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Abstract 

The alternative fuel biodiesel is produced from the transesterification of vegetable oils or 

animal fat to fatty acid methyl esters. Pomona has a reactor on campus that can be used to 

run this reaction and produce biodiesel. The use of biodiesel has been found to lower air 

pollutant and greenhouse gas emissions, but can be potentially harmful to the engines if it 

contains impurities. This paper proposes a method using high-performance liquid 

chromatography to test the quality of biodiesel. This method utilizes instrumentation and 

materials that are available in Pomona College's Chemistry Department, requires very 

little sample preparation, and is relatively safe, as long as general lab safety practices are 

followed. This method can also be used to optimize the procedure used to make the 

biodiesel. An optimized production procedure and a test method to assess the final 

product will ensure high quality fuel that can be used with confidence in diesel engines. 

This will likely add strength to proposals to increase the use of the on-campus reactor and 

produce biodiesel for campus grounds equipment from waste vegetable oil. 



 4 

 



 5 

Chapter 1 - Introduction 

  

What is Biodiesel? 

The alternative fuel known as biodiesel is defined as "fuel comprised of mono-

alkyl esters of long chain fatty acids, derived from vegetable oils or animal fats, 

designated B100"1. Biodiesel is produced through a transesterification reaction. 

Vegetable oil or animal fat is reacted with an alcohol, usually methanol or ethanol, in the 

presence of a catalyst to yield fatty acid methyl esters (FAME), also known as mono-

alkyl esters, and glycerol; the latter is later removed1 (Figure 1). 

 

Petroleum-derived diesel is produced from the fractional distillation of crude oil. 

Distillation is a technique used to separate different chemical compounds based on 

differences in their vapor pressures. Fractional distillation utilizes a special fractionating 

column, which allows for the separation of multiple chemical compounds. Oil refineries 

use this process to separate out the many components of crude oil, which are used to 

make a variety of products. Diesel is a direct product obtained from the fractional 

Figure 1. Transesterification reaction between a triglyceride and methanol, resulting in 
glycerol and fatty-acid methyl esters (FAME). The source of the triglyceride may be either 
vegetable oil or animal fat. Monoglycerides or diglycerides may also undergo this same 
reaction, using just 1 or 2 molar equivalents of methanol and producing 1 or 2 molar 
equivalents of FAME, respectively. 
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distillation of crude oil. It is the fuel oil that distills between 180 °C and 380 °C2. Due to 

growing demand for fuel, other processes, such as cracking, have also been adopted by 

refineries to increase the fractional portion of this fuel (Figure 2). 

 

 Compared to diesel, biodiesel has a higher oxygen content, lower sulfur and 

aromatic content, and a higher cetane number, but all other crucial properties remain the 

same3. Biodiesel can be burned in diesel engines alone, or blended with traditional 

petroleum-derived diesel. The starting material for producing biodiesel can be a variety 

of different vegetable oils or animal fats, including used oil. 

Figure 2. Schematic overview of an oil refinery. Products used as petrodiesel are outlined 
in red. Original image from OSHA Technical Manual, Section IV, Chapter 2, Petroleum 
Refining Processes. 

http://www.cheresources.com/refining15.gif 
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Environmental Benefits 

As with any other fossil fuel, the use of diesel results in the emission of air 

pollutants and greenhouse gases. The use of biodiesel has been found to lower emissions 

of many of these air pollutants. Trucks running on a 35% biodiesel 65% diesel blend 

were shown to emit smaller amounts of particulate matter (PM), carbon monoxide (CO), 

and hydrocarbons (HC), than the same trucks fueled by no. 2 diesel. These emission 

reductions were obtained without reductions in engine performance or fuel economy3. 

Other studies have shown additional reductions in volatile organic compounds (VOC) 

and sulfur oxides (SOx)4. These pollutants all have serious human health effects, either 

directly or through the production of ozone (Table 1). Replacing petroleum-derived diesel 

with biodiesel also reduces greenhouse gas emissions by 41%4. Currently, fossil fuels, 

including diesel, account for 56.6% of all greenhouse gas emissions in the United States 

in the form of carbon dioxide (CO2)5. In addition to these immediate reductions in 

emissions, the production of biodiesel offers a method to recycle used vegetable oil, 

which would otherwise be thrown away. 

