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Abstract

Consider a probability distribution on the permutations of n elements. If
the probability of each permutation is proportional to θK, where K is the
number of cycles in the permutation, then we say that the distribution gen-
erates a θ-biased random permutation. A random permutation is a spe-
cial θ-biased random permutation with θ = 1. The mth moment of the rth

longest cycle of a random permutation is Θ(nm), regardless of r and θ. The
joint moments are derived, and it is shown that the longest cycles of a per-
mutation can either be positively or negatively correlated, depending on
θ. The mth moments of the rth shortest cycle of a random permutation is
Θ(nm−θ/(ln n)r−1) when θ < m, Θ((ln n)r) when θ = m, and Θ(1) when
θ > m. The exponent of cycle lengths at the 100qth percentile goes to q with
zero variance. The exponent of the expected cycle lengths at the 100qth per-
centile is at least q due to the Jensen’s inequality, and the exact value is
derived.
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Chapter 1

Preliminaries

1.1 A Quick Probability Review

Informally, a random variable assigns a probability to each possible out-
come. We call the set of all possible outcomes, Ω, the sample space of
the random variable. For example, let Y1 denote the random variable of
the outcome of throwing a fair dice; then the sample space of Y1 is Ω =
{1, 2, 3, 4, 5, 6}. The random variable Y1 assigns each of these outcomes a
probability of 1/6. We can write:

Pr(Y1 = 1) = Pr(Y1 = 2) = · · · = Pr(Y1 = 6) =
1
6

.

This is an example of a discrete random variable, because the set of possi-
ble outcomes is at most countably infinite. On the other hand, a continuous
random variable is a random variable whose sample space is uncountably
infinite. We use a density function to define the relative likelihood for
each outcome. For example, let Y2 be a random number uniformly chosen
between 0 and 1; then Y2 is a continuous random variable. The density
function of Y2 is

fY2(y) = 1, 0 ≤ y ≤ 1.

When the set of observations of a random variable X is a subset of the
real numbers, we call X a real-valued random variable. Both Y1 and Y2 in
the above examples are real-valued. We can define the expected value or
the first moment of X to be{

E[X] = ∑ω∈Ω ω Pr(X = ω) if X is discrete,
E[X] =

∫
Ω fX(ω) dω if X is continuous.

The mth moment of a random variable X is defined as E[Xm].
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1.2 Random Permutations and Ordered Cycle Lengths

A permutation is a bijection from a set of elements to itself. For example,
the following diagram represents a permutation on the set {1, 2, 3, · · · , 11}.
It maps the element 1 to 6, 6 to 11, 11 to 1, 2 to itself, etc.

Figure 1.1 A permutation on 11 elements

1

6
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3 4

5

9 11

7

810

Since the labeling of the underlying set does not matter, we use “a per-
mutation on n elements" to denote a bijection from [n] = {1, 2, · · · , n} to
itself.

We use the notation Kij to denote the number of cycles between length
i and j. For a permutation on n elements, all cycles are between length 0
and n, so K0n is simply the number of cycles in the permutation.

A permutation is a type of decomposable structure because we can de-
compose a permutation into cycles. In the example above, we have a de-
composable structure of size 11. It has 4 components (cycles), with size
5, 3, 1, 2, respectively.

The component frequency spectrum is a description of the distribution
of components (cycles) based on their sizes. For a decomposable structure
of size n, we let Ck denote the number of its components of size k, where
k = 1, 2, · · · , n. Then

n

∑
k=1

kCk = n.
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We call C = (C1, C2, · · · , Cn) the vector of component counts. The compo-
nent frequency spectrum is then determined completely by this vector. In
the example above, the vector of component counts is C = (C1, · · · , C11)
with

C1 = 1, C2 = 1, C3 = 1, C4 = 0, C5 = 1, C6 = C7 = · · · = C11 = 0.

In this thesis we are interested in the ordered cycle lengths of a permu-
tation. The length of the longest cycle of a permutation is the largest k such
that Ck 6= 0. Similarly we can define the length of the rth longest cycle, the
rth shortest cycle, and the cycle length at the 100qth percentile. We use Lr,
Sr and Mq to denote the these values. In our previous example, we have
L1 = 5, L2 = 3, S1 = 1, S2 = 2, and M0.5 = 2.5.

A random permutation on n elements is a probability distribution on all
possible n! permutations on the set {1, 2, 3, · · · , n}. If the random permuta-
tion assigns equal probability to all these n! possible permutations, we call
it an unbiased random permutation.

The vector of component counts C = (C1, · · · , Cn) of a random permu-
tation then becomes a vector of real-valued random variables. The ordered
cycle lengths, Lr, Sr and Mq are also random variables.

1.3 Chinese Restaurant Process

We will study the distribution of ordered cycle lengths for a random per-
mutation as n grows to infinity. But how exactly can we grow from a ran-
dom permutation on n elements to a random permutation on n + 1 ele-
ments? We can do this through a process called the Chinese restaurant
process.

Consider a Chinese restaurant where customers go into the restaurant
one after another. Let n denote the number of customers in the restaurant.
Initially n = 0. At time t = 1 one customer comes into the restaurant
and sits at a new table. At time t + 1 the (n + 1)th customer comes in.
The new customer sits to the right of each of the existing n customers with

probability
1

n + 1
. With probability

1
n + 1

, she will sit at a new table by

herself. Then at each time t, the tables in this Chinese restaurant represents
the cycles in an unbiased random permutation.
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1.4 θ-biased Random Permutations

In a previous section we mentioned that an unbiased random permutation
assigns equal probability to all possible permutations. In this section we
generalize this concept to introduce a family called the θ-biased random
permutations.

θ-biased random permutations arises naturally from the Ewens sam-
pling formula, ESF(θ) (Ewens, 1972). In a θ-biased random permutation,
the density of any permutation is scaled by θK0n , where K0n is the num-
ber of cycles. If θ is larger than one, then permutations with more cycles
get chosen more often, which implies that on average there will be smaller
cycles. If θ is smaller than one, then on average the cycles will be longer.
When θ → ∞ (with n fixed), the permutation becomes the identity map
with probability one. When θ → 0 (with n fixed), the permutation becomes
a cycle with probability one.

A θ-biased random permutation can be conveniently generated by a
variation of the Chinese restaurant process. At time t + 1, the (n + 1)th cus-
tomer chooses to sit to the right of each existing customer with probability

1
n + θ

, and to sit at a new table with probability
θ

n + θ
. Then at each time

t, the tables in this Chinese restaurant represents the cycles in a θ-biased
random permutation.

Notice that with a larger θ, customers are more likely to sit at a new ta-
ble, so on average we expect to see more tables, each with fewer customers.
When θ goes to zero, customers almost never sit at a new table, so we are
likely to end up with large but fewer tables.

1.5 The Conditioning Relation

A common feature for decomposable combinatorial structures is called the
conditioning relation, which says

(C1, C2, · · · , Cn) ∼ (Z1, Z2, · · · , Zn|T0n = n),

where Z1, Z2, · · · , Zn are independent random variables, and

T0n =
n

∑
k=0

kZk.

The random variables Zi have either Poisson, negative binomial or bi-
nomial distributions depending on the class of the structure (assembly,
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multiset, selection, respectively) (Arratia et al., 2003). Random permuta-
tion is a type of assembly and Zi ∼ Poi(i).

The conditioning relation says that in a (θ-biased) random permutation
on n elements, the joint cycle counts are distributed just like the indepen-
dent Poisson variables, conditioning on the event that the independent
Poisson variables happen to form cycles with a total of n elements. The
cycle counts have a very complicated joint distribution, and the condition-
ing relation allows us to investigate it through a much simpler collection of
Poisson random variables.

