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Abstract: A neural cell or neuron is the basic building block of the brain and
transmits information to other neurons. This paper demonstrates the com-
plicated dynamics of the neuron through a numerical study of the Hodgkin-
Huxley differential equations that model the ionic mechanisms of the neuron:
slight changes in parameter values and inputted electrical impulses can lead to
very different (unexpected) results. The methods and ideas developed for the
ordinary differential equations are extended to partial differential equations
for Hodgkin-Huxley networks of neurons in one, two and three dimensions.

1 Introduction

In their 1952 paper that led to the 1963 Nobel Prize in Physiology, Alan Hodgkin and
Andrew Huxley [1] laid out a path to understand the excitations (ionic mechanism) of
a nerve fibre. The results they presented in the paper were for the nerve cell in a giant
squid axon. Today a nerve cell is usually referred to as a neuron. A major tool that was
used by these two mathematical physiologists to produce their results was the voltage
clamp developed by the biophysicists Kenneth Cole [2] and George Marmont [3] in the
spring of 1947.

There was not much known about a neuron in 1952 and the technology that was
available to study a neuron in 1952 is not comparable to the technology that is used today
to study neurons. This includes, both the experimental equipment (microscopes, voltage
clamps, voltmeters, etc.) and the computers that were used to generate data and to solve
the equations that the data allowed to be developed.

However, it is also important to point out (and remember) that these differential
equations are still used today to improve our understanding of neurons and modifications
of them are used to model neurons other than the giant squid’s. A google search will
show how many neuroscientists are studying these differential equations to gain a better
understanding of neurons.
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The statement “Details of the mechanism will probably not be settled for some time”
in their paper was certainly true then and is still true today. Many neuroscientists both
experimental and computational have unwillingly said - the more we learn about neurons
... the more we realize how complicated they are. In fact the neuron shown in Figure 1
was not available to Hodgkin and Huxley and more of the components of the neuron
have been discovered recently. Figure 1 is adequate to develop the differential equations
of Hodgkin and Huxley.

Figure 1: A typical neuron (nerve cell) structure.

Hodgkin and Huxley point out in their paper

The results presented here show that the equations derived in Part II of this
paper predict with fair accuracy many of the electrical properties of the squid
giant axon: the form, duration and amplitude of spike, both ‘membrane’ and
propagated; the conduction velocity; the impedance changes during the spike;
the refractory period; ionic exchanges; subthreshold responses; and oscillations.

They also state

Our calculations of excitation processes were all made for the case where the
membrane potential is uniform over the whole area considered, and not for the
case of local stimulation of a whole nerve. There were two reasons for this: first,
that such data from the squid giant fibre as we had for comparison were obtained
by uniform stimulation of the membrane with the long electrode; and, secondly,
that calculations for the whole nerve case would have been extremely laborious
since the main equation is then a partial differential equation.

In Part II, we will address this piece of their paper more. In Part I we will introduce the
ordinary differential equations, some properties of these ordinary differential equations
and figures demonstrating the information the ordinary differential equations give us
about neurons and their complexity as pointed out by Hodgkin and Huxley.

In order to develop differential equations for neurons, Hodgkin and Huxley give the
schematic in Figure 2 as a depiction of the neuron in Figure 1. (This schematic was taken
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directly from their paper.) Using the known theory for electro-dynamics and electro-
chemistry, Hodgkin and Huxley derive differential equations for neurons.

In Part I, we will focus on the original Hodgkin-Huxley ordinary differential equations
and in Part II, we will extend these ideas to address some of the more intricate details
of these equations and the corresponding partial differential equations. The ordinary
differential equations developed by Hodgkin and Huxley to model the electro-dynamics
of the neuron have removable singularities in the ion rate parameters for the sodium
and potassium concentration differential equations. Obtaining numerical solutions to
these differential equations is difficult because of these removable singularities. Using
composition rules for power series and approximating these rate parameters with functions
not having singularities are methods that allow one to compute power series solutions
around these removable singularities.

Figure 2: The Hodgkin-Huxley Circuit Schematic for a Neuron (Figure 1).

2 Part I. The Hodgkin-Huxley ODEs

The original Hodgkin-Huxley (HH) system of ordinary differential equations (ODEs) that
can be derived using Ohm’s voltage laws and Kirchoff’s circuit laws from Figure 2 are

𝐼𝑀 (𝑡) = 𝐶𝑀
𝑑

𝑑𝑡
𝑉 (𝑡) + 𝑔𝐾 𝑛(𝑡)4 (𝑉 (𝑡) − 𝐸𝐾 ) +

𝑔𝑁𝑎 𝑚(𝑡)3ℎ(𝑡) (𝑉 (𝑡) − 𝐸𝑁𝑎) + 𝑔𝐿 (𝑉 (𝑡) − 𝐸𝐿)
𝑑

𝑑𝑡
𝑛(𝑡) = 𝛼𝑛 (𝑉 (𝑡)) (1 − 𝑛(𝑡)) − 𝛽𝑛 (𝑉 (𝑡)) 𝑛(𝑡) (2.1)

𝑑

𝑑𝑡
𝑚(𝑡) = 𝛼𝑚 (𝑉 (𝑡)) (1 −𝑚(𝑡)) − 𝛽𝑚 (𝑉 (𝑡)) 𝑚(𝑡)
𝑑

𝑑𝑡
ℎ(𝑡) = 𝛼ℎ (𝑉 (𝑡)) (1 − ℎ(𝑡)) − 𝛽ℎ (𝑉 (𝑡)) ℎ(𝑡)

where 𝑉 is the voltage in millivolts (mV) at time 𝑡 (in milliseconds), 𝑛 is the potassium
(K) concentration,𝑚 is the sodium (Na) concentration, ℎ is the concentration of various

3



other ions (L for leakage, the word used by Hodgkin and Huxley), 𝐶𝑀 is the membrane
capacitance, 𝐸𝐾 , 𝐸𝑁𝑎, 𝐸𝐿 are basis voltage potentials and produce electro-chemical currents,
𝐼𝑀 is an input current to the neuron. The parameters𝑔𝐾 , 𝑔𝑁𝑎, 𝑔𝐿 are maximum conductance
values (inverse of resistance). The function parameters 𝛼𝑛, 𝛼𝑚, 𝛼ℎ and 𝛼𝑛, 𝛼𝑚, 𝛼ℎ depend
only on the voltage and monitor transition rate for the opening and closing of ion channel
gates for potassium, sodium and the other concentrations, respectively. They will be
shown to be significant in determining the electro-dynamics of the neuron.

This terminology used by Hodgkin and Huxley is still used today. Neuroscientist’s
goal is to determine𝑉 (𝑡), 𝑛(𝑡),𝑚(𝑡) and ℎ(𝑡) given the initial conditions𝑉 (0) = 𝑉0, 𝑛(0) =
𝑛0,𝑚(0) =𝑚0, ℎ(0) = ℎ0, the input impulse 𝐼𝑀 (𝑡) and the parameters𝐶𝑀 , 𝑔𝐾 , 𝐸𝐾 , 𝑔𝑁𝑎, 𝐸𝑁𝑎 ,
𝑔𝐿, 𝐸𝐿 and the function parameters 𝛼𝑛, 𝛼𝑚, 𝛼ℎ and 𝛽𝑛, 𝛽𝑚, 𝛽ℎ . This is often called modeling
the dynamics of a neuron. (Dynamical systems are oftenmodeled by differential equations.)

The parameters and function parameters are discussed and given in the 1952 Hodgkin
Huxley paper and were determined experimentally with the use of Boltzman’s laws.
Neuroscientists modify these parameters and function parameters to fit the neuron they
are studying. In this study the function parameters given by Hodgkin and Huxley will
be used. They will be introduced in Part II and analyzed there. In Part I these function
parameters are used to generate the figures presented, but the analysis presented is true
for any smooth function parameters.

If the reader is interested in a detailed derivation of the System 2.1, Friedman, et al [5]
or Izhikevitch [6] are good texts to read. Even though the System 2.1 was developed in
1952 with technology that provided few details of the composition of the neuron, they
are surprisingly useful and still studied by many mathematical neuroscientists to gain a
better understanding of the dynamics of neurons. Hodgkin and Huxley considered both
the analytics of these ODEs and produced numerical results from these ODEs. Some of
the results presented in the work Hodgkin and Huxley knew and others they did not.
Mathematical neuroscientists are developing analytical techniques for neurons with the
aid of numerical results and neuroscientists learn more about neurons by analyzing and
observing the plots and animations developed from numerical results.

Mathematical neuroscientists are still discovering more about System 2.1 and in turn
neurons and vice versa. These equations have been modified many times to study neurons
other than that of the giant squid. In this study, we will look at System 2.1 in honor of these
two mathematical physiologists, but note that everything we present can be generalized
to handle similar type neuron models. In fact, in Part II we address modifying the HH
ODEs and using partial differential equations to model neurons.

We rewrite System 2.1 (suppressing 𝑡 ) as

𝑉 ′ = − 1
𝐶𝑀

(
𝑔𝐾𝑛

4 + 𝑔𝑁𝑎𝑚3ℎ + 𝑔𝐿
)
𝑉+

1
𝐶𝑀

(
𝑔𝐾𝐸𝐾𝑛

4 + 𝑔𝑁𝑎𝐸𝑁𝑎𝑚3ℎ + 𝑔𝐿𝐸𝐿
)
+ 𝐼𝑀

𝐶𝑀

𝑛′ = − (𝛼𝑛 (𝑉 ) + 𝛽𝑛 (𝑉 )) 𝑛 + 𝛼𝑛 (𝑉 ) (2.2)
𝑚′ = − (𝛼𝑚 (𝑉 ) + 𝛽𝑚 (𝑉 ))𝑚 + 𝛼𝑚 (𝑉 )
ℎ′ = − (𝛼ℎ (𝑉 ) + 𝛽ℎ (𝑉 )) ℎ + 𝛼ℎ (𝑉 )
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in order to consider properties and solution of these ODEs which we will also refer to
as the HH ODEs. In determining properties and solutions of the HH ODEs, it will be
necessary to generate approximate solutions using a computer. In this study we will use
Matlab to generate the numerical approximations. We will call the solutions we generate
in Matlab numerical solutions. Numerical solutions were obtained in Matlab using the
Runge-Kutta 4 algorithm (RK4), the ODE45 algorithm of Matlab and the power series
method (PSM) on System 2.2. These are three common numerical methods used to obtain
numerical solutions to ordinary differential equations. PSM is an extension of the power
series method that is introduced for linear differential equations in most elementary
differential equations texts (Peterson, Sochacki [4]). We will discuss PSM more in Part
II, but point out that it generates highly accurate solutions by determining Maclaurin
polynomials for the solution to the degree desired by the user. PSM with Maclaurin
polynomials of degree 8 were used to generate the numerical solutions in Part I. These
results are in agreement with RK4 and ODE45.

