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Abstract: The purpose of this note is to show how to move from Laplace
Transforms to a brief introduction to two dimensional systems of linear
differential equations with only basic matrix algebra.

1 Introduction

The purpose of this short note is to share a strategy of quickly pivoting from Laplace
Transfroms to Linear Systems, while bypassing almost all of the usual prerequisite linear
algebra background. Of course, somematrix manipulation is needed for this approach. The
students are mostly sophomore or junior engineering majors and most were comfortable
with some elementary matrix manipulation as many (most?) had used things like Cramer’s
rule in practice. When I used this approach in in Fall 2022, I gave a brief review of matrix
multiplication (restricting to 2 by 2 matrices), multiplication of a 2 by 1 vector with a 2
by 2 matrix, the determinant of a 2 by 2, a too brief reminder of the role of the identity
matrix and the adjoint method of calculating an inverse (for 2 by 2 matrices with non-zero
determinant). I found that the students gained an adequate computational grasp of the
matrix material with one lesson and homework assignment.

I hasten to point out that I am a strong advocate for the traditional linear algebra
approach when time permits. For example, such an approach allows for the introduction
of the matrix exponential and the derivation of solutions via the matrix exponential
method. But the approach outlined here permits an introduction to systems when there
isn’t enough time to develop the linear algebra needed for the traditional approach.

2 The Approach

Prior to getting to systems, students had studied second order linear differential equa-
tions with constant coefficients and were familiar with the concept of the characteristic
polynomial; that is, the differential equation 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑓 has characteristic polyno-
mial 𝑎𝑚2 + 𝑏𝑚 + 𝑐 and solutions to the related characteristic equation 𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0
completely determine the solutions to the related homogeneous equation 𝑎𝑦′′+𝑏𝑦′+𝑐𝑦 = 0.
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Later, we had studied how to solve such an equation using the Laplace transform. In
particular, students were familiar with the characteristic polynomial appearing in the
following context:

𝑎𝑠2𝑌 (𝑠) + 𝑏𝑠𝑌 (𝑠) + 𝑐𝑌 + 𝑎(𝑦′(0) + 𝑠𝑦 (0)) + 𝑏𝑦 (0) = 𝐹 (𝑠) (2.1)

which leads to

𝑌 (𝑠) = (𝑎𝑠 + 𝑏)𝑦 (0) + 𝑎𝑦′(0)
𝑎𝑠2 + 𝑏𝑠 + 𝑐 + 𝐹 (𝑠)

𝑎𝑠2 + 𝑏𝑠 + 𝑐 (2.2)

with the first term being the input free part of the solution and the second being the
state free part. It was then pointed out that the denominator of both parts is merely the
usual characteristic polynomial in 𝑠 and the roots of this polynomial determine what the
solution the input free part.

I should point out that we had also studied

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝛿 (𝑡) (2.3)

and noted that
𝑌 =

1
𝑎𝑠2 + 𝑏𝑠 + 𝑐 (2.4)

is the Laplace transform of the solution to 𝑎𝑦′′+𝑏𝑦 +𝑐 = 0, 𝑦 (0) = 0, 𝑦′(0) = 1 but covering
the Dirac delta distribution is not strictly necessary to undertake this approach to systems.

It is with this background, we began our approach to 2 dimensional linear systems.
Notation: here, 𝑥 and 𝑦 represent functions 𝑥 (𝑡), 𝑦 (𝑡) of a variable 𝑡 and 𝑥′(𝑡) and 𝑦′(𝑡)
refers to 𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
respectfully. I’ll start with the homogeneous system ®𝑥′ = 𝐴®𝑥 where

®𝑥 =

[
𝑥

𝑦

]
, ®𝑥′ =

[
𝑥′

𝑦′

]
(2.5)

and

𝐴 =

[
𝑎 𝑏

𝑐 𝑑

]
(2.6)

We’ll use the usual convention that

𝑋 = L(𝑥) =
∫ ∞

0
𝑥 (𝑡)𝑒−𝑠𝑡𝑑𝑡, 𝑌 = L(𝑦) =

∫ ∞

0
𝑦 (𝑡)𝑒−𝑠𝑡𝑑𝑡 (2.7)

®𝑋 =

[
𝑋

𝑌

]
(2.8)

where 𝑥,𝑦 are from a suitable restricted class of functions (say, piecewise smooth,
exponential order; derivatives, where defined, are of exponential order as well).
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Because this approach is designed for those who lack a linear algebra background but
have been exposed to solving 2 equations with 2 unknowns by matrix methods, I started
by writing the two differential equations separately:

𝑥′ = 𝑎𝑥 + 𝑏𝑦
𝑦′ = 𝑐𝑥 + 𝑑𝑦 (2.9)

Now take the Laplace transform of both equations to obtain:

𝑠𝑋 − 𝑥 (0) = 𝑎𝑋 + 𝑏𝑌
𝑠𝑌 − 𝑦 (0) = 𝑐𝑋 + 𝑑𝑌 (2.10)

At this point, we are in the 𝑠 domain and can now switch to a matrix formulation of
this system of two equations and two unknowns; this is something the students have
done in their previous technical classes.

