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Abstract: We suggest the use of historical documents and primary sources,
as well as data and articles from recent events, to teach students about mathe-
matical epidemiology. We propose a project suitable — in different versions —
as part of a class syllabus, as an undergraduate research project, and as an
extra credit assignment. Throughout this project, students explore mathemat-
ical, historical, and sociological aspects of the SIR model and approach data
analysis and interpretation. Based on their work, students form opinions on
public health decisions and related consequences. Feedback from students
has been encouraging.

We begin our project by having students read excerpts of documents from
the early 1900s discussing the Indian plague epidemic. We then guide students
through the derivation of the SIRmodel by analyzing the seminal 1927 Kermack
andMcKendrick paper, which is based on data from the Indian epidemiological
event they have studied. After understanding the historical importance of the
SIRmodel, we consider its modern applications focusing on the Ebola outbreak
of 2014-2016 in West Africa. Students fit SIR models to available compiled
data sets. The subtleties in the data provide opportunities for students to
consider the data and SIR model assumptions critically. Additionally, social
attitudes of the outbreak are explored; in particular, local attitudes towards
government health recommendations.

1 Introduction

It is increasingly evident that the younger generations of students are actively involved
in pushing for justice on their college campuses [10, 5, 8]. Students, the general public,
and even fellow mathematicians are often skeptical that STEMM (Science, Technology,
Engineering, Mathematics, and Medicine) can be a tool for social good. We believe it is
part of our mission as faculty members to correct this misconception and guide students in
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understanding the role that ethics, equity, and social justice have in mathematics research
and education.

Recently, the COVID-19 pandemic has awakened a sudden, growing interest from
students in epidemiology and disease modeling from a mathematical point of view as
well as from public health and sociological perspectives. Countries’ responses to this
global crisis have differed widely due to varying access to resources, trust and value
given to scientific expertise, and societal norms. Consideration of the local cultural
and historical contexts as well as the lessons learned from previous epidemics has been
crucial to planning local and country-wide approaches to this recent international threat.
For example, differences in culture and traditions centering the collective good over the
individual (or vice-versa) had a great impact on policy decisions and approaches to contain
the spread of COVID-19 [13, 14].

Students should be trained to consider that epidemiological models were indeed
developed to aid containment of disease spreading and to plan public health responses
to epidemics. These models have real effects on actual populations, often in real time.
While the disease itself will have common characteristics that span countries, regions,
ethnicities, religions, and more, certain characteristics affecting epidemics development
are geographically focused and subject to local values and access to resources. In this
paper, we describe a project for undergraduate students designed to teach them about the
Susceptible-Infected-Recovered (SIR) model in an historical and social context, and then
let them explore its application to the 2014-2016 Ebola epidemic in West Africa.

In this project, students learn first about the Indian Plague epidemic of the early 1900s
through historical primary sources [3]. Then, they are guided through the derivation
of the SIR model by analyzing the seminal 1927 Kermack and McKendrick paper [9],
which utilizes data from the Indian Plague epidemic itself (Section 2). Students are then
asked to consider modern applications of this model by focusing on the Ebola outbreak
of 2014-2016 in West Africa. Fitting the SIR model to real, available, compiled datasets
[12] leads students to consider the subtleties of working with real data and confronting
model assumptions critically. Additionally, students learn about local attitudes towards
government health recommendations and how those affected the spread of the Ebola
epidemic [4] (Section 3). Finally, we discuss possible implementations and variations of
this project and conclude by reflecting on potential improvements and future directions
(Section 4).

An Appendix follows the Reference section, giving some of the materials we prepared
for students.

2 Historical Context: The Indian Plague Epidemic of the
Early 1900s and the SIR Model

Our goal is to guide students in understanding the actual applicability of the SIR model,
starting from its inception. The 1927 Kermack and McKendrick paper [9] utilizes data
from the Indian Plague epidemic of the early 1900s, so students start off the project by
learning about this event through historical public health records. Early in the epidemic,
the British Empire instituted the so-called Indian Plague Commission to study the spread
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of plague in India, understand the causes of the diseases, and help stop the epidemic.
We select several key excerpts of the Commission’s extensive report (freely available to
the public [3]) for students to read and discuss. We provide them with questions (see
Appendix A for our Student Guide) and supplementary materials from the Centers for
Disease Control [6, 7] to reflect on the Commission’s epidemiological observations while
highlighting the intrinsic imbalance of power between the British colonialists authoring
the report, and the Indian population being observed [2]. We help students in building
mathematical intuition regarding what key aspects of the epidemic could be modeled and
should be considered and what others could be omitted.

Reading a historical primary source will most likely be a new experience for students
outside of the context of history or literature courses, especially for those enrolled in
STEMM majors. Having them reflect on the Commission’s report and related documents
achieves four goals:

• Reading primary sources reporting the real, drastic effects of these events on the
local population will open the students’ eyes to the potential impact of mathematics
and epidemic modeling. Given their own recent experiences with the COVID-19
pandemic, this is probably less needed now than it would have been just last year.

• Having students apply critical thinking in a context traditionally associated with
a history class, rather than a math class, may provide an extra ’buy-in’ to the
project for participants. We want them to be challenged in this project in ways they
probably haven’t been before in a mathematics context.

• Allowing students to read about this epidemiological event without the burden of
having to connect it to new mathematical concepts allows them to be braver when it
comes to stipulating model assumptions and hypotheses. Students are often subject
to anxiety as well as to self-imposed and external pressures when confronting new
mathematical challenges [11]; initially separating the two aspects of this project aids
them in gaining confidence in themselves.