Need for Test Method 

Pomona has a reactor on campus, created by a group of students, which is capable 

of producing biodiesel from waste vegetable oil used in the dining halls and other campus 

eating establishments, such as the Coop Fountain and Sagehen Cafe. This offers an 

opportunity for the school to reduce the amount of waste it produces and to create a more 

environmentally friendly fuel to use in their diesel engines. The use of this fuel, however, 

can be potentially harmful to the engine if it contains impurities. Unreacted tri-, di-, and 

mono-acylglycerols, as well as residual free glycerol can cause fuel filters to clog and  
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Table 1. Common Air Pollutants from Diesel Fuel and Their Health Effects 

Pollutant Health Effects 

Particulate Matter (PM) 

• Increased respiratory symptoms (e.g. irritation 
of the airways, coughing, or difficulty 
breathing) 

• Decreased lung function 
• Aggravated asthma 
• Chronic bronchitis 
• Irregular heartbeat 
• Nonfatal heart attacks 
• Premature death in people with heart or lung 

disease6 

Carbon Monoxide (CO) 

• Reduced oxygen delivery to body organs and 
tissues 

• Myocardial ischemia (reduced O2 to heart) 
• Death 
• Production of ozone7 

Sulfur Dioxide (SO2) 

• Adverse respiratory effects (e.g. 
bronchoconstriction, increased asthma 
symptoms) 

• Production of PM8 

Volatile Organic Compounds (VOC) • Production of ozone9 

Ozone 

• Airway irritation, coughing, and pain when 
taking a deep breath 

• Wheezing and breathing difficulties during 
exercise or outdoor activities 

• Inflammation, which is much like a sunburn 
on the skin 

• Aggravation of asthma and increased 
susceptibility to respiratory illnesses like 
pneumonia and bronchitis 

• Permanent lung damage with repeated 
exposures9 

 

may leave deposits in the engine, ultimately resulting in poor engine performance10. The 

American Society for Testing and Materials (ASTM) has developed a standard indicating 

the maximum amount of free and total glycerin that can be present in biodiesel without 

adverse effects to the engine. The amount of free glycerol must be less than 0.02% (w/w) 

and the amount of bound glycerol must be less than 0.24% (w/w)1. ASTM has also 
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published a standard test method to determine the free and total glycerin in biodiesel 

using gas chromatography (GC). This method, however, is not ideal for characterizing 

non-volatile triglycerides that may be present in the fuel. In order to record these 

compounds, the sample must be derivatized with N-methyl-N-trimethylsilyltrifluoro-

acetimide (MSTFA), a very flammable and potentially dangerous chemical. This method 

also requires very high analysis temperatures (up to 380 °C)11. In order to perform 

analysis at these temperatures, a specialized high temperature column is needed, which 

can be very expensive. The purpose of this study is to develop a method to test biodiesel 

using the instrumentation and materials currently available on campus. 

High Performance Liquid Chromatography 

 High performance liquid chromatography (HPLC) is another common technique 

used to analyze biodiesel. It has been used to identify various components of biodiesel 

mixtures including fatty acid methyl esters, triglycerides, diglycerides, monoglycerides, 

and fatty acids, among others. HPLC analysis time is generally shorter than GC, and no 

derivitization step is needed. Additionally, lower analysis temperatures allow for the use 

of standard columns12. In an HPLC analysis, the sample is injected into a column with a 

non-polar stationary phase. A polar mobile phase is then pumped through the column to 

elute the sample. As the sample moves through the column, the different components 

begin to separate based on polarity. The most polar compounds do not have a tendency to 

stick to the non-polar stationary phase, but instead move through with the polar mobile 

phase and elute quickly. Non-polar components stick to the stationary phase and are 

retained longer. A detector at the end of the column detects each compound as it is being 
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eluted. Retention times for each compound can be recorded and compared to retention 

times of known standards to identify the different components of the sample. 

 A variety of detectors can be used with this technique including UV detectors, 

refractive index detectors, evaporative light scattering detectors, or mass spectrometers. 

