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Abstract

L-functions form a connection between elliptic curves and modular forms.
The goals of this thesis will be to discuss this connection, and to see similar
connections for arithmetic functions.





Contents

Abstract iii

Acknowledgments xi

Introduction 1

1 Elliptic Curves 3
1.1 The Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Counting Points . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The p-Defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Dirichlet Series 11
2.1 Euler Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Riemann Zeta-Function . . . . . . . . . . . . . . . . . . . 14
2.3 Arithmetic Functions . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Dirichlet Series Associated to Elliptic Curves . . . . . . . . . 20

3 L-Functions 23
3.1 The Basics of L-Functions . . . . . . . . . . . . . . . . . . . . 23
3.2 An Example of L-Functions: The Riemann Zeta-Function . . 24

4 Modular Forms 25
4.1 The Basics of Modular forms . . . . . . . . . . . . . . . . . . 25

5 Meromorphic Continuation and Functional Equations 29
5.1 L-Functions Associated to Cusp Forms . . . . . . . . . . . . . 29
5.2 A Specific Example: the Riemann Zeta-Function . . . . . . . 30
5.3 The Generalized Integral Representation . . . . . . . . . . . . 34
5.4 Meromorphic Continuation and Arithmetic Functions . . . . 36
5.5 Functional Equations Related to Arithmetic Functions . . . . 38



vi Contents

6 Applications and Further Research 43
6.1 Modular Forms Associated to a Given L-function . . . . . . 43
6.2 Wiles’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 The Birch Swinnerton-Dyer Conjecture . . . . . . . . . . . . . 44
6.4 The Langlands Program . . . . . . . . . . . . . . . . . . . . . 44

A Code for Computations 45
A.1 Counting Points . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 47



List of Figures

1.1 Step 1 of the Operation . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Step 2 of the Operation . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Step 3 of the Operation . . . . . . . . . . . . . . . . . . . . . . 5
1.4 y2 = x3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 y2 = x3 + x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1 The Domain of ζ(s) . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 The Domain of D(s, µ) . . . . . . . . . . . . . . . . . . . . . . 39
5.3 The Domain of D(s, φ) . . . . . . . . . . . . . . . . . . . . . . 40
5.4 The Domain of D(s, σk) . . . . . . . . . . . . . . . . . . . . . . 41





List of Tables

1.1 The squares in F5 . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 The cubes in F5 . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Table of an values for E . . . . . . . . . . . . . . . . . . . . . . 21





Acknowledgments

I would like to thank the following people:

• Professor Francis Su, for acting as my major advisor and providing
me with the wisdom and guidance for being able to survive at Mudd,

• Professor Michael Orrison, for being my second reader and for help-
ing me develop myself academically as well as professionally,

• my friends, for providing hugs, sugar, and the occasional shoulder to
cry on,

• my parents, for continuing to love and support me through my time
at Mudd,

• Momcat, for ensuring that I was able to have the education necessary
to do this, and

• Professor Christopher Towse, for advising me on this thesis, for act-
ing as the mentor that I needed, and for going on this long journey
through analytical number theory with me.





Introduction: A Road Map

In this thesis, we will be exploring what helps make an L-function an L-
function. In particular, we are focusing on showing that the Dirichlet series
for given arithmetic functions are in fact L-functions.

Chapter 1 is intended to introduce the reader to elliptic curves, which
helped provide the initial motivation for this project. The properties of
elliptic curves that we are interested in provide an alternate view on L-
functions when we put them in context.

Chapter 2 introduces Dirichlet series, which are similar to L-functions.
They are highly generalized, so while all L-functions can be seen as Diri-
chlet series, not every Dirichlet series can be viewed as an L-function. In
the context of this thesis, Dirichlet series are viewed as a series rather than
as a function. This chapter will also introduce the Dirichlet series that we
are primarily interested in for the sake of this thesis. The theorems given in
this chapter are stated in other texts, but the proofs provided are our own.

Chapter 3 is to provide the reader with a definition of an L-function that
will be used for the remainder of the thesis by providing us a list of criteria
to check when showing that a Dirichlet series is an L-function.

Chapter 4 provides a small introduction to modular forms. The modu-
lar forms will then be used when showing some of the analytical properties
of L-functions.

Chapter 5 will state many of the results of this thesis. Theorems 5.1,
5.2, 5.3, and 5.4 are stated in other sources, but the proof given here are
the writings of the author of the thesis. All other theorems in this chapter
are original work, but follow similarly to the proofs given for the original
theorems.

Chapter 6 is meant to give extensions and applications of this thesis,
and should be considered as a guide for anyone looking to continue the
work presented herein.





Chapter 1

Elliptic Curves

An algebraic curve is defined via a polynomial or a set of polynomials. If we
were to consider the algebraic curves defined in two dimensions, we would
then have curves define my linear combinations of monomials of the form
xmyn, where m and n we both non-negative integers. We say the degree, d,
of a polynomial is defined to be d = maxxmyn{m + n}. We now consider
this interesting theorem about polynomials and their degrees.

Theorem 1.1 (Ash and Gross (2012) Theorem 6.1). Let F be a polynomial
with integer coefficients of degree d, defining a non-singular projective curve C
by F(x, y) = 0. Then if d = 1 or 2, C(Q) is either empty or infinite. If d ≥ 4,
then C(Q) is always finite.

This theorem says that we know what happens if d = 1 or 2 or if d ≥ 4.
The study of elliptic curves is the study of curves whose defining polynomial
is of degree 3. The goal of this chapter will be to introduce elliptic curves,
and present how we consider points on elliptic curves.

Definition 1.1. An elliptic curve, E, is a non-empty, smooth variety V(F) where
deg F = 3.

Typically, an elliptic curve is given by an equation of the form

E : y2 = x3 + Ax + B,

where A and B are constant coefficients in some field, like Q. Even when
the curve does not take this form it is usually (though not always) possible
to use a change of variables to convert it to this form. The points on this
curve form act on each other under an operation that will be described in
the next section.



4 Elliptic Curves

1.1 The Operation

When we discuss elliptic curves, we primarily focus on the points on a
curve E over a field K, i.e. the points in the set

EF(K) = {(x, y) ∈ K× K|F(x, y) = 0}.

For this section, we will assume that E is non-singular over K; in other
words, we assume that at least one of the derivatives of E is non-zero in K.

For an elliptic curve E, there exists a point O that is always in E(K). O
is defined to be the point that all vertical lines intersect, which we refer to
as the point "at infinity". Since we know that our set is non-empty, we can
use two (not necessarily distinct) elements in E(K) to find another point in
E(K), using a new operation. This is done by intersecting E with a line, L,
which goes through the two elements. In order to define the operation on
E(K) we will need the simplified version of Bézout’s Theorem.

Theorem 1.2 (Bézout’s Theorem). For a cubic curve E and a line L, L ∩ E has
exactly three points counted over K with respect to multiplicity .

Let P and Q be in E(K). Then we define the operation P + Q as follows:

(1) Let L be the line connecting P and Q. If P = Q, then L is just the line
tangent to E at P.

Figure 1.1 Step 1 of the Operation for elliptic curves: Picking P and Q and
defining L.