• The supplementary materials provide guiding questions for students (Appendix
A), a brief overview of the disease in question [6, 7], and a way to appreciate the
intrinsic biases in the historical writings [2]. It is important for students not to take
the readings at face value but rather understand who the authors and the subjects
are and how their positioning in the epidemic and colonial contexts affects their
public health choices and outcomes. We will return to similar ideas later when
working on the 2014-2016 Ebola epidemic in West Africa.

Continuing with the historical part of the project, students navigate through the
original 1927 Kermack and McKendrick paper, following prompts and focusing on selected
sections of the manuscript (for details and example questions, see Appendix A). As they
read through the chosen parts of [9], they are asked to answer questions in writing
and follow along some of the mathematical derivations. There are several parts of the
manuscript where a knowledge of single-variable calculus is enough to work through
the equations. After digesting the Introduction and General Theory of [9], students jump
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ahead to one of the Special Cases described in the paper, i.e., Part B. Constant Rates. This
section includes a figure with data from the Indian plague epidemic, so students are asked
to analyze the plot and compare it to what they know from reading the primary source
material. This is also where they first see the full SIR system (albeit in 1927 notation).
Then, students spend time thinking through more technical aspects of the problem, such
as choice of variables and units, the meaning of each term and each equation, and the
system end-behaviors. From here, they work towards the modern notation of the SIR
model and learn about the basic reproduction number along the way. Finally, they are
asked to solve analytically the SIR system for this special case and analyze its behavior as
it compares to their earlier qualitative predictions.

3 ModernApplication: The 2014-2016 Ebola Epidemic inWest
Africa

We believe that incorporating real data into mathematical models is an essential part of an
applied mathematics curriculum in the modern day, and this project provides an excellent
opportunity to do so. The core mathematics of what students are asked to do here is
applying a few approaches to identifying initial conditions and/or SIR model parameters.
However, this part of the project goes well beyond these mathematical tasks. Students get
experience in loading and preprocessing data, posing questions and ‘subsetting’ the data,
analyzing their results critically, and finally making careful conclusions and considering
further analyses.

The mathematics of ‘fitting’ parameters in an ODE model becomes exponentially more
difficult as the number of parameters increases, the model dependencies become nonlinear,
or both. Depending on the preparation of students, the instructor may consider beginning
with a simplification for the early period of the epidemic, where an approximate solution
form and simple linear least squares may be used. If the students are more advanced, or a
longer term project is intended, the instructor may consider having the students apply a
nonlinear least squares solver to work with the full SIR model; this can be an alternative
as well as an addition to the linear fit previously discussed. Below we report a possible
first approach to fitting the SIR model to data from the 2014-2016 Ebola epidemic in West
Africa [12], starting with a simpler SI approximation. Python codes used for fitting and
plotting are available in [1].

3.1 The ‘SI’ Approximation

The purpose of this first possible step is to obtain an approximate solution for the ‘Infec-
tious’ population, 𝐼 (𝑡), which is simple enough to allow students the use of ordinary least
squares to estimate 𝛽 , the disease contact rate. To achieve this, a few assumptions need
to be made, and students are asked to think them through. Removing the ‘Recovered’
category from the typical SIR essentially results in the model only having a single transfer
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between compartments:

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼

𝑁
(3.1)

𝑑𝐼

𝑑𝑡
=
𝛽𝑆𝐼

𝑁
(3.2)

This is the first simplification for students to grapple with as the missing category can be
interpreted as either being included in the ‘Infectious’ group, or being assumed to be so
small as to be insignificant (an infectious person has an expected number of days until
they recover). In any case, applying the conserved quantity 𝑆 + 𝐼 = 𝑁 , then solving for
the ‘Susceptible’ population and substituting, gives an equation depending only on the
Infectious population and two parameters, 𝛽 and 𝑁 . Students enrolled in an ODE course
(and even some who have only taken calculus) will have likely encountered this as the
well-known logistic equation:

𝑑𝐼

𝑑𝑡
= 𝛽

𝐼

𝑁
(𝑁 − 𝐼 ) , 𝐼 (0) = 𝐼0. (3.3)

As a side exercise, this can be solved using partial fraction decomposition; one solution
form is:

𝐼 (𝑡) = 𝑁𝑒𝛽𝑡

𝑒𝛽𝑡 − 1 + 𝑁 /𝐼0
. (3.4)

The last step of the derivation here leads students towards the assumptions that, first,
𝐼0 is small relative to 𝑁 (that is, the epidemic begins with a small number of infected
people in the population), and second, we are interested in fitting the contact rate 𝛽

during the initial phases of the infection (this meshes well with being able to ignore the
‘Recovered’ compartment for being zero, or close to it). Then, one can make an asymptotic
approximation considering 𝑒𝛽𝑡 − 1 to be very small relative to 𝑁 /𝐼0, so that this term
can be crossed off. Hence, the expression reduces to what is often understood as the
‘exponential growth’ phase of the SIR model:

𝐼 (𝑡) ∼ 𝐼0 𝑒
𝛽𝑡 , with 𝑡 small. (3.5)