The Pomona College Chemistry Department has an HPLC equipped with both a UV 

detector and a mass spectrometer. By using two detection techniques, the advantages of 

each can be capitalized on. Ultra-violet (UV) detection relies on the presence of a 

chromophore, a functional group that absorbs UV light. Double bonds are chromophores 

and allow for the visualization of many of the compounds present in biodiesel. Fully 

saturated compounds, however, have no double bonds and thus do not absorb in the UV 

region, making them invisible to UV detection. Mass spectrometry, however, does not 

require the presence of a double bond for visualization. Often called a universal detector, 

the MS can analyze a wide range of compounds by ionizing the sample as it elutes and 

then separating the ions based on their mass-to-charge (m/z) ratio. This results in a mass 

spectrum for each eluted peak. This spectrum gives information about the size of each 

compound, helping to identify each peak on the chromatogram. The area of both UV and 

MS peaks are proportional to the concentration of each component in the sample, 

allowing for the quantification of each component in the biodiesel13. 
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Chapter 2 - Experimental 

  

Reagents and Materials 

 Mobile phase solvents included acetone Chromasolv for HPLC ≥99.9%, 

acetonitrile HPLC grade ≥99.93+%, and water dispensed from a Millipore Q-Pod system. 

0.1% trifluoroacetic acid (TFA) ReagentPlus 99% was added to the mobile phases in 

order to increase ion formation for MS detection. All standards and samples were 

dissolved in either acetone Chromasolv for HPLC ≥99.9% or tetrahydrofuran (THF) 

anhydrous ≥99.9% inhibitor free. Acetone, acetonitrile, TFA, and THF were obtained 

from Sigma-Aldrich. Standards were obtained from Nu-Chek-Prep, Inc. (Elysian, MN, 

USA). These included fatty acids (linoleic acid, stearic acid, palmitic acid, oleic acid), 

methyl esters (methyl linoleate, methyl oleate, methyl linolenate, methyl palmitate, 

methyl stearate), monoglycerides (monoolein, monolinolenin, monostearin), diglycerides 

(distearin, dilinolenin), and triglycerides (tristearin, trilinolenin, trilinolein).   

Sample and Standard Preparation 

 Biodiesel samples were obtained from students who had previously used the 

reactor to make fuel from used fry oil. Used fry oil samples were obtained from the 

Sagehen Café and new fry oil samples were obtained from Frank Dining Hall. All 

samples were dissolved in acetone to a concentration of 100 mg/mL. Standards were 

dissolved in either acetone or THF depending on their solubility. Stock solutions of either 

100 mg/mL or 25 mg/mL of each standard were made. From these stock solutions, 

calibration standards of 10, 7, 5, 3, 1, and 0.5 mg/mL were made by serial dilution. 

Additional higher concentration standards were also prepared when necessary for 
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components with concentrations greater than 10 mg/mL. The portion of the sample or 

standard being analyzed was run through a Restek 0.45 µm PTFE syringe filter before 

being introduced to the HPLC. 

Instrumentation  

 This method was developed on an Agilent 6120 Quadrupole LC/MS. Ionization 

for MS analysis was achieved through electrospray ionization (ESI). This instrument is 

also equipped with an Agilent 1200 series multiple wavelength detector (MWD), 

autosampler, thermostatted column compartment, degasser, and quaternary pump. 

Analyses were performed on an Agilent Eclipse XDB-C18 column, internal diameter 4.6 

mm, length 150 mm, particle size 5 µm. Agilent ChemStation software was used to run 

analyses and perform peak integrations. 

 UV analyses were performed at a wavelength of 210 nanometers (nm) to ensure 

the transparency of the mobile phase solvents without exceeding the wavelength limit for 

analysis of FAMEs and glycerides. After about 220 nm, the UV spectrum of mixtures of 

FAMEs beings to decline14. The final separation conditions were arrived at by a series of 

trial and error runs of biodiesel and old fry oil samples. All subsequent analyses were 

performed under these conditions. 
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Chapter 3 - Results and Discussion 

  

Method Development 

 A variety of solvents (acetonitrile, methanol, acetone, and water) and their 

mixtures were tried for the separation of the components of biodiesel. Separation 

variables such as flow rate, column temperature, and injection volume were also varied to 

determine the optimal separation conditions. Chromatograms were evaluated based on 

peak resolution and time needed for all peaks to elute. Peak resolution refers to the degree 

to which one peak is separated from another, and is usually measured by the distance 

between two peaks at their base15. In general measures that tend to increase resolution 

(such as decreased flow rates) also tend to increase total elution time15. The goal is to find 

a solvent mixture and separation conditions that yield sufficient resolution while still 

minimizing total elution time. The best separation was achieved using the solvents and 

separation conditions listed in Table 2. 

