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Abstract

Reed’s conjecture is a proposed upper bound for the chromatic number of
a graph. Reed’s conjecture has already been proven for several families of
graphs. In this paper, I show how one of those families of graphs can be
extended to include additional graphs and also show that Reed’s conjecture
holds for a family of graphs known as cycle-power graphs, and also for
their complements.





Contents

Abstract iii

Acknowledgments xi

1 Introduction 1

2 Cycle-Power Graphs 7

3 Complements of Cycle-Power Graphs 13

4 Future Work 17

Bibliography 19





List of Figures

2.1 A graph with a perfect matching . . . . . . . . . . . . . . . . 8
2.2 The cycle-power graph C2

10. . . . . . . . . . . . . . . . . . . . 8





List of Tables

1.1 A summary of known values of ni(k) . . . . . . . . . . . . . . 3





Acknowledgments

Thank you to Prof. Pippenger, for your insight and your patience every
week.

Thank you to Peter Andrien for your help in developing the algorithm
to chain-color a cycle-power graph.





Chapter 1

Introduction

In a proper vertex coloring of a graph, each vertex is assigned a color such
that if two distinct vertices share an edge then they must be assigned differ-
ent colors. The chromatic number of a graph G, which is denoted by χ(G),
is the minimum number of colors required to properly color that graph.
A graph which has a chromatic number of k is said to be k-chromatic. In
this paper we will consider only simple, nonempty, finite, and undirected
graphs.

In 1998, Reed conjectured that for any graph G, χ(G) ≤
⌈

ω(G)+∆(G)+1
2

⌉
,

Reed (1998) where ω(G) and ∆(G) denote the size of a largest clique in G,
and the largest vertex degree in G respectively. Reed’s conjecture has been
shown to be true for

• graphs in which the complement is disconnected Rabern (2008).

• graphs satisfying χ > d n
2 e Rabern (2008).

• graphs satisfying χ > n+3−α
2 Rabern (2008).

• graphs satisfying ∆ ≥ n + 2− (α +
√

n + 5− α) Rabern (2008).

• graphs in which α = 2 and ∆ ≥ n − α − 4 Kohl and Schiermeyer
(2010).

• graphs that are triangle-free with ∆ ≥ 8(n−α)+118
21 Kohl and Schier-

meyer (2010).

Here, χ, ω, and ∆ are as defined above, n denotes the number of vertices in
the graph, and α denotes the size of a largest independent set in the graph.
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A Ki-free graph is one which contains no clique of size i. In particular, a
triangle-free graph is one which is K3-free.

The final item in the list above was proven in 2010 by Kohl and Schier-
meyer by using the following theorem:

Theorem 1. If ω(G) = 2 and k ≥ 2 then χ(G) ≤ (k− 1)
⌈

n−α
n(k)−1

⌉
+ 1 where

n(k) denotes the smallest possible number of vertices in a triangle-free graph that
is k-chromatic.

If the definition of n(k) is modified slightly, then we can extend this
theorem as follows:

Definition 2. Let ni(k) denote the fewest number of vertices possible in a Ki-free
graph that is k-chromatic where i is as small as possible.

Theorem 3. If G is a graph with clique number ω and k ≥ 2, then χ(G) ≤
1 + (k− 1)

⌈
n−α

nω+1(k)−1

⌉
.

Proof. Let k ≥ 2. We can partition the vertex set by choosing a maximum
independent set I in G and defining G1 = G − I. We can now partition
the vertex set of G1 into ` subsets V1, ..., V` where ` =

⌈
|V(G1)|

nω+1(k)−1

⌉
such that

|Vi| ≤ nω+1(k)− 1 for i = 1, ..., `.
Since the vertices of I can all be colored with the same color, we there-

fore have that χ(G) ≤ 1+∑`
i=1 χ(G[Vi]). Furthermore, since |Vi| ≤ nω+1(k)−

1, G[Vi] must be k− 1-colorable and so χ(G[Vi]) ≤ k− 1 for i = 1, ..., `. Thus,
we see that

χ(G) ≤ 1 + (k− 1)`

= 1 + (k− 1)
⌈

n− α

nω+1(k)− 1

⌉

Note that in the case that ω = 2, this theorem is equivalent to Theorem
1.

In order to apply this theorem to a wider class of graphs, it is necessary
to know some values of ni(k). Table 1.1 shows some known values of ni(k).