(2) By Bézout’s Theorem, we know that L must intersect E at a third point.
Call this point R = P⊕Q.

(3) We then find P + Q by defining it to be R⊕O.

This concludes the explanation of the operation that acts on the points
in E(K).
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Figure 1.2 Step 2 of the Operation for elliptic curves: Identifying R = P⊕Q.

Figure 1.3 Step 3 of the Operation for elliptic curves: Identifying R′ = P + Q.

1.2 Counting Points

This operation is a great way to find points on a given elliptic curve when
we only know a one or two. In particular, we are interested in knowing the
total number of points on a curve E on a given finite field.

1.2.1 Finite Fields

A finite field is a field which contains only a finite number of elements. An
easy example of a finite field is, denoted Fp for a prime p. In the case where
p is prime, we can say that Fp ∼= Z/pZ. Fq where q = pr for some positive
integer r is also a finite field, and a demonstration of how these types of
finite fields look can be found in Dummit and Foote (2004).

Counting points on a finite field, Fp, is “easy", because there are only a
finite number of points that need to be checked. Over Fpr for r > 1 there
are only a finite number of points, but the arithmetic is tricky. It is possible
to avoid the tricky parts because the number of points in Fpr is related to
the number of points in Fp. This relation is described in Ash and Gross
(2012).
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Example 1.1. Consider the curve

E : y2 = x3 + 11x + 17.

We will look for points on E in the field F5. We first consider the table of squares
in F5.

y y2

0 0
1 1
2 4
3 4
4 1

Table 1.1 The squares in F5, which is also the left hand-side for E.

Next we consider the cubes and the right hand side of our defining equation for
E in F5.

x x3 x3 + x + 2
0 0 2
1 1 4
2 3 2
3 2 2
4 4 0

Table 1.2 The cubes in F5, and the right hand side for E

We note that the right-most columns in both Table 1.1 and Table 1.2 are the
left- and right-hand sides of our equation for E, respectively. Therefore, we can see
that there are 4 points in E(F5), and they are (1,2), (1,3), (4,0), and O.

Counting points on an elliptic curve is simple and relatively quick in
a finite field compared to the rationals, and an example of code used to
compute these points in Fp can be found in Appendix A.

1.2.2 Singular Points

There are sometimes bad points in an elliptic curve which are called singu-
lar points.
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Definition 1.2. A point P is a singular point on a curve C if there is no alge-
braically defined tangent line to C at P, in other words, all the derivatives of C at
P are equal to 0.

These points are handled by the operation given in Section 1.1 differ-
ently than non-singular points. The details for applying the operation to
these points can be found in Ash and Gross (2012). An elliptic curve, E, is
singular in a field K if E has a singular point. However, E will have at most
one singular point over a given field. For example, two elliptic curves that
are singular curves over R are shown in Figures 1.4 and 1.5. Furthermore,
when we count points in E(K), we do not include the singular point in our
total.

Figure 1.4 y2 = x3

Figure 1.5 y2 = x3 + x2
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1.2.3 Discriminant

A quick way to check if an elliptic curve, E, is singular is by looking at the
discriminant.

Definition 1.3. For a generalized elliptic curve

E : y2 = x3 + Ax + B,

the discriminant is defined to be

∆E = −16(4A3 + 27B2).

We say E is singular in a field K if ∆E = 0 in K.

Example 1.2. Consider the curve

E : y2 = x3 + 11x + 17.

The discriminant of E is

∆E = −16(4(11)3 + 27(17)2) = −210032 = −24(13127).

If we consider the fields of the form Fp where p is a prime, E is singular in F2 and
F13127.

We usually refer to primes p such that a curve E is singular in Fp as bad
primes.

1.3 The p-Defect

We expect that the number of points on an elliptic curve in Fp to be p + 1,
because the actual number of points on E(Fp) is generally very close to this
value, as will be shown. For non-singular elliptic curves, the p-defect is
defined to be

ap = p + 1− Np. (1.1)

For singular elliptic curves, the p-defect is

ap = p− Np. (1.2)

We still expect the number of points to bep + 1, but as we do not count the
singular points, we instead expect the number of points we actually count
to be p.
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Example 1.3. Returning to our curve in Example 1.1,

E : y2 = x3 + 11x + 17,

we now wish to calculate some of the ap’s. For this example, we will consider p = 5
and p = 2. Let’s start with p = 5. Since 5 - ∆E, we need to use (1.1). From the
code in Appendix A, we get that N5 = 4. Thus, we get that the 5-defect is

a5 = 5 + 1− 4 = 2.

If p = 2, then we use (1.2) to get that

a2 = 2− N2 = 2− 2 = 0.

We have now provided the method by which we calculate the p-defect.
The possible values for the p-defect are bounded based upon p.

Theorem 1.3 (Hasse’s Theorem). The number ap satisfies the inequalities

−2
√

p ≤ ap ≤ 2
√

p.

A proof of Hasse’s Theorem can be found in Silverman (2009). This the-
orem tells us that ap is relatively small compared to p. We will eventually
exploit the bound that Hasse places on the ap’s. Considering the ap’s pro-
vides us with better information about elliptic curves when we view them
in other contexts, one of which we will see in the next chapter.





Chapter 2

Dirichlet Series

What are now known as Dirichlet series were originally studied by Johann
Dirichlet. (See Ash and Gross (2012).) They are defined as follows:

Definition 2.1. Let {an} be a sequence of numbers. Then, a Dirichlet series is
an expression written in terms of a complex variable s of the form

D(s, {an}) =
∞

∑
n=1

an

ns .

Sometimes, {an} is given by a function f (n). Also, When we need to
refer to the real or complex components of s, we will write s = ω + it. For
this chapter, we view Dirichlet series as formal expressions; but later we
will consider them as complex variable functions. For this reason we need
to be concerned about the convergence of these series.

As usual, we say that if

lim
k→∞

k

∑
n=1

an

ns

exists and is equal to some J ∈ C, then the summation converges to J. For
the Dirichlet series that we will consider, the following theorems will be
useful for determining convergence.

Theorem 2.1. (Ash and Gross, 2012: Theorem 11.6) Suppose there exists some
constant K such that |an| < Knr for all n. Then the Dirichlet series ∑ ann−s

converges if ω > r + 1.

Example 2.1. Now consider an even simpler example, where an = 1 for all n.
Then, the Dirichlet series will be

∞

∑
n=1

1
ns .
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We can clearly see that there exists a constant K such that |an| = 1 < K. There-
fore, we use Theorem 2.1, where r = 0, to see that this Dirichlet series converges
for ω > 1.

Example 2.2. Consider the sequence {an} defined by an = n. Then, the Dirichlet
series looks like

∞

∑
n=1

n
ns .

Furthermore, we can easily see that |an| = n < Kn for any fixed constant K > 1.
For example, K = 2 works. Then, by Theorem 2.1 we get that the Dirichlet series
converges for ω > 2.

Dirichlet series are also useful, because they sometimes have a form
associated to them called an Euler product.

2.1 Euler Products

In this section, we will not consider Dirichlet series associated to any se-
quence {an}, but instead we will focus on a special case.

Definition 2.2. An arithmetic sequence is a sequence {an} such that

aman = amn

for m and n relatively prime, and a1 = 1.