If the instructor or students are time constrained, an alternative approach can be to start
at this approximation and argue its reasonableness from a modeling perspective. Recall
that the advantage of following this process is to obtain an explicit formula for 𝐼 (𝑡), so
that 𝛽 can be fit to data. When estimating 𝛽 from available time series data (𝑡𝑘 , log 𝐼 (𝑡𝑘)),
students should apply a log-transformation: log(𝐼 ) ∼ log(𝐼0) + 𝛽𝑡 , and use a linear least
squares fit to find a value of 𝛽 . Here, there is the option of simplifying this process even
further by treating 𝐼0 as a known value; alternatively, 𝐼0 can be viewed as an unknown to
be inferred from the data. We expect students to grapple with a few modeling concerns at
some point during this process:

1. Defining initial conditions. What does 𝑡 = 0 refer to here? Similarly, what should 𝐼0
be? One option is to start time at the first observed case, and use initial condition
𝐼0 = 1 (1 person), but these choices can cause fitting difficulties down the road. The
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important thing for students to realize here is that there is no perfect answer.
Trying to make an appropriate choice for the time frame of reference and 𝐼0 is a
modeling challenge of its own, involving difficult mathematics especially when
working with real, noisy data.

2. Short-time approximations. What does “𝑡 small” mean? What does “initial phases of
infection” mean? A possible answer from a risky interaction-type model considers
this period lasting as long as the chance of two infectious people interacting with
each other is very small. Once again, the question of ‘smallness’ is difficult to address,
but it can lead to interesting conversations regarding nondimensionalization and
epidemiological context.

3. Total population. How do we decide what the total population 𝑁 should be? Each
choice of 𝑁 , whether ad hoc or informed by the data (e.g., the population of a
neighborhood, city, or country) has critical modeling assumptions built in and
comes with implications for data fitting. Depending on the focus and scope of the
project, the instructor may guide students to make a suitable choice (e.g., the city’s
population) and leave other options as potential directions to explore for a project
extension.

3.2 Loading and Processing Data

We suggest students work with the Ebola data sets compiled in the Github repository [12]
which includes data from the Ministries of Health of several West African countries and
data sets from the World Health Organization, among other things. This data includes
very fine-grained information which is useful for study by epidemiologists, and to the
despair of mathematicians. There are two general routes when working with data in the
case_products folder of [12] :

1. Work with the Excel file case_data_consolidated_sl_and_liberia.xlsx. In
Python, we recommend using the pandas1 package to load this file and access
its sheets of data. The sheet Sierra_Leone_transposed, for example, has daily
Ebola case data grouped for various regions throughout the country, and allows
students the opportunity to further narrow their focus, or aggregate across the
country.

2. The file country_timeseries.json is a so-called JSON file, which stores data in a
flexible format allowing for potentially heterogeneous, messy data. One may use
the json package in Python to load it quickly, then take further steps to process
it enough to plot and analyze it. Here, data is stored per-day, with daily cases and
deaths aggregated by country. This allows students to get started as quickly as
possible in a data fitting exercise. The examples presented in the next section utilize
this version of the data.

1pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
built on top of the Python programming language.
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3.3 Some Example Results

Depending on students’ interest and focus, the data analysis can follow many different
paths. We discuss a few nuances working with the JSON per-country, per-day case data
so that instructor and students have a guidepost in doing their own work. We have made
the associated data and code available in our public GitHub repository [1].

The data were loaded and arranged in a pandas DataFrame in Python, with each
row being a calendar date. We have transcribed a small sample of this data in Table 1,
which was the result of the following processing. Each row has an integer time (days

Date Day Cases_Liberia Cases_SierraLeone Cases_Guinea
6/1/2014 71 13 79 328
6/3/2014 73 13 344
6/5/2014 75 13 81
6/10/2014 80 13 89 351
6/16/2014 86 33 398
6/17/2014 87 97

Table 1: A small sample of Ebola cases by country contained in the JSON data file. Missing
values in this Table represent the data source not having a report from a country on a
given day. Nigeria and Senegal did not have any cases to report until July 23, which is
why we do not include them here.

since a reference), and death and case counts in five different countries spanning about
six months. This data is stored entirely as strings, initially, so our loading script casts
values to datetime objects (for simplified plotting of dates on the horizontal axis) and to
integers for case counts and time for fitting. Imputing empty strings with NaN (“not a
number”) allows pyplot, the plotting software, to bypass missing data in a natural way.

Initial examination of the data reveals several facts. First, the behavior is vastly
different from country to country and a difference in time of initial outbreak can be
observed. More interestingly, countries with significant outbreaks — Guinea, Liberia, and
Sierra Leone — show very different growth rates during this period. Given this, we felt
further aggregation across some or all of the countries lost too much information.

With cleaned data, we applied the approximations and data fitting methodology
described in the previous section. For the purposes of modeling and fitting, we chose to
restrict our focus to Sierra Leone and Liberia (Guinea would also be a reasonable choice,
but we do not explore it here). We define 𝑡 = 0 as June 1, 2014. Where data was missing,
we ignored the corresponding (𝑡, 𝐼 (𝑡)) pair by utilizing a mask to restrict focus to time
points for each country where data was available. Finally, we obtained fits of the model
parameters for the Sierra Leone and Liberia case data as reported in Table 2.

𝛽 log 𝐼0 𝐼0 (predicted cases on June 1) Doubling time (days)
Liberia 0.0494 2.8820 18 14

Sierra Leone 0.0278 4.5892 98 25

Table 2: Example fit of the model parameters for Liberia and Sierra Leone.
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Figure 1: Example of data visualization for Ebola cases count during April-October 2014
in several countries in West Africa. Predicted Ebola cases count for Sierra Leone (shades
of blue) and Liberia (shades of orange) starting on June 1, 2014. Left and right figures
illustrate the same data with a linear scale (left) and logarithmic scale (right) for the cases.
Code to produce this plot is available our own public GitHub repository [1].