As a side note, θ-biased random permutations are also a type of loga-
rithmic combinatorial structure, which means Zi’s satisfy the logarithmic
condition:

i Pr[Zi = 1]→ θ, iE[Zi]→ θ, as i→ ∞.





Chapter 2

Literature Review

The thesis studies the ordered cycle lengths of a θ-biased random permu-
tation on n elements as n goes to infinity. Thus we begin by introducing
some results from earlier research.

2.1 Longest and Shortest Cycles with θ = 1

Shepp and Lloyd determined the asymptotic behavior of the mth moment
of the size of the rth longest cycle (Lr) and rth shortest cycle (Sr) in a random
permutation (Shepp and Lloyd, 1966). Before we summarize their results,
we give some definitions. Let En be the expectation taken on a random
permutation of size n. Let

E(x) =
∫ ∞

x

e−y

y
dy. (2.1)

Then for the longest cycles, we have

lim
n→∞

En

[(
Lr

n

)m]
= Gr,m, m = 0, 1, · · · , r = 1, 2, · · · , (2.2)

where

Gr,m =
∫ ∞

0
xm−1m!

E(x)r−1

(r− 1)!
e−E(x)−x dx.

These constants have the following asymptotic property:

lim
r→∞

(m + 1)rGr,m =
e−mγ

m!
, m = 0, 1, · · · ,

where γ ≈ 0.5772156649 is the Euler’s constant.
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For the shortest cycles, we have

lim
n→∞

En[Sr]

(log n)r =
e−γ

r!
, r ≥ 1, (2.3a)

lim
n→∞

En[Sm
r ]

nm−1(log n)r−1 =
1

(r− 1)!

∫ ∞

0

xm−1

(m− 1)!
eE(x)−x dx, m ≥ 2, r ≥ 1

(2.3b)

This is saying that the expected length of rth longest cycles grows as
Θ(n). The expected length of rth shortest cycle grows as Θ((log n)r).

2.2 Longest and Shortest Cycle with θ = 1/2

Pippenger gave a natural interpretation to a biased random permutation
with θ = 1/2. It is called a random cyclation (Pippenger, 2013). Pippenger
found the asymptotic behavior of the expected length of the longest and
shortest cycle in such a biased random permutation. We summarize the
results below.

lim
n→∞

E[L1]

n
=
∫ ∞

0
e−E(x)/2−x (2.4)

lim
n→∞

E[S1]√
n

=

√
π

2

∫ ∞

0
eE(x)/2−x. (2.5)

This is saying that the expected length of the longest cycle in such a
biased random permutation grows as Θ(n). The expected length of the
shortest cycle grows as Θ(

√
n).

2.3 Longest Cycles for any θ

The longest cycles in a θ-biased ranom permutation are associated with the
Poisson-Dirichlet distribution, and thus have been studied more often than
smallest cycles. In fact, (L1, L2, · · · )/n converges to the Poisson-Dirichlet
distribution with parameter θ as n → ∞. In 1979, Griffith found the joint
moments of Poisson-Dirichlet distribution (Griffiths, 1979). and thus we
have the following results for the θ-biased random permutations:

lim
n→∞

En[L
j1
1 · · · L

jr
r ]

nj =
θrΓ(θ)

Γ(θ + j)

∫
yj1−1

1 · · · yjr−1
r e−∑r

l=1 yl−θE1(yr) dy1 · · · dyr,

(2.6)
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where r ≥ 1 and j1 + · · ·+ jr = j.
For the rth longest cycle alone,

lim
n→∞

En[L
j
r]

nj =
Γ(θ + 1)
Γ(θ + j)

∫ ∞

0

(θE1(x))r−1

(r− 1)!
xj−1e−x−θE1(x) dx. (2.7)





Chapter 3

Longest Cycles

3.1 Moments of the Length of rth Longest Cycle

In this section we will re-derive the moments of the length of rth longest
cycle for a θ-biased random permutation, without resorting to the Poisson-
Dirichlet distribution. We follow the main idea of the Shepp and Lloyd
(1966) paper.

Consider a θ-biased random permutation on [n]. According to the con-
ditioning relation, as n → ∞ the cycle structure C(n) = (C(n)

1 , C(n)
2 , · · · ) is

distributed as independent Poisson variables (Z1, Z2, · · · ) with parameters
λj = θ/j for j = 1, 2, · · · , conditioning on T0n = ∑n

j=1 jZj = n.
Taking advantage of the Poisson distribution, we will describe the cy-

cle structure in the following way. Consider a unit Poisson process on the
positive real line. Let the random variable Zj then takes the value equal to
the number of jumps on the interval [tj, tj+1), where

tj = θ
j−1

∑
k=1

1
k

, k = 1, 2, 3, · · · , n.

Then
(C(n)

1 , C(n)
2 , · · · , C(n)

n ) ∼ (Z1, Z2, · · · , Zn)|[Zn+1 = n].

We need to analyze the behavior as n → ∞. But the problem is un-
bounded (t∞ = ∞). In addition, the conditioning nature of C(n) makes the
analysis difficult. Hence we will take n→ ∞ in a different way.

Consider the family of random process C(z) = (C(z)
1 , C(z)

2 , · · · ) (an ana-
logue of the cycle structure) where 0 < z < 1. C(z)

j equals the number of
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jumps in the interval [tj(z), tj+1(z)], where

tj(z) = θ
j−1

∑
k=1

zk

k
, k = 1, 2, 3, · · · .

Notice that
t∞(z) = lim

j→∞
tj(z) = θ log

1
1− z

.

We will first show that C(z) and C(n) are related in a simple way. Then
we will investigate the problem for each C(z). Then we will connect the
asymptotic behavior of C(z) with that of C(n) using Tauberian theorems.
Throughout the section, we treat θ as a constant parameter.

3.1.1 Relating Functionals on C(z) and C(n)

We will first find the distribution of vz = ∑n
j=1 jC(z)

j . We start with the PGF

of C(z)
j :

G
C(z)

j
(x) = exp(λj(x− 1)) = exp

(
θzj(x− 1)

j

)
.

Then we have

Gvz(x) =
∞

∏
j=1

exp
(

θzj(xj − 1)
j

)

=

[
exp

(
∞

∑
i=1

(zx)j

j
−

∞

∑
i=1

zj

j

)]θ

=

(
1− z

1− xz

)θ

This is a negative binomial distribution NB(θ, z), where z is the success
probability. So we have its pmf:

Pr(vz = n) =
Γ(n + θ)

n!Γ(θ)
(1− z)θzn. (3.1)

We know

Pr(C(z)
j = a) = e−θzj/j θ(zj/j)a

a!
.
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Thus the joint distribution is

Pr(C(z) = (a1, · · · )) =
∞

∏
j=1

e−θzj/j θ(zj/j)aj

aj!

= e−θ ∑ zj/j
∞

∏
j=1

θ(zj/j)aj

aj!

= (1− z)θθv
∞

∏
j=1

(zj/j)aj

aj!

= (1− z)θθvzv
∞

∏
j=1

(1/j)aj

aj!
.

Notice that this is just a scaled version of the distribution of cycle structures
in an unbiased random permutation. So the conditional distribution is

Pr(C(z) = (a1, · · · )|vz = n) =
∞

∏
j=1

(1/j)aj

aj!
,

∞

∑
j=1

jaj = n.

Hence, for any functional on the cycle structure, Φ(C(z)), we have

Ez[Φ] = E[Φ(C(z))] = E[E[Φ|v]]

=
∞

∑
n=0

Pr(vz = n)En[Φ]

=
∞

∑
n=0

Γ(n + θ)

n!Γ(θ)
(1− z)θznEn(Φ).

(3.2)

Here, we use En to denote the expectation given that there are a total of n
elements in the permutation.