If we were to consider the arithmetic sequence {an} to corresponding
to a function f (n), then f is referred to as an arithmetic function.

We can utilize the properties of an arithmetic sequence to write the as-
sociated Dirichlet series as an Euler product

Definition 2.3. An Euler product of a Dirichlet series is given by

D(s, {an}) = ∏
p prime

∞

∑
k=0

apk

pks .

We see that this definition utilizes the fact that any prime power is rel-
atively prime to the power of another prime. To demonstrate how this
works, we consider the examples of Dirichlet series that we have already
seen.
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Example 2.3. Consider the Dirichlet series from Example 2.1, where an = 1 for
all n. Then, we can write

∞

∑
n=1

1
ns =

(
1
1s +

1
2s +

1
22s + · · ·

)(
1
1s +

1
3s +

1
32s + · · ·

)
(

1
1s +

1
5s +

1
52s + · · ·

)
· · ·

because all integers n ≥ 1 have a unique prime factorization which shows up when
we multiply all the terms together. Therefore, we can say

∞

∑
n=1

1
ns = ∏

p prime

∞

∑
k=0

1
pks .

Example 2.4. We can make this a little more complicated by contemplating the
Dirichlet series from Example 2.2, where an = n for all n. This sequence utilizes
the Fundamental Theorem of Arithmetic, which gives us unique factorization in
N. We can write

∞

∑
n=1

n
ns =

(
1
1s +

2
2s +

22

22s + · · ·
)(

1
1s +

3
3s +

32

32s + · · ·
)

(
1
1s +

5
5s +

52

52s + · · ·
)
· · ·

by similar reasoning to Example 2.3. Thus, we have
∞

∑
n=1

n
ns = ∏

p prime

∞

∑
k=0

pk

pks .

In general, the Euler product would look like( a1

1s +
a2

2s +
a22

22s + · · ·
) ( a1

1s +
a3

3s +
a32

32s + · · ·
) ( a1

1s +
a5

5s +
a52

52s + · · ·
)
· · ·

but we usually just say that
∞

∑
n=1

an

ns = ∏
p prime

∞

∑
k=0

apk

pks .

We note that by how we’ve defined an Euler product that any Dirichlet
series based on an arithmetic sequence or arithmetic function has an Euler
product expansion. We can use Euler products to provide a simpler way
of viewing Dirichlet series, as we then only need to understand apk . In
particular, it can be easier to find a closed form of ∑ apk p−ks than to find a
closed form of ∑ ann−s.
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2.2 The Riemann Zeta-Function

We wish to now focus on a special case of a Dirichlet series, presented ini-
tially in Example 2.1, where an = 1 for all n. This special case is also referred
to as the Riemann zeta-function:

ζ(s) =
∞

∑
n=1

1
ns .

As demonstrated in Example 2.3, we can write ζ(s) as an Euler product

ζ(s) = ∏
p prime

∞

∑
k=0

1
pks .

We can define each of the terms in the product to be

ζp(s) =
∞

∑
k=0

1
pks .

We note that we can rewrite this using geometric series to say that

ζp(s) =
1

1− p−s .

Thus, the Riemann zeta-function can be written as

ζ(s) = ∏
p prime

1
1− p−s . (2.1)

We will be returning to the Riemann zeta-function throughout the rest
of this thesis. Various properties of this function will be useful as we study
other related functions. For now, we will relate other Dirichlet series to this
function as we will see in the next section.

2.3 Arithmetic Functions

We will expand our collection of examples by looking at Dirichlet series of
arithmetic sequences which which are given by arithmetic functions. For
the remainder of this section let n = pr1

1 · · · p
rk
k where the pi are the unique

prime factors.
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2.3.1 The Möbius Function

We begin with the Möbius function, µ(n). In general, the Mobius function
is defined by the formula

µ(n) =


1 n = 1
(−1)k ri = 1 for all i
0 otherwise

. (2.2)

For example,
µ(105) = µ(3)µ(5)µ(7) = (−1)3 = −1.

Proposition 2.1. Suppose that µ(n) is the Möbius function defined in (2.2).
Then,

D(s, µ) =
∞

∑
n=1

µ(n)
ns =

1
ζ(s)

,

which converges when ω > 1.

Proof. Initially, our Dirichlet series is
∞

∑
n=1

µ(n)
ns .

By changing this over to its Euler product form, we now have

∏
p

∞

∑
k=0

µ(pk)

pks .

We will note that by the definition of µ(n), we have µ(pk) = 0 for k > 2.
Therefore, we can say that

∞

∑
n=1

µ(n)
ns = ∏

p

1

∑
k=0

µ(pk)

pks .

By simply doing the summation, we can then conclude that
∞

∑
n=1

µ(n)
ns = ∏

p
(1− p−s).

Then, by (2.1)
∞

∑
n=1

µ(n)
ns =

1
ζ(s)

.

We will further note that since |µ(n)| ≤ 1 for all n, we can apply Theorem
2.1 to get that this series converges when ω > 1.
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2.3.2 Euler’s Totient Function

Next, we have Euler’s Totient function, which for a number n gives the
number of numbers less than n that are relatively prime to n. There is a
simple formula for the totient function given by

φ(n) =
k

∏
i=1

pri−1
i (pi − 1). (2.3)

For example,

φ(315) = φ(9)φ(5)φ(7) = (3(3− 1))(5− 1)(7− 1) = 144.

We wish to start by relating the values of φ(n) to the Möbius function.

Proposition 2.2. Let φ(n) be Euler’s Totient function defined by (2.3), and let
µ(n) be the Möbius function. Then,

φ(n) = ∑
d|n

dµ
(n

d

)
.

Proof. We can better define φ(n) as

φ(n) = n ∏
p|n

(
1− 1

p

)
= n−∑

p|n

n
p
+ ∑

pi ,pj|n
pi 6=pj

n
pi pj
− · · ·

The last version is the most important. Since µ(m) = 0 if m has a divisor
that is a square, we can say

n−∑
p|n

n
p
+ ∑

n
pi pj
− · · · = ∑

d|n
n

µ(d)
d

by the definition of µ(m). Then, because we can switch places of the d and
n
d , we get

n−∑
p|n

n
p
+ ∑

n
pi pj
− · · · = ∑

d|n
dµ
(n

d

)
.

Therefore, we can say that

φ(n) = ∑
d|n

dµ
(n

d

)
.
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It should also be noted that for sums across αn and βn, if

∑ γn =
(
∑ αn

) (
∑ βn

)
,

then
γn = ∑

d1d2=n
αd1 βd2 . (2.4)

Now we are ready to simplify the Dirichlet series associated to Euler’s
Totient function.

Proposition 2.3. Let φ(n) be Euler’s Totient function, then

D(s, φ) =
∞

∑
n=1

φ(n)
ns =

ζ(s− 1)
ζ(s)

,

which converges when ω > 2.

Proof. We start by looking at the right hand side of our equation, which
contains Riemann ζ-function. By (2.1) and Proposition 2.1, we have

ζ(s− 1)
ζ(s)

=

(
∑
n≥1

n
ns

)
∑
n≥1

µ(n)
n

.