We confirm reasonableness of our fits by including the predicted model on top of
the actual data in Figure 1. We have observed that this last step is often challenging
for students. While obtaining parameters is ultimately a sequence of five commands
in the script once the data is cleaned, correctly applying those parameters in a model
forces students to tackle a few challenges. To name a few: they should revisit how these
parameters appear in the model, they should consider how the choice of 𝑡 = 0 associates to
the model built, and they should understand the relationship between calendar dates and
‘time’ used in the model. If guided past these challenges, students get a deep satisfaction
when they see their model curve overlapping well with observed data in a way that merely
obtaining a numerical value for a parameter cannot show.

An interesting feature to note in Figure 1 is that the data curves for Sierra Leone and
Liberia intersect between August and September 2014. In Sierra Leone there were about
a factor of 10 more cases in June 2014, but Liberia had a much shorter doubling time in
their cases (which we showed in Table 2), so it passed Sierra Leone in the number of cases
in about two months. We do not know the reasons for this; there could have been spatial
differences in how the disease was spreading (e.g., higher density areas versus rural areas),
or public health policy differences, or a combination of causes. There is an excellent
opportunity here to dig deeper, for example within the context of an undergraduate
research project.

3.4 Putting the Modern Ebola Epidemic in Context

In conjunction with studying this data, as with historical documents on the Indian Plague,
we have encouraged students to read related materials to expand their thinking beyond
the mathematical exercise. As an example, one such article from the New York Times
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provides a cultural lens on the Ebola epidemic [4]. Public health efforts coming from
primarily Western aid organizations (including the World Health Organization), clashed
with local customs in Liberia during the 2014-2016 epidemic, especially in regard to the
burning of corpses of those afflicted with Ebola. Local people working in crematories were
ostracized by their families and communities for going against Liberian tradition. When
reading these documents, students learn about other cultures and are faced with how
the complex realities of epidemiological modeling, data collection, and analysis influence
public health decisions and policy that potentially affect the lives of millions.

4 Possible Implementations and Future Work

This project has been implemented at multiple US institutions in different versions as
part of the syllabus and as an extra credit assignment for an introductory ODE course,
as well as an independent study project. Most students who worked on this project
belonged to STEMM and social sciences majors, but not mathematics majors. A first
version of this project was ideated for an introductory modeling course in 2014, and
various versions of the project have been used almost every year since. Most recently,
in the 2019/2020 academic year, two undergraduate students at Florida State University
(majoring in Biological Sciences and Economics and Statistics, respectively) worked on
a year-long version of this project as part of the Undergraduate Research Opportunity
Program (UROP) on campus.

When asked to think back on their experienceworking through this project, all students
reported enjoying reading primary sources and using them as a basis for mathematical
exploration. This was particularly true for students majoring in the life sciences. Students
were surprised to realize how many factors need to be considered to design appropriate
mathematical modeling to fit the behavior of real-world populations and cultures. Students
appreciated the chance to consider the importance of context as well as mathematical
modeling inmaking policy decisions and evaluating whether a chosen approach is working
as hoped. Unsurprisingly, participants found reading the Kermack and McKendrick paper
[9] most challenging. They often got lost in the details of the manuscript and were not able
to follow the steps of the calculation reported in the paper, even when the mathematics
involved should have been accessible to them. The challenges of reading a technical
mathematics paper (especially one from 1927) became apparent very quickly; this is the
part of the project where we as instructors had to step in more consistently during the
implementations. Some students liked the data analysis part of the project more than
others. In this final part of the project, students were faced with subtleties in the data
collection and analysis and with having to confront the reality of messy and incomplete
data sets. This helped them realize the stark difference between the pre-arranged class
exercises they are used to and the realities of modeling with actual data.

While part of the reason for developing this project is to get students outside of
mathematics excited about differential equations and modeling, it would be interesting
to see if the more technical aspects of the 1927 Kermack and McKendrick paper could be
appreciated and explored further by participants majoring in mathematics. Nonetheless,
analyzing the selected parts of the manuscript is enough for students to understand where
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the model comes from and do some mathematical experimentation on their own. The
solid historical connections between the Indian Plague epidemic of the early 1900s and
the seminal SIR paper of 1927 make them an ideal place to start this exploration, but given
the wealth of data freely available online, this project can be adapted to include virtually
endless other modern applications. Even within our focus of the 2014-2016 Ebola epidemic
in West Africa, there are numerous avenues that we leave unexplored. We mentioned
one such example at the end of Section 3.3. Additionally, first and second-hand accounts
of the difficulties reported on the ground when dealing with health officials handling
the epidemics could be further researched. From the data analysis and parameter fitting
perspective, estimating multiple parameters in addition to 𝛽 involves complex, nonlinear
data fitting. The identifiability of the recovery rate 𝛾 primarily relates to the medium and
long-time dynamics of SIR and can only be considered when including the ‘Recovered’
compartment; asymptotic analysis could be applied to compute long-time approximate
solutions in a similar fashion to the short-time analysis done for the infection rate 𝛽 .