3.1.2 Largest Components in C(z)

The probability density at t of the rth last jump of the Poisson process on
[t0, t∞(z)] is

e−(t∞(z)−t) [t∞(z)− t]r−1

(r− 1)!
, −∞ < t ≤ t∞(z).

The mth moment of the length of the rth longest cycle is then

Ez[(Lr)
m] =

∞

∑
j=1

jm
∫ tj+1(z)

tj(z)
e−(t∞(z)−t) [t∞(z)− t]r−1

(r− 1)!
dt.
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Make a change of variable

t∞(z)− t = θE(x) = θ
∫ ∞

x

e−y

y
dy.

Let z = e−s, 0 < s < ∞. Since

t∞(e−s)− tj(e−s) = θ
∞

∑
k=j

e−ks

j
, j = 1, 2, · · ·

and

E(js) <
∞

∑
k=j

e−ks

k
≤ E((j− 1)s), j = 1, 2, · · · ,

there exists xj(s) such that (j− 1)s ≤ xj(s) < js and

∞

∑
k=j

e−ks

k
= E(xj(s)).

So we have

Ez[(Lr)
m] =

∞

∑
j=1

jm
∫ xj+1(s)

xj(s)
e−θE(x)θr−1 E(x)r−1

(r− 1)!
θe−x

x
dx.

3.1.3 Using Tauberian Theorems

Notice that

∞

∑
j=1

[xj(s)]mµj ≤ smEz[(Lr)
m] <

∞

∑
j=1

[xj+1(s)]mµj,

with

µj =
∫ xj+1(s)

xj(s)
e−θE(x) E(x)r−1

(r− 1)!
θre−x

x
dx.

This is an approximation of the Riemann integral as s→ 0. So s/(1− z)→
1, x1(s)→ 0 and

lim
z→1

(1− z)m

m!
Eθ

z [(Lr)
m] = Gθ

r,m,

where

Gθ
r,m = θr

∫ ∞

0

xm−1

m!
e−θE(x)−x E(x)r−1

(r− 1)!
dx.
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We will now use Tauberian theorems. First,

Gθ
r,m = lim

z→1

(1− z)m

m!
Eθ

z [(Lr)
m]

= lim
z→1

(1− z)m

m!

∞

∑
n=0

Γ(n + θ)

n!Γ(θ)
(1− z)θznEn[(Lr)

m]

= lim
z→1

∞

∑
n=0

Γ(n + θ)

m!n!Γ(θ)
En[(Lr)

m](1− z)m+θzn.

Since the coefficients of zn are nonnegative, we have (with γ = m + θ in
de Bruijn (1958: p. 147))

n

∑
k=0

Γ(n + θ)

m!n!Γ(θ)
En[(Lr)

m] ∼ Γ(m + θ + 1)−1nm+θGθ
r,m, n→ ∞.

Now, we will show that
Γ(n + θ)

m!n!Γ(θ)
En[(Lr)

m] is nondecreasing in n. This is

equivalent to
(n + 1)En[Lm

r ] ≤ (n + θ)En+1[Lm
r ].

Recall the notation that En[Lm
r ] = E[(L(n)

r )m]. By the double expectation
theorem,

E[(L(n+1)
r )m] = E[E[(L(n+1)

r )m]|L(n)
r ].

From the Chinese restaurant, we know that for a θ-biased random permu-
tation on n elements, the next element will be added to the longest cycle

with probability at least
Lr

n + θ
(the “at least" is because there can be multi-

ple longest cycles), in which case L(n+1)
r = L(n)

r . Therefore,

E[E[(L(n+1)
r )m]|L(n)

r ] ≥ E

[
Lr

n + θ
(Lr + 1)m +

n + θ − Ln

n + θ
Lm

r

]
= E

[
Lm

r +
Lr

n + θ
(Lr + 1)m − Ln

n + θ
Lm

r

]
= E[Lm

r ] + E

[
Lr[(Lr + 1)m − Lm

r ]

n + θ

]
≥ E[Lm

r ] + E

[
Lr(mLm−1

r )

n + θ

]
≥ En[Lm

r ] +
mEn[Lm

r ]

n + θ
.
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Thus,

(n + θ)En+1[Lm
r ] ≥ (n + θ + m)En[Lm

r ] ≥ (n + 0 + 1)En[Lm
r ],

as desired. Hence (de Bruijn, 1958: p. 139)

Γ(n + θ)

m!n!Γ(θ)
En[(Lr)

m] ∼ Γ(m + θ)−1nm+θ−1Gθ
r,m, n→ ∞.

En

[(
Lr

n

)m]
∼ m!n!Γ(θ)

Γ(n + θ)Γ(m + θ)
nθ−1Gθ

r,m, n→ ∞.

Notice that

lim
n→∞

n!nθ−1

Γ(n + θ)
= 1.

So the expression simplifies to

En

[(
Lr

n

)m]
∼ m!Γ(θ)

Γ(m + θ)
Gθ

r,m, n→ ∞.

In fact the right hand side is a constant, so

lim
n→∞

En

[(
Lr

n

)m]
=

m!Γ(θ)
Γ(m + θ)

θr
∫ ∞

0

xm−1

m!
e−θE(x)−x E(x)r−1

(r− 1)!
dx.

Rewriting this we get

lim
n→∞

En

[(
Lr

n

)m]
= θr−1 Γ(1 + θ)

Γ(m + θ)

∫ ∞

0
xm−1e−θE(x)−x E(x)r−1

(r− 1)!
dx.

Or equivalently,

lim
n→∞

En

[(
Lr

n

)m]
= θr−1(θ + 1) · · · (θ +m− 1)

∫ ∞

0
xm−1e−θE(x)−x E(x)r−1

(r− 1)!
dx.

(3.3)

3.1.4 Special Cases

When θ = 1. The mth moment of the rth longest cycle (in an unbiased
random permutation) is

lim
n→∞

En

[(
Lr

n

)m]
=
∫ ∞

0

xm−1

m!
e−E(x)−x E(x)r−1

(r− 1)!
dx,
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agreeing with Shepp and Lloyd’s result.
When θ = 1/2. The expected length of the longest cycle is

lim
n→∞

En

[(
L1

n

)1
]
=
∫ ∞

0
e−E(x)/2−x dx,

agreeing with Pippenger’s result.
The expected length of the longest cycle is

lim
n→∞

En

[
L1

n

]
=
∫ ∞

0
e−θE(x)−x dx.

Hence,

∂En

[
L1
n

]
∂θ

∣∣∣∣∣∣
θ=0

=
∫ ∞

0
e−x

(
−
∫ ∞

x

e−y

y
dy
)

dx

= −
∫ ∞

0

e−y

y

(∫ y

0
e−x dx

)
dy

= −
∫ ∞

0

e−y(1− e−y)

y
dy

= − ln 2

So the expected length of longest cycle is (1− θ ln 2)n near θ = 0 as n→ ∞.

3.2 Numerical Results

In this section we summarizes some numerical results based on the deriva-
tion above.
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Table 3.1 The expected length of longest cycles for θ = 1.0, 0.8, 0.5.