Using Equation 2.4, we can then get that(
∑
n≥1

n
ns

)
∑
n≥1

µ(n)
n

= ∑
n≥1

(
1
ns ∑

d|n
dµ
(n

d

))
.

Then, by Proposition 2.2, we get that

∑
n≥1

(
1
ns ∑

d|n
dµ
(n

d

))
= ∑

n≥1

φ(n)
ns .

Therefore, we can conclude that

∞

∑
n=1

φ(n)
ns =

ζ(s− 1)
ζ(s)

.

We can see by inspection that |φ(n)| < n for all n. Therefore, by Theorem
2.1, we have that the series converges when ω > 2.
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2.3.3 The Sum of Divisors Function

Now, we look at the sum of divisors function σ(n), which can be written as

σ(n) = ∑
d|n

d. (2.5)

Proposition 2.4. Let σ(n) be the sum of divisors function defined by (2.5). Then,

D(s, σ) = ∑
n≥1

σ(n)
ns = ζ(s)ζ(s− 1),

which converges when σ > 3.

Proof. We begin by transforming our sum into its Euler product form to get

∑
n≥1

σ(n)
ns = ∏

p

(
∑
k≥1

σ(pk)

pks

)
.

We can further transform our sum by using the definition of σ(n) to form

∏
p

(
∑
k≥1

∑k
n=0 pn

pks

)
.

Multiplying by p−1
p−1 , we now have

∏
p

(
1

p− 1 ∑
k≥1

pk+1 − 1
pks

)
.

Using geometric series we can then get

∏
p

(
p

(p− 1)(1− p1−s)
− 1

(p− 1)(1− p−s)

)
.

After combining the two terms we are left with

∏
p

(
1

(1− p1−s)(1− p−s)

)
,

which by definition of the Riemann zeta-function is

ζ(s)ζ(s− 1).
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Thus,

∑
n≥1

σ(n)
ns = ζ(s)ζ(s− 1).

While not a strict upper bound, we can observe that |σ(n)| < n2 for all n.
Therefore, by Theorem 2.1, we have that the series converges when ω >
3.

2.3.4 The Sum of k-th Powers of Divisors Function

We can extend the previous proposition to a more generalized case by look-
ing at the sum of the k-th powers of the divisors σk(n), which is given by
the formula

σk(n) = ∑
d|n

dk. (2.6)

Proposition 2.5. Let σk(n) be defined by (2.6). Then,

D(s, σk) = ∑
n≥1

σk(n)
ns = ζ(s)ζ(s− k),

which converges when ω > k + 2.

Proof. By the definition of σk, we have

∑
n≥1

σk(n)
ns = ∑

n≥1

(
1
ns ∑

d|n
dk

)
.

Utilizing the idea from equation 2.4, we get(
∑
n≥1

1
ns

)(
∑
n≥1

nk

ns

)
.

This by definition is
ζ(s)ζ(s− k)

Therefore, we have that

∑
n≥1

σk(n)
ns = ζ(s)ζ(s− k).

Again, this is not a strict upper bound, but we can observe that |σk(n)| <
nk+1 for all n. Therefore by Theorem 2.1, we know that the series converges
when ω > k + 2.
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We can note that σ(n) is a special case of this final proposition when k =
1. We will return to these propositions later on when we discuss modular
forms associated to L-functions.

This covers several examples of Dirichlet series that we wish to explore
in this thesis. Primarily, we are interested in what other properties these
series have. These properties will be explained in depth in the next chapter.

2.4 Dirichlet Series Associated to Elliptic Curves

Before we move on to the net chapter, there is one more example of Diri-
chlet series that we wish to consider, the Dirichlet series which comes from
the p-defects of a fixed elliptic curve. Recall, from Chapter 1, that an elliptic
curve is a cubic curve typically of the form

E : y2 = x3 + Ax + B.

Also, recall the p-defect, ap, from Section 1.3. As the values of ap exist for
only when p is a prime, we want to be able to define the remaining an terms
when n is not prime. We can create a relationship between the values of the
an’s to the p-defects as follows:

(i) for n = 1 let a1 = 1,

(ii) if p is prime let ap be the p-defect,

(iii) if p is prime, k ≥ 2, and p is a good prime let apk = apk−1 ap − papk−2 ,
and

(iv) if m and n are relatively prime, then set amn = aman.

This gives us the Dirichlet series associated to the given elliptic curve:

∞

∑
n=1

an

ns .

Example 2.5. Consider the curve

E : y2 = x3 + 11x + 17.

The discriminant of E was previously calculated in Example 1.2 and is

∆E = −24 · 13127.
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Therefore, we know that 2 and 13127 are both bad primes.
In Example 1.3, we showed that

a2 = 2− 2 = 0.

Then based on (iv) in our rules, we then know that if m is odd, then

a2m = a2am = (0)am.

Also recall from Example 1.3, the 5-defect for E is a5 = 6− 4 = 2.
The remaining calculations will not be shown here to achieve the remaining

primes. Once those values are known, we can then use (iii) and (iv) to calculate
the remaining values for the an’s. Please refer to Table 2.1 to see the values for
the first 100 values of n. Note that the even numbers are not listed because their
corresponding values for an all equal 0, as previously explained.

n 1 3 5 7 9 11 13 15 17 19
an 1 3 2 2 6 0 2 6 8 -8
n 21 23 25 27 29 31 33 35 37 39
an 6 8 -1 9 4 2 0 4 4 6
n 41 43 45 47 49 51 53 55 57 59
an -10 4 12 2 -3 24 -6 0 -24 -4
n 61 63 65 67 69 71 73 75 77 79
an -15 12 4 2 24 1 4 -3 0 4
n 81 83 85 87 89 91 93 95 97 99
an 9 0 16 12 3 4 6 -16 18 0

Table 2.1 Table of an values for E

In other words, our Dirichlet series looks like

D(s, E) =
1
1s +

3
3s +

2
5s +

2
7s +

6
9s +

2
13s +

6
15s + · · ·

This concludes the type of Dirichlet series that we will be focusing on.
The examples presented here in Sections 2.2, 2.3, and 2.4 are all considered
to be L-functions which is what we will discuss in the next chapter.





Chapter 3

L-Functions

While Dirichlet series are interesting and provide a neat way to embed se-
quence of numbers, we instead want to be able to focus on a specific kind
of Dirichlet series, an L-function. L-functions are a large and growing field
of number theory.

3.1 The Basics of L-Functions

Let X = {an} be some arithmetic sequence. Then, we can define the L-
function as follows:

Definition 3.1. An L-function of an arithmetic sequence X is a complex func-
tion of s ∈ C given by

L(s, X) =
∞

∑
n=1

an

ns ,

which satisfies the following properties:

(i) L(s, X) has meromorphic continuation to C;

(ii) L(s, X) has a functional equation, i.e. L(s, X) = σ(s, X)L(k − s, X̂) for
some function σ, some k ∈ R and some related object X̂;

(iii) L(s, X) has an Euler product expansion, i.e. L(s, X) = ∏p Lp(s, X) for
some local factors Lp(s, X).

We can see L(s, X) is given by a Dirichlet series. In the future, when we
wish to talk about the series for a fixed s we will use "Dirichlet series," but
when we wish to discuss the complex function, we will use "L-function."