 
Table 2. Separation Conditions 

Solvent A: 85% Acetonitrile/15% Water (0.1% TFA) 
Solvent B: Acetone (0.1 % TFA) 
Flow Rate: 0.7 mL/min 
Injection Volume: 5 µL 
Column Temperature: 50 °C 

Mobile Phase Gradient 

Time (min) Solvent A (%) Solvent B (%) 
0 100 0 
10 100 0 
20 70 30 
40 20 80 
50 0 100 
60 0 100 
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Solvent Choice 

 Biodiesel, particularly poor quality biodiesel, may contain a wide variety of 

components including fatty acids, glycerides, and FAMEs. The polarity of these different 

groups of compounds covers a wide range and thus one solvent or solvent-mixture is not 

appropriate for separation. A solvent such as acetonitrile is appropriate for more polar 

compounds, such as fatty acids, but is not capable of efficiently moving non-polar 

compounds, such as triglycerides, through the column. Acetone is sufficiently non-polar 

to move triglycerides through the column, but causes fatty acids and monoglycerides to 

elute too quickly resulting in poor peak resolution. Many HPLC systems are now 

equipped with solvent delivery systems that allow for gradient elutions. These systems 

have two or more solvent inlet tubes. Solvent programs can be developed using the 

system software so that different proportions of the solvents are used throughout the  

 

Figure 3. Shows the change in the composition of the mobile phase 
throughout the separation. Solvent A is 85% Acetonitrile 15% Water. 
Solvent B is Acetone. Both solvents contain 0.1% TFA. 
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separation. In this way you can begin your separation with a more polar solvent for more 

polar compounds, which elute first, and then move to a more non-polar solvent as 

increasingly non-polar components begin to elute. 

 This method begins with a mixture of 85% acetonitrile and 15% water as the 

initial solvent. This is the only solvent for the first 10 minutes. Acetone is then added to 

the solvent system in increasing proportions until it is the only solvent moving through 

the system at 50 minutes (Table 2, Figure 3). This allows the polar components to elute 

with sufficient resolution at the beginning of the separation without limiting elution of 

non-polar components towards the end of the separation. 

Detection Methods 

 As mentioned earlier, UV detection requires the presence of a chromophore in the 

compound of interest. While many of the components of biodiesel have such 

chromophores, some do not and are therefore invisible to the UV detector. Of the 

standards used in this analysis, seven do not absorb in the UV: palmitic acid, 

monostearin, stearic acid, methyl palmitate, methyl stearate, distearin, and tristearin 

(Table 3). These compounds can only be detected and quantified using the mass 

spectrometer. 

 All compounds are theoretically detectable by the MS, which ionizes each 

compound as it elutes and measures the mass-to-charge ratio. The chromatogram 

produced by the MS is what is known as a total ion chromatogram (TIC). The detector 

measures the number of ions created by the ion source as the sample is eluted through the 

column. The number of ions is proportional to the concentration of each component. 

Normally, larger peaks indicate higher concentrations of a particular component. 
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However, the triglycerides did not exhibit this typical pattern. While the UV peaks of the 

triglycerides grew larger with increasing concentrations, the TIC peaks grew smaller and 

eventually became negative. This pattern can be observed by examining the 

chromatograms of used fry oil, which is rich in triglycerides. Figure 4 shows three 

different chromatograms of the used fry oil sample each run with a different injection 

volume. A smaller injection volume is analogous to a lower concentration of the sample, 

and vice versa. The smallest injection volume (1 µL) shows positive triglyceride peaks, as 

would normally be expected. However, it is difficult to detect clear triglyceride peaks in 

the chromatogram for the 3 µL injection volume. The first two peaks are smaller than the 

