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Abstract

Imagine your local creamery administers a survey asking their patrons to
choose their five favorite ice cream flavors. Any data collected by this sur-
vey would be an example of partially ranked data, as the set of all possible
flavors is only ranked into subsets of the chosen flavors and the non-chosen
flavors. If the creamery asks you to help analyze this data, what approaches
could you take? One approach is to use the natural symmetries of the un-
derlying data space to decompose any data set into smaller parts that can
be more easily understood. In this work, I describe how to use permuta-
tion representations of the symmetric group to create and study efficient
algorithms that yield such decompositions.
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Chapter 1

Introduction

1.1 A Motivating Example

Imagine your local creamery administers a survey to its patrons, asking
them to choose their five favorite ice cream flavors. Once the creamery
tabulates the survey results, how can they best analyze this data? Simply
finding the most often chosen set of flavors is informative, but does not
really indicate much about the overall preferences of their consumers. For
example, merely looking at the tabulated survey results, it would be very
difficult to ascertain whether or not patrons were making flavor preferences
that truly depended on a group of flavors, or merely an individual favorite
flavor. In other words, imagine most patrons really just had one favorite
flavor and, when asked to choose their top five, they just picked their fa-
vorite and selected four more at random. On the other hand, perhaps most
patrons remember only their first favorite, second favorite, and third fa-
vorite, and choose the last two at random. These are both very different
consumer mentalities, but when looking at only the tabulated survey re-
sults, it would be difficult to determine which mindset best described the
consumer behavior.

Surveys like this, that ask participants to rank subsets of choices, as op-
posed to ranking all choices, reveal what is known as partially ranked data,
as opposed to fully ranked data. In particular, the creamery’s survey reveals
partially ranked data because any data gathered from this survey can only
rank the subset of chosen flavors above the not-chosen flavors. Analysis of
partially ranked data is particularly challenging because the lack of a full
ranking can mask various relationships between the data. One powerful
way to analyze systems of partially ranked data defined on a finite set of
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options, X, is to examine how the data behaves under the action of a group
G that acts on X. Group actions are particularly useful in data analysis
because they capture the abstract notion of symmetry of the set X. For ex-
ample, if X is our set of all possible choices of our five ice cream flavors,
then the action of the symmetric group Sn on this set will capture all of the
symmetries that exist in X by capturing every possible re-labeling of the
flavors of X. As there are no relations on the set X, every re-labeling is a
valid symmetry. On the other hand, if the set of options are vertices in a
graph, (perhaps X represents a computer network, and a company wishes
to analyze user traffic) then not all relabeling of vertices would respect the
structure of the graph (namely, the edges). For any finite collection of op-
tions X, we can analyze how a data set over X behaves under the action
of a group G that is a subgroup of the group of automorphisms of X. This
group action will then capture some of the symmetries of X, and analyz-
ing any data set in the context of this action will inform how it respects or
violates these symmetries. In particular, if we express our data set over X
as an element in a meaningful vector space (which will be our data space),
then we can extend the action of G on X to a representation of G over the
data space.

With this, we can use well established representation theoretic tech-
niques to express any data set as a collection of well understood parts in the
context of this group action. For the creamery’s survey, this means writing
our survey results in a manner that helps isolate first order effects, such as
when patrons only care about their one favorite flavor, from higher order
effects, such as when consumers truly care about groups of flavors. In fact,
these ideas are useful far beyond merely analyzing ice cream preferences.
Machine learning and artificial intelligence applications routinely employ
these types of analyses to condense highly interconnected data into sim-
pler, lower dimensional information. Generalized algebraic voting theory
and algebraic statistics also often use these methods. For some examples
of applications beyond what I look at here, or examples following different
methodologies than I do, consider Clausen and Baum (1993), Huang (2008),
Huang et al. (2008), Kondor et al. (2007), Daugherty et al. (2009), or Kondor
and Barbosa (2010).

Though the method of analysis described above is very useful, it has a
significant problem which hampers its applicability when analyzing rich,
high-dimensional data sets. Though there are many tools to find appropri-
ate data decompositions, the algorithmic complexity of transforming the
data from the natural language of the tabulated surveys into this new in-
terpretation can sometimes be quite slow. For real world applications, this
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complexity is of prime importance, as ideally this creamery would be able
to run statistics on its daily sales of multi-flavor orders, or at least be able
to analyze its static survey results with minimal computational effort. In
this work, I focus on novel transformation algorithms that are much faster
than the naïve, standard, mechanisms and I analyze the complexity of these
transformations from a theoretical standpoint. In particular, I examine par-
tially ordered data on the set of numbers from 1 through n, X = {1, . . . , n}
through the action of the symmetric group on n elements, Sn.

1.2 An Overview of the Mathematics

In order to understand the transformations and data analysis methods we
will devise, we first need to have a comprehensive understanding of the
acting group. In this case, we focus explicitly on G = Sn, which is a well
characterized, finite, non-abelian group. We will assume that the reader is
reasonably familiar with its definition and basic properties.

Beyond understanding the mechanics of our group Sn, we need to un-
derstand the space in which our data lives. In order to capture the notion
of arbitrary, partially ranked data on X = {1, . . . , n}, we will introduce
the mathematical notion of a tabloid, which is a collection of rows that are
filled with numbers. These tabloids will enable us to define our set of vot-
ing options, and from there, our data space, which, we shall see, can be
realized as a complex vector space. The action of Sn on X will then induce
a representation of Sn over this space, and this will drive our transforma-
tion algorithms, which will be realized as straightforward change of basis
algorithms. We will define these constructions explicitly and explore the
basic mechanics of our data space in Section 2.1.

To fully understand the representation of Sn over our data space, we
will examine its irreducible decomposition. To find the irreducible decom-
position of our data space, we must must first understand the irreducible
representations of Sn in general. These representations can be described ex-
plicitly through the use of standard Young tableaux. Using Young tableaux,
we can specify exactly the irreducible decomposition of any representation
of Sn over a tabloid space. This will be essential when establishing bounds
on the complexity of our algorithms. This subject is detailed in Section 2.2.