The properties given in the definition are the properties that we will
check for when showing that a Dirichlet series is an L-function.
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3.2 An Example of L-Functions: The Riemann Zeta-
Function

The Riemann zeta-function has helped motivate the study of L-functions.
It will demonstrated that the Riemann zeta-function has meromorphic con-
tinuation to all of C and that it possesses a functional equation in Chapter
5. For now we recall example 2.3, which tells us that

ζ(s) = ∏
p prime

1
1− p−s .

This gives us the Euler product expansion of the Riemann zeta-function.
The Riemann Zeta-Function is just one example of an L-function. The

rest of this thesis will be dedicated to showing how our Dirichlet series
that embed our arithmetic functions (featured in Section 2.3) are also L-
functions. The proofs for these Dirichlet series will be motivated by the
proofs for the Riemann zeta-function.



Chapter 4

Modular Forms

Another important mathematical object in studying number theory is mod-
ular forms. Modular forms provide us with the connection that we will
need to be able to be able to show that our Dirichlet series have meromor-
phic continuation to C as well as helping provide us with the proof of the
functional equation. This chapter will focus on defining modular forms so
that we can then use them in later chapters.

4.1 The Basics of Modular forms

We note that 2× 2 matrices act on z ∈ Ĥ (where H denotes the upper-half
complex plane and Ĥ denotes H ∪ {∞}) by linear fractional transforma-
tions, i.e. (

a b
c d

)
· z =

az + b
cz + d

.

The full modular group is SL2(Z). This group is generated by

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
.

The types of congruence subgroups that usually considered are:

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
, and

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
.

We use Γ to denote an arbitrary congruence subgroup of SL2(Z). For each
one of the groups Γ0(N) and Γ1(N) there are cusps.
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Definition 4.1. The cusps of Γ are the equivalence classes of points of Q∪ {i∞}
under the natural extension of the action of Γ on H. Locally all of the cusps “look
like" the cusp at ∞. For any Γ there are a finite number of cusps.

Now that we have all the basic definitions, we can define a modular
form.

Definition 4.2. A holomorphic modular form of (integral) weight k ≥ 0 for
Γ is a function f : H → C satisfying:

(i) [regularity] f is holomorphic onH;

(ii) [modularity] for each γ =

(
a b
c d

)
∈ Γ we have the modular transformation

law
f (γz) = (cz + d)k f (z);

(iii) [growth condition] f extends holomorphically to every cusp of Γ.

The regularity property gives us that the function is analytic and there-
fore has no poles.

The modularity property provides us with some interesting situations
when we consider Γ = SL2(Z). Recall, we said that S and T generate
SL2(Z). These two matrices give us a couple of interesting facts that must
be true for modular forms acting over SL2(Z). First,

f (z + 1) = f (Tz) = (1)k f (z) = f (z).

Second,

f
(
−1
z

)
= f (Sz) = (z)k f (z).

The growth condition of this definition is best explained by looking at
the cusp at ∞. For f to be holomorphic at the cusp ∞, we require that the
Laurent expansion in a variable q has coefficients such that an = 0 for all
n < 0, in other words

f (z) =
∞

∑
n=0

anqn =
∞

∑
n=0

ane2πinz.

We refer to this expansion as the q-series for a modular form. Furthermore,
there exists a similar expansion at any cusp of Γ. If we have that a0 = 0 for
a given q-series, then the modular form with that q-series is called a cusp
form.
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4.1.1 Vector Spaces

The set of modular forms of a fixed weight, k, for a specific congruence
subgroup, Γ, is denoted, Mk(Γ).

Proposition 4.1. The set Mk(Γ) is a complex vector space.

Proof. Let f , g ∈ Mk(Γ), and let a, b ∈ C. We wish to show that a f + bg ∈
Mk(Γ). To do this we have three conditions to check: regularity, modularity,
and growth conditions.

(i) We can see that the sum of holomorphic functions are still holomor-
phic, and that multiplying by a constant does not create any poles.
Therefore, a f + bg is holomorphic on H. Thus, a f + bg satisfies the
regularity condition.

(ii) Let γ =

(
a b
c d

)
∈ Γ. Then,

(a f + bg)(γz) = a f (γz) + bg(γz)

= a(cz + d)k f (z) + b(cz + d)kg(z)

= (cz + d)k(a f (z) + bg(z))

= (cz + d)k[(a f + bg)(z)].

Therefore, we have that a f + bg satisfies the modularity property.

(iii) a f + bg satisfies the growth conditions for the same reason that a f +
bg satisfies the regularity condition

Therefore, we have that a f + bg is a modular form. Furthermore, by testing
the modularity condition, we also confirmed that a f + bg is of weight k,
and works with Γ. Therefore, a f + bg ∈ Mk(Γ), as desired.

It is also possible to move between spaces when we have two modular
forms that are associated with the same congruence subgroup. For exam-
ple, let f ∈ Mk(Γ) and g ∈ M`(Γ). Then, we get that if γ ∈ Γ, then

f g(γz) = f (γz)g(γz)

= (cz + d)k f (z)(cz + d)`g(z)

= (cz + d)k+` f g(z).

We also know that multiplying two holomorphic functions together pro-
duces another holomorphic function. Therefore, we know that f g is also
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a modular form for the group Γ. However, f g does not have weight k or
weight l; instead, f g has weight k + ` as previously demonstrated. Note
that this explanation makes use of the fact that f and g are both utilizing
the same Γ.

Now we have provided an understanding for how modular forms in-
teract with each other.



Chapter 5

Meromorphic Continuation
and Functional Equations

We know from the previous chapter that given a cusp form, f , we get a
function which looks like ∑∞

n=1 cnqn. From Shimura (1994), a cusp form can
be related to an L-function analytically by an integral transform denoted
{A f }1 which is defined

{A f }(s) = φ(s) =
∫ ∞

0
f (ix)xs−1 dx.

The main goal of this chapter is to utilize this relationship to show that our
Dirichlet series have meromorphic continuation to all of C and a functional
equation.

5.1 L-Functions Associated to Cusp Forms

According to Apostol (1990), Hecke associated to every cusp form

f (z) =
∞

∑
n=1

ane2πinz

an L-function formed from the Fourier coefficients of the q-series. The L-
function is given by

L(s, f ) =
∞

∑
n=1

an

ns

1For those familiar with the Mellin Transform, {A f } is similar to the Mellin transform
but uses f (ix) rather than f (x). For more information, see Shimura (1994).
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which would converge absolutely for Re(s) > k
2 + 1, where k is the weight

of f .
This explanation is given more formally in the following theorem.

Theorem 5.1. Let f be a cusp form, then by applying our transformation A we
get

{A f }(s) =
∫ ∞

0
f (iy)ys−1 dy = (2π)−sΓ(s)D(s, f ).

This initial statement allows one to prove both of the remaining con-
cepts (meromorphic continuation and a functional equation) that we need
to show that our Dirichlet series are L-functions.

We will return to this theorem in section 5.3 after demonstrating most
of the motivational analogous results for ζ(s). Before proving this theo-
rem, we will demonstrate an analogous result featuring the Riemann Zeta-
function.