Notice that each individual ODE in the System 2.2 has a similar form of 𝑥′ = ()𝑥 +
(), where () represents an expression not containing 𝑥 . These ODEs are fundamental
differential equations in both the autonomous and non-autonomous cases.

In their 1952 paper, Hodgkin and Huxley discuss the resting voltage state often. In
mathematics this would be when the derivative is 0, i.e. 𝑉 has a constant value. In this
study, this will be called an equilibrium solution or equilibrium. If 𝑉 (𝑡) is constant in the
HH ODEs then 𝑉 ′(𝑡) = 0. Let 𝑉𝑟𝑒𝑠𝑡 be this constant value. If 𝐼𝑀 (𝑡) = 0 in the 𝑉 ODE of
System 2.2 then the ODE for 𝑉 becomes

𝑉 ′ = −𝑔𝐾𝑛(𝑡)
4 + 𝑔𝑁𝑎𝑚(𝑡)3ℎ(𝑡) + 𝑔𝐿

𝐶𝑀
𝑉 + 𝑔𝐾𝐸𝐾𝑛(𝑡)

4 + 𝑔𝑁𝑎𝐸𝑁𝑎𝑚(𝑡)3ℎ(𝑡) + 𝑔𝐿𝐸𝐿
𝐶𝑀

If 𝑉 (𝑡) = 𝑉𝑟𝑒𝑠𝑡 so that 𝑉 ′(𝑡) = 0 then from this ODE

𝑉𝑟𝑒𝑠𝑡 =
𝑔𝐾 𝑛(𝑡)4𝐸𝐾 + 𝑔𝑁𝑎 𝑚(𝑡)3ℎ(𝑡)𝐸𝑁𝑎 + 𝑔𝐿𝐸𝐿

𝑔𝐾 𝑛(𝑡)4 + 𝑔𝑁𝑎 𝑚(𝑡)3ℎ(𝑡) + 𝑔𝐿
.

Since 𝑉 (𝑡) = 𝑉𝑟𝑒𝑠𝑡 for all 𝑡 , the ODEs for 𝑛,𝑚,ℎ (in this case) are

𝑛′ = − (𝛼𝑛 (𝑉𝑟𝑒𝑠𝑡 ) + 𝛽𝑛 (𝑉𝑟𝑒𝑠𝑡 )) 𝑛 + 𝛼𝑛 (𝑉𝑟𝑒𝑠𝑡 )
𝑚′ = − (𝛼𝑚 (𝑉𝑟𝑒𝑠𝑡 ) + 𝛽𝑚 (𝑉𝑟𝑒𝑠𝑡 ))𝑚 + 𝛼𝑚 (𝑉𝑟𝑒𝑠𝑡 )
ℎ′ = − (𝛼ℎ (𝑉𝑟𝑒𝑠𝑡 ) + 𝛽ℎ (𝑉𝑟𝑒𝑠𝑡 )) ℎ + 𝛼ℎ (𝑉𝑟𝑒𝑠𝑡 ) .

Since these ODEs are linear, they can be solved. In fact, if 𝑉 (𝑡) = 𝑉𝑟𝑒𝑠𝑡 then 𝑛,𝑚,ℎ are
given by

𝑛 = 𝑛0 𝑒
−(𝛼𝑛 (𝑉𝑟𝑒𝑠𝑡 )+𝛽𝑛 (𝑉𝑟𝑒𝑠𝑡 ))𝑡 + 𝛼𝑛 (𝑉𝑟𝑒𝑠𝑡 )

𝛼𝑛 (𝑉𝑟𝑒𝑠𝑡 ) + 𝛽𝑛 (𝑉𝑟𝑒𝑠𝑡 )

𝑚 =𝑚0 𝑒
−(𝛼𝑚 (𝑉𝑟𝑒𝑠𝑡 )+𝛽𝑚 (𝑉𝑟𝑒𝑠𝑡 ))𝑡 + 𝛼𝑚 (𝑉𝑟𝑒𝑠𝑡 )

𝛼𝑚 (𝑉𝑟𝑒𝑠𝑡 ) + 𝛽𝑚 (𝑉𝑟𝑒𝑠𝑡 )

ℎ = ℎ0 𝑒
−(𝛼ℎ (𝑉𝑟𝑒𝑠𝑡 )+𝛽ℎ (𝑉𝑟𝑒𝑠𝑡 ))𝑡 + 𝛼ℎ (𝑉𝑟𝑒𝑠𝑡 )

𝛼ℎ (𝑉𝑟𝑒𝑠𝑡 ) + 𝛽ℎ (𝑉𝑟𝑒𝑠𝑡 )
.
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Therefore, 𝑛,𝑚,ℎ decrease to an equilibrium state. That is, if 𝑉 → 𝑉𝑟𝑒𝑠𝑡 so that 𝑉 ′(𝑡) ≈ 0
for all 𝑡 > 𝑇 for some 𝑇 > 0 then

𝑛,𝑚,ℎ → 𝛼𝑛 (𝑉𝑟𝑒𝑠𝑡 )
𝛼𝑛 (𝑉𝑟𝑒𝑠𝑡+𝛽𝑛 (𝑉𝑟𝑒𝑠𝑡 ) ,

𝛼𝑚 (𝑉𝑟𝑒𝑠𝑡 )
𝛼𝑚 (𝑉𝑟𝑒𝑠𝑡 )+𝛽𝑚 (𝑉𝑟𝑒𝑠𝑡 ) ,

𝛼ℎ (𝑉𝑟𝑒𝑠𝑡 )
𝛼ℎ (𝑉𝑟𝑒𝑠𝑡 )+𝛽ℎ (𝑉𝑟𝑒𝑠𝑡 ) ,

respectively as 𝑡 gets large (𝑡 >> 𝑇 ). Notice that all three of these limits have values
greater than 0 and less than 1. Since 𝑛,𝑚,ℎ are concentrations, their values should always
be greater than or equal to 0 and less than or equal to 1.

Observe that if 𝑛𝐸,𝑚𝐸, ℎ𝐸 are each close to 0 then 𝑉𝑟𝑒𝑠𝑡 ≈ 𝐸𝐿 . If we let

𝑛𝐸 =
𝛼𝑛 (𝑉𝑟𝑒𝑠𝑡 )

𝛼𝑛 (𝑉𝑟𝑒𝑠𝑡 + 𝛽𝑛 (𝑉𝑟𝑒𝑠𝑡 )

𝑚𝐸 =
𝛼𝑚 (𝑉𝑟𝑒𝑠𝑡 )

𝛼𝑚 (𝑉𝑟𝑒𝑠𝑡 ) + 𝛽𝑚 (𝑉𝑟𝑒𝑠𝑡 )

ℎ𝐸 =
𝛼ℎ (𝑉𝑟𝑒𝑠𝑡 )

𝛼ℎ (𝑉𝑟𝑒𝑠𝑡 ) + 𝛽ℎ (𝑉𝑟𝑒𝑠𝑡 )
.

be the equilibrium values for 𝑛,𝑚,ℎ, respectively then

𝑉𝑟𝑒𝑠𝑡 =
𝑔𝐾 𝑛

4
𝐸
𝐸𝐾 + 𝑔𝑁𝑎 𝑚3

𝐸
ℎ𝐸𝐸𝑁𝑎 + 𝑔𝐿𝐸𝐿

𝑔𝐾 𝑛
4
𝐸
+ 𝑔𝑁𝑎 𝑚3

𝐸
ℎ𝐸 + 𝑔𝐿

.

If (𝑉 (𝑡), 𝑛(𝑡),𝑚(𝑡), ℎ(𝑡)) → (𝑉𝑟𝑒𝑠𝑡 , 𝑛𝐸,𝑚𝐸, ℎ𝐸) then we call the equilibrium stable. Know-
ing these equilibrium results and corresponding equilibrium solutions allows one to test
the accuracy (and consistency) of his or her algorithms on the HH ODEs. The software
package Maple was used to obtain the numerical values given in this paper and these
values will be demonstrated in the figures generated by numerical methods using Matlab
on the HH ODES and in tables in Part II. It is also important to remember that all four
equations on the right hand side of System 2.2 (or any system of ODEs) must be 0 at
the equilibria. (We had Maple solve for these four equations - which it was able to do.
However, the solutions were quite long. Therefore, numerical approximations to the
solution were obtained.) The equilibrium values shown were tested in each of the four
equations on the right hand side of the HH ODEs to ensure their accuracy.

The voltage potential of a neuron going from a minimum to a maximum and then
to the resting state is often referred to as an action potential. We now present four
action potential plots and figures showing the 𝑛,𝑚,ℎ concentrations for these four action
potentials for numerical solutions using PSM in Matlab using the data from the 1952
Hodgkin Huxley paper with different 𝐼𝑀 (𝑡) which will be referred to as input impulses.
These are the types of plots (figures) that neuroscientists use to understand neurons and
their properties. (The reader may think of other plots that would also be beneficial.)
One notices in the voltage vs time plots (action potential) that the voltage reaches a
maximum and then lowers to an equilibrium as mentioned above. (The reader should
be able to notice the equilibrium state(s) from the figures.) This voltage can be observed
(and recorded) in an experiment. This dynamic of reaching a maximum is often referred
to as the firing of the neuron. The models presented will show four different types of
firing. In each model we will also show the 𝑛,𝑚,ℎ concentration levels together and
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the concentrations as a three-dimensional curve. These figures (plots) show how the
concentrations are related to each other and how the concentrations are related to the
voltage. These figures were generated in Matlab. The initial conditions in all four models
are𝑉 (0) = 𝑉0 = −30, 𝑛(0) = 𝑛0 = 0.25,𝑚(0) =𝑚0 = 0.25, ℎ(0) = ℎ0 = 0.5 and can be seen
in each of the figures presented. The figures presented should be able to convince you
that the dynamics of neurons is not only complicated, but exciting, since each of us has
over eighty billion of them.