Students participating in this project are exposed to clear examples of howmathematics,
and STEMM more broadly, can be tools in service of public health and social problems.
We believe students would be more interested in working towards technical STEMM
degrees if made aware of the many ways they can use them to serve society. Young
students, and in particular those from underrepresented groups in STEMM, find strength
in helping others and advocating for social justice. We advocate for teaching the younger
generations how to use mathematics ethically to serve their broader goals. We believe
the approach showcased in this paper incorporating historical and social context can be
adopted for a variety of projects focused on ODE modeling. While admittedly not all
differential equation models have as rich a history and widespread a use as the SIR, ODEs
are so often used to model the real world that they are an ideal avenue for this type of
project. We hope our work can be viewed as a guiding example of how to inject some
historical and social context in a mathematics classroom.
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A Appendix. The SIR Model in Historical Context: Student
Guide

The following is a packet of exercises and readings most recently tailored by
Francesca Bernardi to use as the introduction of a year-long Undergraduate
Research Opportunity Program (UROP) project on the SIR model at Florida
State University in the academic year 2019/2020. It is an expanded version of
a shorter document developed by Manuchehr Aminian in 2014. We provide
this as an appendix for a more concrete picture of the types of questions that
have been asked of students working on this project. Not all readings and
options discussed in the main manuscript appear in the appendix.

There is a range of difficulty in questions. Some sections of this packet assume
knowledge of basic ordinary differential equations (separable equations and
the method of integrating factors, in particular). Students will have an easier
time with this document if they have some understanding of how ODEs are
manipulated and solved. However, some sections can be used with students
without any prior differential equations experience. These typically involve
little to no calculation, but rather mostly working with the readings and
understanding the model and its modern applications conceptually. These
have been used successfully in an introductory mathematical modeling course
geared towards students majoring in fields other than mathematics.

For both math and non-math majors, it may be useful to provide a sheet of
definitions of technical terms to help them in readings. For an example of
this, see section A.4 of the Appendix.

This project revolves around mathematical epidemiology.2 This document is a starting
point for our project; it is a guided exploration of the SIR model for disease spreading. It
consists of reading assignments, trying a few mathematical challenges on your own, and
keeping track of what you’re learning by answering the questions listed to form a written
report.

A.1 The Indian Plague Epidemic of the Early 1900s

In the early 1900s, an outbreak of plague erupted in India which was then part of the
British Empire.3 Take a look at the Wikipedia article on the Third Plague Pandemic4 and
pay particular attention to the section titled Political Impact in Colonial India.

The Indian Plague Commission was instituted by the British government to study the
situation, understand the causes of the diseases, and help stop the epidemic. The written
report produced by the Commission was very thorough (for full document, see [3]).

2For more information on mathematical epidemiology, see Computational and Mathematical Epidemiol-
ogy, written by Dr. Fred S. Roberts. Science Magazine | Careers, 2004.

3For more information on colonial India, see https://en.wikipedia.org/wiki/Colonial_India.
4See https://en.wikipedia.org/wiki/Third_plague_pandemic.
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8 Please read the excerpt from The Etiology and Epidemiology of Plague -
A Summary of the Work of the Plague Commission available at [1] (for
full version, see [3]). Note that the “General Conclusions” (on page 12 of
the linked PDF) are taken from the very end of the report.

When reading, focus your attention on answering the following questions:

1. According to the report, how is the plague transferred to humans?

2. What is definitely not true about the way the plague is transferred to humans?

3. Does any of this surprise you?

4. Do you think there is a parallel between the spreading of the disease among rats
and humans?

After this first introduction to the report, choose one Part from it and read it carefully
(the table of contents of the full report is on page 7 of the linked PDF). At our next meeting,
be ready to present a summary of what you learned to the group. Note that this report was
written in 1908 for a technical audience; it is understandable if you don’t grasp everything
right away. Take some time to think about it and let it sink in.

This short Plague fact sheet [7] from the CDC (Centers for Disease Control and
Prevention) answers a lot of questions regarding the disease itself. If you want more
information about it, see the full CDC Plague webpage [6].

A.2 The SIR Model

Now that you have some historical context of the plague epidemic, we’re going straight
to the (mathematical) source.

8 Please read the paper that first defined the SIR model as we know it
today, by following the instructions below. The manuscript titled A
Contribution to the Mathematical Theory of Epidemics was written by
W.O. Kermack and A.G. McKendrick in 1927 [9].

This is a technical mathematical paper with notation from 1927. You are not supposed to
be comfortable with all of its content. It is expected for all students to struggle through
the first reading of this manuscript. Skim the entire paper, but pay particular attention to:

• The Introduction section.

• The General Theory section. This part is long and gets tedious after a while; it’s
important to understand through the end of page 703. We will discuss this together.

As you’re reading, try to take notes of what you’re understanding and any question that
comes up for you. The ideal way of reading a mathematics paper is to follow the authors’
argument by deriving the equations along with them. This may only be possible for parts
of this paper, but give it a try! Please answer the following questions:
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5. Summarize, in your own words and in a bullet point format, the evolution of an
epidemic from beginning to end, as described in the Introduction.

6. Look for any assumptions the authors make in the Introduction. Do you think each
of them is reasonable? Why or why not?

7. How do these assumptions relate to the assumptions or conclusions drawn in the
Report? Does anything jump out at you?

We expect students to come to our meetings with questions and comments about
what they read. Don’t be discouraged if the reading is tough — it’s hard for everyone,
including the instructors. Be kind to yourself: this is likely your first time reading a
technical mathematics paper, and this is a manuscript from 1927!

A.2.1 Derivation

While the early part of the paper should go by more quickly, you may need help in deriving
some of the equations, so here are some tips.