First note that if i > k then ni(k) = k. This is so because for any graph G,
ω(G) ≤ χ(G). Furthermore, equality holds only for a complete graph and
a complete graph on k vertices will be both k-chromatic and Ki-free. Jensen
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n3(1) = 1 n4(1) = 1 n5(1) = 1
n3(2) = 2 n4(2) = 2 n5(2) = 2

n3(3) = 5 Jensen and Toft (1995) n4(3) = 3 n5(3) = 3
n3(4) = 11 Jensen and Toft (1995) n4(4) = 6 n5(4) = 4
n3(5) = 22 Jensen and Toft (1995) n4(5) = 11 Jensen and Royle (2995) n5(5) = 7

Table 1.1 A summary of known values of ni(k)

and Toft (1995) and Jensen and Royle (2995) used an exhaustive computer
search to find the values of n3(3), n3(4), n3(5), and n4(5). The values of the
remaining entries in Table 1.1 are derived from Corollary 5:

Theorem 4. Let a be the smallest integer such that a graph G is Ka-free. If G is
a-chromatic then fewest number of vertices that G can have is a + 2. That is to say,
na(a) ≥ a + 2.

Proof. An a-chromatic graph must have at least a vertices. First note that
the only a-chromatic graph on a vertices is the complete graph on a vertices,
but this graph is not Ka-free.

Consider now a graph G on a + 1 vertices which is a-chromatic and Ka-
free, but does contain Ka−1. Let u and v be the two vertices in G which are
not a part of the subgraph Ka−1.

We first consider the case in which u and v are not adjacent. Then we
have that each of u and v can be adjacent to no more that a− 2 of the vertices
in Ka−1 because otherwise Ka will be a subgraph of G. Ka−1 requires a− 1
colors in order to be properly colored. The vertices u and v can each receive
the color of a vertex that they are not adajacent to, and such a vertex must
exist. Thus, we see that such a graph only requires a− 1 colors for a proper
coloring.

Now we consider the case in which u and v are adjacent. Let the sub-
graph Ka−1 be colored with the colors 1, 2, ..., a − 1. We can first assign u
the color i where i ∈ {1, 2, ..., a − 1}. This is possible since there must ex-
ist a vertex in Ka−1 which u is not adjacent to since otherwise we would
have Ka as a subgraph. If A denotes the neighborhood of u and B denotes
the neighborhood of v then we see that |A ∩ B| ≤ a− 3 because otherwise
we would have a Ka as a subgraph. Thus, we have that there are at most
a − 3 colors of the a − 1 colors used to color Ka−1 and u which v can not
receive. Since u and v are adjacent but u, v /∈ A ∩ B, there is possibly an
additional color which v may not receive, namely the color of u. Then we
have that there are at most a − 2 colors which v may not receive. Thus,
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there exists j ∈ {1, 2, ..., a − 1} such that v may receive the color j and G
will be properly colored. We now have that in each case, G can be properly
colored with a− 1 colors and so is not a-chromatic. This is a contradiction
and so we can now conclude that there is no such graph on a + 1 vertices
which is Ka-free and a-chromatic. Thus, the fewest number of vertices in
an a-chromatic graph that is Ka-free is at least a + 2.

We can show now that na(a) = a + 2 by providing a construction for a
graph on a + 2 vertices which is a-chromatic and Ka-free:

Corollary 5. The fewest number of vertices in an a-chromatic graph that is Ka-free
is a + 2. That is to say, na(a) = a + 2.

Proof. Consider joining C5 to Ka−3 for a ≥ 3. This means that each vertex
of C5 will be made adjacent to every vertex in Ka−3. Then we have that the
resulting graph is a-chromatic because we need a − 3 colors to properly
color Ka−3 and C5 is an odd cycle and so requires 3 colors. These three
colors for C5 can’t be the same as any of the colors used in Ka−3 because
every vertex of C5 is made adjacent to every vertex of Ka−3 in the join of
these two graphs. This indicates that na(a) ≤ a + 2. Since in Theorem 4 we
were able to show that na(a) ≥ a + 2, we can now conclude that na(a) =
a + 2.

Using the fact that na(a) = a + 2, we can now generalize Theorem 3 as
follows:

Corollary 6. If G is a Ka-free then χ(G) ≤ 1 + (a− 1)
⌈ n−α

a+1

⌉
.