1 µL injection volume and the remaining peaks are noisy. The chromatogram for the 5 µL  

Table 3. Retention Times of Standards 

Standard Retention Time 
 UV TIC 

Monolinolenin 5.264 ± 0.019 5.246 ± 0.026 
Linoleic Acid 8.716 ± 0.070 8.674 ± 0.036 

Monoolein 9.976 ± 0.023 9.933 ± 0.064 
Palmitic Acid --- 11.976 ± 0.069 

Oleic Acid 12.741 ± 0.20 12.716 ± 0.19 
Methyl Linolenate 13.474 ± 0.086 13.348 ± 0.031 

Monostearin --- 15.531 ± 0.13 
Methyl Linoleate 18.525 ± 0.060 18.427 ± 0.053 

Stearic Acid --- 18.999 ± 0.16 
Methyl Palmitate --- 22.892 ± 0.087 

Methyl Oleate 23.446 ± 0.034 23.579 ± 0.12 
Methyl Stearate --- 28.640 ± 0.093 

Dilinolenin 31.668 ± 0.47 31.608 ± 0.46 
Distearin --- 42.786 ± 0.096 

Trilinolenin 43.829 ± 0.23 --- 
Trilinolein 46.976 ± 0.31 --- 
Tristearin --- 52.764 ± 0.61 

Average retention times for UV peaks and TIC peaks are 
given with 95% confidence intervals. "---" indicates no peaks 
observed. 
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injection shows clear negative peaks for the triglycerides. These negative peaks are due to 

ion suppression. ESI has been shown to be particularly vulnerable to ion suppression 

compared to other ionization techniques16. While the mechanisms responsible for ion 

suppression are not yet fully understood, it has been observed that the characteristics and 

concentration of the analyte as well as matrix properties have an effect. High analyte 

concentrations result in competition for charge or space on the surface of ESI droplets. 

This inhibits of the ejection of ions trapped inside the droplet and results in ion 

suppression17. Ion-pairing agents, such as TFA, have also been shown to induce ion 

suppression in ESI-MS18. Both solvents used contained 0.1% TFA, so this likely 

contributed to the observed ion suppression. 

 

 

Figure 4. TIC chromatograms of used fry oil. All separation parameters constant except 
for injection volume: (top) 1 µL, (middle) 3 µL, and (bottom) 5 µL. Boxed area shows 
triglyceride peaks. 

1 µL 

3 µL 

5 µL 
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Peak Identification 

 Peaks were identified by comparing their retention times to those of known 

standards. Identification was confirmed by comparing the mass spectra of the peaks with 

those of the standards. Table 3 lists the retention times of all standards used. In general, 

monoglycerides and fatty acids eluted first, followed by FAMEs, then diglycerides, and 

finally triglycerides (Figure 5). This pattern is consistent with the literature19-21. The 

retention times for the peaks in the total ion chromatogram (TIC) are slightly smaller than 

those for the corresponding UV peaks. This is because the sample arrives at the mass 

spectrometer before it arrives at the UV detector, resulting in shorter retention times. 

 The identification of individual peaks was not possible in all situations. Due to 

time and financial constraints, it was not feasible to obtain and run standards for all 

potential components of the biodiesel mixture. Therefore, there are some peaks that do 

not correspond to any of the standards used, and thus cannot be positively identified 

based on retention time. Additionally, many peaks represent co-elutions. This means that 

there are two or more compounds that have very similar properties and elute at the same 

time. Each peak, therefore, does not necessarily represent just one compound. Since 

FAMEs are the main component of biodiesel, individual peak identification was focused 

on these chemical species (Figure 5).  

 The peak at around 13.9 minutes is methyl linolenate. Although the retention time 

of the methyl linolenate standard (13.348 min) is slightly lower than that of the 

corresponding peak in the biodiesel chromatogram (13.996 min), this is likely due to 

matrix effects rather than incorrect peak assignment. The mass spectra of the standard 

and the sample peak are similar and both have a large signal at m/z = 293. This 
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corresponds to the addition of H+ to form the molecular ion (molecular weight of methyl 

linolenate = 292.46).  