2.1 Model 1

Figure 3 is the action potential from the data given in the 1952 Hodgkin-Huxley paper
and is similar to the one shown there. Notice that the starting voltage is -30 mV and the
firing reaches a maximum near 110 mV at around 8 ms and then drops to an equilibrium.
The simulation is for 80 ms so that one can observe the equilibrium solution derived
above. This equilibrium value is 0.0036 mV for the voltage and will be discussed more
in Part II. Figure 4 has two plots. The plot on the left shows the concentration levels of
sodium (n), potassium (m) and the other ions (h) making up the ’leaky’ concentration
during the action potential. Notice they all tend to an equilibrium as the theory above
showed. These equilibrium values will be given in Part II. The plot on the right is a three
dimensional (3D) curve (𝑛,𝑚,ℎ) of the concentrations showing how they are interrelated
during the action potential. BEG denotes the initial values (𝑛0,𝑚0, ℎ0) and END denotes
the equilibrium point (𝑛𝐸,𝑚𝐸, ℎ𝐸) where the simulation time ends. Figure 5 has three
plots showing how the voltage changes with each concentration. One should observe
the cyclical nature and that the voltage makes large changes over short changes in
the concentration levels. The plots shown in these figures for the action potential are
typical in the neuroscience literature. Of course, other types of plots are also studied by
mathematicians and neuroscientists.

As an example of what PSM provides, the 8𝑡ℎ degree Maclaurin polynomial PSM
produced in Matlab for 𝑉 is

𝑉8(𝑡) = − 30 + 150.65 𝑡 − 4386.6 𝑡2 + 107, 130 𝑡3 − 2, 373, 500 𝑡4+
(5.2470 × 107)𝑡5 − (1.1961 × 109)𝑡6 + (2.8064 × 1010)𝑡7 − (6.7184 × 1011)𝑡8.

From the remainder theorem for Maclaurin polynomials, the error in approximating 𝑉
with 𝑉8 is some number times 𝑡9. Therefore, the magnitude of the coefficients in this
polynomial increasing with the power of 𝑡 and especially the magnitued of 𝑡8 indicates
𝑡 must be chosen small so that the error is not large. This was also verified in all three
numerical methods used in this study. To get the Maclaurin polynomial of degree 8 for
the next small time interval, a value for 𝑡 is substituted into 𝑉8 to get the initial value
for 𝑉 for the next time interval and so on. After examining 𝑉8, the reader can appreciate
having a tool like Matlab to generate the Maclaurin polynomials. This polynomial also
helps explain why a small time step (2−8) had to be chosen for the RK4 method and a low
error tolerance (10−13) had to be chosen for ODE45 in Matlab since the error of these two
methods can be computed from Taylor polynomial estimates. Maclaurin polynomials will
be discussed further in Part II.

7



0 10 20 30 40 50 60 70 80

 TIME - Milliseconds 

-40

-20

0

20

40

60

80

100

120

 V
o

lt
a

g
e

 -
 M

ill
iv

o
lt
s
 

Figure 3: Voltage vs Time Plot Showing an Action Potential.

Figure 4: Plots of Concentration Levels for 𝑛,𝑚,ℎ.

2.2 Model 2

Figure 6 is the excitation using the same data as in Model 1 together with the input impulse
𝐼𝑀 (𝑡) = 10 exp(−0.125(𝑡 − 50)2). The plot on the left shows two action potentials and the
plot on the right shows the second action potential occurs near where 𝐼𝑀 (𝑡) reaches its
maximum which is 10 at 50 ms. (𝐼𝑀 (𝑡) is shown with the action potential on the right.)
This simulation is also for 80 ms so that one can observe the equilibrium solutions derived
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Figure 5: Plots of Concentration vs Voltage.

above still occur. This equilibrium value is also 0.0036 mV for the voltage. The plots in
Figure 7 show that the concentration levels of sodium (n), potassium (m) and the other
ions (h) making up the ’leaky’ concentration are quite similar for the initial firing and
the second firing due to the input impulse. Notice all the concentrations again tend to an
equilibrium. The 3D curve (𝑛,𝑚,ℎ) of the concentrations shows the two action potentials.
In Figure 8 one should observe the double cyclical nature and that the voltages again
make large changes over short changes in the concentration levels.

2.3 Model 3

Figure 9 is the excitationwith the data inModel 1 and an input impulse 𝐼𝑀 (𝑡) = 10 sin(0.125𝑡).
One observes three firings and that the second firing occurs after the input becomes nega-
tive and the third firing occurs quickly after the second firing. Note also that the maximum
voltage of each firing is different. The plots in Figure 10 show more cyclical behavior
including the 3D curve. In Figure 11 the cyclical voltage vs the concentration levels is
noticeable.

2.4 Model 4

Figure 12 is the repeating firings due to an input impulse with higher frequency. The input
impulse is 𝐼𝑀 (𝑡) = 10 sin(0.5𝑡). Notice that there is an action potential shortly after the
input hits a maximum value and that this phenomenon repeats. In Figure 13 we see the
repeating process in the oscillations of the concentration levels and in the cylic orbit of
the 3D curve. The concentration vs voltage curves in Figure 14 approach a periodic orbit.
This phenomenon of approaching a periodic orbit is referred to as a limit cycle.

9
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Figure 6: Voltage with a Spike Impulse Included.

Figure 7: 𝑛,𝑚,ℎ Concentrations with a Spike Impulse Included.
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Figure 8: Plots of Concentration vs Voltage with a Spike Impulse Included.

Figure 9: Voltage Plot with a Low Frequency Impulse Included.
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Figure 10: 𝑛,𝑚,ℎ Concentration Curves with a Low Frequency Impulse Included.
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Figure 11: Plots of Concentration vs Voltage with a Low Frequency Impulse Included.
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Figure 12: Voltage Plot with a High Frequency Impulse Included.

Figure 13: 𝑛,𝑚,ℎ Concentration Curves with a High Frequency Impulse Included.
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Figure 14: Plots of Concentration vs Voltage with a High Frequency Impulse Included.

Those who want to run their own HHmodels for various initial conditions, parameters
and inputs to generate figures like the ones presented here, can go to

http://educ.jmu.edu/~sochacjs/NeuronMatlabCodes/PSM

There the reader will find the two Matlab files HHPSMparameters.m and HHPSMODEs-
olver.m and the pdf file HHPSMinstructions.pdf that explains these two Matlab files and
the routines they need to run HHPSMODEsolver. The reader can then download these
files and set up various models to run and plot in Matlab. (The RK4 codes are at http:
//educ.jmu.edu/~sochacjs/NeuronMatlabCodes/RK4 and the ODE45 codes are at
http://educ.jmu.edu/~sochacjs/NeuronMatlabCodes/ODE45. The instructions
for these codes are HHRK4instructions.pdf and HHODE45instructions.pdf, respectively.)

The site http://educ.jmu.edu/~sochacjs/PSM.html has access to many pa-
pers (published) showing the properties and applicability of PSM. Some of these pa-
pers were written by undergraduates. The website http://www.taylorcenter.org/
Index.htm also has a lot of information on using power series to solve ordinary differen-
tial equations.
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3 Part II. Extending the Hodgkin-Huxley Model

Hopefully, the reader noticed in Part I that many of the graphs in the plots presented had
complicated features and would be difficult to discover without plotting the numerical
solution. Also, one should realize showing that the numerical solution is an accurate
representation of the true solution is important. Researchers have shown that PSM is an
accurate method and has an a priori error bound. That is, one can determine what the
maximum possible error can be from using PSM to generate a numerical approximation
to the true solution before calculating the approximate solution (not including errors
brought in by the computer). (See Warne et al [7].)

In 1989, Parker and Sochacki [8] showed that using Picard iteration on ordinary
differential equations for which the expressions on the right hand side of the ordinary
differential equations are polynomial in the variables to be solved generates the Maclaurin
polynomials for the solution to the ordinary differential equations. They also showed how
to convert ordinary differential equations like the HH ODEs into a system of ordinary
differential equations with polynomial right hand side so that Picard iteration can be
used to generate the Maclaurin polynomials for the solution to the system of ordinary
differential equations. This will be demonstrated in this part of the paper.

In 2009, Stewart and Bair [9] named the technique Parker and Sochacki developed in
1989, the Parker-Sochacki method and introduced it as an approach for obtaining accurate
numerical solutions to the HH ODEs. They showed how to convert the HH ODEs that they
were using to polynomial form. They also showed that the Parker-Sochacki method was
competitive with the Runge-Kutta order 4 method (RK4) and the Bulirsch-Stoer method
(BSM) and, in most cases, superior for Hodgkin-Huxley type ODEs. Stewart and Bair also
pointed out the removable singularities in the function parameters in the HH ODEs. In
2011, Stewart and Gurney [10] demonstrated the feasibility of using the Parker-Sochacki
method to study synaptic dynamics in neurons.

Automatic differentiation (AD) (Gofen [11] and Neidinger [12]), the differential trans-
form method (DTM) (Mirzaee [13]) and PSM are methods that are similar to the Parker-
Sochacki method. In this article, we will use the terminology power series method (PSM)
for the method that was discovered by Parker and Sochacki through Picard iteration, but
is similar to AD and DTM. We also mention that since the late 1950’s many researchers
have used PSM type methods to obtain solutions to ODEs. However, as far as this author
knows, Parker and Sochacki are the only ones to do it through Picard iteration.

In fact, one can consider the above techniques as complimentary and intersecting.
However, since the Parker-Sochacki method is also based on the Picard Iteration, this
method allows another tool to be used in analyzing the numerics through convergence,
stability and error estimation. In this presentation, we will show how to use PSM to
address the removable singularity in 𝛼𝑛 and 𝛼𝑚 in the original HH ODEs in four ways.

It will also be shown that PSM extends to the one dimensional (1D), two dimensional
(2D) and 3D HH partial differential equations (PDEs) in a straightforward manner. Nu-
merical results for these three cases will be presented through figures demonstrating the
feasibility of PSM to PDEs.