Using Corollary 6, we can now show that Reed’s Conjecture is satisfied
for a slightly wider class of graphs:

Theorem 7. If G is Ka-free and ∆ ≥ 2(a−1)(n−α+a)
a+1 + 1 − a then χ(G) ≤⌈∆+ω+1

2

⌉
and so Reed’s Conjecture is satisfied.

Proof. First note that ∆ + ω + 1 = ∆ + a ≥ 2(a−1)(n−α+a)
a+1 + 1.

We then have that
⌈∆+ω+1

2

⌉
=
⌈∆+a

2

⌉
≥ (a− 1)

⌈ n−α
a+1

⌉
+ 1 ≥ χ(G) where

the final inequality in the line above comes from Corollary 6.

We now consider some properties of graphs on ni(k) vertices which are
Ki-free and k-chromatic.

Proposition 8. A graph G on ni(k) vertices that is Ki-free and k-chromatic is
vertex critical.
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Proof. Suppose to the contrary that if we remove a vertex from the graph
G, the chromatic number is unchanged. Then we have a graph which is Ki-
free and k-chromatic though with fewer than ni(k) vertices, contradicting
the minimality of ni(k).

Conjecture 9. In a graph G on ni(k) vertices that is Ki-free and k-chromatic,
there exists at least 1 color which only occurs once in a proper k-coloring of G.





Chapter 2

Cycle-Power Graphs

The Strong Perfect Graph Theorem Chudnovsky et al. (2006) states that if
G is a graph in which no induced subgraph is an odd hole or odd antihole,
then χ(G) = ω(G).

Definition 10. An odd hole is a cycle with an odd number of vertices greater than
or equal to 5 which contains no chords.

Definition 11. An odd antihole is the complement of an odd hole.

Applying the fact that ω(G) ≤ χ(G) ≤ ∆(G) + 1 for any graph G, we
therefore see that if G has no odd holes or odd antiholes, then

χ(G) = ω(G) ≤
⌈

ω(G) + ω(G)

2

⌉
≤
⌈

ω(G) + ∆(G) + 1
2

⌉
and so Reed’s conjecture is satisfied for such a graph. Thus, in order to find
a counterexample to Reed’s conjecture, one might consider a graph which
does contain either an odd hole or an odd antihole.

The following result regarding possible counterexamples to Reed’s con-
jecture was shown by Rabern (2008):

Theorem 12. If G is an even-order counterexample to Reed’s conjecture, then G
has a perfect matching.

A perfect matching in a graph on n vertices is a set of n
2 edges in which

no two edges share a common vertex. Figure 2.1 shows an example of a
graph with a perfect matching where the edges of the perfect matching
have been bolded.

A cycle-power graph is a member of a family of graphs in which some
graphs and their complements may contain a perfect matching and/or an
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Figure 2.1 A graph with a perfect matching

Figure 2.2 The cycle-power graph C2
10.

odd hole. Since having an odd hole or a perfect matching can possibly
cause a graph to hold as a counterexample to Reed’s conjecture, we will
now study the colorability of cycle-power graphs and their complements.

Definition 13. A cycle-power graph, denoted by Cd
n is one which can be con-

structed by placing n vertices around a circle and then making each vertex adjacent
to the d nearest vertices in each direction along the circle. That is to say that each
vertex v is made adjacent to the 2d other vertices that are nearest v.

Let’s first begin by noting some properties of Cd
n. In order for Cd

n to have
meaning as a graph, given a value for d, we must have that n > 2d+ 1. This
condition ensures that there will be enough vertices in the graph for each
vertex to be made adjacent with a total of 2d other distinct vertices. Note
that the graph Cd

2d+1 is equivalent to the complete graph on 2d + 1 vertices.
We will not consider a complete graph to be a cycle-power graph and so
we will require that a proper cycle-power graph must satisfy n > 2d + 1.
It can then be observed that for all proper cycle-power graphs, ∆(Cd

n) = 2d
since 2d is the degree of every vertex.
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Definition 14. Suppose that vertices v1, v2, v3..., vi are vertices in a cycle-power
graph such that if we travel in one direction along the largest cycle beginning at
vertex v1, the next vertex that we encounter is v2, then v3,..., then vi. Then we say
that v1, v2, v3..., vi are consecutive vertices.

Proposition 15. Any d + 1 consecutive vertices in a cycle-power graph form a
maximum clique.