1.0 0.8 0.5
1 0.62432998854355 0.536108373545422 0.378911505634246
2 0.20958087428419 0.160284846024997 0.085454809929831
3 0.08831609888315 0.060408169200032 0.024448712684230
4 0.04034198873687 0.024676360768897 0.007572860699943
5 0.01914548402332 0.010462396440102 0.002428938443347
6 0.00927494376258 0.004523280173624 0.000792675331955
7 0.00454696522865 0.001977125526407 0.000261075394740
8 0.00224517570820 0.000869766839161 0.000086425509984
9 0.00111356578567 0.000384105270082 0.000028692496835
10 0.00055387022318 0.000170030817358 0.000009541484700
11 0.00027598637365 0.000075378090968 0.000003176029182
12 0.00013768220553 0.000033447535664 0.000001057792923
13 0.00006873870825 0.000014850347479 0.000000352422288
14 0.00003433552970 0.000006595837194 0.000000117439213
15 0.00001715656503 0.000002930256391 0.000000039139454
16 0.00000857456764 0.000001301987044 0.000000013045098
17 0.00000428605007 0.000000578561445 0.000000004348089
18 0.00000214261490 0.000000257110062 0.000000001449308
19 0.00000107117102 0.000000114263049 0.000000000483092
20 0.00000053554010 0.000000050781269 0.000000000161028



Numerical Results 19

Table 3.2 The natural log of the expected length of longest cycles for θ =
0.25, 0.5, 0.75, 1, 2, 5, 10.

0.25 0.5 0.75 1 2 5 10
1 -0.15343 -0.27731 -0.38132 -0.47108 -0.7431 -1.21305 -1.63535
2 -2.14468 -1.76662 -1.62438 -1.56265 -1.54648 -1.77137 -2.07665
3 -3.89321 -3.01803 -2.63482 -2.42683 -2.14032 -2.15059 -2.36161
4 -5.56484 -4.19004 -3.56481 -3.21036 -2.65596 -2.46095 -2.58643
5 -7.20466 -5.32715 -4.45789 -3.95569 -3.13191 -2.73451 -2.77873
6 -8.82966 -6.44695 -5.33177 -4.68044 -3.58473 -2.98521 -2.95048
7 -10.4473 -7.55755 -6.19496 -5.3933 -4.023 -3.22044 -3.10801
8 -12.0611 -8.66308 -7.05193 -6.09897 -4.45164 -3.44459 -3.2551
9 -13.673 -9.76573 -7.9052 -6.80019 -4.87372 -3.66051 -3.39421

10 -15.2837 -10.8667 -8.75621 -7.49858 -5.29122 -3.87014 -3.52704
11 -16.8939 -11.9667 -9.60583 -8.19516 -5.70547 -4.07485 -3.65479
12 -18.5037 -13.0662 -10.4546 -8.89056 -6.11739 -4.27567 -3.77838
13 -20.1133 -14.1653 -11.3028 -9.5852 -6.52761 -4.47337 -3.89849
14 -21.7229 -15.2642 -12.1507 -10.2793 -6.93659 -4.66852 -4.01567
15 -23.3324 -16.363 -12.9984 -10.9731 -7.34467 -4.86159 -4.13035
16 -24.9419 -17.4617 -13.8459 -11.6667 -7.75208 -5.05295 -4.24288
17 -26.5513 -18.5604 -14.6933 -12.3601 -8.15899 -5.24289 -4.35355
18 -28.1608 -19.659 -15.5407 -13.0535 -8.56553 -5.43165 -4.4626
19 -29.7702 -20.7577 -16.3881 -13.7468 -8.9718 -5.61942 -4.57024
20 -31.3797 -21.8563 -17.2354 -14.44 -9.37787 -5.80637 -4.67662
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Figure 3.1 The expected length of the longest cycle, the second longest cycle,
and the third longest cycle, for 0.1 < θ < 100
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Chapter 4

Shortest Cycles

4.1 Moments of the Length of rth Shortest Cycle when
m > θ

We will follow the same approach as in the previous section.

4.1.1 Smallest Components in C(z)

The mth moment of the length of the rth shortest cycle is

Ez[(Sr)
m] =

∞

∑
j=1

jm
∫ tj+1(z)

tj(z)
e−t tr−1

(r− 1)!
dt.

Make the same change of variable:

t∞(z)− t = θE(x) = θ
∫ ∞

x

e−y

y
dy.

Let z = e−s, 0 < s < ∞. There exists xj(s) such that (j− 1)s ≤ xj(s) < js
and

∞

∑
k=j

e−ks

k
= E(xj(s)).

So we have

Ez[(Sr)
m] =

∞

∑
j=1

jm
∫ xj+1(s)

xj(s)
eθE(x)−t∞

[t∞ − θE(x)]r−1

(r− 1)!
θe−x

x
dx

= (1− z)θ
∞

∑
j=1

jm
∫ xj+1(s)

xj(s)

[t∞ − θE(x)]r−1

(r− 1)!
θeθE(x)−x

x
dx.
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Notice that
∞

∑
j=1

[xj(s)]mµj ≤ Ez[(Sr)
m] <

∞

∑
j=1

[xj+1(s)]mµj,

with

µj =
∫ xj+1(s)

xj(s)
eθE(x) [t∞ − E(x)]r−1

(r− 1)!
θe−x

x
dx.

As we will see later, the only dominating term in [t∞ − E(x)]r−1 will be
the leading tr−1

∞ term. Assuming θ < m. This is an approximation of the
Riemann integral as s→ 0. So s/(1− z)→ 1, x1(s)→ 0 and

lim
z→1

(1− z)m

m!
Eθ

z [(Sr)
m] = (1− z)θ ln

(
1

1− z

)r−1

Hθ
r,m.

where

Hθ
r,m =

θ

(r− 1)!

∫ ∞

0

xm−1

m!
eθE(x)−x dx.

We rewrite this as

lim
z→1

(1− z)m−θ

m!
ln
(

1
1− z

)−(r−1)

Eθ
z [(Sr)

m] = Hθ
r,m.

We will now use Tauberian theorems. First,

Hθ
r,m = lim

z→1

(1− z)m−θ

m!
ln
(

1
1− z

)−(r−1)

Eθ
z [(Sr)

m]

= lim
z→1

(1− z)m−θ

m!
ln
(

1
1− z

)−(r−1) ∞

∑
n=0

Γ(n + θ)

n!Γ(θ)
(1− z)θznEn[(Sr)

m]

= lim
z→1

∞

∑
n=0

Γ(n + θ)

m!n!Γ(θ)
En[(Sr)

m](1− z)m ln
(

1
1− z

)−(r−1)

zn.

Since the coefficients of zn are nonnegative, we have

n

∑
k=0

Γ(n + θ)

m!n!Γ(θ)
En[(Sr)

m] ∼ Γ(m + 1)−1nm ln(n)r−1Hθ
r,m, n→ ∞.

Now, we will show that
Γ(n + θ)

m!n!Γ(θ)
En[(Sr)

m] is nondecreasing in n. This is

equivalent to
(n + 1)En[Sm

r ] ≤ (n + θ)En+1[Sm
r ].



Moments of the Length of rth Shortest Cycle when m > θ 23

Follow the same argument as in the previous section,

En[Sm
r ] = En+1[En[Sm

r ]]

≤ En+1

[
Sr

n + θ + 1
(Sr − 1)m +

n + θ + 1− Sr

n + θ + 1
Sm

r

]
= En+1[Sm

r ] +
En+1[Sr[(Sr − 1)m − Sm

r ]]

n + θ + 1

≤ n + θ + 1−m
n + θ + 1

En+1[Sm
r ]

So we have

(n + 1)En[Sm
r ] ≤ (n + θ + 1)En[Sm

r ]

≤ (n + θ + 1−m)En+1[Sm
r ]

≤ (n + θ)En+1[Sm
r ],

as desired. Hence

Γ(n + θ)

m!n!Γ(θ)
En[(Sr)

m] ∼ Γ(m+ 1)−1[mnm−1 ln(n)r−1 +nm−1 ln(n)r−2]Hθ
r,m, n→ ∞.

nθ

(ln n)r−1 En

[(
Sr

n

)m]
∼ mΓ(θ)Hθ

r,m, n→ ∞.

In fact the right hand side is a constant, so

lim
n→∞

nθ

(ln n)r−1 En

[(
Sr

n

)m]
= mΓ(θ)

θ

(r− 1)!