Since many of the previous researchers mentioned above, and, in fact many other
researchers, have shown the efficiency and robustness of PSM, this paper will not focus
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on those subjects, but rather on dealing with the removable singularities and the sensitive
dependence for the HH ODEs (and PDEs). This author is unaware of this study being
done in the neuron literature.

If the reader is interested in some applications and theory of PSM, Pruett, Rudmin and
Lacy [14] showed that PSM was in many cases superior to RK4 and BSM for Newton’s
N-Body problem. Also, the astrophysics teams Nurminskii and Buryi [15] and Pruett,
Ingham and Herman [16] and the neuroscientist Szynkiewicz [17] and the neuroscientist
team Yudanov, Shaaban, Melton and Reznik [18] have shown that it is in general easier to
parallelize PSM codes and obtain close to linear speed up than other methods, including
on graphical processing units.

In his Ph.D. thesis, Money [19] shows that when applied discretely to PDEs, PSM is a
generalization of the Lax-Wendroff method (LWM) [20] that is commonly used and/or
modified in computational fluid dynamical systems that involve nonlinearities. Money
determined stability conditions for some linear and non-linear PDEs. In this work, his
ideas will be extended and applied to HH PDEs.

The outline of the study for Part II is as follows. The original HH ODEs function
parameters 𝛼𝑛, 𝛽𝑛, 𝛼𝑚, 𝛽𝑚, 𝛼ℎ, 𝛽ℎ are introduced and the singularity is discussed. Four ways
to work around the singularity are suggested. These are then studied to demonstrate
how sensitive to parameters the HH ODEs are. Next, the 1D cable PDE (Ermentrout and
Terman) is given and solved using the discrete PSM (DPSM) introduced by Money. This
presentation is then extended to 2D and 3D in a natural way. Figures showing the results
and the sensitive dependence are given for both the ODEs and the PDEs developed. These
results are presented with PSM, but the results shown are in agreement with RK4 and
ODE45 for the ODEs using the same grid size in 𝑡 . Figures for the 1D, 2D and 3D cases
verifying the legitimacy of the results and the efficacy of the HH PDEs are presented
using PSM. The methods developed and the figures presented demonstrate the sensitive
nature of neurons and the need to have several numerical methods for analyzing these
dynamical systems.

As Sochacki [21] pointed out, transforming a nonlinear ODE to polynomial form
allows many other types of analysis. Since an ODE or PDE in polynomial form can be put
into a symbolic computing environment like Mathematica or Maple, one can generate a
completely symbolic (Maclaurin) polynomial that approximates the solution to a system of
ODEs or PDEs and analyze this solution for sensitivity in any of the parameters, including
the initial conditions. Also, putting the HH ODEs in polynomial form allows one to derive
a priori error estimates as shown by Warne, et al [7] and extended by Thelwell, et al [22].
Furthermore, the polynomial form of the ODEs allows one to develop conserved quantities
as shown by Carothers, et al [23]. They also show how to extend PSM to Pade’ rational
approximations allowing another numerical method to be used for neuron simulation.

The parameter values Hodgkin and Huxley (HH) used in their 1952 paper and the
values given in Izhikevich (Iz) [6] will be used in the numerical study done here. These
are 𝑔𝐾 = 36, 𝑔𝑁𝑎 = 120, 𝑔𝐿 = 0.3,𝐶𝑀 = 1;𝐸𝐾 = 12;𝐸𝑁𝑎 = −115, 𝐸𝐿 = −10.613 and
𝑔𝐾 = 36, 𝑔𝑁𝑎 = 120, 𝑔𝐿 = 0.3,𝐶𝑀 = 1;𝐸𝐾 = −12;𝐸𝑁𝑎 = 120, 𝐸𝐿 = 10.6, respectively. For
HH, the equilibrium solutions are 𝑉𝑟𝑒𝑠𝑡 ≈ 0.0036, 𝑛𝐸 ≈ 0.3177,𝑚𝐸 ≈ 0.053, ℎ𝐸 ≈ 0.596
and for Izhikevich, they are 𝑉𝑟𝑒𝑠𝑡 ≈ 0.0462, 𝑛𝐸 ≈ 0.3184,𝑚𝐸 ≈ 0.0532, ℎ𝐸 ≈ 0.5945. The
equilibrium values for the HH data were demonstrated in the figures given in Part I. Even
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though the HH parameters and the Iz parameters are nearly the same, the reader will note
that the outcomes can be different. One can even see that in the equilibrium values where
all are almost the same, except for 𝑉𝑟𝑒𝑠𝑡 .

3.1 The Removable Singularities

Hodgkin and Huxley experimentally determined 𝛼𝑛, 𝛽𝑛, 𝛼𝑚, 𝛽𝑚, 𝛼ℎ, 𝛽ℎ for a particular squid
and presented them in their paper as

𝛼𝑛 =
0.01(10−𝑉 )

exp
( 10−𝑉

10
)
−1

; 𝛽𝑛 = 0.125 exp
(−𝑉

80
)

𝛼𝑚 =
0.1(25−𝑉 )

exp
( 25−𝑉

10
)
−1

; 𝛽𝑚 = 4 exp
(−𝑉

18
)

𝛼ℎ = 0.07 exp
(−𝑉

20
)

; 𝛽ℎ =
1

exp
( 30−𝑉

10
)
+1
.

Note that
𝛼𝑛 = 0.1

𝑥

exp (𝑥) − 1
where 𝑥 = 0.1(10 −𝑉 ) and

𝛼𝑚 =
𝑦

exp (𝑦) − 1
where 𝑦 = 0.1(25 −𝑉 ) and that these two functions are not defined at 𝑥 = 0 (𝑉 = 10) and
𝑦 = 0 (𝑉 = 25), respectively. (We leave it to the reader to show using L’Hospital’s rule
that the two functions can be defined at 0, by using the limit value.)

Certainly, 𝑉 = 10 and 𝑉 = 25 are valid voltages for the squid neuron. What does one
do in this case? Calculating the limits for 𝛼𝑛 and 𝛼𝑚 at 𝑉 = 10 and 𝑉 = 25, respectively,
gives 0.1 for 𝛼𝑛 and 1 for 𝛼𝑚 . Therefore, these two functions have removable singularities
at 𝑉 = 10 and 𝑉 = 25, respectively. No matter what numerical method one uses, one has
to deal with this removable singularity in some manner.

One method for doing this with PSM is presented. Since the two functions 𝛼𝑛 and 𝛼𝑚
are similar, we consider only 𝛼𝑛 . (The method presented is easily extended for 𝛼𝑚). The
derivative of 𝛼𝑛 with respect to 𝑡 using the chain rule is

𝛼′𝑛 = 0.1
𝑥′(𝑒𝑥 − 1) − 𝑥𝑥′𝑒𝑥

(𝑒𝑥 − 1)2 = 0.1𝑥′
𝑒𝑥 (1 − 𝑥) − 1
(𝑒𝑥 − 1)2 .

Since 𝑒𝑥 is not a polynomial, we make some change of variables and use the chain rule.
First let 𝛼𝑛,1 = (𝑒𝑥 − 1)−1 and 𝛼𝑛,2 = 𝑒𝑥 . Differentiating these with respect to 𝑡 gives us

𝛼′𝑛,1 = −(𝑒𝑥 − 1)−2 𝑒𝑥 𝑥′ = −𝛼𝑛,12 𝛼𝑛,2 𝑥
′

and
𝛼′𝑛,2 = 𝑒

𝑥𝑥′ = 𝛼𝑛,2𝑥
′.

The right hand sides of these two ODEs are polynomial in the unkowns. Now note that
𝛼𝑛 = 0.1𝑥 𝛼𝑛,1. Differentiating 𝛼𝑛 in this form gives

𝛼′𝑛 = 0.1(𝑥𝛼𝑛,1)′ = 0.1(𝑥′𝛼𝑛,1 + 𝑥𝛼′𝑛,1).
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The right hand side of this ODE is now polynomial in the unknowns 𝑥, 𝑥′, 𝛼𝑛,1 and 𝛼𝑛,2.
Since these are all polynomial, by introducing the variables 𝛼𝑛,1 and 𝛼𝑛,2, an ODE for 𝛼𝑛
with a polynomial expression in the unknowns on the right hand side has been derived.
Therefore, as long as 𝑥 ≠ 0 and 𝑦 ≠ 0, one can create polynomial ODEs for 𝛼𝑛 and 𝛼𝑚.
Fehlberg [24] of Runge-Kutta-Fehlberg fame called the functions that were introduced to
make the ODE polynomial: auxiliary variables.

Now consider 𝛽ℎ = (exp
( 30−𝑉

10
)
+1)−1. Introducing the auxiliary variables 𝑧 = 0.1(30−

𝑉 ) and 𝛽ℎ,1 = 𝑒𝑧 leads to
𝛽′
ℎ
= −𝛽ℎ2𝛽ℎ,1𝑧

′.

Except for the singularities at 𝑥 = 0 in 𝛼𝑛 and at 𝑦 = 0 in 𝛼𝑚 it has been demonstrated
that the HH ODEs can be converted to a system of polynomial ODEs which can be solved
with PSM. It is important to remember that now 𝛼𝑛, 𝛽𝑛, 𝛼𝑚, 𝛽𝑚, 𝛼ℎ, 𝛽ℎ are considered as
functions of 𝑡 instead of 𝑉 through the fact that 𝑉 is a function of 𝑡 .