With this background information established, we will move to Chap-
ter 3, in which we will analyze the concept of a symmetry adapted basis,
which will be our mechanism for decomposing data sets into well under-
stood parts under the action of Sn. In this chapter, we will also detail the
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algorithms used in this work to transform from a basis natural for data
collection to a basis natural for data analysis. Finally, we will analyze the
results of this study in Chapter 4, and discuss the remaining problems and
open questions in Chapter 5.



Chapter 2

Background Information

2.1 The Tabloid Space CXλ

In order to analyze partially ranked data, like the ice cream data from our
creamery’s survey in Chapter 1, we will first investigate partially ranked
data in general over a set of options {1, . . . , n}. How can we capture these
partial rankings? We need a mathematical structure that separates {1, . . . , n}
into subsets (or choices) of a particular size, such that there is some consis-
tency in the ranking between these groups. We will capture this informa-
tion via tableaux and tabloids.

2.1.1 Tableaux and Tabloids

In order to properly define tableaux and tabloids, we must first recall the
notion of a composition of n.

Definition 2.1. Let n ∈ Z≥0. Then, η = (η1, . . . , ηr) is a composition of n,
denoted η � n, if ∑r

i=1 ηi = n and ηi ∈ Z≥0.

As an aside, note that compositions are occasionally defined as infinite
lists of non-negative integers, as opposed to finite lists, with the stipulation
that there exists some N ∈N such that after this index, every element of the
composition is zero. In other words, if η = (η1, η2, . . .), with ηi ∈ Z≥0, then
η is a composition if there exists N ∈N such that for all k ≥ N, ηk = 0. Our
definition is, in fact, equivalent to this definition for our purposes; simply
by setting η = (η1, . . . , ηN) gives a finite list with the requisite properties,
and the same sum as η.

With compositions of n, we can now define the primary structure that
we will use to capture partially ranked data.
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Definition 2.2. Let n ∈ Z≥0, η = (η1, . . . , ηr) � n. A Young diagram of shape
η is a collection of r left justified rows of boxes, such that the ith row has
length ηi. These diagrams are also called Ferrers diagrams, though then they
are typically illustrated with rows of dots instead of boxes.

Example 2.1. Let n = 7, and η = (1, 3, 3). Then, the Young diagram (left) or
Ferrers diagram (right) of shape η is given by

and •
• • •
• • •

How does this object help us categorize partially ranked data? Imagine
a restaurant has 7 entrés and asks its patrons to choose first their favorite
dish, then their next three top dishes, and finally their three least favorite
dishes (which are just those that remain). We see that any response can
be encoded by simply filling in the boxes of the Young diagram of shape η
with the numbers 1, . . . , 7 (corresponding to entré one through seven). This
filled diagram could then be read to catalog the favorite as the first ranked
element in the first row, the next top three as the second ranked subset in
the second row, and the remaining subset (also of size three) in the final
row.

To capitalize on the insight gained in the preceding example, we see that
any Young diagram can be seen to encode a particular survey for partially
ranked data. Filling the boxes in a Young diagram of shape η � n will
uniquely specify a ranking of a subset of size η1 as first, and a subset of size
η2 as second, and so on and so forth, and thus correspond to a response to
the given survey. To formalize this notion of a filled Young diagram, we
make the following definition.

Definition 2.3. Let n ∈ Z≥0, with η = (η1, . . . , ηr) � n. Then, a Young
tableaux of shape η is any filling of the Young diagram of shape η with the
numbers {1, . . . , n}. If t is a Young tableaux of shape η, we let ti be the set
of numbers in the ith row of t.

We see by the preceding argument that any Young tableaux t of shape
η corresponds to a ranking of subset t1 above t2, above t3, and so on. Note
that |ti| = ηi, as the ith row contains exactly ηi boxes, and each Young
tableaux is a filled with n distinct elements.
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Example 2.2. If η = (1, 3, 3), as in Example 2.1, then a possible Young
tableaux of shape η is

t = 4

3 7 6

5 2 1

.

We then see

t1 = {4}
t2 = {3, 7, 6}
t3 = {5, 2, 1}

If this records a response to the survey described in Example 2.1, then the
respondent has ranked the subsets {4}, {3, 7, 6}, and {5, 2, 1}, in that order.

Example 2.3. If our creamery has distributed a survey asking participants
to indicate their top five flavors, out of 12 total flavors, then this corre-
sponds to Young diagram (or Ferrers diagram) of shape

A given response could be

t = 10 1 5 9 7

8 11 3 2 4 6 12

with

t1 = {10, 1, 5, 9, 7}
t2 = {8, 11, 3, 2, 4, 6, 12}.

Note that here, our Young diagram has n = 12 total boxes, even though the
respondents are only asked to choose their favorite set of 5 flavors. This
is because the Young diagram, and any associated tableaux, captures all
ranked subsets. In this case, participants are really ranking two subsets: the
five chosen flavors, and everything else (in this case, the seven remaining
flavors).
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To reflect the fact that we are interested in the rankings of subsets, not
ordered lists, we introduce the notion of row equivalence of Young tableaux.

Definition 2.4. Two Young tableaux s, t are row equivalent, denoted ≡, if
they are of the same shape and si = ti for all applicable i.

Example 2.4. Consider the tableaux below:

t = 10 1 5 9 7

8 11 3 2 4 6 12

s = 1 10 7 5 9

2 11 3 8 6 4 12

p = 2 3 7 9 11

1 4 5 6 8 10 12
.

Then, s ≡ t but p 6≡ s, t.

It is clear that ≡ is indeed an equivalence relationship; as such, it is
natural to think of constructing equivalence classes of all tableaux under
≡. With this, we make the following definition.