∫ ∞

0

xm−1

m!
eθE(x)−x dx.

Rewriting this we get

lim
n→∞

nθ

(ln n)r−1 En

[(
Sr

n

)m]
=

Γ(1 + θ)

(r− 1)!

∫ ∞

0

xm−1

(m− 1)!
eθE(x)−x dx.

4.1.2 Special Cases

When θ = 1 and m 6= 1. The mth moment of the rth shortest cycle (in a
unbiased random permutation) satisfies

lim
n→∞

n
(ln n)r−1 En

[(
Sr

n

)m]
=

1
(r− 1)!

∫ ∞

0

xm−1

(m− 1)!
eE(x)−x dx.

agreeing with Shepp and Lloyd’s result.
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When θ = 1/2. The expected length of the shortest cycle is (m = 1, r =
1)

lim
n→∞

√
nEn

[(
Sr

n

)]
=

√
π

2

∫ ∞

0
eE(x)/2−x dx.

agreeing with Pippenger’s result.

4.1.3 Limitations

The argument above only works for m > θ. Let’s first investigate how it
breaks down when m ≥ θ.

Recall that in the previous section the constant associated with the asymp-
totic form is

Hθ
r,m =

θ

(r− 1)!

∫ ∞

0

xm−1

m!
eθE(x)−x dx.

When m ≥ θ, one can prove that this integral diverges. We need to
analyze how the integral behaves as a function of z, but we lost that infor-
mation when we did the Riemann-sum approximation, so we need to go
back a step and approximate more accurately, as will be in done in the next
section.

4.2 Moments of the Length of rth Shortest Cycle when
m = θ

Recall that we have

Ez[(Sr)
m] = (1− z)θ

∞

∑
j=1

jm
∫ xj+1(s)

xj(s)

[t∞ − θE(x)]r−1

(r− 1)!
θeθE(x)−x

x
dx.

As before, we will see that the only dominant term in [t∞ − θE(x)]r−1 is
tr−1
∞ . So

Ez[(Sr)
m] ∼ θr

(r− 1)!
(1− z)θ ln

(
1

1− z

)r−1 ∞

∑
j=1

jm
∫ xj+1(s)

xj(s)

eθE(x)−x

x
dx.

The integrand is a strictly decreasing function on the positive reals.
Since xj+1(s)− xj(s) ≤ 2s, we can make the following approximation:

∞

∑
j=1

(js)m
∫ xj+1(s)

xj(s)

eθE(x)−x

x
dx =

∫ ∞

x1(s)
xm−1eθE(x)−x dx + error.
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Recall that
E(x1(s)) = ln

1
1− z

,

so we have the following lemma.

Lemma 4.1

∫ ∞

x1(s)
xm−1eθE(x)−x dx ∼


e−mγ ln

(
1

1− z

)
θ = m

e−θγ

θ −m

(
1

1− z

)θ−m

θ > m
.

The error term is on the order of (1 − z)m ln(1/(1 − z)) if θ = m, so
it goes to zero as s → 0. When θ > m, the error term is on the order of
(1− z)2m−θ , which does not always go to zero. So we first study the case
θ = m.

When θ = m we have

(1− z)mEz[(Sr)
m] ∼ θr

(r− 1)!
(1− z)θ ln

(
1

1− z

)r−1

e−mγ ln
(

1
1− z

)
.

This simplifies to

Ez[(Sr)
m] ∼ e−mγ θr

(r− 1)!
ln
(

1
1− z

)r

.

Therefore,

e−mγ θr

(r− 1)!
= lim

z→1
ln
(

1
1− z

)−r

Ez[(Sr)
m]

= lim
z→1

ln
(

1
1− z

)−r ∞

∑
n=0

Γ(n + θ)

n!Γ(θ)
(1− z)θznEn[(Sr)

m]

= lim
z→1

∞

∑
n=0

Γ(n + θ)

n!Γ(θ)
(1− z)θ ln

(
1

1− z

)−r

znEn[(Sr)
m].

Since the coefficients of zn are nonnegative, we have
n

∑
k=0

Γ(k + θ)

k!Γ(θ)
En[(Sr)

m] ∼ Γ(θ + 1)−1nθ ln(n)r e−mγθr

(r− 1)!
, n→ ∞.

We have shown before that
Γ(n + θ)

n!Γ(θ)
En[(Sr)

m] is nondecreasing in n, so

Γ(n + θ)

n!Γ(θ)
En[(Sr)

m] ∼ Γ(θ + 1)−1rnθ−1 ln(n)r e−mγθr

(r− 1)!
, n→ ∞.
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Simplifying the expression we have

En[(Sr)
m] ∼ e−mγθr−1

r!
(ln n)r n→ ∞.

4.3 Moments of the Length of rth Shortest Cycle when
m < θ

For m < θ, we will take a different approach. Let

Tbn =
n

∑
j=b+1

jZj, 0 ≤ b < n.

Lemma 4.13 Suppose that m = mn ∈ Z+ satisfies m/n → y ∈ (0, ∞) as
n→ ∞, and that b = bn = o(n). Then

n Pr[Tbn = m] ∼ pθ(y), n→ ∞.

We look for the probability that the rth shortest cycle is greater than b.

Pr[Sr > b] = Pr[C1 + · · ·+ Cb < r]

= Pr[Z1 + · · ·+ Zb < r]
Pr[Tbn = n− T0b]

Pr[T0n = n]

The first term goes to

e−λ
r−1

∑
s=0

λs

s!
, λ = θ

b

∑
k=1

1
k

.

Let H(k) be the kth harmonic number; then

Pr[Sr > b] = e−θH(b)
r−1

∑
s=0

(θH(b))s

s!
.
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Now,

E[Sm
r ] =

∞

∑
k=1

km Pr[Sr = k]

=
∞

∑
k=1

km(Pr[Sr > k− 1]− Pr[Sr > k])

= 1 +
∞

∑
k=1

[(k + 1)m − km]Pr[Sr > k]

→ 1 +
∞

∑
k=1

[(k + 1)m − km]e−θH(k)
r−1

∑
s=0

(θH(k))s

s!
.

The summand goes to

(m− 1)km−1k−θ (θ log k)r−1

(r− 1)!
∈ Θ(km−θ−1).

If θ > m, then m− θ− 1 < −1 so the sum converges. This means that E[Sm
r ]

converges to a constant (depending on r, θ and m).

4.4 Numerical Results

In this section we summarizes some numerical results based on the deriva-
tion above.

Notice that on average, the ratio of the (r + 1)th cycle and the rth cycle

length goes to
θ

θ − 1
.
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Table 4.1 The expected length of shortest cycles for θ = 2, 5, 10.

2 5 10
1 1.288959430 1.007446918 1.000045718
2 2.268155928 1.046817690 1.000504528
3 4.474205650 1.154242096 1.002811008
4 8.966061894 1.359368143 1.010562612
5 17.95570554 1.674805931 1.030184791
6 35.92668346 2.102451450 1.070180329
7 71.86249650 2.647148053 1.138787134
8 143.7307614 3.325670126 1.241163552
9 287.4653367 4.168363732 1.377795642

10 574.9332279 5.217553080 1.545089138
11 1149.868166 6.526791700 1.737698143
12 2299.737473 8.162286822 1.951195210
13 4599.475708 10.20608077 2.183787419
14 9198.951925 12.76037803 2.436613707
15 18397.90419 15.95284011 2.712993706
16 36795.80860 19.94304375 3.017348891
17 73591.61735 24.93047162 3.354371592
18 147183.2348 31.16447967 3.728658414
19 294366.4697 38.95675830 4.144729927
20 588732.9394 48.69691377 4.607242229
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Figure 4.1 The expected length of the shortest cycle, the second shortest cy-
cle, and the third shortest cycle, for 1 < θ < 5
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4.5 Joint Moments of Shortest Cycles: m = m1 + · · ·+
mr > θ + r− 1

Joint moments of longest cycles have been studied using the Poisson-Dirichlet
distribution. However, the Poisson-Dirichlet distribution only character-
izes the relative size of longest cycles in a large random permutation. In
this section, we will derive the joint moments of shortest cycles in a special
case when m = m1 + · · ·+ mr > θ + r− 1.