The polynomial form of the HH ODES appear as

𝑉 ′ = − 1
𝐶𝑀

(
𝑔𝐾𝑛

4 + 𝑔𝑁𝑎𝑚3ℎ + 𝑔𝐿
)
𝑉+

1
𝐶𝑀

(
𝑔𝐾𝐸𝐾𝑛

4 + 𝑔𝑁𝑎𝐸𝑁𝑎𝑚3ℎ + 𝑔𝐿𝐸𝐿
)
+ 𝐼𝑀

𝐶𝑀

𝑛′ = − (𝛼𝑛 + 𝛽𝑛) 𝑛 + 𝛼𝑛
𝑚′ = − (𝛼𝑚 + 𝛽𝑚)𝑚 + 𝛼𝑚
ℎ′ = − (𝛼ℎ + 𝛽ℎ) ℎ + 𝛼ℎ,

together with polynomial ordinary differential equations for 𝛼𝑛, 𝛽𝑛, 𝛼𝑚, 𝛽𝑚, 𝛼ℎ, 𝛽ℎ . For
example, we showed that a polynomial ordinary differential equation for 𝛼𝑛 is

𝛼′𝑛 = 0.1(𝑥′𝛼𝑛,1 − 𝑥𝑥′𝛼𝑛,12 𝛼𝑛,2),

where 𝑥 = 0.1(10 − 𝑉 ) so that 𝑥′ = −0.1𝑉 ′ and 𝑉 ′ is given in the first ODE in the
system in polynomial form. (The functions 𝛼𝑛,1 and 𝛼𝑛,2 and their ODEs in polynomial
form were given above.) We leave it for the reader to generate polynomial ODEs for
𝛽𝑛, 𝛼𝑚, 𝛽𝑚 and 𝛼ℎ through auxiliary variables. This is the type of polynomial system that
is used with PSM to generate solutions to the HH ODEs in this paper. (For RK4 and
ODE45 we used the first form of the HH ODEs presented in Part I.) If the reader wants
to gain a thorough understanding of forming polynomial ODEs, the first link on the site
http://educ.jmu.edu/~sochacjs/PSM.html is a good tutorial.

We will also demonstrate four ways to work around the singularities in 𝛼𝑛 and 𝛼𝑚 so
that PSM can be used. In our numerical examples, an 8𝑡ℎ degree Maclaurin polynomial
to approximate the solution is used, but any degree desired can be used. We denote the
method by PSM8 to stress the 8𝑡ℎ degree.

As Stewart and Bair discovered, PSM will determine the time at which the singularities
occur to the precision of the order (degree of the (Maclaurin) polynomial) of PSM used.
Since the HH ODEs can be cast in polynomial form, a symbolic form of the approximate
polynomial solution to any degree desired can be obtained in a symbolic computational
software environment like Mathematica or Maple. This polynomial can be analyzed for
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sensitivity in any of the parameters, initial conditions or inputs. This will not be done in
this paper. Here we will focus on sensitivity dependence using PSM8.

3.2 Three Approximations for 𝛼𝑛 and 𝛼𝑚
First, we present three functions that will be used in this analysis to approximate the
original HH 𝛼𝑛 (𝛼𝑚 will be approximated by these same three functions, but with different
parameters). These three functions will have similar properties to the original, but will
have no singularities in 𝑉 . Our first function is

𝛼𝑛2 = 𝑎 ln(exp(𝑐𝑥) + 𝑟 ) + 𝑏𝑥,

with 𝑎 = 0.1414908967, 𝑏 = 0.009940471319, 𝑐 = −0.07023657394, 𝑟 = 0.5088042066 (for
𝛼𝑚2 one has 𝑎 = 1.353627622, 𝑏 = 0.09779785093, 𝑐 = −0.07224256783, 𝑟 = 0.1795806050).
We will denote the HH model with 𝛼𝑛2, 𝛼𝑚2 for 𝛼𝑛, 𝛼𝑚 as BF for best fit because of our
three approximations this one is the best fit to the original HH. The second function is

𝛼𝑛3 = 0.1 (ln (exp(𝑥) + 1) − 𝑥)

(𝛼𝑚3 = ln (exp(𝑦) + 1) − 𝑦). We will denote this approximation model as LN. The third
function is

𝛼𝑛4 = 𝑝 exp(𝑠𝑥) + 𝑞
with 𝑝 = 0.06494755254, 𝑞 = −0.006749881849, 𝑠 = 0.02985000448 (for 𝛼𝑚4 one has 𝑝 =

.2352963135, 𝑞 = −0.01173258887, 𝑠 = 0.03947343893). We will denote this approximation
model as EXP.

In Figure 15 there are four plots. The top two plots are for 𝛼𝑛, 𝛼𝑛2, 𝛼𝑛3, 𝛼𝑛4 and then for
𝛼𝑚, 𝛼𝑚2, 𝛼𝑚3, 𝛼𝑚4 that will be examined in this paper. The 𝛼𝑛 and 𝛼𝑚 from the Hodgkin
and Huxley paper are denoted with black asterisks, the approximation 𝛼𝑛2 and 𝛼𝑚2 are
denoted with red plus signs, 𝛼𝑛3 and 𝛼𝑚3 are denoted with green circles and 𝛼𝑛4 and
𝛼𝑚4 are denoted with blue diamonds. Notice that 𝛼𝑛4 and 𝛼𝑚4 are near the other three
for low voltages, but diverge from the other three for high voltages. The bottom two
plots are the same curves without 𝛼𝑛4 and 𝛼𝑚4 . Notice how close these curves are over
the voltage spread. These plots are over a typical mV range for the HH neuron. To be
specific, the maximum difference between 𝛼𝑛 and 𝛼𝑛2, 𝛼𝑛3, 𝛼𝑛4 is 0.0039, 0.0300, 2.9344
respectively and the maximum difference between 𝛼𝑚 and 𝛼𝑚2, 𝛼𝑚3, 𝛼𝑚4 is 0.1325, 0.3068,
47.5965, respectively for −30 ≤ 𝑉 ≤ 120. These values will be interesting to recall in the
numerical results presented later. Note that for voltage in [-30,50] all the graphs are close.

Observe that none of 𝛼𝑛2, 𝛼𝑛3, 𝛼𝑛4 or 𝛼𝑚2, 𝛼𝑚3, 𝛼𝑚4 have singularities. Therefore, PSM
can be used on all three of these models with these replacing 𝛼𝑛 and 𝛼𝑚 . One can then
compare and contrast the results given by RK4, ODE45 and PSM which was done for the
ODE cases presented below.

In Table 1 the equilibrium solutions for 𝑉 ,𝑛,𝑚 and ℎ are given for the HH parameters
and in Table 2 for the Izhikevich parameters for the four 𝛼𝑛 and 𝛼𝑚 presented. Again,
these equilibria will be highlighted in the numerical results presented.

We point out that even though 𝛼𝑛3, 𝛼𝑚3 are ’close’ approximations to 𝛼𝑛, 𝛼𝑚 , the values
of 𝑉𝑟𝑒𝑠𝑡 are noticeably different for the two models. However, it is possible to determine
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Figure 15: Plot of 𝛼𝑛 and 𝛼𝑚 for the HH,BF,LN and EXP models

Table 1: Original Hodgkin-Huxley Parameter Equilibria
𝛼 𝑉𝑟𝑒𝑠𝑡 𝑛𝐸 𝑚𝐸 ℎ𝐸

HH 0.003621 0.317732 0.052955 0.595994
BF 0.003617 0.317732 0.052955 0.595994
LN 3.317822 0.256558 0.031529 0.477551
EXP 0.004388 0.317720 0.052954 0.595967

Table 2: Izhikevich Hodgkin-Huxley Parameter Equilibria
𝛼 𝑉𝑟𝑒𝑠𝑡 𝑛𝐸 𝑚𝐸 ℎ𝐸

HH 0.046215 0.318385 0.053222 0.594504
BF 0.046151 0.318379 0.053216 0.594506
LN 3.322646 0.256645 0.477378 0.031551
EXP 0.055958 0.318233 0.053206 0.594162

HH voltage and conductance parameters so that the equilibria are all noticeably different.
Even for these models, one will notice significant differences in the outcomes of the
models as shown in the numerical section. First, we address the removable singularities
in the original HH model.
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3.3 Using Power Series (PS) to address the removable singularities

Stewart and Bair presented two ways to determine the PS of 1
𝑔
where 𝑔 is a PS. One was

through 𝑧 = 𝑓

𝑔
(let 𝑓 = 1) and the other was through 𝑧 = 𝑔𝑟 (let 𝑟 = −1). Both of these give

the same recurrence relation for determining the PS for 𝑧 = 1
𝑔
. We use this to determine

the PS of 𝑥
𝑒𝑥−1 ( 𝑦

𝑒𝑦−1 ) from the PS of 𝑔 = 𝑒𝑥−1
𝑥

(𝑔 = 𝑒𝑦−1
𝑦

).
We point out that the reciprocal of 𝛼𝑛 (𝛼𝑚) has a PS representation that converges for

all 𝑥 (𝑦) and is given by

𝑒𝑥 − 1
𝑥

= 1 + 1
2
𝑥 + 1

3!
𝑥2 + ... =

∞∑
𝑛=0

𝑥𝑛

(𝑛 + 1)!

for 𝑥 ≠ 0. However, the PS is defined at 𝑥 = 0. If we use the power series for 𝑔 instead
of 𝑔 then there is no singularity. Therefore, using the reciprocal rule on the PS for 𝑔, we
now have a PS for 𝑧. In order to obtain the PS rule for 𝑧 (𝑉 ) where 𝑉 is a polynomial, we
layout how to determine the PS for the composition of two PS.

Let 𝑝𝑀 be the𝑀𝑡ℎ degree (Maclaurin) polynomial defined by

𝑝𝑀 =

𝑀∑
𝑚=0

𝑝𝑀,𝑚𝑡
𝑚 = 𝑝𝑀,0 + 𝑝𝑀,1 𝑡 + 𝑝𝑀,2 𝑡2 + ... + 𝑝𝑀,𝑀𝑡𝑀

and 𝑞𝑁 be the 𝑁 𝑡ℎ degree (Maclaurin) polynomial defined by

𝑞𝑁 =

𝑁∑
𝑛=0

𝑞𝑁,𝑛𝑡
𝑛 = 𝑞𝑁,0 + 𝑞𝑁,1 𝑡 + 𝑞𝑁,2 𝑡2 + ... + 𝑞𝑁,𝑁 𝑡𝑁

then the (Maclaurin) polynomial for 𝑝𝑀 (𝑞𝑁 (𝑡)) can be obtained by letting

𝑤0 = 1
𝑤1 = 𝑞𝑁

𝑤2 = (𝑞𝑁 )2

...