The process to derive equation (17) is described on pages 703-706; it involves using
infinite series, the method of integrating factors to solve first order linear ODEs, and
patience. In particular, the first few lines of the calculation require some leaps of faith on
your part, but once the paper shows you the expression for

𝑥 = 𝑓0(𝑡) + 𝜆𝑓1(𝑡) + 𝜆2𝑓2(𝑡) + ... (A.1)

at the top of page 706, you should be able to follow along all the way through to successfully
derive equation (17). On page 705, the authors mention that they haven’t found a way
to solve equation (16) explicitly, but they are going to base their solution process on the
observation that (16) is a Volterra-like equation (of the second kind).5 Do not focus on
this too much, i.e., believe that this is possible and accept their solution form reported in
equation (A.1).

A.2.2 Special Cases

After agonizing over some of the details of the General Theory, we are now jumping ahead
to the Special Cases section, Part B. Constant Rates, from the bottom of page 712. The
“constant rates” referenced in the title of the section are the rate of infectivity 𝜙 (𝑡) = 𝜅

(pronounced “fee of tee = kappa”) and the rate of removal𝜓 (𝑡) = ℓ (pronounced “psi of
tee = elle”) , where both 𝜅 and ℓ are constants. In particular, note:

(a) The nonlinear system of three first order ODEs on page 713 (equation (29) of the
paper) is essentially the first so-called SIR model. The variables 𝑥 , 𝑦, and 𝑧 represent
the number of Susceptible, Infected, and Removed/Recovered individuals in the
population, respectively. The total population density is: 𝑥 + 𝑦 + 𝑧 = 𝑁 (see also
General Theory).

5This is a link to learn more about the Volterra integral equations: https://en.wikipedia.org/
wiki/Volterra_integral_equation.
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(b) Pay particular attention to the plot on page 714 and its caption which continues to
page 715 (slightly smaller font than the main text). In the plot, the small black dots
correspond to the measured data for rat deaths during the Indian Plague epidemic,
and the line with the open circles represents the rat deaths per week predicted by
this model.

Answer the following questions:

8. Look for any additional assumptions the authors make in the figure on page 714.
Do you think these are reasonable? As mentioned, the figure represents rat deaths
over time, not human deaths. Does this make sense in the context of the report of
the Indian Plague Commission?

9. Overall, is there anything that stood out to you in the parts you read?

Now let’s focus on the equations. We have worked on deriving some of them, but
their meaning may have gotten lost in the mathematical details. Hence, now we want
you to take a step back and really try to understand what the model means. Here are
the equations of the SIR (Susceptible, Infected, Removed) model from the 1927 paper by
Kermack and McKendrick [9], written using modern notation for the variables, followed
by Figure A1, a visualization of the compartment model:

𝑑𝑆

𝑑𝑡
= −𝜅 𝑆 (𝑡)𝐼 (𝑡), 𝑑𝐼

𝑑𝑡
= +𝜅 𝑆 (𝑡)𝐼 (𝑡) − ℓ 𝐼 (𝑡), 𝑑𝑅

𝑑𝑡
= +ℓ 𝐼 (𝑡). (A.2)

Figure A1: Visualization of the SIR model described by (A.2). Parameter 𝜅 is the rate of
infectivity and ℓ is the rate of removal.

Let’s look at the equations in more detail. Read below and answer the following questions:

• The dependent variables are 𝑆 , 𝐼 , and 𝑅, representing the number of individuals
(or rats, as in the paper) in each of the Susceptible, Infected, or Removed group,
respectively. The independent variable 𝑡 represents time since the beginning of the
infection. The chosen unit for time is selected depending on the situation at hand.

The parameters 𝜅 and ℓ affect how quickly individuals move from one group to the
other. Please answer:

10. What happens if 𝜅 is large? Would people get infected more or less quickly
than if 𝜅 was small? Explain why.

11. What happens if ℓ is large? Explain your answer.
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• The derivatives 𝑑𝑆/𝑑𝑡 , 𝑑𝐼/𝑑𝑡 , and 𝑑𝑅/𝑑𝑡 represent the net rate of change of the
population of each of the three groups due to all the factors taken into account in
the model.

• The 𝜅 𝑆 (𝑡)𝐼 (𝑡) term is based on the Law of Mass Action.6 This law states that the
rate at which people get infected in a population is dependent on the product of the
number of healthy and infected people. Please answer:

12. If there is a very small number of infected people, 𝐼 , and a large number of
healthy people, 𝑆 , what will the rate of new infections be?

13. If there is a large number of infected people, 𝐼 , and a very small number of
susceptible people, 𝑆 , what will the rate of new infections be? Does this make
sense to you?

• The ℓ𝐼 (𝑡) term is more familiar than you think. This assumes that people get
removed from the infectious group, 𝐼 , continuously at a rate ℓ .

14. What type of mathematical function would describe this decay accurately?

15. If ℓ = 0.5, what is the continuous rate at which people are removed from the
infected group at each time unit?

16. What do the positive and negative signs of each term indicate? (See Figure
A.2.2 for a hint.)

Now that you have thought through the meaning of all the terms in the equations, please
answer the questions below:

17. Summarize with your own words what the second equation is expressing. Use the
diagram of the compartment model in Figure A.2.2 to aid your understanding.

