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Magnetic Levitation and Noncoalescence of Liquid Helium

M. A. Weilert, D. L. Whitaker, H. J. Maris, and G. M. Seidel
Department of Physics, Brown University, Providence, Rhode Island 02912

(Received 20 August 1996)

We describe experiments in which drops of liquid helium-4, as large as 2 cm in diameter, are
magnetically levitated. We have found that, when two or more drops are levitated in the same magnetic
trap, the drops often remain in a state of apparent contact without coalescing. It appears that this effect
is caused by the slow evaporation of liquid from the drops. [S0031-9007(96)01730-9]

PACS numbers: 85.25.Ly, 47.55.Dz, 67.90.+z, 75.20.Ck

The possibility of suspension of objects without mate-
rial support has been of interest for centuries. In the labo-
ratory a number of different levitation techniques have
been developed [1]. Objects have been levitated through
the action of acoustic or electromagnetic radiation, and
levitation can also be achieved through the use of suitable
static electric or magnetic fields. Here we report the mag-
netic levitation of large drops of liquid helium, in both
the superfluid and normal states. In these experiments we
have observed a surprising phenomenon: Levitated liquid
drops can, under certain circumstances, come into contact
but fail to coalesce.

A material of magnetic susceptibilityx placed in a
static magnetic field experiences a force per unit volume of
x=B2y2. Since helium is diamagnetic, it is repelled from
a region of high field. In order to levitate an object, the
magnitude ofjBsdBydzdj must exceedrgyjxj, wherer

is the density of the material. Using the known suscep-
tibility of helium, it then follows that the required value
of jBsdBydzdj is 20.7 T2 cm21 [2]. A variety of diamag-
netic materials, both solid and liquid, have been levitated
using room temperature Bitter magnets [3]. These mag-
nets, which can provide a value ofjBsdBydzdj sufficient to
levitate helium, are, however, difficult to use for cryogenic
applications due to vibration and the difficulties associated
with having to work within a small bore that is at room tem-
perature. Liquid hydrogen has been levitated using super-
conducting solenoids [4] which eliminate the difficulties
associated with Bitter magnet solenoids. However, hydro-
gen only requires a value ofjBsdBydzdj ­ 5 T2 cm21 to
cancel the forces of gravity on the drop. Recently, im-
provements in the performance of magnet wire have made
it possible to build a superconducting magnet that can pro-
vide the value ofjBsdBydzdj required to levitate helium.
We have used a superconducting solenoid especially de-
signed for this purpose in which the inner coils are shorter
than the outer windings. The inner coils of the magnet
are made of Nb3Sn wire and the outer windings are NbTi.
The overall height of the solenoid is 14 cm and the bore
is 3.2 cm. The largest value ofjBsdBydzdj that is achiev-
able with this magnet is22.5 T2 cm21 which is obtained
with a coil current of 118.7 A and an operating temperature
below 2.2 K.

To achieve stable levitation it is also necessary to have
lateral stability. For this the magnitude of the magnetic
field must increase for any horizontal displacement away
from the levitation point. Thus, if the stable levitation
point is to lie on the axis of the solenoid, the field
must increase with increasing distancer from the axis.
From Maxwell’s equations it is straightforward to show
that this condition will be satisfied provideds≠By≠zd2 .

2Bs≠2By≠z2d. Thus, the stability requirement can be
expressed entirely in terms of the field along the axis.

The potential energy per unit volume of helium in the
magnetic field is

Usr , zd ­ 2
x

2
B2sr , zd 1 rgz . (1)

The calculated contours of this potential energy function
at a current of 118 A are shown in Fig. 1.