Proof. Let those d+ 1 consecutive vertices be denoted by v1, v2, ..., vd+1. Ver-
tex v1 will be made adjacent to vertices v2, ..., vd+1 because those are the d
nearest vertices to v1 in one direction. For i, j ∈ {2, 3, ..., d + 1}, vi and vj
will be adjacent because they will be less and a distance of d apart. Since
this is true for any d + 1 consecutive vertices and no other vertex in a cycle-
power can be made adjacent to all d + 1 of these vertices, we therefore have
that any d + 1 consecutive vertices in a cycle-power graph form a maximal
clique.

Note that the size of a maximum clique in a cycle-power graph is the
same as the size of a maximal clique. Consider any set of d + 2 vertices in a
cycle-power graph. Let the distance between two vertices be given by the
fewest number of edges along the largest cycle between those two vertices.
Then we have that there must exist a pair of vertices which are a distance
of d + 1 apart. However, since a cycle power graph contains at least 2d + 2
vertices and each vertex can only be made adjacent to vertices which are no
more than a distance of d away from it, we therefore have that these two
vertices in our set of d + 2 must not be adjacent. Thus, we see that the size
of a maximum clique in our cycle-power graph is given by d + 1.

Now that we can describe the quantities ω(Cd
n) and ∆(Cd

n), we can de-
termine the upper bound that Reed’s conjecture suggests for a cycle-power
graph and show that this bound holds for the chromatic number of a cycle-
power graph.

Theorem 16. All cycle-power graphs satisfy Reed’s conjecture.

Proof. Since for Cd
n, we have that ω(Cd

n) = d + 1 and ∆(Cd
n) = 2d. In order

for Reed’s Conjecture to be satisfied for Cd
n, we must have that

χ(Cd
n) ≤

⌈
ω(Cd

n) + ∆(Cd
n) + 1

2

⌉
=

⌈
d + 1 + 2d + 1

2

⌉
=

⌈
d
2

⌉
+ d + 1.

Suppose that n mod (d+ 1) = x. Then we can color consecutive vertices
with the colors, 1, 2, ..., d+ 1+ d x

2 e. Then the next set of consecutive vertices
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along the largest cycle can be colored with the colors 1, 2, ..., d + 1 + b x
2 c.

Any remaining number of vertices will be divisible by d + 1 and those
vertices can be partitioned and properly colored by repeating the colors
1, 2, ...d + 1 until we run out of vertices to color. Since, 0 ≤ x ≤ d, at max-
imum, we will use d + 1 +

⌈
d
2

⌉
colors, which is the maximum allowable

number of colors that can be used in order for Reed’s Conjecture to hold.
This coloring scheme shows that it is possible to color any cycle-power
graph such that Reed’s conjecture will be satisfied.

Although Reed’s conjecture gives an upper bound for the chromatic
number of a graph, many cycle-power graphs can actually be colored with
far fewer colors than the bound which Reed’s conjecture suggests. As pre-
viously noted, any d + 1 consecutive vertices must each receive a unique
color. To work towards establishing a chromatic number for a cycle-power
graph, we can begin by establishing a general coloring scheme that can be
used. If the set {1, 2, 3, ..., d + 1 +

⌈
d
2

⌉
} denotes the set of colors that can

be used to color our cycle-power graph, then we can let the colors 1, 2, ..., i
denote a chain of colors. In order to color a cycle-power graph by covering
the vertices of the graph with chains, we must use chains of length d + 1
or greater. This is so because any consecutive d + 1 vertices must each re-
ceive a different color since any d+ 1 vertices form a clique. Such a coloring
will be referred to as a chain coloring and the chain chromatic number, or the
size of the largest chain required to properly chain-color our graph, will be
denoted by χ∗.

Proposition 17. Any cycle-power graph can be properly chain colored by using
chains of only 2 distinct, consecutive lengths.

Proof. Suppose that a cycle-power graph has been properly chain colored.
Note that this is possible and a construction of this is provided in the proof
Theorem 16. Then if we consider the length of a longest chain ` and the
length of a shortest chain s, then if ` + s is even, we can consider using
the vertices which these two chains cover to instead create two chains of
length `+s

2 . Otherwise, if `+ s is odd, then we can consider using the ver-
tices which these two chains cover to instead create one chain of length
`+s+1

2 and one of length `+s−1
2 . We can continue repeating this process for

the longest and shortest chains that are used. If ` ≥ s + 2, then each time
we do this, the number of chains of the longest length will either decrease
or remain the same. This process can be repeated until only two consecu-
tive chain lengths are used. Note that it is possible, to only use one chain



11

length to color some cycle-power graphs, but two distinct chain lengths is
the maximum that will be needed.