18. What does it mean physically if 𝑑𝑅/𝑑𝑡 = 0?

19. What happens if ℓ = 0 and 𝜅 ≠ 0?

20. What happens if ℓ ≠ 0 and 𝜅 = 0?

We would like to modernize the parameters in the equations as well, not just the
variables. In the modern notation of the SIR model:

• 𝜅 = 𝛽/𝑁 , where 𝛽 is called the rate of contact and takes into account the probability
of contracting the disease when there is contact between a susceptible and an
infected individual. It is more realistic to consider a force of infection that does not
depend on the absolute number of infectious subjects, but rather on their fraction
with respect to the total constant population 𝑁 .

6For more information on the Law of Mass Action, see https://en.wikipedia.org/wiki/Law_
of_mass_action. In particular, see the section about Mathematical Epidemiology.
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• ℓ = 𝛾 , where 𝛾 is the rate of recovery or death. If the duration of the infection is
denoted by 𝐷 , then 𝛾 = 1/𝐷 , since an individual experiences one recovery in 𝐷

units of time.

Hence, the modern SIR model is defined as:

𝑑𝑆

𝑑𝑡
= − 𝛽

𝑁
𝑆 (𝑡)𝐼 (𝑡) (A.3a)

𝑑𝐼

𝑑𝑡
= + 𝛽

𝑁
𝑆 (𝑡)𝐼 (𝑡) − 𝛾 𝐼 (𝑡) (A.3b)

𝑑𝑅

𝑑𝑡
= +𝛾 𝐼 (𝑡) (A.3c)

As mentioned earlier, this is a nonlinear system of three first-order ODEs. In general, it
cannot be solved exactly. However, given some assumptions, solutions for special cases
can be derived. Let’s analyze some key aspects of this system.

21. If we wanted to solve this system exactly, how many initial conditions would we
need to fix a value for the constants of integration?

22. Add the equations to one another to verify that:

𝑑𝑆

𝑑𝑡
+ 𝑑𝐼

𝑑𝑡
+ 𝑑𝑅

𝑑𝑡
= 0. (A.4)

What does this imply about the sum of 𝑆 (𝑡), 𝐼 (𝑡), and 𝑅(𝑡)? (Remember that you
know what 𝑆 + 𝐼 + 𝑅 is equal to.)

23. How many equations need to be solved to find an expression for 𝑆 (𝑡), 𝐼 (𝑡), and
𝑅(𝑡)?

A.2.3 The Basic Reproduction Number, 𝑅0

The dynamics of the infectious group depends on the basic reproduction number,7 defined
as 𝑅0 = 𝛽/𝛾 . This ratio can be interpreted as the number of cases one case generates on
average over the course of its infectious period in an otherwise uninfected population.
This is a useful metric because it is understood that for 𝑅0 < 1 the infection will die out
(in this case the disease is referred to as a ‘dud’), while for 𝑅0 > 1 the infection will spread
in a population (and the disease is referred to as an ‘epidemic’). That is because for 𝑅0 > 1,
the infection rate is large relative to the recovery rate 𝛾 , and the total number of people
to be infected is expected to be large. On the other hand, if 𝑅0 < 1 the recovery rate is
fast enough that, while a few people may get infected, the spreading is very slow and not
considered to be a full-blown epidemic. See Table A1 below from History and Epidemiology
of Global Smallpox Eradication8 to get an idea of typical values for 𝑅0 for well-known
infectious diseases.

7See https://en.wikipedia.org/wiki/Basic_reproduction_number.
8TheHistory and Epidemiology of Global Smallpox Eradication is amodule of the training course “Smallpox:

Disease, Prevention, and Intervention” from the CDC and the World Health Organization, 2001. The table
appears on slide 17.

17

https://en.wikipedia.org/wiki/Basic_reproduction_number


Disease Transmission R0

Measles Airborne 12-18
Diphtheria Saliva 6-7
Smallpox Airborne droplet 5-7
Polio Fecal-oral route 5-7
Rubella Airborne droplet 5-7
Mumps Airborne droplet 4-7

HIV/AIDS Sexual contact 2-5
Pertussis Airborne droplet 5.5
SARS Airborne droplet 2-5

Influenza (1918) Airborne droplet 2-3
Ebola (2014) Bodily fluids 1.5-2.5

Table A1: Values of 𝑅0 for well-known infectious diseases. Taken from History and
Epidemiology of Global Smallpox Eradication (see footnote 7 for more information).

Now it’s time to solve the problem! There are a variety of ways to approach the
solution to this system. You should have realized in answering the questions above that
we only need to solve two differential equations out of the three to obtain an expression
for all 𝑆 , 𝐼 , and 𝑅. That is because the sum of the three populations is always equal to 𝑁

(the total population density), so, once we have solved two of the three equations, we can
take advantage of this 𝑁 -fact to write the third solution.

Pair together two equations of your choice and try to solve them. Note that while you
have a few options here (three equations can be paired in six ways if the order matters),
there are some pairings that make solving easier and others that make it very hard or
impossible.

24. Explore the possibilities and report all of your tries, even those that didn’t quite work
out. Try combining equations by adding, subtracting, multiplying, and dividing
them. Remember that our goal is to find a solution in the simplest possible way.
These are first-order equations, so let’s strive for combining two equations to obtain
a simple separable equation to be solved. Use 𝑅0 = 𝛽/𝛾 wherever you can.

25. Can you combine them to solve for 𝑆 (𝑡)? Write a solution for 𝑆 (𝑡) in terms of 𝑅(𝑡).

26. Can you do the opposite? That is, write out a solution for 𝑅(𝑡) in terms of 𝑆 (𝑡)?

27. Note that each of these solutions should depend only on one undetermined constant.
Take the expression you found for 𝑆 (𝑡) (in question 25) and set the value of the
constant by applying the initial conditions 𝑆 (0) = 𝑠0 and 𝑅(0) = 𝑟0. Why do we
need two conditions for one constant?