To introduce helium into the magnetic trap we have
used a number of different techniques. It was possible
to form a helium “mist” in the experimental cell, either

FIG. 1. Contours of potential energy per unit volume for
liquid helium as a function of height from the center of the
magnet coils and distance from the axis. The arrows point
to regions of lower potential energy. Adjacent contours are
displaced by0.7 erg cm23. The top of the innermost coil is
located at a height ofz ­ 4 cm.
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by pumping on liquid contained in the lower part of the
cell so as to make it boil violently or by rapid cooling of
the experimental cell. Droplets in the mist agglomerate
to form a large drop within the trap. Another method
was to introduce liquid directly from a capillary which
ended at the edge of the trap. This technique had the
advantage that it was possible to introduce more than one
drop into the trap. We were able to maintain drops in the
trap indefinitely. The largest drops that could be levitated
had a diameter of approximately 2 cm.

The shape of a liquid-vapor interface in such a trap is
determined by Laplace’s equationks ­ Pliq, wherek is
the curvature of the surface,s is the surface tension,Pliq

is the pressure of the liquid, and the pressure of the gas
has, for the moment, been ignored. It follows that the
heightz of the surface at radiusr satisfies the relation

zr 1 z3
r 1 rzrr

r s1 1 z2
r d3y2

s ­
x

2
B2sr , zd 2 rgz 1 C , (2)

where C is a constant andzr and zrr are the first and
second derivatives ofz with respect tor. This equation
gives the surface shape for levitated drops and also
describes the distortion of the surface of bulk liquid in
the cell due to the magnetic potential. In the present
apparatus we are able to view the drops only from above,
i.e., looking down along the axis of the magnet. Thus we
cannot determine the shape of a levitated drop in order
to compare it to theory. However, Eq. (2) does make
definite predictions for how the form of the surface should
change as the cell is filled with liquid from the bottom.
When the cell was filled from the bottom, a column of
liquid rose up from the bottom of the cell, where the liquid
was in contact with the cell walls. Upon filling the cell
further, the top of the tower would expand radially and
come into contact with the cell walls. This would result
in an annular bubble located at the potential maximum on
the cell wall seen in Fig. 1 at a height of 3 cm. These
observations are qualitatively consistent with predictions
based on Eq. (2).

When two drops were introduced into the trap, it
was frequently observed that the drops would come
into contact with each other at the potential minimum,
but would not coalesce. Drops were even seen to
bounce off one another before coming into steady contact.
Noncoalescence was observed between two drops with
approximately the same size and between small and large
drops. Sometimes groups of three or more drops were
observed in apparent contact. For a current of 118 A, two
drops in contact were positioned side by side, i.e., with
their centers at approximately the same height. This is to
be expected given the potential energy contours shown in
Fig. 1. At lower magnet currents the drops stacked one
above the other, and this could be understood in terms
of the change in shape of the potential energy contours
for this current. Drops were observed in contact for as

FIG. 2. Photograph of two drops in contact. The drops are
viewed from above. The capillary which produced the two
drops can be seen in contact with the drop on the right.

long as 3 min before coalescence occurred. Figure 2 is a
photograph of two drops in contact.

As far as we could tell from our observations, two drops
of equal size made contact over an area that was planar.
The shape of the drops was similar to that of a liquid drop
resting on a flat surface that the liquid does not wet. Thus
the contact angle between the drop surface and the plane
of contact was180±. This implies that the total surface
energy per unit area within the contact plane was nearly
the same as the energy of two free drop surfaces.

We believe that the noncoalescence results from a
layer of vapor between the drops which keeps the liquid
surfaces from making direct contact with each other. But,
it appears that this vapor layer is maintained because
nonequilibrium conditions in the cell result in slow
evaporation from each drop. The phenomenon is similar
to the Leidenfrost effect [5] which is seen when water is
dropped onto a hot metal surface, or when liquid nitrogen
is spilled on the laboratory floor. Related observations
on organic liquids have been made by Derjaguin and
Prokhorov [6].