Definition 2.5. An equivalence class of tableaux under ≡ is called a tabloid.
Tabloids are typically denoted by a representative of the associated equiv-
alence class, such that the entries in each row progress in increasing order
from left to right. They are typically drawn in the same way as tableaux,
but without the vertical lines between the columns.

Example 2.5. The associated tabloids to the tableaux in Example 2.4 are

t = s = 1 5 7 9 10

2 3 4 6 8 11 12
, p = 2 3 7 9 11

1 4 5 6 8 10 12
.

Throughout the rest of this work, we will consistently work with tabloids
rather than tableaux. Thus, equivalence under ≡ will be assumed, and we
will simply refer to tabloids by their associated representative tableaux, as
in Example 2.5.

With the notation built up thus far, we can now describe the results
of any survey in terms of tabloids shaped by compositions of n. These
tabloids enable us to see the rankings of various subsets: the first row of
the tabloid corresponds to the highest ranked subset, the second row to the
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second highest ranked subset, and so on. In any real survey, the ordering
of the rows of our tabloids, and thus the ordering of the ranked subsets, is
of singular importance (it is crucial to know if everyone loved these three
flavors or if everyone hated them). Mathematically speaking, the analysis
we will use will examine either case in exactly the same manner, so long as
the data presents the responses in a consistently ordered way. In this way,
the actual order of the rows in a given Young diagram does not matter for
the sake of the data analysis, despite the fact that it matters greatly for the
data collection. As such, we will make a simplifying assumption for much
of the remainder of the work that will greatly aid in the presentation of
several key theorems. To begin, recall the following definition.

Definition 2.6. Let n ∈ Z≥0. Then λ = (λ1, . . . , λr) is a partition of n,
denoted λ ` n, if λ is a composition of n and λi ≥ λi+1, for all applicable i.

We can see that every composition η � n, there corresponds a parti-
tion η ` n simply by rearranging the components of η to progress in non-
increasing order. With this in mind, we will presume throughout the rest
of this work that all data is presented via surveys that are characterized by
partitions of n, not compositions. As we mentioned before, this assumption
will greatly simplify the presentation of several results and, as we can sim-
ply rearrange the rows from any survey characterized by a composition η
into the partition η, this assumption can be made without loss of generality.

With this tabloid framework built up, let us clarify some notation we’ll
use throughout this work.

Notation. Given η = (η1, . . . , ηr) � n, we will use p(η) = {i|ηi > 0} to
describe the indices corresponding to nonzero parts of η, as a composition,
or, equivalently, the indices of rows of a Young diagram of shape η with
nonzero length. Further, let(

m
λ

)
=

(
m

λ1, . . . , λk

)
=

(
m
λ1

)(
m− λ1

λ2

)
· · ·
(

m− λ1 − · · · − λr−1

λk

)
.

To describe all tabloids of a given shape, we make the following defini-
tion.

Definition 2.7. Given λ ` n, define

Xλ = {Tabloids t|t is of shape λ}.

We can see that Xλ is a finite set; in particular, there are only as many
tabloids of shape λ as there are ways to fill a tabloid of shape λ with the
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numbers 1 through n. This is inherently a combinatorial question, and we
can answer it with the following theorem.

Proposition 2.1. Let λ ` n. Then,

|Xλ| =
(

n
λ

)
=

n!
λ!

Proof. Let λ = (λ1, . . . , λr). We see that in order to fill a tabloid of shape λ,
you must fill every row, and the order in filling that row does not matter.
Thus,

|Xλ| =
(

n
λ1, λ2, . . . , λr

)
=

(
n
λ

)
But, we can expand this algebraically and see

|Xλ| =
(

n
λ

)
=

(
n
λ1

)(
n− λ1

λ2

)
· · ·
(

n− λ1 − · · · − λr−1

λr

)
=

n!
λ1!(n− λ1)!

· (n− λ1)!
λ2!(n− λ1 − λ2)!

· · · (n− λ1 − · · · − λr−1)!
λr!

=
n!

λ1!λ2! · · · λr!

=
n!
λ!

,

as desired.

Note that this combinatorial argument can also be derived from the idea
that we could fill this tabloid each way that we could fill its cells, but then
we would have overcounted by exactly a factor of λi! for each row i, as the
order of numbers in each row does not matter.

We now define the primary space of interest in this work.

Definition 2.8. Let λ ` n, and define

CXλ = { f : Xλ → C}

to be the vector space of complex-valued functions over Xλ. It is clear,
given that CXλ is a space of functions, that under the standard pointwise
addition and multiplication of scalars CXλ is a complex vector space.
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This space will be our data space in the remainder of our investigations.
Why is this a sensible definition? Recall that our creamery is collecting
data via tabloids of shape η = (5, 7), which has associated partition η =
λ = (7, 5), as in Example 2.3. Then, we see that any survey response for
the creamery merely specifies a choice from the set of options Xλ. So, any
dataset, which is merely a tabulation of survey results, can be seen as a
function f : Xλ → Z≥0, simply by specifying that for all tabloids t, f (t)
yields the number of respondents who selected option t. In other words, if

t = 2 3 4 6 8 11 12

1 5 7 9 10
,

then f (t) yields the number of respondents who chose flavors 1, 5, 7, 9, and
10 to be their list of five favorites, and who did not choose any of the re-
maining flavors. As Z≥0 ⊂ C, we see that thus f ∈ CXλ. We choose to
extend the data space to all functions defined over C, as opposed to just
Z≥0 as C is a field (and, moreover, an algebraically closed field). In fact,
defining our data space over C instead of Z≥0 gives it the structure of a
complex vector space. This will allow us to realize our desired transfor-
mation of our dataset (or, data function in CXλ) as a literal change of basis
transformation.