𝑤𝑀 = (𝑞𝑁 )𝑀

and noting that

𝑝𝑀 (𝑞𝑁 ) =
𝑀∑
𝑚=0

𝑝𝑀,𝑚𝑤𝑚 = 𝑝𝑀,0 + 𝑝𝑀,1𝑤1 + 𝑝𝑀,2𝑤2 + ... + 𝑝𝑀,𝑀𝑤𝑀

and

𝑤 ′
0 = 0

𝑤 ′
1 = 𝑤0

𝑤 ′
2 = 2𝑤1
...

𝑤 ′
𝑀 = 𝑀𝑤𝑀−1
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Using PSM on this system of linear ODEs determines the coefficients of𝑤𝑚 for𝑚 = 0..𝑀.
That is,

𝑤𝑚 (𝑡) =
𝐽∑
𝑗=0
𝑤𝑚,𝑗 𝑡

𝑗 , 𝑚 = 0..𝑀

and from this that

𝑝𝑀 (𝑞𝑁 (𝑡)) =
𝑀∑
𝑚=0

𝑝𝑀,𝑚

(
𝐽∑
𝑗=0
𝑤𝑚,𝑗𝑡

𝑗

)
= 𝑝𝑀,0 + 𝑝𝑀,1

𝐽∑
𝑗=0
𝑤1, 𝑗 𝑡

𝑗 + 𝑝𝑀,2
𝐽∑
𝑗=0
𝑤2, 𝑗 𝑡

𝑗 + ... + 𝑝𝑀,𝑀
𝐽∑
𝑗=0
𝑤𝑀,𝑗 𝑡

𝑗

=
(
𝑝𝑀,0 + 𝑝𝑀,1𝑤1,0 + ... + 𝑝𝑀,𝑀𝑤𝑀,0

)
+ 𝑡

(
𝑝𝑀,1𝑤1,1 + ... + 𝑝𝑀,𝑀𝑤𝑀,1

)
+ 𝑡2 (

𝑝𝑀,1𝑤1,2 + ... + 𝑝𝑀,𝑀𝑤𝑀,2
)
+ ... + 𝑡 𝐽

(
𝑝𝑀,1𝑤1,𝐽 + ... + 𝑝𝑀,𝑀𝑤𝑀,𝐽

)
=

𝑀∑
𝑚=0

𝑝𝑀,𝑚𝑤𝑚,0 +
𝐽∑
𝑗=1

(
𝑀∑
𝑚=1

𝑝𝑀,𝑚𝑤𝑚,𝑗

)
𝑡 𝑗 ,

the (Maclaurin) polynomial for 𝑝𝑀 (𝑞𝑁 (𝑡)) of degree 𝐽 . Therefore, using this algorithm,
one can determine a polynomial approximation to 𝛼𝑛 (𝑉 ) (𝛼𝑚 (𝑉 )) given a polynomial
approximation to 𝑉 and using the PS for 𝛼𝑛 (𝑥) (𝛼𝑚 (𝑦)).

Since 𝛼𝑛 and 𝛼𝑚 have singularities only near 𝑥 = 0 and 𝑦 = 0, respectively, we only
use this algorithm when |𝑥 | < 0.5 (0.1|𝑉 − 10) | < 0.5) and |𝑦 | < 0.5 (0.1|𝑉 − 25) | < 0.5).
Everywhere else PSM is used on the polynomial form of the HH ODEs. In these intervals
of convergence of the PS for 𝛼𝑛 and 𝛼𝑚 , using the first 24 terms of the PS gives an error
< 10−19 for 𝛼𝑛 and 𝛼𝑚 . (It can be determined that eventually the PS for 𝑧 is an alternating
PS with only even exponents.) Outside these intervals, the polynomial form of the ODEs
for 𝛼𝑛 and 𝛼𝑚 presented above are used. One can now determine polynomial solutions
to the HH ODEs everywhere to the accuracy that Stewart and Bair outlined using these
PS. In the numerical examples, we will compare using this PS technique for 𝛼𝑛 and 𝛼𝑚
compared to that of using the three approximations for 𝛼𝑛 and 𝛼𝑚 given above. In all the
ODE and PDE examples below, we use PSM8 with the PS approximating 𝛼𝑛 and 𝛼𝑚 , using
the first 24 terms of the PS.

We now add two other PS to the tool box of Stewart and Bair. Since we have to
calculate the PS of 𝑧 = exp(𝑓 ) and 𝑧 = ln(𝑓 ) for a PS 𝑓 for 𝛼𝑛2, 𝛼𝑛3, 𝛼𝑛4 and 𝛼𝑚2, 𝛼𝑚3, 𝛼𝑚4 ,
we note

1. If 𝑧 = exp(𝑓 ) then 𝑧′ = 𝑓 ′𝑧

2. If 𝑧 = ln(𝑓 ) then 𝑧′ = 𝑓 ′

𝑓
.

Using these two rules, allows one to generate a polynomial form of the ODEs for each of
𝛼𝑛2, 𝛼𝑛3, 𝛼𝑛4 and 𝛼𝑚2, 𝛼𝑚3, 𝛼𝑚4 . We present numerical results of PSM8 below using these.
(The quotient rule used by Stewart and Bair is needed with item 2.) Before that, though, we
present a PSM algorithm for HH PDEs using the original 𝛼𝑛 and 𝛼𝑚 with the PS algorithm
presented above to work around the singularities.
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3.4 HH Partial Differential Equations

The HH cable PDE, nicely developed in Ermentrout and Terman [25], is given by

𝐶𝑀
𝜕𝑉

𝜕𝑡
= 𝐴

𝜕2𝑉

𝜕𝑥2 − (𝑔𝐾 𝑛(𝑥, 𝑡)4 (𝑉 − 𝐸𝐾 ) + 𝑔𝑁𝑎 𝑚(𝑥, 𝑡)3ℎ(𝑥, 𝑡) (𝑉 − 𝐸𝑁𝑎)

+ 𝑔𝐿 (𝑉 − 𝐸𝐿)) + 𝐼𝑀 (𝑡)
𝑑

𝑑𝑡
𝑛 = − (𝛼𝑛 (𝑉 ) + 𝛽𝑛 (𝑉 )) 𝑛 + 𝛼𝑛 (𝑉 )

𝑑

𝑑𝑡
𝑚 = − (𝛼𝑚 (𝑉 ) + 𝛽𝑚 (𝑉 ))𝑚 + 𝛼𝑚 (𝑉 )
𝑑

𝑑𝑡
ℎ = − (𝛼ℎ (𝑉 ) + 𝛽ℎ (𝑉 )) ℎ + 𝛼ℎ (𝑉 )

and forms the basis for the present numerical study. The derivation in this text treats the
complete neuron cell as shown in Figure 1 as an electrical cable with components. Here
this PDE-ODE system will be used to develop an electrical system for multiple neurons. In
order to do this and to generate meaningful numerics for a system of neurons, the finite
difference form that Ermentrout and Terman use to get this PDE, which is

𝐶𝑀
𝜕𝑉

𝜕𝑡
= 𝐹+ (𝑉 (𝑥 + Δ𝑥) −𝑉 (𝑥, 𝑡)) + 𝐹−(𝑉 (𝑥) −𝑉 (𝑥 − Δ𝑥, 𝑡))

− (𝑔𝐾 𝑛(𝑥, 𝑡)4 (𝑉 − 𝐸𝐾 ) + 𝑔𝑁𝑎 𝑚(𝑥, 𝑡)3ℎ(𝑥, 𝑡) (𝑉 − 𝐸𝑁𝑎)
+ 𝑔𝐿 (𝑉 (𝑥, 𝑡) − 𝐸𝐿)) + 𝐼𝑀 (𝑥, 𝑡)

𝑛′(𝑥, 𝑡) = − (𝛼𝑛 (𝑉 (𝑥, 𝑡)) + 𝛽𝑛 (𝑉 (𝑥, 𝑡))) 𝑛(𝑥, 𝑡) + 𝛼𝑛 (𝑉 (𝑥, 𝑡))
𝑚′(𝑥, 𝑡) = − (𝛼𝑚 (𝑉 (𝑥, 𝑡)) + 𝛽𝑚 (𝑉 (𝑥, 𝑡)))𝑚(𝑥, 𝑡) + 𝛼𝑚 (𝑉 (𝑥, 𝑡))
ℎ′(𝑥, 𝑡) = − (𝛼ℎ (𝑉 (𝑥, 𝑡)) + 𝛽ℎ (𝑉 (𝑥, 𝑡))) ℎ(𝑥, 𝑡) + 𝛼ℎ (𝑉 (𝑥, 𝑡)),

will be studied. The parameters 𝐹+ and 𝐹− define the flow of electricity across neurons (or
all the components of a system of neurons) or the electrical connection between neurons
and can be quite complicated. In this study, only constant values for these are considered.
However, even in this case one will observe that the electro-dynamics is sensitive to these
parameters and can generate highly unpredictable outcomes.

We let 𝑥 = 𝑖Δ𝑥 for 𝑖 = 1, ..., 𝐼 . In particular, 𝑥𝑖 = 𝑖Δ𝑥 denotes the 𝑖𝑡ℎ neuron in
our system and 𝑥𝑖−1 = (𝑖 − 1)Δ𝑥, 𝑥𝑖+1 = (𝑖 + 1)Δ𝑥 locate the neuron before and after
the 𝑖𝑡ℎ neuron, respectively. In this Using, 𝑉𝑖 (𝑡) = 𝑉 (𝑥𝑖, 𝑡), 𝑛𝑖 (𝑡) = 𝑛(𝑥𝑖, 𝑡),𝑚𝑖 (𝑡) =

𝑚(𝑥𝑖, 𝑡), ℎ𝑖 (𝑡) = ℎ(𝑥𝑖, 𝑡), the DPSM approximating the 1D cable PDE is the system of ODEs

𝐶𝑀 𝑉
′
𝑖 (𝑡) = 𝐹+ (𝑉𝑖+1 −𝑉𝑖) + 𝐹−(𝑉𝑖 −𝑉𝑖−1)

−
(
𝑔𝐾 𝑛𝑖 (𝑡)4 (𝑉𝑖 − 𝐸𝐾 ) + 𝑔𝑁𝑎 𝑚𝑖 (𝑡)3ℎ𝑖 (𝑡) (𝑉𝑖 − 𝐸𝑁𝑎

)
+ 𝑔𝐿 (𝑉𝑖 − 𝐸𝐿)) + (𝐼𝑀 )𝑖 (𝑡)

𝑛′𝑖 = − (𝛼𝑛 (𝑉𝑖) + 𝛽𝑛 (𝑉𝑖)) 𝑛𝑖 + 𝛼𝑛 (𝑉𝑖)
𝑚′
𝑖 = − (𝛼𝑚 (𝑉𝑖) + 𝛽𝑚 (𝑉𝑖))𝑚𝑖 + 𝛼𝑚 (𝑉𝑖)
ℎ′𝑖 = − (𝛼ℎ (𝑉𝑖) + 𝛽ℎ (𝑉𝑖)) ℎ𝑖 + 𝛼ℎ (𝑉𝑖)
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for 𝑖 = 1, ..., 𝐼 . One can now use PSM with the polynomial approximations for 𝛼𝑛 (𝑉 )
and 𝛼𝑚 (𝑉 ) near the singularities to generate as high a degree (Maclaurin) polynomial
approximation as desired for 𝑖 = 1, ..., 𝐼 .