In vector-matrix form, the equations now are:

𝑠 ®𝑋 − ®𝑥 (0) = 𝐴 ®𝑋 (2.11)

Now add 𝑠 ®𝑋 to both sides. At this time I stress the importance of the relation: 𝑠 ®𝑋 = 𝑠𝐼 ®𝑋
(where 𝐼 is the 2 by 2 identity matrix). This leads to the equation

−®𝑥 (0) = (𝐴 − 𝑠𝐼 ) ®𝑋 (2.12)

At this point, I pointed out that what is left is still a system of two equations and two
unknowns, now in the 𝑠 domain.

Those familiar with the traditional linear algebra approach will notice that the (𝐴−𝑠𝐼 )
factor is what one uses to calculate eigenvectors and eigenvalues; in particular one looks
for the values of 𝑠 that makes𝐴−𝑠𝐼 a singular matrix, though I did not expect the students
to know this. I did inform them of this connection in the final "a look ahead" remarks
at the end of this material. Turning to the 2 by 2 adjoint method for inverse calculation
(after noting that the matrix inverse exists for all but at most two different values of 𝑠):

−(𝐴−𝑠𝐼 )−1 = 1
𝑑𝑒𝑡 (𝐴 − 𝑠𝐼 )

[
𝑠 − 𝑑 𝑏

𝑐 𝑠 − 𝑎

]
=

1
(𝑠 − 𝑑) (𝑠 − 𝑎) − 𝑏𝑐

[
𝑠 − 𝑑 𝑏

𝑐 𝑠 − 𝑎

]
(2.13)

Those familiar with the linear algebra method will notice that the characteristic
polynomial for𝐴 is (𝑠 −𝑑) (𝑠 −𝑎) −𝑏𝑐 = 0 and the roots of these determine the eigenvalues
and the type of equilibrium the system has at the origin (e. g. node, spiral, center, etc.)

We now complete the process by multiplying −(𝐴 − 𝑠𝐼 )−1 on both sides to obtain:
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®𝑋 =
1

(𝑠 − 𝑑) (𝑠 − 𝑎) − 𝑏𝑐

[
(𝑠 − 𝑑)𝑥 (0) + 𝑏𝑦 (0)
𝑐𝑥 (0) + (𝑠 − 𝑎)𝑦 (0)

]
=

[ (𝑠−𝑑)𝑥 (0)+𝑏𝑦 (0)
(𝑠−𝑑) (𝑠−𝑎)−𝑏𝑐
𝑐𝑥 (0)+(𝑠−𝑎)𝑦 (0)
(𝑠−𝑑) (𝑠−𝑎)−𝑏𝑐

]
(2.14)

This is the Laplace transform of the solution, in vector form. Of course, one now has
to take the inverse Laplace transform. That can be done, if desired, by writing this vector
equation into a system of two equations, taking the inverse transform, and then rewriting
in vector form. However, I found students do not object to taking the inverse Laplace
transform of the vector equation, possibly because we did the "equation to vector/matrix
equation" transition prior to taking the Laplace transform. Note that students in this
class have had calculus 3 and many (most?) have had classes such as physics, statics and
dynamics, and are therefore comfortable with vector valued functions and breaking down
such functions into component vectors.

To drive home the relationship between the characteristic equations that the students
have seen before and the characteristic polynomial in this setting, I found it useful to do
the following example: given 𝑎𝑥′′(𝑡) + 𝑏𝑥′(𝑡) + 𝑐𝑥 (𝑡) = 0, 𝑎 ≠ 0 make the substitution
𝑥 = 𝑥,𝑦 = 𝑥′ → 𝑥′ = 𝑦,𝑦′ = 𝑥′′ = − 𝑐

𝑎
𝑥 − 𝑏

𝑎
𝑥′ = − 𝑐

𝑎
𝑥 − 𝑏

𝑎
𝑦 which transforms this single

second order differential equation into:[
𝑥′(𝑡)
𝑦′(𝑡)

]
=

[
0 1
− 𝑐
𝑎

−𝑏
𝑎

] [
𝑥 (𝑡)
𝑦 (𝑡)

]
(2.15)

and here the characteristic polynomial is 𝑠 (𝑠 + 𝑏
𝑎
) + 𝑐

𝑎
which has the same roots as

𝑎𝑠2 + 𝑏𝑠 + 𝑐 .