Since a Poisson process has independent increment, we get

E[Sm1
1 · · · S

mr
r ] =

∞

∑
jr≥···≥j1=1

jm1
1 · · · j

mr
r

∫ tj1+1(z)

tj1 (z)
· · ·

∫ tjr+1(z)

tjr (z)
e−sr dsr · · · ds1.

Using the same change of variable, we have

E[Sm1
1 · · · S

mr
r ] = (1− z)θ

∞

∑
jr≥···≥j1=1

jm1
1 · · · j

mr
r

∫ eθE(sr)−s1−···−sr

s1 · · · sr
θrds.
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Assuming m = m1 + · · ·+ mr > θ + r− 1. Taking z→ 1, we have

(1− z)mE[Sm1
1 · · · S

mr
r ] ∼ θr(1− z)θ

∫
xj1−1

1 · · · xjr−1
r eθE(sr)−s1−···−sr dx1 · · · dxr.

Let

Hθ,m1,··· ,mr =
∫

xj1−1
1 · · · xjr−1

r eθE(sr)−s1−···−sr dx1 · · · dxr.

Then

θr Hθ,m1,··· ,mr =
∞

∑
n=0

Γ(n + θ)

n!Γ(θ)
(1− z)mznEn[S

m1
1 · · · S

mr
r ].

Tauberian theorems give us

∞

∑
n=0

Γ(n + θ)

n!Γ(θ)
En[S

m1
1 · · · S

mr
r ] ∼ Hθ,m1,··· ,mr

m!
θrnm.

Thus,
Γ(n + θ)

n!Γ(θ)
En[S

m1
1 · · · S

mr
r ] ∼ Hθ,m1,··· ,mr

(m− 1)!
θrnm−1.

Applying

lim
n→∞

n!nθ−1

Γ(n + θ)
= 1,

we have
1

Γ(θ)
En[S

m1
1 · · · S

mr
r ] ∼ θr Hθ,m1,··· ,mr

(m− 1)!
nm−θ .

We can rewrite this as

En

[(
S1

n

)m1

· · ·
(

Sr

n

)mr
]
∼ θrΓ(θ)

Γ(m)
n−θ

∫
xj1−1

1 · · · xjr−1
r eθE(sr)−s1−···−sr dx1 · · · dxr.

As mentioned above, this holds for m = m1 + · · ·+ mr > θ + r− 1.



Chapter 5

Correlations

We have already described the asymptotic behavior of longest and shortest
cycles. In this chapter we study the correlations among them. For example,
one question we may ask is, what’s the correlation between the longest
cycle and the second longest cycle in a random permutation? We will see
that the answer is not as simple as we expect.

5.1 Correlations for Longest Cycles

We have already shown that all longest cycles grow as Θ(n). We will use
Lr to describe the normalized length of rth longest cycle.

In this section we will study the correlation coefficient between Lr1 and
Lr2 . First, we can use the same method as above to find an expression for
E[Lm1

r1 Lm2
r2 ].

E[Lm1
r1

Lm2
r2
] =

θr2 Γ(θ)
Γ(θ + m)∫

xm1−1
1 xm2−1

2
E(x1)

r1−1[E(x2)− E(x1)]
r2−r1

(r1 − 1)!(r2 − 1)!
e−E(x2)−x1−x2 dx1dx2.

In this section we are interested in the case m1 = m2 = 1, so

E[Lr1 Lr2 ] =
θr2−1

(θ + 1)

∫ E(x1)
r1−1[E(x2)− E(x1)]

r2−r1

(r1 − 1)!(r2 − 1)!
e−E(x2)−x1−x2 dx1dx2.

We already know that

E[Lr] = θr−1
∫ ∞

0

E(x)r−1

(r− 1)!
e−x−θE(x) dx.



32 Correlations

Table 5.1 Correlation among Longest Cycles when θ = 1

Lr1\Lr2 1 2 3 4 5 6 7 8 9 10
1 1 -0.76 -0.78 -0.68 -0.58 -0.5 -0.42 -0.36 -0.31 -0.27
2 1 0.36 0.16 0.09 0.05 0.03 0.02 0.02 0.01
3 1 0.62 0.44 0.34 0.27 0.22 0.18 0.16
4 1 0.72 0.56 0.45 0.37 0.31 0.27
5 1 0.78 0.63 0.52 0.43 0.37
6 1 0.81 0.66 0.56 0.47
7 1 0.82 0.69 0.58
8 1 0.84 0.71
9 1 0.84
10 1

Table 5.2 Correlation among Longest Cycles when θ = 0.5

Lr1\Lr2 1 2 3 4 5 6 7 8 9 10
1 1 -0.89 -0.75 -0.57 -0.43 -0.32 -0.24 -0.18 -0.14 -0.1
2 1 0.42 0.23 0.15 0.11 0.08 0.06 0.04 0.03
3 1 0.6 0.41 0.29 0.21 0.16 0.12 0.09
4 1 0.67 0.48 0.35 0.26 0.19 0.14
5 1 0.71 0.51 0.38 0.28 0.21
6 1 0.72 0.53 0.39 0.29
7 1 0.73 0.54 0.4
8 1 0.74 0.55
9 1 0.74
10 1

E[L2
r ] =

θr−1

θ + 1

∫ ∞

0

E(x)r−1

(r− 1)!
xe−x−θE(x) dx.

With these formulae, we can calculate the correlation coefficients be-
tween Lr1 and Lr2 . The results are summarized below.

Notice that (especially when θ is small), the length of the longest cycle
is negatively correlated with the cycle lengths of the rest. This is due to
the fact that the longest cycle usually occupies a significant portion of the
size of permutation. The following is a plot of the correlation between the
longest cycle and the second longest cycle across different θ’s.
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Table 5.3 Correlation among Longest Cycles when θ = 2

Lr1\Lr2 1 2 3 4 5 6 7 8 9 10
1 1 -0.49 -0.73 -0.72 -0.68 -0.62 -0.56 -0.52 -0.47 -0.43
2 1 0.25 0. -0.09 -0.13 -0.15 -0.15 -0.14 -0.14
3 1 0.57 0.37 0.26 0.19 0.15 0.12 0.1
4 1 0.71 0.54 0.44 0.37 0.32 0.28
5 1 0.78 0.65 0.55 0.48 0.42
6 1 0.83 0.71 0.62 0.55
7 1 0.86 0.75 0.67
8 1 0.87 0.78
9 1 0.89
10 1

Figure 5.1 Correlation between Lengths of the Longest Cycle and the Second
Longest Cycle, θ ∈ [0.1, 10]. The horizontal axis is 10θ . The vertical axis is the
correlation coefficient.
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5.2 Correlations for Shortest Cycles when θ < 1

In this section we will study the correlation coefficient between Sr1 and Sr2 ,
where 1 ≤ r1 < r2. First we will derive a formula for E[Sm1

r1 Sm2
r2 ].

Ez[Sm1
r1

Sm2
r2
] = (1− z)θ ∑

1≤j1<j2

jm1
1 jm2

2

∫
0<x1<x2

[t∞ − θE(x1)]
r1−1

(r1 − 1)!

[θE(x2)− θE(x1)]
r2−r1−1

(r2 − r1 − 1)!
θ2eθE(x2)−x1−x2

x1x2
dx1dx2.