Since only two chain lengths, specifically two consecutive chain lengths,
are needed, a proper chain-coloring of a cycle-power graph can be realized
by finding a nonnegative linear combination of the the two chain lengths
which which is equal to the number of vertices in the cycle-power graph.
In other words, let j and j + 1 be the lengths of the two chain lengths
used. Note that d + 1 ≤ j < j + 1 ≤ d + 1 + d d

2e. We can now look for
the smallest value of j such that we can write n = aj + b(j + 1) for some
a, b ∈ {0, 1, 2, 3, ...}.

The following code (written in Python) is an algorithm that can be used
to determine the chromatic number of Cd

n. The function chromatic takes in
d and n, the two parameters of a cycle-power graph and return the number
of colors that are required to chain color Cd

n either by using chains of one
length of chains of two consecutive lengths. The value j will, in increasing
order, take on the integer values from d + 1 to d + 1 + d d

2e. We can then set
i equal to n mod j. Then n− i(j + 1) will be divisible by j. If n− i(j + 1) ≥ 0
then we can write n = aj + b(j + 1) where a and b are nonnegative inte-
gers. If i was equal to 0, then we only need to used chains of length j and so
χ∗(Cd

n) = j. If i 6= 0, then we will need to use chains of lengths j and j + 1
and so χ∗(Cd

n) = j + 1.

def chromatic(d,n):
m=int(d+2+ceil(d/float(2)))
j=d+1
while j in range(d+1,m):

i = n % j
if n-i*(j+1) >= 0:

if i==0:
return ‘chromatic number: ’ + str(j)

else:
return ‘chromatic number: ’ + str(j+1)

else:
j+=1





Chapter 3

Complements of Cycle-Power
Graphs

Like the cycle-power graph, the complement of an even-order cycle-power
graph will contain a perfect matching. Additionally, if a particular cycle-
power graph contains an odd hole, then the complement of that graph will
contain an odd anti-hole. As mentioned in Chapter 3, a graph satisfying
either of these criteria could possibly provide a counterexample to Reed’s
conjecture and for this reason, we will now turn our attention to the com-
plements of cycle-power graphs.

Since in a cycle-power graph, any d + 1 consecutive vertices form a
clique, in the complement of a cycle-power graph, we must have that any
d+ 1 consecutive vertices form an independent set. Given that ∆(Cd

n) = 2d,
we can see that ∆(Cd

n) = n − 2d − 1 We can also characterize the clique
number of a cycle-power complement:

Proposition 18. In the complement of a cycle-power graph on k(d + 1) + x ver-
tices where x ∈ {0, 1, 2, ..., d}, the size of a largest clique is given by k.

Proof. An independent set, or a set of vertices in which all vertices are pair-
wise nonadjacent, can be formed in a cycle power graph by partitioning
the set of vertices into sets of d + 1 consecutive vertices and possibly one
additional set with d vertices or fewer. Then we can take the ith vertex from
each each set of size d + 1 to form our independent set. It isn’t possible to
include any additional vertices and still maintain an independent set since
any d + 1 consecutive vertices are all pairwise adjacent and all vertices in
the one smaller set will be within a distance of less than d + 1 from at least
one vertex that is already in the set. Thus, to form the largest independent
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set possible, we can take one vertex, the ith vertex, from each of k sets of
size d + 1. This means then that ω(Cd

k(d+1)+x) = α(Cd
k(d+1)+x) = k.

Since in the complement of a cycle-power graph, any d + 1 consecutive
vertices form an independent set, we can color each of these vertices with
the same color. Under this coloring scheme, Cd

k(d+1)+x will be colored with
k colors if x = 0 and k + 1 colors if x ∈ {1, 2, ..., d}. We can show now that
these bounds will satisfy Reed’s conjecture:

Theorem 19. The complement of a cycle-power graph will satisfy Reed’s conjec-
ture.

Proof. If the complement of a cycle-power graph is to satisfy Reed’s conjec-
ture then we must have that

χ(Cd
k(d+1)) ≤

⌈
ω + ∆ + 1

2

⌉
=

⌈
k + (n− 2d− 1) + 1

2

⌉
=

⌈
k + n

2

⌉
− d

Let’s first suppose that x = 0. Then making the appropriate substitution
for n in the above expression, we see that if the complement of a cycle-
power graph in which (d+ 1)|n is to satisfy Reed’s conjecture then we must
have that

k ≤
⌈

k + k(d + 1)
2

⌉
− d =

⌈
k(d + 2)

2

⌉
− d.