If an isolated spherical drop is placed in the cell and
the temperature lowered, evaporation will take place at
an equal rate everywhere on the surface of the drop. If
another drop is nearby the evaporated vapor will have to
escape from the region directly between the drops, and
there will be a build up of pressureDP in this region. The
two drops will approach each other until either contact is
made or the pressure rise is sufficient to prevent further
approach [Fig. 3(a)]. Assuming that the liquid and gas
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FIG. 3. (a) Schematic diagram of two drops which are pre-
vented from coalescing by the pressure build up of evaporated
vapor. The size of the gap between the drops is exaggerated.
(b) Calculated shape of the drops in the region over the part of
their surfaces which are nearly in contact. The solid line shows
the distance to either drop from the symmetry plane of the gap
as a function of radius from the center of the gap. The dotted
and dashed lines show the pressures in the liquid and the gas,
respectively, within the gap, relative to the ambient gas pres-
sure. Note that there is a large difference between the scales
for z andr axes.

are in equilibrium at the drop surface, there must be a
temperature riseDT ­ DPysdPydTdSVP . For drops of
a few mm radius the pressure that is required to balance
the force exerted by the trap is only a few dyne cm22.
At 2.5 K, for example, this corresponds to a temperature
changeDT of the order of only10 mK.

Two observations support this interpretation: First,
noncoalescence is seen only when the temperature of
the cell is drifting down. Second, noncoalescence was
never seen below the lambda point. As just mentioned,
a pressure gradient in the gas requires a nonuniform
temperature distribution within the drop which cannot
exist in the superfluid phase.

We have carried out detailed calculations of the gas
flow in the space between the drops and here briefly
summarize the results. For simplicity we consider two

drops of equal size whose centers lie along thez axis. We
first note that the required temperature variation (10mK)
is very small compared to the temperature gradients likely
to exist within the volume of a typical drop. If, for
example, at 2.5 K a drop of radius 3 mm is in the
cell and the cell pressure is decreasing at a rate of
1 torr min21 (a typical experimental value), the center of
the drop will be 2.7 mK hotter than the surface. Thus,
the 10mK variation in surface temperature causes only a
small variation in radial temperature gradient at the drop
surface. It follows that the mass of liquid evaporated per
unit areaÙJ will be almost uniform over the surface of the
drop. GivenÙJ, we can calculate the variation of the gap
2z between the drops as a function of the distancer from
the center of plane of contact. Assuming that the gas flow
is viscous and laminar, the pressure in the gasPgas must
vary with r according to

dPgas

dr
­ 2

2pr2 ÙJ
rgas

3hgas

8prz3
, (3)

where rgas and hgas are the gas density and viscosity,
respectively. The curvaturek of the liquid surface is
related to the liquid and gas pressures by

ks ­ Pliq 2 Pgas . (4)

For an assumed value ofÙJ corresponding to a particular
rate of change of temperature or pressure in the cell, and
for a given drop volume, these equations can be integrated
to find the width of the gap between the drops as a
function of r. For drops with a radius of 4.3 mm, when
initially undistorted, and an evaporation rate per unit area
at the surface ofÙJ ­ 1.6 3 1027 g cm22 s21, the results
are as shown in Fig. 3(b). The gap is found to be uniform
for small r , but found to have a “lip” near the edge of
the area of apparent contact. The distance of the closest
approach of the drops at the lip is found to be 1mm,
while at the center the gap is 7mm. The separation is
thus sufficiently large everywhere that Van der Waals
interactions can be neglected. In our experiments we were
unable to resolve any space between the drops, but our
resolution was limited to about 100mm.

There are a number of other hydrodynamic effects
which we have considered. These include Marangoni
flow arising from spatial variations in the surface tension,
natural convection in the liquid, and flow of the liquid
induced by the drag exerted by the gas flow. Under the
conditions of the present experiment, inclusion of these
effects appears to make only minor changes in the results
just obtained. A more interesting question concerns the
stability of the flow. The above analysis predicts that, as
long asÙJ is positive, there will always be noncoalescence,
i.e., the equations have a solution in which there is a finite
gap between the drops. This result is based, however,
on the assumption of axial symmetry and does not allow
for instabilities in which first contact is made between the
drops at a single point around the lip.
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