As z→ 1, we have

(1− z)mEz[Sm1
r1

Sm2
r2
] = (1− z)θ ln

(
1

1− z

)r1−1 θr2

(r1 − 1)!(r2 − r1 − 1)!∫
0<x1<x2

xm1−1
1 xm2−1

2 eθE(x2)−x1−x2 dx1dx2.

Using the relation between Ez and En, we have

K =
θr2

(r1 − 1)!(r2 − r1 − 1)!

∫
0<x1<x2

xm1−1
1 xm2−1

2 eθE(x2)−x1−x2 dx1dx2

= (1− z)m−θEz[Sm1
r1

Sm2
r2
] ln
(

1
1− z

)−(r1−1)

=
∞

∑
n=0

Γ(n + θ)

n!Γ(θ)
En[Sm1

r1
Sm2

r2
] ln
(

1
1− z

)−(r1−1)

(1− z)mzn

Applying Tauberian theorems [deBrujin],
∞

∑
n=0

Γ(n + θ)

n!Γ(θ)
En[Sm1

r1
Sm2

r2
] ∼ K

Γ(m + 1)
nm[ln(n)]r1−1.

lim
n→∞

nθ−1

Γ(θ)
En[Sm1

r1
Sm2

r2
] ∼ K

Γ(m)
nm−1[ln(n)]r1−1.

Therefore,

En

[
Sm1

r1 Sm2
r2

nm

]
∼ KΓ(θ)

Γ(m)
n−θ [ln(n)]r1−1

∼ Γ(θ)
Γ(m)

θr2

(r1 − 1)!(r2 − r1 − 1)!(∫
0<x1<x2

xm1−1
1 xm2−1

2 eθE(x2)−x1−x2 dx1dx2

)
n−θ [ln(n)]r1−1.
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Hence,

En

[
Sr1 Sr2

n2

]
∼ θr2 Γ(θ)

Γ(r1)Γ(r2 − r1)

(∫
0<x1<x2

eθE(x2)−x1−x2 dx1dx2

)
n−θ [ln(n)]r1−1.

Recall that

En

[
Sr

n

]
∼ Γ(1 + θ)

Γ(r)

(∫ ∞

0
eθE(x)−x) dx

)
n−θ [ln(n)]r−1.

En

[(
Sr

n

)2
]
∼ Γ(1 + θ)

Γ(r)

(∫ ∞

0
xeθE(x)−x) dx

)
n−θ [ln(n)]r−1.

From here we can see that the covariance of Sr1 /n and Sr2 /n grows as
Θ(n−θ [ln(n)]r1−1), but the product of their variances is Θ(n−2θ [ln(n)]r1+r2−2).
Since 2(r1 − 1) < r1 + r2 − 2, we conclude that the correlation coefficient
between Sr1 /n and Sr2 /n goes to zero as n→ ∞.





Chapter 6

Limit Theorems for the
Exponents

Looking back at the results we have presented so far, we see that the mo-
ments for the longest cycles in a θ-biased random permutations are much
simpler than the moments for the shortest cycles. In particular, the mth

moment of the length of the rth longest cycle is always Θ(nm), but the mth

moment of the length of the rth shortest cycle has a complicated asymp-
totic expressions depending on m, θ and r. These results are unsatisfactory
considering the simplicity of the problem. In this chapter, we change our
perspective to look at the exponents of these cycle lengths, and the results
are much simpler and elegant.

6.1 A Caveat

So far we have mostly focused on the expected length of ordered cycles in
a large random permutation. We have seen that the expected length of the
shortest cycle in a random permutation with θ = 1 is Θ(log n), which is
much smaller than that in a random permutation with θ = 0.5, which is
Θ(
√

n). However, it turns out that with probability one, the shortest cycle
in a θ = 0.5 random permutation will have length o(nε) for any ε > 0.
The reason why we have such a high expected value for the shortest cycle
length is that the distribution has a heavy tail.

We can illustrate this through an example. Consider a random variable
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X, such that

X =


n1/3 with probability 1− 1

n1/3

n with probability
1

n1/3

.

Then X ∼ n1/3 with probability 1 as n → ∞. But E[X] = n1/3 − 1 +
n2/3 → n2/3. So the expectation is not a good measure of the tendency in
this case. So instead we look at the exponent of X defined as below:

Definition 6.1 Let Xn be a function of n. Define

X#
n =

log Xn

log n

and call it the exponent of Xn.

For our example above, we have

X# =


1/3 with probability 1− 1

n1/3

1 with probability
1

n1/3

.

Then X# ∼ 1/3 with probability 1 as n→ ∞, and E[X#] also goes to 1/3.
Here the expected value is a better indicator because X# is now bounded.

Since (L1/n, L2/n, · · · ) follows the Poisson-Dirichlet distribution, we
immediately have the following result:

Proposition 6.1 In a θ-biased random permutation, L#
r → 1 with probability one

as n→ ∞.

6.2 Shortest Cycles

We first define Tbn to be the total count of elements in z-cycles with size
larger than b:

Tbn =
n

∑
j=b+1

jZj, 0 ≤ b < n. (6.1)

Lemma 4.13(Arratia et al., 2003) Suppose that m = mn ∈ Z+ satisfies
m/n→ y ∈ (0, ∞) as n→ ∞, and that b = bn = o(n). Then

n Pr[Tbn = m] ∼ pθ(y), n→ ∞.



Shortest Cycles 39

Here, pθ is the limit of the density of the random variable n−1T0n as
n → ∞. We look for the probability that the shortest cycle is greater than
np:

Pr[S1 > np] = Pr[C1 = · · · = Cnp = 0]

= Pr[Z1 = · · · = Znp = 0]
Pr[T(np+1)n = n]

Pr[T0n = n]
.

(6.2)

Assume p < 1; then both the numerator and the denominator are asymp-
totic to n−1 pθ(y). The first factor is

e−θ ∑np
k=1

1
k ∼ e−θp log n = n−pθ .

So as long as θ > 0 and p > 0, this probability goes to zero. Therefore,
S#

1 = log S1
log n is concentrated at zero, so we have

S#
1 → 0 with probability one as n→ ∞.

Similarly,

Pr[Sr > np]

= Pr[C1 + · · ·+ Cnp < r]

=
Pr[Z1 + · · ·+ Znp < r, T(np+1)n = n− T0np ]

Pr[T0n = n]

=

(r−1)np

∑
j=0

Pr[Z1 + · · ·+ Znp < r, T(np+1)n = n− T0np |T0np = j]Pr[T0np = j]

Pr[T0n = n]

=
1

Pr[T0n = n]
×

(r−1)np

∑
j=0

Pr[Z1 + · · ·+ Znp < r|T0np = j]Pr[T(np+1)n = n− T0np |T0np = j]Pr[T0np = j]

=
(r−1)np

∑
j=0

Pr[Z1 + · · ·+ Znp < r|T0np = j]Pr[T0np = j]

= Pr[Z1 + · · ·+ Znp < r].

This goes to

e−λ
r−1

∑
s=0

λs

s!
, λ = θ

np

∑
k=1

1
k
= θH(np).
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The last term in the expansion dominates, so

Pr[Sr > np]→ n−pθ (θH(np))r−1

(r− 1)!
→ 0 (6.3)

Therefore, we have the following proposition:

Proposition 6.2 In a θ-biased random permutation, S#
r → 0 with probability one

as n→ ∞.

6.3 Cycle Lengths at the 100qth percentile

We look for the probability that the 100q percentile cycle is greater than np.