For 2D, with (𝑥𝑖, 𝑦 𝑗 ) = (𝑖Δ𝑥, 𝑗Δ𝑦) for 𝑖 = 1, ..., 𝐼 ; 𝑗 = 1, ..., 𝐽 , we use

𝐶𝑀 𝑉
′
𝑖, 𝑗 (𝑡) = 𝐹𝑥 (𝑉𝑖+1, 𝑗 − 2𝑉𝑖, 𝑗 +𝑉𝑖−1, 𝑗 ) + 𝐹𝑦 (𝑉𝑖, 𝑗+1 − 2𝑉𝑖, 𝑗 +𝑉𝑖, 𝑗−1)

−
(
𝑔𝐾 𝑛𝑖, 𝑗 (𝑡)4 (

𝑉𝑖, 𝑗 − 𝐸𝐾
)
+ 𝑔𝑁𝑎 𝑚𝑖, 𝑗 (𝑡)3ℎ𝑖, 𝑗 (𝑡) (𝑉𝑖, 𝑗 − 𝐸𝑁𝑎

)
+ 𝑔𝐿

(
𝑉𝑖, 𝑗 − 𝐸𝐿

)
) + (𝐼𝑀 )𝑖, 𝑗 (𝑡)

𝑛′𝑖, 𝑗 = −
(
𝛼𝑛 (𝑉𝑖, 𝑗 ) + 𝛽𝑛 (𝑉𝑖, 𝑗 )

)
𝑛𝑖, 𝑗 + 𝛼𝑛 (𝑉𝑖, 𝑗 )

𝑚′
𝑖, 𝑗 = −

(
𝛼𝑚 (𝑉𝑖, 𝑗 ) + 𝛽𝑚 (𝑉𝑖, 𝑗 )

)
𝑚𝑖, 𝑗 + 𝛼𝑚 (𝑉𝑖, 𝑗 )

ℎ′𝑖, 𝑗 = −
(
𝛼ℎ (𝑉𝑖, 𝑗 ) + 𝛽ℎ (𝑉𝑖, 𝑗 )

)
ℎ𝑖, 𝑗 + 𝛼ℎ (𝑉𝑖, 𝑗 )

and for 3D, with (𝑥𝑖, 𝑦 𝑗 , 𝑧𝑘) = (𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑧) for 𝑖 = 1, ..., 𝐼 ; 𝑗 = 1, ..., 𝐽 ;𝑘 = 1, ..., 𝐾 , we use

𝐶𝑀 𝑉
′
𝑖, 𝑗,𝑘

(𝑡) = 𝐹𝑥 (𝑉𝑖+1, 𝑗,𝑘 − 2𝑉𝑖, 𝑗,𝑘 +𝑉𝑖−1, 𝑗,𝑘) + 𝐹𝑦 (𝑉𝑖, 𝑗+1,𝑘 − 2𝑉𝑖, 𝑗,𝑘 +𝑉𝑖, 𝑗−1,𝑘)
+ 𝐹𝑧 (𝑉𝑖, 𝑗,𝑘+1 − 2𝑉𝑖, 𝑗,𝑘 +𝑉𝑖, 𝑗,𝑘−1)
−

(
𝑔𝐾 𝑛𝑖, 𝑗,𝑘 (𝑡)4 (

𝑉𝑖, 𝑗,𝑘 − 𝐸𝐾
)
+ 𝑔𝑁𝑎 𝑚𝑖, 𝑗,𝑘 (𝑡)3ℎ𝑖, 𝑗,𝑘 (𝑡) (𝑉𝑖, 𝑗,𝑘 − 𝐸𝑁𝑎

)
+ 𝑔𝐿

(
𝑉𝑖, 𝑗,𝑘 − 𝐸𝐿

)
) + (𝐼𝑀 )𝑖, 𝑗,𝑘 (𝑡)

𝑛′
𝑖, 𝑗,𝑘

= −
(
𝛼𝑛 (𝑉𝑖, 𝑗,𝑘) + 𝛽𝑛 (𝑉𝑖, 𝑗,𝑘)

)
𝑛𝑖, 𝑗,𝑘 + 𝛼𝑛 (𝑉𝑖, 𝑗,𝑘)

𝑚′
𝑖, 𝑗,𝑘

= −
(
𝛼𝑚 (𝑉𝑖, 𝑗,𝑘) + 𝛽𝑚 (𝑉𝑖, 𝑗,𝑘)

)
𝑚𝑖, 𝑗,𝑘 + 𝛼𝑚 (𝑉𝑖, 𝑗,𝑘)

ℎ′
𝑖, 𝑗,𝑘

= −
(
𝛼ℎ (𝑉𝑖, 𝑗,𝑘) + 𝛽ℎ (𝑉𝑖, 𝑗,𝑘)

)
ℎ𝑖, 𝑗,𝑘 + 𝛼ℎ (𝑉𝑖, 𝑗,𝑘)

for the DPSM together with LWM to generate high degree polynomials for the solutions. It
is important to mention again that 𝐹𝑥 , 𝐹𝑦, 𝐹𝑧 can be complicated functions. However, once
again it will be demonstrated that even for constant values for these, the electro-dynamics
can be intriguing and help neuroscientists to better understand the dynamics of neuronal
systems. One will observe that varying these parameters leads to the realization that
understanding these connections biologically, chemically and electrically is important in
gaining a true understanding of neuronal networks. Neuroscientists often say,’ Neurons
that are wired together, fire together. ‘ The models presented in the section HH PDE
Examples should make you think about this statement.

For the development of neuronal systems here, in 1D, each neuron depends intimately
on its two closest neighbors, but eventually receives information from all the nodes, in
2D each neuron depends intimately on its four closest neighbors, but eventually receives
information from all the nodes and in 3D each neuron depends intimately on its six closest
neighbors, but again eventually receives information from all the nodes. Of course, one
can change the stencil in 1D, 2D and 3D described above and have more (or less) intimate
neighbors. Note that in 1D, one also has to have a value for𝑉 ,𝑛,𝑚,ℎ at 𝑖 = 0 and 𝑖 = 𝐼 + 1,
in 2D for 𝑖 = 0, 𝑗 = 0, 𝑖 = 𝐼 +1 and 𝑗 = 𝐽 +1 and in 3D for 𝑖 = 0, 𝑗 = 0, 𝑘 = 0, 𝑖 = 𝐼 +1, 𝑗 = 𝐽 +1
and 𝑘 = 𝐾 + 1.

24



3.5 HH ODE Examples

In this section, we present solutions to the HH ODEs for all four cases of 𝛼𝑛 and 𝛼𝑚
described above for both the original HH model parameters and the Izhikevich (Iz) param-
eters given above using PSM8 with a time step of ℎ = 2−8. We highlight the noticeable
similarities and differences in the output and the unusual outputs. We also demon-
strate each of these cases under no current input (𝐼𝑀 (𝑡) = 0), a single pulse current
input (𝐼𝑀 (𝑡) = 𝐴 exp(−𝜔 (𝑡 − 𝑡0)2)) and sinusoidal current inputs (𝐼𝑀 (𝑡) = 𝐴 sin𝜔𝑡 and
𝐼𝑀 (𝑡) = 𝐴 sin2𝜔𝑡 ). We run the simulation long enough for the voltage to reach equilibrium
to verify that the numerical solutions hit the theoretical values. The initial conditions
in all four models are 𝑉 (0) = 𝑉0 = 0, 𝑛(0) = 𝑛0 = 0.25,𝑚(0) =𝑚0 = 0.25, ℎ(0) = ℎ0 = 0.5
and can be seen in each of the figures presented.

In Figure 16, the voltage is shown for both the HH and Iz parameters with 𝐼𝑀 (𝑡) = 0
for the four different 𝛼𝑛 and 𝛼𝑚. PSM8 produced these results, but note that RK4 and
ODE45 gave similar results. That is, all three numerical ODE solvers produced basically
the same numerical approximation. It is interesting to observe that even though the HH
and Iz parameters are close, the maximum voltage under HH is about 107 and under Iz it is
about 112. The minimum voltages are about -11 for both of these parameter sets. The time
interval is long enough to show that PSM8 ( RK4 and ODE45) produced the theoretical
equilibrium. One should also recognize that all four cases for 𝛼𝑛 and 𝛼𝑚 produced similar
results for both HH and Iz.
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Figure 16: Action Potentials for the four models with HH and Iz Parameters.
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The Maclaurin coefficients also tell an important story. The first nine Maclaurin coeffi-
cients (the coefficents of the 8𝑡ℎ degree Maclaurin polynomial approximation (PSM8)) for
the original HH model at 𝑡 = 0 (note𝑉 (0) = 0) are {0.0; 109.3089;−612.68282; 4131.44174;
−28, 299.4293; 203, 295.9398;−1, 511, 196.8294; 11, 548, 619.453;−90, 113, 631.18}. An oscil-
lating power series (especially one with coefficients increasing in magnitude) is well
known to be difficult to approximate. The ratios of these Maclaurin coefficients are
{0,−5.6,−6.74,−6.85,−7.18,−7.43,−7.64,−7.8,−7.93}. This shows why the HH ODEs are
sensitive with potential for large errors when solved numerically. In fact, the coefficients
can be shown to increase in magnitude and oscillate until they become too large for a
computer to represent. A small time step (ℎ = 2−8) with 8𝑡ℎ degree Maclaurin polynomials
was used in this study to handle the sensitive nature of the HH ODEs and because RK4
and ODE45 were not always able to generate a solution with a larger time step. Also, the
small time step and agreement of all three numerical solvers verifies the highly sensitive
nature of the HH ODEs.