 The peak at around 18.7 minutes is the co-elution of methyl linoleate and 

monostearin. The retention time of this peak (18.729 min) is very close to that of the 

methyl linoleate standard (18.427 min). The mass spectrum of the sample peak at 18.7 

minutes has a large signal at m/z = 245, which corresponds with the mass spectrum of the 

methyl linoleate standard. The monostearin standard had a much lower retention time 

than this peak (15.531 min). This difference, however, is still likely due to matrix effects. 

The sample peak also had a large signal at m/z = 381, which matches with the mass 

spectrum of the monostearin standard. The co-elution of methyl linoleate and 

monostearin was also observed by Di Nicola et al. (2008). Monostearin does not absorb 

in the UV, so the UV signal is due only to the methyl linoleate. 

 The peak at around 24.2 minutes is the co-elution of methyl oleate and methyl 

palmitate. The methyl oleate (23.579 min) and methyl palmitate (22.892 min) standards 

both had retention times close that of this sample peak (24.255 min). Small differences 

can be attributed to matrix effects. The mass spectrum of the methyl oleate standard has a 

large signal at m/z = 247. This signal was also present in the mass spectrum of the sample 

peak at 24.2 minutes. The sample peak also had a large signal at m/z = 271, which 

matches with the mass spectrum of the methyl palmitate standard. The co-elution of 

methyl oleate and methyl palmitate was also observed by Di Nicola et al. (2008). Methyl 

palmitate does not absorb in the UV, so the UV signal is due only to the methyl oleate. 
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Figure 5. Total ion (top) and UV (bottom) chromatograms of biodiesel. Run under 
conditions listed in Table 2. Boxed area enlarged to show identification of FAME 
peaks. 
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 The last peak, at around 29 minutes is methyl stearate. The retention time of this 

peak (28.998 min) is very close to that of the methyl stearate standard (28.640 min). 

Again, small differences are likely due to matrix effects. The mass spectrum of this 

sample peak has a large signal at m/z = 299, which agrees with the mass spectrum of the 

methyl stearate standard. Additionally, there is no UV signal, which is consistent with 

methyl stearate, which has no chromophore and thus does not absorb in the UV. Di 

Nicola et al. (2008) found that methyl stearate and dilinolenin co-elute. This was not 

observed here because there is no dilinolenin in this sample. Dilinolenin absorbs in the 

UV, but there is no corresponding UV peak indicating its presence. Additionally, the 

mass spectrum of the dilinolenin standard has a large signal at m/z = 615. The mass 

spectra of this peak and the subsequent diglyceride peaks all lack this signal, suggesting 

there is no dilinolenin present in this sample. It is important to note, however, other 

biodiesel samples may have dilinolenin and it will likely co-elute with the methyl 

stearate. The presence of a corresponding UV peak will indicate that there is dilinolenin 

in the sample. 

Peak Quantification 

 The ASTM standards provide limits on the amount of glycerol related compounds 

(i.e. free glycerol, monoglycerides, diglycerides, and triglycerides) allowed in the 

biodiesel. However, it is difficult to directly measure these compounds. A large number 

of standards would be required to cover all possible components of the mixture and each 

peak would have to be individually quantified. Additionally, these compounds will be 

present in very low concentrations in quality biodiesel. This causes a problem because 

quantification becomes less accurate, or even impossible, at low concentrations near the 
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detection limit. The quantification of triglycerides would be particularly difficult because 

of the ion suppression problems mentioned above. FAMEs, however, will be present in 

high concentrations and require only a few standards for quantification. Aside from the 

possibility of residual methanol, the range of possible compounds in the biodiesel 

mixture is limited to glycerol related compounds, free fatty acids, and FAMEs. ASTM 

requires the amount of free glycerol to be less than 0.02% (w/w) and the amount of 

bound glycerol to be less than 0.24% (w/w)1. There is no published limit on the amount 

of allowed free fatty acids, so we will assume high quality biodiesel is fully converted 

and should not contain any fatty acids (0%). Therefore, the biodiesel should be at least 

99.74% (w/w) FAMEs. Using this value to assess the fuel quality allows us to limit 

quantification to FAME peaks. 

