uM(T + M + v) (5.4)

dW
dt

= wT − xW. (5.5)

This is where we encounter a significant challenge, however, because Byrne
et al. did not have sufficient data to determine biologically accurate param-
eters, making most of the macrophage-associated constants unusable for
modeling purposes. While the decision to estimate parameters without ex-
perimental data did allow Byrne et al. to evaluate the macrophage model as
a dynamical system, the current state of the model cannot be used to verify
tumor-immune system behavior under the influence of various medicines.
In addition, a thorough literature search revealed that experimental data
relating directly to the macrophage parameters was either difficult to find
or nonexistent. Therefore, producing a biologically motivated CD47 model
would require large parts of the model to be built from scratch, which was
not possible in the time period given for this project.
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Despite the difficulty inherent in attempting this project, modeling tumor-
immune system interaction with CD47 treatment is extremely attractive
because the treatment acts in a way that is relatively novel to the field of
cancer therapy, as previously stated. One of the implications of building a
CD47 model is the inclusion of tumor types that are not normally associ-
ated with successful reactions to immunotherapies. Out of all of the cancer
types, only renal cell carcinoma and melanoma have been shown to have
success with CD8+ and interleuken-affecting immunotherapies; however,
as CD47 treatment has been shown to affect ovarian, breast, colon, blad-
der, and prostate cancer, as well as glioblastoma and hepatocellular carci-
noma, it is necessary for ODE model developers to produce tumor growth
parameters for an ever-increasing number of tumor types (de Pillis et al.,
2013a, 2009, 2013b; Willingham, Stephen B. et al., 2012). The results of this
project make these efforts almost trivial, so that future dynamical systems
researchers need only develop the parameters for macrophage and den-
dritic cell terms.





Appendix A

Supplemental Materials

A.1 Sources of Data for Parameter Values

A large number of individual studies were gathered in determining appro-
priate timescale tumor growth data sets to be used in the fitting process.
Not only are the sources for each type of cancer listed, the individual cell
lines used in each paper are included for posterity. Some papers, which
used tissue samples from human subjects as the source of cancerous cells,
did not specify a cell line.

Cancer and Cell Line Sources

Bladder Cancer
HT1376 Golshani et al. (2008)
UMUC-3 Kamada et al. (2007)
KoTCC-1 Miyake et al. (2001)
EJ-1 Ohnishi et al. (2003); Du and Hou (2003)
Breast Cancer
MDA-MB-435BAG Coopman et al. (2000)
MCF-7 Lu and Serrero (1999)
KPL-1 Nakagawa et al. (2001)
4T1-GFP-FL Smith et al. (2004)
Colon Cancer
KM12L4 Reinmuth et al. (2002)
Moser Sarraf et al. (1998)
HCT116 Sarraf et al. (1998); Sheng et al. (1997)
CX-1 Sarraf et al. (1998)

Table A.1 Sources of Timescale Data by Type of Cancer and Cell Line
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Cancer and Cell Line Sources

HCA7 Sheng et al. (1997)
LS LiM6 Warren et al. (1995)
Unspecified Todaro et al. (2007)
Head and Neck Squamous Cell Carcinoma
UM-SCC-9 Duffey et al. (1999)
Tu-138 Liu et al. (1999)
Tu-167 Liu et al. (1999)
686LN Liu et al. (1999)
CAL27 LoTempio et al. (2005)
UM-SCC-X Ricker et al. (2004)
PAM-LY2 Sunwoo et al. (2001)
Hepatocellular Carcinoma
HCC-26-1004 Huynh et al. (2008)
HCC-2-1318 Huynh et al. (2008)
SH-J1 Jung et al. (2006)
PLC Liu et al. (2005)
Hep3B Liu et al. (2005)
SMMC-7721 Wong et al. (2005)
Unspecified Zender et al. (2008)
Lung Cancer
SW-900 Esquela-Kerscher et al. (2008)
H226 Esquela-Kerscher et al. (2008)
A549 Esquela-Kerscher et al. (2008)

Fabbri et al. (2005)
Tsubouchi et al. (2000)

H460 Fabbri et al. (2005)
H1299 Fabbri et al. (2005)
U2020 Fabbri et al. (2005)
H322a Fujiwara et al. (1993)
WT226b Fujiwara et al. (1993)
NCI-H727 Moody et al. (1993)
3LL Sharma et al. (1999)
NCI-H358 Takahashi et al. (1992)
H841 Tsubouchi et al. (2000)
pc14 Tsubouchi et al. (2000)
Melanoma
M3Dau Boukerche et al. (1989)

Table A.1 Sources of Timescale Data by Type of Cancer and Cell Line
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Cancer and Cell Line Sources