This phenomenon of the Maclaurin coefficients does not occur in the time regions
where the voltage is nearly constant, for example, near the equilibria (stable) or shortly
after the action potential. For these regions, the Maclaurin coefficients tend to decrease
quickly in magnitude. In models with oscillating inputs that lead to bursting spikes, the
Maclaurin coefficients can be unwieldy.

Figure 17 presents the same four cases with input spike 𝐼𝑀 (𝑡) = 10 exp(−0.125(𝑡−15)2).
All the solvers produce basically the same approximation to𝑉 for all four cases. The input
current’s effect at 𝑡 = 15 is clearly marked by a second action potential. Again it is seen
that the Iz parameters lead to a larger voltage at the peak of the action potential.

Figure 17: The Voltages for HH,BF,LN and EXP with a Spike Input.

In Figures 18 and 19, the same four cases are presented with 𝐼𝑀 (𝑡) = 10 sin 0.125𝑡 and
𝐼𝑀 (𝑡) = 10 sin 0.25𝑡 , respectively. The similarities and differences between the function
parameters and the frequencies is noticeable and unpredictable.
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Figure 18: The HH Voltages Under Two Different Sinusoidal Inputs.

Figure 19: The IZ Voltages Under Two Different Sinusoidal Inputs.
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Finally, we show how significantly different the results can be between the HH and
Iz parameters under a high frequency input impulse. The high frequency input impulse
𝐼𝑀 (𝑡) = 10 sin2 𝑡 that generated Figures 20 through 22 shows that the voltage potentials can
be unusually different and remarkably the same for the different function parameters. For
the HH parameters all four voltage potentials are similar. However, for the Iz parameters
the original and BF are the same, but much different than the HH and for the LN and
EXP the Iz parameters are similar and similar to the HH parameter runs. In Figure 22 one
can see the noticeable differences and similarities for the high frequency input impulse
between the HH and IZ parameters and the four function parameters.
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Figure 20: The HH Voltages for HH,BF,LN and EXP with a High Frequency Input.

3.6 HH PDE Examples

We now present the numerical results for a 1D, 2D and 3D array of neurons using the cable
HH PDE and the approximations given above. All the numerical solutions presented in
this section used DPSM8 (LWM8) with a time step of 2−8. Again, the simulations are ran
long enough for the voltage to reach equilibrium to verify that the numerical solutions
hit the theoretical values. (The codes that generated the figures presented for the 1D, 2D
and 3D arrays of neurons were written in c. The reader can email the author if they wish
to obtain these codes.)

One should realize that if 𝐹+ and 𝐹− are set to 0 in the 1D case then we have a string
of neurons that are independent of each other. If we give each neuron slightly different
initial conditions then we can see how sensitive the HH ODEs are to initial conditions.
This is demonstrated in Figures 23 and 24.
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Figure 21: The Iz Voltages for HH,BF,LN and EXP with a High Frequency Input.

Figure 22: The Voltages for HH,BF,LN and EXP with a High Frequency Input.
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In Figures 23 and 24 a string of 21 vertical neurons with 𝑉0 starting at −10 (top) and
incrementing by 1 to a value of 10 (bottom) with 𝑛0 = 0.5,𝑚0 = 0.25, ℎ0 = 0.25 and the
HH parameters for all the neurons is presented with 𝐹+ = 0 = 𝐹− and with 𝐹+ = 0.25 = 𝐹−.
There is no input current (𝐼𝑀 (𝑡) = 0 for all 21 neurons). Figure 23 is a presentation of
the two cases and the absolute value of the difference in the two cases over time as a
firing plot. This means the brightest spots (near 𝑡 = 0) are where the neurons fire (action
potential). Figure 24 is a presentation of the same two cases and the absolute value of
the difference in the two cases over time as a surface plot. That means the elevations
represents the voltage. One can determine where the voltage potential is negative and
where it is positive. One can see that for the positive initial voltages the voltages are about
the same, but as the initial voltages go negative the outcome is quite different. One also
notices the differences between 𝐹+ = 0 = 𝐹− and 𝐹+ = 0.25 = 𝐹−. A stronger connection
between the neurons can create significantly different results.

In Figures 25 and 26 a string of 21 vertical neurons all with 𝑉0 = 0, 𝑛0 = 0.5,𝑚0 =

0.25, ℎ0 = 0.25 and the HH parameters for all the neurons is presented with 𝐹+ = 0.25 = 𝐹−
and with 𝐹+ = 1 = 𝐹−. The nodes 10-12 are excited with the current 𝐼𝑀 (𝑡) = 10 sin 0.125𝑡 .
One can see how the input to nodes 10-12 propagates to the other neurons. There are
noticeable differences between 𝐹+ = 0.25 = 𝐹− and 𝐹+ = 1 = 𝐹−. Again showing that
increasing the connection between the neurons gives observable changes. This is seen in
Figures 25 and 26.
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Figure 23: The Voltage Distribution over time for 21 Neurons with Different Initial Voltages
and Different Connections Between the Neurons and Their Difference.
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Figure 24: The Voltage Surface Across Time for the 21 Neurons with Different Connections
Between the Neurons and Their Difference.
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Figure 25: The Voltage Distribution Across Time for 21 Neuronswith Different Connections
and Middle Neurons Impulsed and Their Difference.
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Figure 26: The Voltage Surface Across Time for 21 Neurons with Different Connections
and Middle Neurons Impulsed and Their Difference.

Figure 27 presents the outcome of a 2D array of 21×25 neuronswith the HH parameters,
all initial conditions the same (𝑉0 = 0, 𝑛0 = 0.5,𝑚0 = 0.25, ℎ0 = 0.25), with the center
neurons under the input current 𝐼𝑀 (𝑡) = 10 sin 0.125𝑡 and with 𝐹𝑥 = 1 = 𝐹𝑦 at nine
different times as a surface plot with the vertical giving the voltage potential. At 𝑡 =

1.17, one observes that all the interior neurons have achieved their action potential
simultaneously. As time progresses, it can be seen that the voltage potential decreases
to a negative value just as in the ODE case. The sinusoidal input starts to appear in the
center of the neural array at 𝑡 = 55.1. This impulse then begins to create an increasing
voltage potential through the array of neurons in a radial fashion.

A 3D array of 11 × 15 × 17 neurons under the HH parameters, with no impulse and
with 𝐹𝑥 = 𝐹𝑦 = 𝐹𝑧 = 1 at nine different times is shown in Figure 28. The initial conditions
are given by 𝑉𝑖, 𝑗,𝑘 = exp(−0.0125((𝑖 − 6)2 + ( 𝑗 − 8)2 + (𝑘 − 9)2)), 𝑛𝑖, 𝑗,𝑘 = 𝑛0 = 0.5, 𝑚𝑖, 𝑗,𝑘 =

𝑚0 = 0.25, ℎ𝑖, 𝑗,𝑘 = ℎ0 = 0.25 for 𝑖 = 1..9, 𝑗 = 1..13, 𝑘 = 1..15. Each neuron in the array
is shown and the voltage potential is shown by color with green being the lowest, red
the next and blue the largest. One can observe the action potentials of the neurons and
see how the varying initial conditions creates voltage potential among the neurons in a
rather unpredictable fashion.

If the reader wishes to view neurons firing in a 1D array, 2D array and 3D array, the
reader can go to http://educ.jmu.edu/~sochacjs/NeuronAnimations/. The 1D
animations show the firing of neurons along a cable of neurons. The 2D animations show
the firing of the neurons in a 2D array through colors for the value of the voltage at each
neuron. One can watch the firings move through this 2D network of neurons. The 3D
animations shows the firing of voltages in two scenarios, one in a 3D array where colors
show the values of the voltage at each neuron in the array and in a 3D CAVE architecture
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Figure 27: The Voltage Surface Across Time for a 2D Array of 21×25 Neurons with Middle
Neurons Impulsed.

where lights show the firings. The document DescriptionOfNeuronAnimations.pdf gives
a brief description of each animation at this site.

4 Conclusion

In Part I, the development of the HH ODEs were outlined and then analyzed to determine
the equilibrium solutions. PSM8 was used to show what these solutions look like. Next the
neuron was given three different input impulses to show that the dynamics of the neuron
can become complicated yet still attain equilibrium solutions or solutions that become
cyclical including close to periodic. Having numerical solutions allows one to obtain an
accurate estimate of the equilibria and the shape of the cyclical nature of neurons.

In Part II, we considered the sensitive dependence of the HH ODEs and the removable
singularities of 𝛼𝑛 and 𝛼𝑚 . We then extended the HH ODEs to PDEs as discussed in the
1952 Hodgkin Huxley paper and showed that with Matlab, one can now easily do what
Hodgkin and Huxley only hoped to do.

Four methods were presented to address the removable singularities pointed out in
Stewart and Bair when using PSM. Under a small 𝑡 step, all four methods gave similar
results and are similar to the numerical solutions given by RK4 and ODE45. However, it
was shown that under a sinusoidal impulse, the results can vary among the four types of
𝛼 presented and the parameters of the HH ODEs (HH vs Iz).

This demonstrates that having highly accurate numerical solvers for HH type models
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Figure 28: The Voltage Across Time for a 3D Array of 11x15x17 Neurons with Varying
Initial Conditions

is necessary. Also, comparing numerical results amongst a variety of numerical solvers is
a valuable task in the understanding of the complexity of neurons.

Under arrays of 1D, 2D and 3D of neurons, one can visualize the propagation of voltage
through the neurons. Noticeable differences under a variety of initial conditions and
impulses were also demonstrated.

Simulations of HH type neuron models under a variety of conditions and impulses
using highly accurate methods will help in understanding the complexity of neuronal
networks and lead to more accurate models. This will require better computational and
visualization schemes that researchers will develop from the learning and understanding
of the previous simulations.
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