Readers interested in exploring these topics further should consult Daugh-
erty et al. (2009), which greatly informed the material of this section. Addi-
tionally, the theory of tableaux and tabloids is far richer than the sliver pre-
sented here; readers interested in seeing other facets of this theory should
consult Fulton (1996).

2.1.2 Properties of CXλ

Proposition 2.2.
dim(CXλ) = |Xλ|.

Proof. To prove this, we will construct a basis for CXλ of size |Xλ|.
For each t ∈ Xλ, define δt : Xλ → C such that

δt : s 7→
{

1 if s = t
0 otherwise.

Let C = {δt|t ∈ Xλ}. Now, consider any function f ∈ CXλ. Using the stan-
dard, pointwise definitions of function addition and scalar multiplication,
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we see

f = ∑
t∈Xλ

f (t)δt

Thus, 〈C〉 = CXλ.
Next, let {αt ∈ C|t ∈ Xλ} be such that

∑
t∈Xλ

αtδt = 0

Then, we see that, for any s ∈ Xλ,

αs = ∑
t∈Xλ

αtδt(s)

=

(
∑

t∈Xλ

αtδt

)
(s)

= 0

Thus, C is linearly independent, and therefore a basis of CXλ. But, it is clear
that |C| = |Xλ|. Therefore, dim

(
CXλ

)
= |Xλ|, as desired.

We will refer to C as the delta basis. Note that there is a canonical bi-
jection between C and Xλ via δt ↔ t. As such, we can also view the delta
basis as consisting of literal tabloids in Xλ; then, linear combinations of
these basis vectors correspond to formal linear combinations of tabloids in
Xλ themselves. Under this restructuring, the space CXλ is realized as the
vector space given by all formal, complex linear combinations of tabloids
in Xλ. This definition leads naturally into the action of Sn on CXλ.

2.1.3 The Action of Sn

To define this action, let us first define the action of Sn over Xλ.

Definition 2.9. Let t ∈ Xλ and σ ∈ Sn. Then, we define σt = s, where
s is the tabloid resulting from permuting the positions of the entries of t
according to σ.

Example 2.6. For example, consider σ = (13)(25). Then

t = 1 2 3

4 5
and σt = 3 5 1

4 2
= 1 3 5

2 4
.
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Note that the action of Sn on Xλ has no conception of the order of the
rows of λ. Thus, our presumption that data will be presented via tabloids
defined by partitions of n is indeed justified. To describe this action further,
recall the following definition.

Definition 2.10. Let X be a finite set, G a finite group such that G acts on X.
The action of G on X is said to be transitive if, for all x, y ∈ X, there exists a
g ∈ G such that gx = y. The stabilizer of an element x0 ∈ X is the set

stab(x0) = {g ∈ G|gx0 = x0}.

Recall that stab(x) is a subgroup of G for all x ∈ X. The orbit of an element
x0 ∈ X is the set

Gx0 = {x ∈ X|∃g ∈ G such that gx0 = x}.

The set of all orbits of G is denoted X/G.

We see that for any λ ` n, Sn acts transitively on the set Xλ—as Sn
contains all possible permutations of 1, . . . , n, it can certainly permute these
equivalence classes of arrangements of boxes filled with 1, . . . , n. With this
in mind, consider the following theorem regarding transitive group actions.

Theorem 2.1. Let G be a finite group, X a finite set on which G acts transitively.
Then, their exists a bijection of sets between X and G/ stab(x0) that respects the
action of G, for all x0 ∈ X (with the standard action of G on G/ stab(x0)).

Proof. As G acts transitively on X, for each y ∈ X, there exists a gy ∈ G
such that gyx0 = y. Consider the map of sets ϕ : X → G/ stab(x0), defined
by

ϕ(y) = gy stab(x0).

We will prove this map is a bijection that respects the action of the group.
Let us first show that it is injective. Imagine ϕ(y) = ϕ(x) for x, y ∈ X.

This implies that the cosets gy stab(x0) and gx stab(x0) are the same. But,
then g−1

x gy ∈ stab(x0), so (g−1
x gy)x0 = x0. Therefore,

(g−1
x gy)x0 = g−1

x (gyx0)

= g−1
x y

= x0.

Thus, y = gxx0 = x, which implies that ϕ is injective.
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We now show that ϕ is surjective. Let h stab(x0) be a coset of stab(x0)
in G. Then, hx0 = x, for some x ∈ X. Consider the element h−1gx ∈
G. We see that h−1gx(x0) = h−1(x) = x0, by the definition of x. Thus,
h−1gx ∈ stab(x0), so h and gx are in the same coset of stab(x0). Therefore,
ϕ(x) = gx stab(x0) = h stab(x0), which implies that ϕ is surjective, and
thus a bijection of sets.

To see that ϕ respects the action of the group, let h ∈ G. Then,

ϕ(hx) = ghx stab(x0)

= hgx stab(x0) as hgx(x0) = hx = ghx(x0)

= hϕ(x),

as desired. Thus, ϕ is a bijection of sets between X and G/ stab(x0) respect-
ing the action of the group.

This theorem is useful because it enables one to view the action of a
finite group G on a set as the action of G on cosets of G. This can greatly
simplify the representation theory of the resulting permutation module.
Though we won’t explore this connection extensively in this work, it pri-
marily relates to the the symmetric group through the following example.