Noting that a proper cycle-power graph on n vertices must satisfy n ≥
2(d + 1), we see that if Reed’s conjecture is to hold, then the above inequal-
ity needs to hold for all k ≥ 2 since the number of vertices in our cycle-
power complement graph is being expressed as n = k(d + 1) + x. We can
analyze this inequality with the following two cases:

Case I: At least one of d and k is even. Then our inequality above can be
simplified to k ≤ k(d+2)

2 − d. Further simplifying we see that this holds true
whenever k ≥ 2, as desired.

Case II: Both k and d are odd. Then our inequality above can be sim-
plified to k ≤ k(d+2)+1

2 − d. Further simplifying, we see that this holds true
whenever k ≥ 2− 1

d , as desired.
Since this inequality is valid in either case, we can now see that Reed’s

conjecture has been proven for the complement of a cycle-power graph
when (d + 1)|n.
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Let’s now consider the case in which (d + 1) - n. Then in order for the
complement of such a cycle-power graph to satisfy Reed’s conjecture, we
must have that

k + 1 ≤
⌈

k + k(d + 1) + x
2

⌉
− d =

⌈
k(d + 2) + x

2

⌉
− d.

We can minimize the right side of the above inequality by taking x = 1
which simplifies the expression to

k + 1 ≤
⌈

k(d + 2) + 1
2

⌉
− d.

Once again, we can get rid of the ceiling function by considering cases
for the parity of k and d,

Case I: Both k and d are odd. Then our inequality above can be simpli-
fied to k + 1 ≤ k(d+2)+1

2 d. Further simplifying, we see that this holds true
whenever k ≥ 2 + 1

d . Since k is odd in this case, we only need for k ≥ 3 and
so Reed’s conjecture is satisfied in this case.

Case II: At least one of k and d is even. Then our inquality above can
be simplified to k + 1 ≤ k(d+2)+2

2 − d. Further simplifying, we see that this
inequaltiy holds for whenever k ≥ 2, as desired.

Since Reed’s conjecture holds in both of these cases for the complement
of a cycle-power graph in which (d + 1) - n and has also been shown to
hold for the complement of a cycle-power graph when (d + 1)|n, we can
now conclude that Reed’s conjecture holds for the complements of all cycle-
power graphs.

We can now show that the bounds that Reed’s conjecture suggest for
cycle-power complement graphs actually give the chromatic number for
the complement of a cycle-power graph.

Theorem 20. If n = k(d + 1), then χ(Cd
n) = k. If n = k(d + 1) + x where

x ∈ {1, 2, , ..., d} then χ(Cd
n) = k + 1.

Proof. First note that for a graph G on n vertices with and independent
set of size α, n

α ≤ χ(G). This is so because each color class of an optimal
coloring of G will be an independent set. Since the complement of a cycle-
power graph on n = k(d + 1) vertices has an independence number of
d + 1, we therefore have that

k =
n
α
≤ χ(Cd

n).
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In theorem 19, we were also able to show that

χ(Cd
n) ≤ k.

Combining these two inequalities, we therefore see that χ(Cd
n) = k.

Similarly, we can see that for a cycle-power complement graph on n =
k(d + 1) + x vertices that

k +
x

d + 1
=

n
α
≤ χ(Cd

n)

Since the chromatic number of a graph must be an integer and x ∈
{1, 2, ..., d}, we thus have that k + 1 ≤ χ(Cd

n)
In theorem 19, we were also able to show that

χ(Cd
n) ≤ k + 1.

On combining these inequalities, we have that χ(Cd
n) = k + 1.



Chapter 4

Future Work

As we saw in Chapter 3, in 2008, Rabern was able to show that if a graph G
is to be a counterexample to Reed’s conjecture and has an even number of
vertices, then G must have a perfect matching. Additionally, Reed’s Conjec-
ture is satisfied for all perfect graphs, but it is not known whether a graph
which is not perfect will satisfy Reed’s Conjecture. On combining these
two conditions, one looking for a graph which holds as a counterexam-
ple to Reed’s conjecture might consider studying another family of graphs
which contains a perfect matching or an odd hole or antihole.
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