Table 5. Concentration of Methyl Esters in Biodiesel Sample 

FAME Detection 
Method Peak Area Concentration 

(mg/mL) 

MS 5204250 2.55 
Methyl Linolenate 

UV 5902 mAU*s 0.83 
Methyl Linoleate UV 44360 mAU*s 13.92 

Methyl Oleate UV 6600 mAU*s 16.31 
Methyl Palmitate EIC 2020470 1.48 
Methyl Stearate MS 23181600 59.64 

TOTAL   93.90 
 

 The methyl linolenate peak (at around 13.9 minutes) was quantified based on 

calibration curves made from both UV and TIC peak areas (Figure 6). Based on the TIC 

calibration, the concentration of methyl linolenate is 2.55 mg/mL (Table 5). Based on the 

UV calibration, the concentration of methyl linolenate is 0.83 mg/mL (Table 5). The 

difference between these two values is likely due to errors in peak integration. The UV  
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Figure 6. Calibration curves for methyl linoleate based on TIC (top) and UV 
(bottom) peak areas. 
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peaks are much smaller than the TIC peaks so small errors in integration have a much 

larger effect. Additionally, this peak is located at the point where the baseline in the UV 

chromatogram begins to rise rapidly due to changes in solvent composition during the 

gradient elution (Figure 5). Rising baselines make peak integration more complicated and 

vulnerable to error. Since the TIC peaks are bigger and experience less dramatic baseline 

rise, it is likely that the TIC peak area is more accurate than the UV peak area and the 

true concentration is closer to 2.55 mg/mL. 

  The peak at about 18.7 minutes contains two components, methyl linoleate 

and monostearin. The TIC peak area tells us little about their individual concentrations 

since both compounds contribute to the number of total ions. Monostearin, however, does 

not absorb in the UV. The UV peak area can therefore be used to quantify methyl 

linoleate. The area of the UV peak = 44360 mAU*s and the concentration of methyl 

linoleate in the sample = 13.92 mg/mL (Table 5, Figure 7). 

 

 Figure 7. Calibration curve for methyl linoleate based on UV peaks. 
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 The peak at about 24.2 minutes also contains two components, methyl oleate and 

methyl palmitate. Methyl palmitate does not absorb in the UV, so the UV peak area can 

be used to determine the methyl oleate concentration. The area of the UV peak = 6600 

mAU*s and the concentration of methyl oleate in the sample = 16.31 mg/mL (Table 5, 

Figure 8). 

 

 

 
 The methyl palmitate concentration cannot be determined using the area of the 

TIC peak since only some of the ions are due to methyl palmitate.  It is, however, 

possible to generate extracted ion chromatograms (EIC), which measure the abundance of 

one particular ion at a specified mass-to-charge ratio. The mass spectrum of the methyl 

palmitate standard shows a large signal at m/z = 271. The abundance of this ion is 

proportional to the concentration of methyl palmitate. By generating an EIC at this m/z 

value for each standard, it is possible to create a calibration curve for just that ion (Figure  

Figure 8. Calibration curve for methyl oleate based on UV peak areas. 
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Figure 9. Calibration curve for methyl palmitate based on EIC peak areas (top) and 
linearized calibration of EIC peak area vs ln(concentration) (bottom). EIC taken at  
m/z = 271. 
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9). The EIC chromatogram at m/z = 271 for the biodiesel shows one peak around 23 

minutes with an area of 2020470 (Figure 10). This corresponds to a methyl palmitate 

concentration of 1.48 mg/mL (Table 5). This value should be used with caution because it 

is beyond the linear range for the methyl palmitate calibration and more prone to error. 

 The final FAME peak at around 29 minutes contains just methyl stearate. The TIC 

peak area is 23181600 and the concentration of methyl stearate in the sample is 59.64 

mg/mL (Table 5, Figure 11). This value should be used with caution because it is beyond 

the linear range for the methyl stearate calibration and more prone to error. Methyl 

stearate does not absorb in the UV, so there is no UV peak. 