Example 2.7. Let λ = (λ1, . . . , λr) ` n and t a tabloid of shape λ, with, as
defined previously, associated row sets t1, . . . , tr. Then, we can see that the
stabilizer of t under the action of Sn is precisely the subgroup containing
all permutations that only permute the row sets of t. Why? Under our row
equivalence relationship, any permutation of this form will only adjust our
equivalence class representative and not meaningfully change the tabloid
t. On the other hand, we see that any permutation that permutes anything
between the row sets of t will not fix t, as changing the row sets will produce
an inequivalent tabloid. Thus,

stab(t) ∼= St1 × St2 × · · · × Str ,

where we use notation Sti to denote the group of permutations of the set ti.
But, Sti is isomorphic to the symmetric group S|ti |, so we can realize this as

stab(t) ∼= Sλ1 × · · · × Sλr ,

Thus, by the preceding theorem

Xλ ∼= Sn/(Sλ1 × · · · × Sλr),

where the isomorphism implied above respects the action of Sn.
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We can extend the action of Sn on tabloids shaped by partitions of n to
an action defined on tabloids shaped by compositions of n as well. Recall
that for any composition η � n, there exists a partition η̄ ` n, simply by
reordering η in non-increasing order. Furthermore, we see that the action
of Sn over a tabloid t ∈ Xλ for some partition λ doesn’t ever rely on the
rows of t having any particular ordering. Thus, for some composition η,
we can define the action on a tabloid t of shape η simply by permuting t to
have shape η̄ in the canonical way and using our action defined over Xη̄ ,
then permuting back to η. To that end, we will routinely use notation CXη

to mean, more technically, CXη̄ .

Definition 2.11. To extend the action of Sn on Xλ to one on CXλ, let v =

∑ αiti ∈ CXλ. Then, define

σv = ∑ αi (σti) .

In order to realize the power of this action, recall the following defini-
tions.

Definition 2.12. Let G be a finite group. Then,

FG = { f : G → F} = {∑
g∈G

αgG|αg ∈ F}

is the group algebra over F. Recall that the group algebra is a ring, under the
operation convolution, such that

( f ∗ g)(x) = ∑
y∈G

f (y)g(y−1x).

We typically care about the complex group algebra, CG.

Definition 2.13. Let G be a finite group. A pair (ρ, V) is a representation of
G if V is a vector space over field F and ρ : G → GL(V) is a group homo-
morphism. By encoding V with respect to a given basis, ρ, also encoded
with respect to the basis, becomes a map from G to a group of invertible
matrices.

The representation (ρ, V) can be extended to an algebra representation,
which is a linear transformation from FG to L(V), formed by extending ρ
linearly, using the elements of G as a basis for FG (much like the delta basis
for CXλ).

Definition 2.14. Let R be a ring with 1. An abelian group M is a left R-
module if R has an action on M that, for all m, n ∈ M and r, s ∈ R, satisfies
the properties
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1. r(m + n) = rm + rn

2. (r + s)m = rm + sm

3. (rs)m = r(sm)

4. 1m = m.

If M is a left R-module, it is often denoted R M.

Note that CG contains an isomorphic “copy” of the complex numbers
by simply scaling the identity in G. Thus, any CG module M can be thought
of as a complex vector space, as it is an abelian group (M) with a defined
notion of action by complex scalars (via the action of CG).

Recall that for any representation (ρ, V) of a group G, there exists a
corresponding CG module, given by CGV, with action defined by, for x ∈
CG and v ∈ V, xv = ρ(x)v. Similarly, for any CG module M, we can define
a representation (ρ, M), where we realize M as a complex valued vector
space, and ρ(g) : m 7→ gm for all g ∈ G. Thus, these perspectives are
interchangeable—every representation of G corresponds exactly to a CG
module, and vice-versa.

With these definitions in mind, we prove the following proposition.

Proposition 2.3. If X is a finite set, and G a finite group that acts on X, then
CX = { f : X → C} is a left CG module. In this case, CG CX is called a permu-
tation module, as the action of any element g ∈ G on CX is defined in terms of
permuting the basis vectors of CX.

Proof. This proof is immediate—via the analog to the delta basis C = {δx|x ∈
X}, CX can be seen as a vector space of formal, complex linear combina-
tions of elements in X. The action of G on X therefore defines a representa-
tion of G over CX defined by permuting the basis elements in C. Therefore,
it also defines a left-CG module, as desired.

Corollary. The action of Sn over Xλ gives CXλ the structure of a CSn permutation
module, and defines an associated representation of Sn, (Θλ, CXλ), such that for
all σ ∈ Sn and v ∈ CXλ,

(Θλ(σ)) v = σv.

By restriction, it also thus defines a representation of the subgroups Sj ≤ Sn over
CXλ. Note that if the context is clear, we will often drop the λ in the notation Θλ.
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2.1.4 Orbits of Sn−1 ≤ Sn

A key facet of our eventual algorithm to analyze partially ranked data will
be our ability to act on the space CXλ with elements in Sj ≤ Sn, in addition
to to Sn itself. As such, something especially relevant to note about this
action is the structure of the orbits of Sj ≤ Sn over Xλ. Though it is clear
that Sn acts transitively on Xλ, Sj permits many orbits over this space. To
describe these orbits, we use the following notation.

Definition 2.15. Let λ = (λ1, . . . , λr) ` n. Define 1i
n to be the vector of size

n with a 1 at the ith position, and 0s everywhere else. In particular,

1i
n = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

).

Often, if the context is clear, we will simply use 1i. Then, define

λi = λ− 1i,

using standard component wise subtraction. Note that λi is only a mean-
ingful object in this context if λi > 0; as such, we enforce the stipulation that
λi is only defined if i ∈ p(λ), which we recall is the set p(λ) = {i|λi > 0},
corresponding to the set of rows with positive length in a Young diagram
of shape λ. As we will prove in a moment, λi corresponds to the ith orbit
of Sn−1 over CXλ.

Example 2.8. Let n = 7, λ = (3, 3, 1) ` n. This corresponds to the Young
diagram

.

Then,

λ1 = λ− 11 = (2, 3, 1)

λ2 = λ− 12 = (3, 2, 1)

λ3 = λ− 13 = (3, 3, 0)

Note that λi is a composition of 6 = n − 1 for all applicable i, but is no
longer a partition of n− 1 for λ2, in particular. The λi have the associated
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Young diagrams,

λ1 : , λ2 : , λ3 : .