5.2 A Specific Example: the Riemann Zeta-Function

Recall that the Riemann Zeta-function is given by

ζ(s) =
∞

∑
n=1

1
ns .

From Garrett (2011), we learned that in Riemann’s proof to for the func-
tional equation of ζ(s), Riemann utilizes two functions that are well stud-
ied. The first of these is the Jacobi theta function which is given by

θ(z) = ∑
n∈Z

e−πin2z.

The second well known function is the Gamma function which is defined
by

Γ(s) =
∫ ∞

0
e−yys−1 dy.

The Gamma function provides us with an interesting property that is given
in the following lemma.

Lemma 5.1. Let ` be some constant number. Then,

Γ(s)
1
`s =

∫ ∞

0
e−`yys−1 dy.
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Proof. From our defining equation for Γ(s), if we use a change of variables
and replace y with `y for some constant `, we would get

Γ(s) =
∫ ∞

0
e−`y(`y)s−1 d`y

=
∫ ∞

0
e−`y`sys−1 dy

= `s
∫ ∞

0
e−`yys−1 dy.

We can rewrite this to get that

Γ(s)
1
`s =

∫ ∞

0
e−`yys−1 dy.

This lemma allows us to create the direct correspondence between one
of the terms that we see in a Dirichlet series and an integral. We will use
this lemma to help create an integral representation of ζ(s), and later to
create an integral representation of our other Dirichlet series.

Theorem 5.2. For Re(s) > 1,

π−s/2Γ(
s
2
)ζ(s) =

∫ ∞

0

θ(iy)− 1
2

y(s/2)−1 dy.

The result of this theorem provides us with an integral representation
of ζ with a correction term, π−s/2Γ( s

2 ).

Proof. For ease and to provide motivation, this proof will use t in place of
s/2 until it is necessary. We begin with the right hand side of our equation,
and rewrite it so that we expand the Jacobi theta function inside of it to get∫ ∞

0

θ(iy)− 1
2

yt−1 dy =
∫ ∞

0

1
2

(
−1 + ∑

n∈Z

e−πn2y

)
yt−1 dy.

The Jacobi theta function is a summation based on n2 rather than n. There-
fore, both the positive and negative value of a natural number contribute
the same amount. The only value that is not repeated twice occurs when
n = 0. In this case we note that e−π02y = 1, which cancels with the −1 in
front of the sum. Therefore, we now rewrite our integral as follows∫ ∞

0

1
2

(
−1 + ∑

n∈Z

e−πn2y

)
yt−1 dy =

∫ ∞

0

1
2

(
2 ∑

n∈N

e−πn2y

)
yt−1 dy
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=
∫ ∞

0

(
∑

n∈N

e−πn2y

)
yt−1 dy.

Since the integral of the sum is equal to the sum of integrals, we get that

∫ ∞

0

(
∑

n∈N

e−πn2y

)
yt−1 dy = ∑

n∈N

∫ ∞

0
e−πn2yyt−1 dy.

In Lemma 5.1, we learned a property of Γ(s) which we will now exploit
by noting that ` = πn2 and rewriting our expression as

∑
n∈N

∫ ∞

0
e−πn2yyt−1 dy = ∑

n∈N

Γ(t)π−t 1
n2t = Γ(t)π−t

∞

∑
n=1

1
n2t .

Using a substitution of variables by replacing t with s/2, we can then write
that

Γ(
s
2
)π−s/2

∞

∑
n=1

1
ns = π−s/2Γ(

s
2
)ζ(s),

which is the left hand side of our equation. Therefore, we reach our desired
result ∫ ∞

0

θ(iy)− 1
2

y(s/2)−1 dy = π−s/2Γ(
s
2
)ζ(s).

5.2.1 Meromorphic Continuation

One can now use Theorem 5.2 to show that ζ(s) has meromorphic contin-
uation to all of C and that ζ(s) has a functional equation. In this section we
will show that ζ has meromorphic continuation to all of C.

Theorem 5.3. The Riemann zeta-function, ζ is a meromorphic function with a
simple pole at 1.

Proof. Recall the result from Proposition 5.2,∫ ∞

0

θ(iy)− 1
2

y(s/2)−1 dy = π−s/2Γ(
s
2
)ζ(s).

We can then rewrite our equation to recall that∫ ∞

0

θ(iy)− 1
2

y(s/2)−1 dy =
∫ ∞

0

∞

∑
n=1

e−πn2yy(s/2)−1 dy.
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We then see that the series given on the right hand side decays rapidly as
y→ ∞.

We can split the integral such that we then have∫ 1

0

θ(iy)− 1
2

y(s/2)−1 dy +
∫ ∞

1

∞

∑
n=1

e−πn2yy(s/2)−1 dy.

The second of these two integrals clearly converges for all s ∈ C, and is
therefore an entire function, which we will henceforth refer to as F(s).

For the first integral, we wish to find a way to make it more accessible.
To do so, we utilize the Jacobi identity

θ(iy) = y−1/2θ(−1/iy).

First, we will rewrite our integral so that it goes from 1 to ∞∫ 1

0

θ(iy)− 1
2

y(s/2)−1 dy =
∫ ∞

1

θ(−1/iy)− 1
2

y−(s/2)−1 dy

since we can relate x ∈ [1, ∞) to an element in (0, 1] through x 7→ 1
x . We

now use the Jacobi identity to get∫ ∞

1

y1/2θ(iy)− 1
2

y−(s/2)−1 dy.

To simplify things, we add in y1/2/2− y1/2/2, to give us∫ ∞

1

(
y1/2 θ(iy)− 1

2
+

y1/2

2
− 1

2

)
y−(s/2)−1 dy.

We can separate the integral into three since the integral of the sum is the
sum of the integrals,∫ ∞

1

(
y(−(1+s)/2) θ(iy)− 1

2

)
dy +

∫ ∞

1

y−(1+s)/2

2
dy−

∫ ∞

1

y−1−(s/2)

2
dy.

Computing the last two integrals we get∫ ∞

1

(
y(3−s/2) θ(iy)− 1

2

)
dy +

1
s− 1

− 1
s

The integral in this sum clearly converges and produces an entire func-
tion for similar reasons to

∫ ∞
1 ∑∞

n=1 e−πn2yy(s/2)−1 dy. We will denote this
entire function as G(s).
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Thus we have that

π−s/2Γ(
s
2
)ζ(s) = F(s) + G(s) +

1
s− 1

− 1
s

.

The right hand side of this equation is a meromorphic function with
a simple pole at 1 and 0. Since π−s/2Γ(s/2) has no zeros, πs/2

Γ(s/2) is an en-
tire function. Thus, we get that ζ(s) extends to a meromorphic function in
the complex plane. Moreover, Γ(s/2) has simple poles at s = 0,−2,−4,...
which means that 1

Γ(s/2) has simple zeros at those same values of s. There-
fore, ζ(s) has a removable singularity at s = 0. In conclusion, we now have
that ζ is a meromorphic continuation with a simple pole at 1.

5.2.2 The Functional Equation

There is now only one thing left to show in order to conclude that the Rie-
mann zeta-function is an L-function; that ζ has a functional equation.