MIRW5 Bregman et al. (1986)
B16-BL6 Caltagirone et al. (2000); Murgo (1985)
A-375 Kunstfeld et al. (2003)
M21 Petitclerc et al. (1999)
Hs0294 Richmond et al. (1983)
Unspecified Abe et al. (2004)
Ovarian Cancer
SKOV-3 Juhl et al. (1997); Polato et al. (2005)
HRA Nakata et al. (1998)
A2780 Polato et al. (2005)
IGROV-1 Polato et al. (2005)
HCT-116 Polato et al. (2005)
MA148 Yokoyama et al. (2000)
Pancreatic Cancer
PC-1 Burke et al. (1997)
MIAPaCa-2 Ito et al. (1996); Kisfalvi et al. (2009)
PANC-1 Kisfalvi et al. (2009)
PancTu1 Vogler et al. (2009)
HPAC Zervos et al. (1997)
Renal Cell Carcinoma
786-O Dhanabal et al. (1999); Lieubeau-Teillet

et al. (1998)
ACHN Huang et al. (2008)
A-498 Huang et al. (2008)
Caki-1 Inoue et al. (2001); Schirner et al. (1998)

Shi and Siemann (2002)
SK-RC-29 Prewett et al. (1998)
Caki-2 Schirner et al. (1998)
Unspecified Fujimoto et al. (1995)

Table A.1 Sources of Timescale Data by Type of Cancer and Cell Line
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A.2 Results of Parameter Fittings

Individual data sets are labeled with the year and author, and given a
unique identifier: either the label they were presented with in the figure
from which the data originated, or the cell line that is used in the paper.

In some cases, the line representing the result of the parameter fitting is
not visible. This happens for one of two reasons: a large difference between
orders of magnitude in separate data sets, limiting the available space for
data sets with smaller orders of magnitide; or because two or more data
sets started with the same initial condition, causing the combined fitting
result to produce the same curve. A complete list of all of the parameter
fittings that are not visible, and the reason for why they cannot be seen, is
given below:

• In the combined in vitro bladder cancer trials, the AS clustering and
MM control trials of Miyake 2001 share an initial condition, hence
only the MM control fitting is visible.

• In the combined in vitro breast cancer trials, the three Smith 2004 tri-
als share the same initial condition, so the purple curve indicates the
fitting to all three of these trials.

• In the combined in vivo breast cancer trials, the two Coopman 2000
trials share an initial condition, thus the green curve represents the
fitting to both trials.

• In the combined in vitro colon cancer trials, the Moser and HCT116
trials have the same initial condition, so the green curve represents
the combined fitting to both.

• In the combined in vivo colon cancer trials, two sets of trials have
the same initial condition—the two Reinmuth 2002 trials and the two
Warren 1995 trials. As a result, the orange curves account for both
Reinmuth 2002 trials and the pink curves to both Warren 1995 trials.

• In the combined in vivo head and neck squamous cell carcinoma trials,
the three Liu 1999 trials start with the same initial conditions, hence
the teal curve represents the combined fitting to all three data sets.

• In the combined in vitro hepatocellular carcinoma trials, the Huynh
2008 trials share an initial condition, so the green curve represents
the fitting to both data sets.
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• In the combined in vivo hepatocellular carcinoma trials, the Liu 2005
data sets have the same initial condition, so the teal curve indicates
the fitting to both data sets.

• In the individual in vitro lung cancer trials, Fig. 4D from Fabbri 2005
was cropped from the graph because it was two orders of magnitude
higher than the next largest tumor, making the other 12 trials impossi-
ble to distinguish. Despite its exclusion here, it was used in the fitting
analysis.

• In the combined in vitro lung cancer trials, not only is Fig. 4D from
Fabbri 2005 excluded, but several trials from the same study have the
same initial conditions (i.e., the four visible Fabbri 2005 trials, SW-
900 and A549 from Esquela-Kerscher, and all three Fujiwara trials.)
For this figure, the seafoam green curve is the fit for all 4 visible Fab-
bri 2005 trials, the SW-900 and A549 trials from Esquela-Kerscher are
both represented by the yellow curve, and all three Fujiwara trials
are represented by the purple curve. Additionally, for the Von Berta-
lanffy fitting, the data sets from Fujiwara 1993 and Takahashi 1992
are hidden by Fig. 3 from Tsubouchi 2000, presumably because their
initial conditions are sufficiently close to each other.

• In the in vivo melanoma trials, the Boucherke 1989 trial is difficult
to see because of its relatively low order of magnitude, but is visible
along the bottom of the graphs.

• In the combined in vitro ovarian cancer trials, the A2780 and SKOV-3
trials have the same initial condition, and the IGROV-1 and HCT-116
trials have the same initial condition. As a result, the green curve
represents the fitting to the first two trials, and the purple curve is the
fitting to the last two trials.
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