How can we see that these correspond to the orbits of Sn−1 over Xλ? We
see that Sn−1 can never move the number n, so any two tabloids with n in a
different row must be in different orbits. Simultaneously, Sn−1 can permute
the numbers 1, . . . , n− 1 arbitrarily, so any two tabloids in Xλ with n in the
same row must be in the same orbit. Therefore, the orbits of Sn−1 in Xλ are
describable exactly by which row n is in. For λ, we have,

Orbit 1: n , Orbit 2:
n

, Orbit 3:

n

.

We can see that, by simply ignoring the fixed box containing n, and only
examining the gray boxes remaining, we arrive at orbits characterized by
Young diagrams of shape λ1, λ2, and λ3. We will formalize and extend this
argument in Theorem 2.2, but this intuition alone illustrates a use for the
λi. As i specifies a row of λ, we can envision that λi catalogs the orbit of
Sn−1 such that n is in row i. Then, the associated Young diagram for λi

details the shape of the composition that describes the set of tabloids in this
particular orbit and the action of Sn−1 on those tabloids.

In order to describe orbits of all Sj ≤ Sn, we need a bit more notation.

Definition 2.16. As the orbits of Sj nest in a natural, recursive structure,
we expand the definition of λi to allow for a multi-index exponent (recall a
multi-index is just a list of indices). For some multi-index l = l1, l2, . . . , lk,
define

λl = λl1,...,lk−1 − 1k.

Just as in the case of the definition of λi, this is only sensible if each sub-
sequent index in l corresponds to a row with positive length. As such,
we enforce stipulation that λl is defined if and only if l1 ∈ p(λ), and
li ∈ p

(
λl1,...,li−1

)
for all i > 1. If l satisfies this property, l is said to be a

valid multi-index for shape λ. For ease of notation, define

λ∗ = {λi|i ∈ p(λ)} = {λi|λi > 0}
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Similarly,
λ`∗ = {λ`,i|i ∈ p(λ`)}.

We also allow nesting, so

λ∗
k
= {λl |l is a valid multi-index of length k for shape λ}.

Example 2.9. Note that we can realize the definition of λ∗
k

another way, via

λ∗
k
= {η � n− k | η is obtainable by decrementing parts of λ} .

This equality holds because decrementing a sequence of k parts of λ (or,
equivalently, removing a sequence of boxes from the Young diagram of
shape λ) results in a composition of n − k that can be obtained by decre-
menting parts of λ. This suggests an alternative framework for viewing
these λ∗

k
and, more generally, the orbits of Sj ≤ Sn on CXλ. We see that

the relation “is obtainable by decrementing parts of” defines a partially or-
dered set on all compositions. In particular, if η, ν are compositions, then
we say that η ≤ ν if and only if η can be obtained by decreeing parts of
ν. Recall that we can think of compositions as infinite lists that terminate
with an infinite sequence of zeros; under this framework, η ≤ ν if and only
if ηi ≤ νi for all i ∈ N. It can be shown that this forms a graded poset,
with minimal element 0 = (0, 0, . . .). Then, the set of all compositions ob-
tainable by removing boxes from λ is given by [0, λ], and the jth level of
this subset of the poset, denoted [0, λ]j, is equal to the set λ∗

n−j
. We will not

use this framework in this work, instead relying on the equivalent defini-
tion in terms of λl1,...,lk , but it provides another way to analyze the orbits of
Sj ≤ Sn.

Example 2.10. If, again, n = 7 and λ = (3, 3, 1), then

λ1,2,2 = λ1,2 − 12

= λ1 − 12 − 12

= λ− 11 − 12 − 12

= (2, 1, 1),

and

λ∗ = {λ1, λ2, λ3}
= {(2, 3, 1), (3, 2, 1), (3, 3, 0)},

λ∗
2
= {λ1,1, λ1,2, λ1,3, λ2,1, λ2,2, λ2,3, λ3,1, λ3,2}
= {(1, 3, 1), (2, 2, 1), (2, 3, 0), (2, 2, 1), (3, 1, 1), (3, 2, 0), (2, 3, 0), (3, 2, 0)}.
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With this notation, let us examine the orbits of Sj ≤ Sn over Xλ, and
how they relate to our data space, CXλ. We begin with a simple lemma.

Lemma 2.1. Let λ = (λ1, . . . , λr) ` n, with t, t′ ∈ Xλ. Then, t and t′ are in the
same orbit of Sj if and only if t and t′ agree in all boxes containing numbers larger
than j.

Proof. In the forwards direction, we note that if t and t′ are in the same orbit
of Sj, then there exists some σ ∈ Sj such that σt = t′. But, as σ ∈ Sj, σ does
not permute any i > j. Thus, t and t′ must agree in the locations of these
numbers. In the backwards direction, if t and t′ agree in the location of all
i > j, then there exists some σ ∈ Sj such that σt = t′ as Sj contains every
possible permutation of the numbers 1, . . . , j, and only those numbers can
be in different locations in t and t′. Thus, the lemma is proved.

With this lemma, we can now characterize the orbits of Sj over Xλ, and
describe how they inform the permutation module CXλ.

Theorem 2.2. Let λ = (λ1, . . . , λr) ` n. Then, the orbits of Sj over Xλ are
precisely described by the set λ∗

n−j
. Moreover,

CSj CXλ ∼=
⊕

η∈λ∗
n−j

CSj CXη

Proof. We recall that

λ∗
n−j

= {η � j|η is obtainable by removing boxes from λ.}
= {λl |l is a valid multi-index of length n− j for shape λ}.