The proof of the functional equation is highly technical. A form of this
proof can be found in Milicic (2011).

Theorem 5.4. For any s ∈ C, ζ(s) is related to ζ(1− s) via the following equa-
tion:

ζ(s) = πs−12s sin
(πs

2

)
Γ(1− s)ζ(1− s).

This theorem now provides us with a way to calculate ζ(s) for Re(s) > 1
and Re(s) < 0. Figure 5.1 provides a visual for where ζ(s) is properly
defined. The non-shaded area in the figure is referred to as the critical strip.

We have now provided all the evidence needed to show that the Rie-
mann zeta-function is an L-function. We will further use Theorem 5.4 in
Section 5.5 to provide ourselves with a functional equation for our other
Dirichlet series from Section 2.3.

5.3 The Generalized Integral Representation

We now wish to generalize the concepts presented in the previous section.
To begin, we return to theorem 5.1 and prove the integral representation of
D(s, f ). As in Section 5.2, this theorem will subsequently be used to show
the meromorphic continuation to all of C.
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Re(s)

Re(s) = 1Im(s)

Figure 5.1 The domain of ζ(s).

Proof of Theorem 5.1. Consider a modular form given by

f (y) =
∞

∑
n=1

cne−2πiny.

Then, by applying our integral transform A to f (y), we get the left hand
side of our desired equation. We then have∫ ∞

0
f (iy)ys−1 dy =

∫ ∞

0

∞

∑
n=1

cne−2πnyys−1 dy.

Since the integral of the sum is equal to the sum of then integrals, we get
that ∫ ∞

0

∞

∑
n=1

cne−2πnyys−1 dy =
∞

∑
n=1

∫ ∞

0
cne−2πnyys−1 dy.

Since all the cn’s are constant we can pull them out of the integral, giving
us

∞

∑
n=1

cn

∫ ∞

0
e−2πnyys−1 dy.

Then, we know from Lemma 5.1 that

∞

∑
n=1

cn

∫ ∞

0
e−2πnyys−1 dy =

∞

∑
n=1

cn(2π)−s 1
ns Γ(s) = (2π)−sΓ(s)

∞

∑
n=1

cn

ns .
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Therefore, we get our desired result

(2π)−sΓ(s)
∞

∑
n=1

cn

ns =
∫ ∞

0
f (iy)ys−1 dy.

It should be noted, that for a given L-function there might not be a mod-
ular form that is easily accessible. This is demonstrated with the Riemann
Zeta-function where instead of using ζ(s), we needed to use ζ(2s). For
more notes on this, please see Section 6.1.

5.4 Meromorphic Continuation and Arithmetic Func-
tions

We now wish to use the result for Theorem 5.3 to show whether or not our
Dirichlet series from Section 2.3 have meromorphic continuation to all of
C.

5.4.1 The Möbius Function

Theorem 5.5. Let µ be the Möbius function. Then, D(s, µ) is not a meromorphic
function, as it possesses an infinite number of poles.

Proof. Recall Proposition 2.1, which tells us that

D(s, µ) =
1

ζ(s)
.

The trivial zeros of the Riemann zeta function occur when s is a negative
even integer, and the non-trivial zeros occur in the critical strip, where
0 < Re(s) < 1. While the non-trivial zeros are a part of the Riemann
Hypothesis, the number of trivial zeros is infinite since there is a bijection
between N and the negative even integers. We know that D(s, µ) must
have a pole everywhere that ζ(s) has a zero. Therefore, D(s, µ) has an infi-
nite number of poles, and thus is not a meromorphic function.

5.4.2 Euler’s Totient Function

Theorem 5.6. Let φ be Euler’s Totient function. Then, D(s, φ) is not a meromor-
phic function, as it possesses an infinite number of poles.
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Proof. Recall Proposition 2.3, which gives us that

D(s, φ) =
ζ(s− 1)

ζ(s)
.

Recall that the trivial zeros of the Riemann zeta function occur when s is a
negative even integer, and the non-trivial zeros occur in the critical strip,
where 0 < Re(s) < 1. Therefore, D(s, φ) has a pole everywhere ζ(s) is
zero, unless ζ(s− 1) is zero for the same value of s. This is never the case
since ζ(s − 1) is ζ(s) shifted to the right by 1, and we need a shift of an
even number as even numbers are distanced from each other by an even
number. Therefore, D(s, φ) has an infinite number of poles. In conclusion,
we get that D(s, φ) is not a meromorphic function.

5.4.3 The Sum of k-th Powers of Divisors

Since the sum of divisors function is a special case of the sum of k-th powers
of divisors, we have combined them to one section.

Theorem 5.7. σk be sum of k-th powers of divisors function. Then, if k is even
or k = 1, D(s, σk) is a meromorphic function with simple poles at 1 and k + 1. If
k > 1 is odd, then D(s, σk) is a meromorphic function with a simple pole at k + 1.

Proof. Recall Proposition 2.5, which gives us that

D(s, σk) = ζ(s)ζ(s− k).

We know from Theorem 5.3, that ζ(s) is a meromorphic function with a
simple pole at 1. Therefore, ζ(s− k) has a simple pole at k + 1. The trivial
zeros of the Riemann zeta function occur when s = −2,−4,−6, ..., and the
non-trivial zeros occur in the critical strip, where 0 < Re(s) < 1. Therefore,
if k > 1 is odd, we can get that 1− k is a negative even integer. Therefore,
when this is the case, D(s, σk) has a removable singularity at s = 1. Oth-
erwise, s = 1 is still a pole. Therefore, if k is even or k = 1, D(s, σk) is a
meromorphic function with simple poles at 1 and k + 1. If k > 1 is odd,
then D(s, σk) is a meromorphic function with a simple pole at k + 1.

This now concludes our demonstration about whether or not our Diri-
chlet series from Section 2.3 have meromorphic continuation.
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5.5 Functional Equations Related to Arithmetic Func-
tions

In this section, we will show the functional equations for our Dirichlet se-
ries from Section 2.3. We will make use of the relationship between our
Dirichlet series and the Riemann zeta-function, and exploit Theorem 5.4.

5.5.1 The Möbius Function

While D(s, µ) is not meromorphic, it does possess a functional equation.

Theorem 5.8. Let µ denote the Möbius function. Then,

D(s, µ) = π1−s2−s csc
(πs

2

) D(1− s, µ)

Γ(1− s)
.

Proof. Recall Proposition 2.1. We then see that

D(s, µ) =
1

ζ(s)

can be rewritten according to Theorem 5.4 to give us

1
πs−12s sin

(
πs
2

)
Γ(1− s)ζ(1− s)

= π1−s2−s csc
(πs

2

) 1
Γ(1− s)ζ(1− s)

.

We can rewrite this once more using the first proposition to get

π1−s2−s csc
(πs

2

) D(1− s, µ)

Γ(1− s)
.

Therefore, we can say that

D(s, µ) = π1−s2−s csc
(πs

2

) D(1− s, µ)

Γ(1− s)
.

As D(s, µ) converges for Re(s) > 1, we then have that D(s, µ) is defined
for Re(s) > 1 and Re(s) < 0. Figure 5.2 provides a visual for this domain.