Pr[Mq > np] = Pr[C1 + · · ·+ Cnp < qK0n]

= Pr[Z1 + · · ·+ Znp < qK0n]
Pr[T(np)n = n− T0np ]

Pr[T0n = n]

Following a similar derivation as in the previous section, the ratio goes to
one because 0 < T0np < qK0nnp = o(n) with probability 1. Therefore,

Pr[Mq > np] = e−λ
qK0n

∑
s=0

λs

s!
, λ = θ

np

∑
k=1

1
k

. (6.4)

This approaches

e−λ
qθ log n

∑
s=0

λs

s!
, λ = pθ log n.

Notice that the density of a Poisson distribution with mean pθ log n has
standard deviation

√
pθ log n which is o(θ log n), so the probability above

goes to 1 if q > p and goes to 0 if q < p.
Therefore, the log of the length of the 100p percentile cycle is concen-

trated at np.

Proposition 6.3 In a θ-biased random permutation, M#
p → p with probability

one as n→ ∞.



Chapter 7

Unified Description of Ordered
Cycle Lengths

After studying the exponents of ordered cycle lengths, we now come back
to study the expected ordered cycle lengths and attempt to give a unified
description for the asymptotic behavior of ordered cycle lengths.

7.1 Shortest Cycles

In Chapter 4 we have thoroughly studied the expected lengths of the short-
est cycles for all possible θ. Recall that

E[Sr] =


Θ(n1−θ(ln n)r−1) 0 < θ < 1
Θ((ln n)r) θ = 1
Θ(1) θ > 1.

(7.1)

We write it as

E[Sr]
# →

{
1− θ 0 < θ < 1
0 θ ≥ 1.

(7.2)

Notice that E[•#] ≤ E[•]# by Jensen’s Inequality. We now explain why the
formula is as it is. Recall Equation 6.3:

Pr[Sr > np]→ n−pθ (θH(np))r−1

(r− 1)!
→ e−γn−pθ (pθ ln n)r−1

(r− 1)!
. (7.3)

Define
FS#

r
(p) = Pr[Sr ≤ np]. (7.4)
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Then,

E[Sr] =
∫ 1

0
fS#

r
(p)np dp + O(1). (7.5)

We have

fS#
r
(p) =

d
dp

(
e−γn−pθ (pθ ln n)r−1

(r− 1)!

)
= e−γ n−pθθ ln n(pθ ln n)r−2(r− 1− pθ ln n)

(r− 1)!

→ e−γ n−pθ(θp ln n)r

p(r− 1)!
.

Hence, ∫ 1

0
fS#

r
(p)np dp =

∫ 1

0

e−γn−pθ(θp ln n)r

p(r− 1)!
np dp. (7.6)

Lemma 7.1 Let fn(p) be defined from [0, 1] to the set of functions on n. Then[∫ 1

0
fn(p) dp

]#

→ max
p∈[0,1]

f #
n(p).

For Equation 7.6, we have

fn(p) =
e−γn−pθ(θp ln n)r

p(r− 1)!
np.

Thus,
f #
n(p)→ p(1− θ).

E[Sr]
# = max

p
f #
n(p)→

{
1− θ θ < 1
0 θ ≥ 1.

This agrees with Equation 7.2.

7.2 Cycle Lengths at the 100qth percentile

Recall from Equation 6.4 that

Pr[Mq > np]→ e−λ
q ln n

∑
s=0

λs

s!
, λ = θH(np).
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As in the previous section, we define

FM#
q
(p) = Pr[Mq ≤ np].

Then,

E[Mq] =
∫ 1

0
fM#

q
(p)np dp + O(1).

We have

fM#
q
(p) = − d

dp

(
e−λ

qK0n

∑
s=0

λs

s!

)

= −e−λ(−θ ln n)
qθ ln n

∑
s=0

λs

s!
− e−λ

qθ ln n−1

∑
s=0

λs

s!
(θ ln n)

= e−λ(θ ln n)
λqθ ln n

(qθ ln n)!
.

We will use Lemma 7.1, and the Stirling approximation ln n! = n ln n−
n + O(ln n),

f #
M#

q
(p) =

1
log n

(−λ + ln θ + ln ln n + qθ ln n ln λ− ln (qθ ln n)!)

→ −(pθ ln n + θγ) + qθ ln n ln (θp ln n + θγ))− qθ ln n ln(qθ ln n)− qθ ln n
ln n

= −pθ + qθ ln (pθ ln n))− qθ ln(qθ ln n)− qθ

= −pθ + qθ

(
1 + ln

p
q

)
.

Thus,

E[Mq]
# → max

p
f #
M#

q
(p)np = max

p
p(1− θ) + qθ

(
1 + ln

p
q

)

=


(1− θ) + qθ(1− ln q), θ ≤ 1

1− q
, achieved at p = 1

qθ ln
θ

θ − 1
, θ >

1
1− q

, achieved at p =
qθ

θ − 1
.

(7.7)
Similarly, we can find the moments of these ordered cycle lengths:

E[Mm
q ]

# →


(m− θ) + qθ(1− ln q), θ ≤ 1

m− q
, achieved at p = 1

qθ ln
θ

θ −m
, θ >

1
m− q

, achieved at p =
qθ

θ −m
.

(7.8)
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7.3 Visualization

Based on the results in the previous section, we create the following graphs
for visualization of the asymptotic behavior of ordered cycle lengths in a
random permutation.

Figure 7.1 The value of E#[Mq] for θ = 0.1, 0.5, 1, 2, 10. The horizontal axis
is q. The vertical axis is E#[Mq].
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Figure 7.2 The value of E[Mq]# for 0 < θ < 5. The horizontal axes represent
θ and q. The vertical axis is M#

q .
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Figure 7.3 The exponent of variance of cycle lengths Var[Mq]# for 0 < θ < 5.
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Figure 7.4 The excess of E[Mq]# over E[M#
q ] for 0 < θ < 5. It indicates

the magnitude of the “heavy tail". The horizontal axes represent θ and q. The
vertical axis is M#

q .





Chapter 8

Conclusions and Future Work

In this thesis, we have studied the asymptotic ordered cycle lengths of a
θ-biased random permutation. Previously, longest cycles have been well
studied in the context of the Poisson-Dirichlet Distribution. Shepp and
Lloyd started the study of the shortest cycles in an unbiased random per-
mutation (θ = 1). Following Shepp and Lloyd’s paper, Pippenger first
studied the first moment of the shortest cycle in a biased random permu-
tation with θ = 0.5, which opens a series of questions: “What’s the mth

moment of the rth shortest cycle in a θ-biased random permutation with
any θ?"

This thesis answers the questions posed by Pippenger’s paper, and con-
tribute to the current literature in two other ways. First, the cycle lengths
at any percentile are studied, which bridges the asymptotic behavior of
longest cycles and that of shortest cycles. Second, we have identified that
the discrepancies of cycle lengths across different θ’s are due to the heavy
tails, because the expected exponent of ordered cycle lengths is not a func-
tion of θ. For smaller θ the tails are heavier, and the moments are affected
more heavily.

There are several directions that the research can go from this thesis.
The family of random permutations we have considered is controlled by a
single parameter θ indicating the degree of scattering. One may general-
ize this family by adding additional parameters. Ideally, another stochas-
tic process similar to the Chinese restaurant process can be used to draw
samples from any distribution in this new family. Also ideally, a form of
conditioning relation will hold for this family of structures.

The technique of exponent analysis used in this thesis is also worth
deeper research. The exponent space is some kind of projection of the func-
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tion space. Although some information is lost, such as the constant terms
and the log terms, its ability to convert integration to maximization under
some restrictions provides a useful tool and demonstrates a change of per-
spective.

Other directions of future research include applications in number the-
ory, population genetics, machine learning, etc., finding the exact constants
and the log terms in the case of cycle lengths at 100qth percentile, and com-
paring the rate of convergence to asymptotic behaviors across different θ’s
or q’s. Random permutations are among the most natural mathematical
structures, and they deserve a characterization from us that is just as ele-
gant as themselves.
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