We will first show that there exists a canonical bijection between the orbits
of Sj over Xλ and the set λ∗

n−j
. We see by Lemma 2.1 that there exists a

bijection between the orbits of Sj and placements of all numbers j+ 1, . . . , n
in a tabloid of shape λ. But, what is a placement of numbers of j . . . , n? It is
an ordered selection of boxes. But, as row order doesn’t matter in a tabloid,
this can be seen as an ordered selection of rows of λ. But, this is nothing
more than a multi-index l, such that each entry li corresponds to a valid
row after “removing” a box from each of the rows previously specified by
l. How long must this list be? Exactly n − j elements long. The set of all
such l is, by definition, bijective with the set λ∗

n−j
, so there is a bijection

between the orbits of Sj in Xλ and elements of λ∗
n−j

.
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We call this bijection canonical because of the following. Suppose t ∈
Xλ, and Sjt is an orbit of Sj over Xλ. Then, this orbit is associated with
η = λl ∈ λ∗

n−j
, where l = l1, . . . , ln−j catalogs the rows of t containing all

numbers i > j. Moreover, the action of Sj over this orbit is exactly described
by the action of Sj on Xη , as Sj cannot permute any element i > j.

Now that we have established this bijection, we must show that

CSj CXλ ∼=
⊕

η∈λ∗
n−j

CSj CXη

To see this, let us note the following. Recall that CXλ is realizable as the
space of all formal, complex linear combinations of elements of Xλ. As
the orbits of Sj partition Xλ, this interpretation of CXλ reveal that each or-
bit of Sj will form a basis for a CSj-invariant subspace of CXλ, with sub-
spaces corresponding to distinct orbits disjoint. These invariant subspaces
form disjoint submodules of CSj CXλ, and the structure of these permuta-
tion modules is described exactly by the action of Sj on their bases (which
are orbits of Sj). But, we know that if η ∈ λ∗

n−j
, then the action of Sj on the

orbit corresponding to η is described exactly by the action of Sj on Xη . This
implies that the submodule given by the invariant subspace spanned by the
orbit associated with η is exactly the CSj module CXη . Thus, we have that

CSj CXλ breaks down into a collection of invariant subspaces, parametrized

by η ∈ λ∗
n−j

, with the action of Sj on the space associated to η described
exactly by the module CSj CXη . Therefore,

CSj CXλ ∼=
⊕

η∈λ∗
n−j

CSj CXη ,

as desired.

2.2 Irreducible Representations of The Symmetric Group

In order to understand any dataset that is realized as an element of CXλ,
we must learn how to meaningfully decompose the space CXλ in general.
To do so, we will use the notion of an irreducible decomposition of a repre-
sentation. Recall the following definition.

Definition 2.17. Let G be a finite group, with (ρ, V) a representation of G.
A subspace W ⊂ V is said to be ρ-invariant if ρ(g)W ⊂W for all g ∈ G. The
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representation ρ is said to be irreducible if the only ρ-invariant subspaces of
V are {0} and V itself. Note that, in module theoretic terms, W ⊂ V is
ρ-invariant if and only if W is a submodule of CGV, and V is irreducible if
it permits no nontrivial submodules.

The invariant representations of a group G are supremely meaningful,
as they can be used to capture almost all of the algebraic structure of any
representation of G. To see this, recall the following theorem, whose proof
can be found in James and Liebeck (1993), Chapter 8.

Maschke’s Theorem. Let G be a finite group, with (ρ, V) a complex representa-
tion of G. If U ⊂ V is a ρ-invariant subspace, then there exists another ρ-invariant
subspace W ⊂ V such that V = U ⊕W.

Corollary. If G is a finite group and M is a CG module, then there exist irre-
ducible submodules M1 . . . MN such that

M = M1 ⊕M2 ⊕ · · · ⊕MN−1 ⊕MN .

By the definition of ⊕, if m ∈ M, there exist mi ∈ Mi such that m = m1 + · · ·+
mN . The Mi and mi are said to be an irreducible decomposition of M and m,
respectively.

Our mechanism for “meaningfully decomposing” a dataset will be to
find its irreducible decomposition, in a particularly meaningful way. To do
so, it will be very product to first examine the irreducible representations
of Sn in general. We shall see that these can be described exactly by the
standard Young tableaux.

2.2.1 Irreducible Representations Indexed by Standard Tableaux

Definition 2.18. Given λ ` n, the standard tableaux or standard Young tableaux
of shape λ are the tableaux of shape λ that have the property that every row
and column progress in increasing order. The standard tableaux of shape
λ are typically ordered, for convenience, with the last letter ordering, which
orders those tabloids such that those with larger numbers in higher rows
come before those with smaller numbers in higher rows. More specifically,
let t, s be standard tableaux of shape λ. Then, t precedes s in the last letter
ordering if and only if, reading right to left by row, starting from the first
row, has the property that the first difference encountered between t and s
has t with a larger number than s. The collection of standard tableaux in
this order are called the last letter sequence of shape λ. The length of this
sequence is denoted f λ.
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Example 2.11. Let λ = (3, 2). The last letter sequence associated with λ is

1 3 5

2 4
, 1 2 5

3 4
, 1 3 4

2 5
, 1 2 4

3 5
, 1 2 3

4 5
.

This ordering comes because we first have all the standard tableaux with
the largest number, 5, (hence the name last letter ordering) in the first row,
and then all those with 5 in the second row. Inside each of these groups,
the same holds true of the next largest letter, 4, and so on and so forth.

If t, s are tableaux of shape λ given by

t = 1 2 3

4 5
, s = 1 3 2

4 5
,

then t is a standard tableaux and s is not, as the first row does not progress
in increasing order.

Note that the standard tableaux are tableaux, not tabloids, and thus we do
not assume that row equivalence is true equality. However, as the row con-
straints of a standard tableau uniquely determine the order of its entries,
we will never have more than one representative for each equivalence class
of row-equivalent tableaux in a list of standard tableaux.

In fact, though its proof is beyond the scope of this work, the irreducible
representations of Sn are indexed exactly by the partitions of n, and, for
each λ ` n, the associated representation has dimension given by the num-
ber of standard tableaux of shape λ. Furthermore, we can discern the ma-
trices associated with these representations directly for all σ ∈ Sn. To do so,
we will need another definition.