 

 The total FAME concentration can be calculated by adding the concentrations of 

the individual methyl esters. This biodiesel sample has a FAME concentration of 93.90 

mg/mL (Table 5). The biodiesel sample used is a 100 mg/mL dilution in acetone, so the 

sample is 93.90% FAME (w/w). This does not meet the minimum 99.74% required by 

the ASTM standard. The chromatogram shows some small peaks indicating the presence 

of diglycerides and triglycerides, suggesting that the reaction was not allowed to go to 

completion, leaving these unreacted contaminants. The biggest non-FAME peaks, 

however, fall into the fatty acid and monoglyceride region. While monoglycerides are 

also the result of an incomplete reaction, the presence of fatty acids suggests that not 

enough catalyst was used. The fatty acid concentration of the vegetable oil starting  

Figure 10. Extracted ion chromatogram for biodiesel at m/z = 271. 
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material can vary widely, especially when waste vegetable oil is used. A preliminary 

titration of the oil can be performed to determine the acid content. This information can 

then be used to determine the appropriate amount of catalyst so that all the fatty acids are 

neutralized. It is likely that a preliminary titration was not performed for this sample, or 

was done incorrectly. In order to improve the biodiesel quality in the future, a titration 

Figure 11. Calibration curve for methyl stearate based on TIC peak areas (top) and 
linearized calibration of TIC peak area vs. ln(concentration) (bottom). 
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should be performed to determine the correct amount of catalyst. The reaction mixture 

should be allowed to sit in the reaction tank for a longer period of time to ensure a 

complete reaction. 
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Chapter 4 - Conclusions 

 

 The separation and quantification of the components of biodiesel was successfully 

achieved using a gradient reverse-phase HPLC method utilizing UV and MS detection. 

By limiting identification and quantification to peaks containing FAMEs, it is possible to 

assess the quality of the biodiesel without the need for a large number of standards with 

individual calibrations to cover all possible components of the biodiesel. It is likely that 

in high quality biodiesel contaminant peaks will be so small that preliminary qualitative 

analysis will be possible to assess the quality of the fuel. Since 99.74% of the biodiesel 

should be FAMEs, those peaks should be much larger than any others in the 

chromatogram. A sample analyzed using this method that yields four large peaks between 

13 and 29 minutes is indicative of quality biodiesel. Any other peaks that are present 

should be very small in comparison and few in number. While monostearin and 

dilinolenin in the sample would co-elute with the FAME peaks, the FAMEs they elute 

with do not absorb in the UV. Their existence can therefore be detected by the presence 

of a corresponding UV peak. This allows for the detection of artificially large FAME 

peaks due to co-eluting contaminants, reducing the possibility of mistaking poor quality 

fuel for high quality fuel. 

 This method allows for the relatively cheap analysis of biodiesel made in the 

Appleseed reactor on campus because it utilizes instrumentation and materials that are 

available in Pomona College's Chemistry Department. Additionally, the procedure 

requires very little sample preparation and is relatively safe, as long as general lab safety 

practices are followed. After some general instruction in how to use the HPLC 
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instrumentation and software, even someone without a background in chemistry would be 

able to perform this procedure and test the quality of their biodiesel.  

 Analysis of the biodiesel chromatograms can also be used to optimize the 

procedure used to make the biodiesel. Different types of contaminants in the fuel point to 

different problems in the production procedure. If many fatty acids are present, it is likely 

that too little catalyst was used. If there are many mono-, di-, and triglycerides, the 

reaction was probably not allowed to go to completion. By knowing what steps went 

wrong, students will be able to correct mistakes and develop a procedure that produces 

high quality biodiesel. An optimized production procedure and a test method to assess the 

final product will ensure high quality fuel that can be used with confidence in diesel 

engines. 

 The use of this procedure will add strength to proposals to increase the use of the 

Appleseed reactor and produce biodiesel for campus grounds equipment from waste 

vegetable oil. This will reduce fuel costs for the college and lower CO2 and other air 

pollutant emissions. It also offers a way to recycle the used fry oil from dining halls and 

other campus eating establishments, which will cut down on waste disposal costs. If it 

can be proven that the fuel produced by the reactor will not harm the engines, it is more 

likely the college will agree to its use in grounds equipment. 
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