28. Now substitute the solution for 𝑆 (𝑡) found above in equation (A.3b) and solve, using
𝑅(0) = 𝑟0 and 𝐼 (0) = 𝑖0. You should find an expression for 𝐼 (𝑡) that depends on 𝑅(𝑡)
only (i.e., not on 𝑆 (𝑡)).
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29. Finally, derive the solution for 𝑅(𝑡) based on the relationship between 𝑆 , 𝐼 , 𝑅, and
𝑁 (as discussed earlier). You do not need to write this solution explicitly.

If you followed all the steps above, you should now have solutions to all three ODEs,
where the susceptible model 𝑆 (𝑡) depends on 𝑅(𝑡) only, the infectious model 𝐼 (𝑡) depends
on 𝑅(𝑡) only, and the recovered model 𝑅(𝑡) is not written explicitly.

30. Compute the limit as 𝑡 → ∞ for 𝑅(𝑡). What does this limit represent from an
epidemiological point of view?

31. Assume that 𝑡 → ∞ represents the end of the epidemic and that 𝑆 (0) ≠ 0. What
does this limit imply with regard to the susceptible population?

32. Based on the conclusion above, how is the end of an epidemic defined? What is it
caused by?

33. As we discussed earlier, the basic reproduction number 𝑅0 is very important in this
model. Rewrite the second equation as

𝑑𝐼

𝑑𝑡
=

(
𝑅0𝑆

𝑁
− 1

)
𝛾𝐼, (A.5)

and study the sign of the derivative (i.e., the sign of 𝑑𝐼/𝑑𝑡 ) in terms of 𝑅0. Can you
relate your conclusions to what you learned earlier about 𝑅0?

You have now read and understood the original SIR paper, be proud of yourself!
This was no small feat! Make sure to take a few minutes to collect your thoughts and
summarize the main concepts you learned in a bullet-point list.

A.3 The Ebola Epidemic of 2014-2016 in West Africa

You should be ready to read and thoroughly understand a recent SIAM (Society of Industrial
and Applied Mathematics9) article discussing the Ebola epidemic of 2014-2016 in West
Africa.

8 Please read “Emerging Disease Dynamics — The Case of Ebola”, written
by Sherry Towers, Oscar Patterson-Lomba, and Carlos Castillo-Chavez.
This article appeared in SIAM News on November 3rd, 2014.10 In the
article there are a few technical terms. Take a look at section A.4 for
some definitions.

9The Society for Industrial and Applied Mathematics (SIAM) is an international community of over
14,000 individual members. Almost 500 academic, manufacturing, research and development, service and
consulting organizations, government, and military organizations worldwide are institutional members. For
more information about SIAM and to learn about student memberships, visit https://www.siam.org/.

10https://sinews.siam.org/Details-Page/emerging-disease-dynamics.
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Please answer the following questions:

34. What are the variables the article uses in the graphs? Which of the variables in the
SIR model you are familiar with do these represent?

35. What is the chosen unit for time?

36. What type of model do they use to fit their data?

37. What do the authors do to validate their model?

38. Was there anything confusing for you in the article? Anything that you think is
explained poorly?

39. Can you spot any weaknesses of the SIR model after reading this? What does the
basic SIR model not take into account that is discussed in the article?

A.4 Some Vocabulary Related to the SIAM Article

Optimal Control Strategies. A general term indicating the fact that having a limited
number of resources means not all possible measures to prevent an outbreak can be imple-
mented. The issue is then: which approaches should be taken to have the greatest impact
in slowing the spread of the disease? Full quarantine? Medical treatment? Isolation?
Something else? And how much money should be put towards each?

Dimensionless Quantity. Refers to quantities like 𝑅0 which determine the qualitative
behavior of a model. Unsurprisingly, the word dimensionless specifically refers to the fact
that 𝑅0 has no physical units.

Ansatz. A hypothesis, an educated guess, a particular form of a mathematical model.
Their model is piecewise exponential. The word ansatz comes from German.11

Time series. Basically, a function that depends on time, typically used when referring to
repeatedly sampled data over a span of time. Visually, a plot with time on the horizontal
axis.

95% Confidence Interval. A statistical term representing the uncertainty in a prediction.
Roughly this means that the authors were 95% confident that the true number of new
Ebola cases would be somewhere in their predicted interval — though the strict statistical
definition of “confidence interval” is more subtle than this.12

11For more on the etymology of the word ansatz and its use in mathematics, see https://en.
wikipedia.org/wiki/Ansatz.

12For a good explanation of the concept of confidence interval see, for example, the video https://www.
youtube.com/watch?v=tFWsuO9f74o.
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A.5 Next Steps

Let’s recap what you have read and learned:

• Write a short summary of what you’ve learned. Note the key aspects of an epidemics
and what you’ve learned about modeling it.

• Reflect on the Report and the SIAM News article. Draw any parallels you notice and
make a list of main differences.

• Think about next steps, taking inspiration from your answers to questions 38 and 39.
What is one key aspect of the SIR model and how it is applied that you think needs
improvement? What improvements would be most important to you? Spending less
money? Saving more lives? Shortening the epidemic? Distributing funds equitably?
What else?

We hope you have enjoyed this guided exploration of the SIR model in an historical
context. We will now continue working on applying the model to modern data sets of
interest based on each student’s preference.
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