Recall in Section 2.1, we can stated that any Dirichlet series given by
an arithmetic function has an Euler product expansion by how we have de-
fined an Euler product. However, since D(s, µ) does not have meromorphic
continuation, D(s, µ) is not an L-function.
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Re(s)

Re(s) = 1Im(s)

Figure 5.2 The domain of D(s, µ).

5.5.2 Euler’s Totient Function

Theorem 5.9. Let φ denote Euler’s Totient function. Then,

D(s, φ) =
sin
(

π(s−1)
2

)
Γ(2− s)D(1− s, φ)

2π sin(πs/2)Γ(1− s)
.

Proof. Recall Proposition 2.3. We then see that

D(s, φ) =
ζ(s− 1)

ζ(s)

can be rewritten according to Theorem 5.4 to give us

π(s−1)−12s−1 sin
(

π(s−1)
2

)
Γ(1− (s− 1))ζ(1− (s− 1))

πs−12s sin
(

πs
2

)
Γ(1− s)ζ(1− s)

which is equal to
sin
(

π(s−1)
2

)
Γ(2− s)ζ(2− s)

2π sin(πs/2)Γ(1− s)ζ(1− s)
.

We can rewrite this once more using the first proposition to get

sin
(

π(s−1)
2

)
Γ(2− s)D(1− s, φ)

2π sin(πs/2)Γ(1− s)
.
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Therefore, we can say that

D(s, φ) =
sin
(

π(s−1)
2

)
Γ(2− s)D(1− s, φ)

2π sin(πs/2)Γ(1− s)
.

As D(s, φ) converges for Re(s)21, we then have that D(s, φ) is defined
for Re(s) > 2 and Re(s) < −1. Figure 5.3 provides a visual for this domain.

Re(s)

Re(s) > 2Re(s) < −1
Im(s)

Figure 5.3 The domain of D(s, φ).

While we have now shown that D(s, φ) has a functional equation, D(s, φ)
does not have meromorphic continuation. Therefore, D(s, φ) is not an L-
function.

5.5.3 The Sum of k-th Powers of Divisors

Since the sum of divisors function is a special case of the sum of k-th powers
of divisors, we have combined them to one section.

Theorem 5.10. Let σk denote the sum of k-th powers of divisors function. Then,

D(s, σk) = π2s−(2+k)22s−k sin
(πs

2

)
Γ(1− s) sin

(
π(s− k)

2

)
Γ(k+ 1− s)D(1− s, σk).
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Proof. Recall Proposition 2.5. We then see that

D(s, σk) = ζ(s)ζ(s− k)

can be rewritten according to Theorem 5.4 to give us

π2s−(2+k)22s−k sin
(πs

2

)
Γ(1− s)ζ(1− s) sin

(
π(s− k)

2

)
Γ(k+ 1− s)ζ(k+ 1− s).

We can rewrite this using the first proposition to get

π2s−(2+k)22s−k sin
(πs

2

)
Γ(1− s) sin

(
π(s− k)

2

)
Γ(k + 1− s)D(1− s, σk).

Therefore, we can say that

D(s, σk) = π2s−(2+k)22s−k sin
(πs

2

)
Γ(1− s) sin

(
π(s− k)

2

)
Γ(k+ 1− s)D(1− s, σk).

As D(s, σk) converges for Re(s) > 1, we then have that D(s, σk) is de-
fined for Re(s) > k and Re(s) < 1− k. Figure 5.4 provides a visual for this
domain.

Re(s)

Re(s) > kRe(s) < 1− k
Im(s)

Figure 5.4 The domain of D(s, σk).
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Theorem 5.11. Let σk be the sum of k-th powers of divisors function. Then,
D(s, σk) is an L-function, which we denote L(s, σk).

This theorem follows immediately from Theorems 5.7 and 5.10 and the
fact that the sum of k-th powers of divisors is an arithmetic function.



Chapter 6

Applications and Further
Research

So far in this thesis, we have been able to show the for the sequences {an},
where an = 1 and an = σk(n), we get that that their respective Dirichlet
series yield L-functions. This chapter will focus on the potential extensions
that one can take after reading this research.

6.1 Modular Forms Associated to a Given L-function

In the beginning of Chapter 5, we mentioned that L-functions are related
to modular forms. For example, the Jacobi Theta Function in Section 5.2 is
a weight 1/2 modular form. However, the functions found for the other
Dirichlet series are not well studied. A potential extension of this project is
to figure out if they are modular forms, and if so what is their weight and
what congruence subgroup are they over.

6.2 Wiles’s Theorem

A way in which the information presented in this thesis has been used pre-
viously is in the following theorem.

Theorem 6.1 (Wiles’s Theorem). Every elliptic curve is modular.

This theorem gives us that every elliptic curve has a modular form. The
modular form given to an elliptic curve has a q-series whose coefficients
follow the same rules as those present in Section 2.4. Then, we would get
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that the Dirichlet series is related to the modular form through Theorem
5.1. Further study would then show that the Dirichlet series associated to
the elliptic curve is an L-function, whose Euler product expansion would
look like

L(s, E) =

(
∏
p∈S

1
1− ap p−s

)(
∏
p 6∈S

1
1− ap p−s + p1−2s

)
,

where S denotes the set of bad primes.

6.3 The Birch Swinnerton-Dyer Conjecture

The L-function associated to an elliptic curve is a highly studied object, be-
cause it is related to one the Clay Institute’s Millennium Prize Problems,
the Birch Swinnerton-Dyer Conjecture. Some other things that are of rele-
vance to this problem are that the points in E(Q) form a group under the
operation we described in Section 1.1, and the Taylor expansion of L(s, E)
at s = 1. The algebraic rank of an elliptic curve , E, refers to the rank of the
group E(Q). The analytic rank of E is the value of the exponent in the first
nonzero term in the Taylor expansion at s = 1.

Conjecture 6.1 (The weak Swinnerton-Dyer Conjecture). For any elliptic
curve E defined over Q, the algebraic rank of E and the analytic rank of E are
equal.

This conjecture has proved to hold for ranks 0 and 1, and other compu-
tational data suggests that there does not exist elliptic curves which have
any other rank. For more information, the reader should consider Ash and
Gross (2012) as great resource to begin exploration.

6.4 The Langlands Program

The Langlands Program is a web of conjectures that use other conjectures
currently present in the program to be able to create further conjectures.
The Birch Swinnerton-Dyer Conjecture is just one of many conjectures that
they assume to be true in order to keep developing the field of L-functions.
The Langlands Program is a resource for find other problems one might
find interesting in this area of mathematics.



Appendix A

Code for Computations

All code in this appendix is written for SAGE.

A.1 Counting Points

#Function: Numpts
#Goal: This function should give the number of points for the
# curve y^2 = x^3+Ax+B for a finite field with prime size.
#Input: p = the size of the finite field (prime numbers only)
# A = the A term in our curve
# B = the B term in our curve
def Numpts(p,A,B):
if (-16*(4*A^3+27*B^2))%p == 0:

pnts = 0;
else:
pnts = 1;

for i in range(0,p):
for j in range(0,p):

if (i^2%p) == ((j^3+A*j+B)%p):
pnts+=1;

return(pnts);
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