We now return to the general case (Equation 2.14) and classify the types of solutions
we can get, based on the type of roots that (𝑠 − 𝑑) (𝑠 − 𝑎) − 𝑏𝑐 has:

• (𝑠 − 𝑑) (𝑠 − 𝑎) − 𝑏𝑐 has real distinct roots: 𝑟1, 𝑟2 In this case, a partial fractions
expansion has

®𝑋 =

[ 𝐴
𝑠−𝑟1 +

𝐵
𝑠−𝑟2

𝐶
𝑠−𝑟1 +

𝐷
𝑠−𝑟2

]
→ ®𝑥 = ®𝑎𝑒𝑟1𝑡 + ®𝑏𝑒𝑟2𝑡 (2.16)

where

®𝑎 =

[
𝐴

𝐶

]
and ®𝑏 =

[
𝐵

𝐷

]
(2.17)

We can say a bit more: if both roots 𝑟1, 𝑟2 are negative, then note that 𝑙𝑖𝑚𝑡→∞ | | ®𝑥 | | = 0
and that ®0 is the equilibrium solution which occurs when 𝑥 (0) = 𝑦 (0) = 0. The
origin is said to be a nodal sink.
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If both roots 𝑟1, 𝑟2 are positive, then 𝑙𝑖𝑚𝑡→−∞ | | ®𝑥 | | = 0 and the origin is said to be a
nodal source.

If one root is positive and the other is negative, then there are solutions that do not
tend to the origin as 𝑡 → ±∞. In this case, the origin is called a saddle point.

Of course, is possible that one root, say 𝑟1, is zero. In this case ®𝑥 = ®𝑎 + ®𝑏𝑒𝑟2𝑡 and the
is not an equilibrium point unless ®𝑎 = ®0.

In the traditional linear algebra approach: these are the cases that arise when 𝐴 has
real, distinct eigenvalues.

• (𝑠 − 𝑑) (𝑠 − 𝑎) − 𝑏𝑐 has a single, repeated real root 𝑟 . In this case, a partial fractions
expansion has

®𝑋 =

[
𝐴
𝑠−𝑟 +

𝐵
(𝑠−𝑟 )2

𝐶
𝑠−𝑟 +

𝐷
(𝑠−𝑟 )2

]
→ ®𝑥 = ®𝑎𝑒𝑟𝑡 + ®𝑏𝑡𝑒𝑟𝑡 (2.18)

where

®𝑎 =

[
𝐴

𝐶

]
and ®𝑏 =

[
𝐵

𝐷

]
(2.19)

Here, the origin is an equilibrium, and is a source if 𝑟 > 0 because 𝑙𝑖𝑚𝑡→−∞ | | ®𝑥 | | = 0
and a sink if 𝑟 < 0 because 𝑙𝑖𝑚𝑡→∞ | | ®𝑥 | | = 0. But this sort of equilibrium is called
non-generic.

In the traditional linear algebra approach, this occurs when 𝐴 has an eigenvalue of
algebraic multiplicity 2.

• (𝑠 − 𝑑) (𝑠 − 𝑎) − 𝑏𝑐 has pure imaginary roots ±𝛽𝑖 . In this case, a partial fractions
expansion has

®𝑋 =

[
𝐴

𝑠2+𝛽2 +
𝐵𝑠

𝑠2+𝛽2
𝐶

𝑠2+𝛽2 +
𝐷𝑠

𝑠2+𝛽2

]
→ ®𝑥 = ®𝑎𝑠𝑖𝑛(𝛽𝑡) + ®𝑏𝑐𝑜𝑠 (𝛽𝑡) (2.20)

where

®𝑎 =

[
𝐴
𝛽
𝐶
𝛽

]
and ®𝑏 =

[
𝐵

𝐷

]
(2.21)
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Note: ®𝑥 (𝑡) is periodic in 𝑡 and it can be shown that the solutions curves, except for
the equilibrium ®𝑥 = ®0 solution, are ellipses or circles. In this case, the origin is called
a center.

In the traditional linear algebra approach, this occurs when 𝐴 has pure imaginary
eigenvalues.

• (𝑠 − 𝑑) (𝑠 − 𝑎) − 𝑏𝑐 has complex conjugate roots with non-zero real part 𝑟 ± 𝛽𝑖 . In
this case, a modified partial fractions expansion has

®𝑋 =

[
𝐴

(𝑠−𝑟 )2+𝛽2 +
𝐵(𝑠−𝑟 )

(𝑠−𝑟 )2+𝛽2
𝐶

(𝑠−𝑟 )2+𝛽2 +
𝐷 (𝑠−𝑟 )

(𝑠−𝑟 )2+𝛽2

]
→ ®𝑥 = ®𝑎𝑒𝑟𝑡𝑠𝑖𝑛(𝛽𝑡) + ®𝑏𝑒𝑟𝑡𝑐𝑜𝑠 (𝛽𝑡) (2.22)

where

®𝑎 =

[
𝐴
𝛽
𝐶
𝛽

]
and ®𝑏 =

[
𝐵

𝐷

]
(2.23)

If 𝑟 > 0 then 𝑙𝑖𝑚𝑡→−∞ | | ®𝑥 | | = 0 But the solution curves form a spiral and the origin
is called a spiral source. If 𝑟 < 0 then 𝑙𝑖𝑚𝑡→∞ | | ®𝑥 | | = 0 and the origin is called a spiral
sink.

In the traditional linear algebra approach, this occurs when 𝐴 has complex eigen-
values with non-zero real part.

This is the classification of 2 dimensional homogeneous linear systems with constant
coefficients. Note that there is no difficulty with the “real double root" case that leads to
long discussion in some texts (pp. 386-389 of [1]).
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