Definition 2.19. Let t be a standard tableau of shape λ ` n. Then, for
1 ≤ i, j ≤ n, define the axial distance between i and j, dt(i, j), to be the
difference between the number of steps down or to the left and the number
of steps up or to the right along any path from i to j in t. This will be
well-defined as we can work in a taxicab geometry on the tabloid t.

Example 2.12. Let t = 1 3 6

2 7 9

4 8

5

. Then, dt(9, 4) = 3 and dt(8, 3) = −2
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Now, consider the following definition of a very particular representa-
tion of Sn, which we adapt from James and Kerber (1982), Section 3.4.

Definition 2.20. Let λ ` n, αi = (i i + 1) ∈ Sn be the ith adjacent transpo-
sition in Sn, and

(
t1, . . . , t f λ

)
be the last letter sequence of shape λ. Then,

define the Sn-representation
(

θλ, C f λ
)

, or, in module notation, Sλ, as fol-

lows. Let M be the f λ × f λ zero matrix. For each 1 ≤ j ≤ f λ, in order, do
the following:

1. If tj has already been the image of a previous standard tableau, do
nothing.

2. If i and i + 1 are in the same row of tj, then set Mj,j = 1.

3. If i and i + 1 are in the same column of tj, then set Mj,j = −1.

4. If i and i + 1 are not in the same row or column, then αitj = t` for

some j ≤ ` ≤ f λ. Set the sub-matrix Mj,` =

(
Mj,j Mj,`
M`,j M`,`

)
as follows:

Mj,` =

(
−d−1(i, i + 1)

√
1− d−2(i, i + 1)√

1− d−2(i, i + 1) d−1(i, i + 1)

)
Then, let θλ(αi) = M. As {αi} generates Sn, this defines a representation(

θλ, C f λ
)

and module Sλ. This construction produces the Young’s orthogo-

nal form of the module Sλ.

We now state the following theorem, which we will not prove here. Its
proof can be found in James and Kerber (1982), Chapter 3, or, for a different
treatment, in Fulton (1996), Chapter 7.

Theorem 2.3. The set Sλ for all λ ` n is a complete set of irreducible modules of
Sn.

The Young’s orthogonal form of any irreducible representation yields a
construction for a matrix representation of every group element σ ∈ Sn, for
every irreducible representation of Sn. As we will see, these matrix forms
are essential when forming our final, symmetry adapted basis.

More information surrounding the irreducible representations of Sn can
be found in James and Kerber (1982), Fulton (1996), or Sagan (1991). More
information on representation theory in general can be found at James and
Liebeck (1993), Dummit and Foote (2004), or Fulton and Harris (1991).
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2.2.2 Decomposition of a Tabloid Representation

We can form a more explicit characterization of the role these representa-
tions play when speaking of tabloid representations, like our data space
CXλ. To do so, consider the following definitions.

Definition 2.21. Given two partitions λ = (λ1, . . . , λr), µ = (µ1, . . . , µr′) `
n, we say that µ dominates λ, or, λ precedes µ in the dominance order, denoted
µ D λ or λ E µ, respectively, if the shape µ can be formed from the shape
λ by moving any number of boxes from any row of λ up any number of
rows. More formally, µ D λ if and only if

j

∑
i=1

λi ≤
j

∑
i=1

µi, for all 1 ≤ j ≤ max(r, r′).

Note that here we take convention that µk = 0 if k > r′ (and similarly for
λ).

Example 2.13. Let λ = (3, 2) and µ = (4, 1), illustrated as tabloid shapes
via

λ = µ = .

Then, µ D λ.

Example 2.14. Let λ ` n. Then, we see that (n) D λ and λ D (1, 1, . . . , 1)︸ ︷︷ ︸
n

.

Definition 2.22. Let λ = (λ1, . . . , λr) ` n. Define the Kostka set Kλ to be the
multiset given by

Kλ = {(i, λi)|1 ≤ i ≤ r},
so Kλ contains the number i exactly as many times as there are boxes in
the ith row of λ. Additionally, define the Kostka constraints to be filling
constraints on a shape µ ` n such that each row of µ progresses in non-
decreasing order while each column progresses in strict increasing order. A
Kostka filling of µ by λ is a filling of µ from elements of the Kostka set Kλ

satisfying the Kostka constraints.

Given these ideas, we can define a Kostka number.

Definition 2.23. Let λ, µ ` n. Then, define the Kostka number κµ,λ to be

κµ,λ = The number of Kostka fillings of µ by λ.



26 Background Information

Note that if µ 6D λ, then there are zero Kostka fillings of µ by λ, so
κµ,λ = 0.

Example 2.15. Let λ, µ ` 5 such that, again,

λ = µ = .

Then, κµ,λ = 1. To see this, let us illustrate the multiset Kλ directly:

Kλ = 1 1 1

2 2

We see that to satisfy all the constraints, all of the ones must fill the first
row of µ. But, this only leaves one other option, so its positions are forced.
Thus, we see that the only Kostka filling is

1 1 1 2

2

Example 2.16. A more interesting case is with λ = (3, 1, 1) and µ = (4, 1).
Then, we see we wish to fill

with entries from

Kλ = 1 1 1

2

3

Here, we can move either the 3 up to the first row or the 2 up to the first
row while still maintaining the ordering constraints. Thus, κµ,λ = 2. Both
Kostka fillings are illustrated below.

1 1 1 2

3

1 1 1 3

2

We will use Kostka numbers in this work primarily through the follow-
ing theorem, which is proved in Fulton (1996), Chapter 7 and Sagan (1991),
Chapter 2.
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Theorem 2.4 (Young’s Rule). If λ ` n, then the module CSn CXλ decomposes as
follows:

CSn CXλ ∼=
⊕
µ`n

κµ,λSµ

∼=
⊕
µDλ

κµ,λSµ

Example 2.17. Let λ = (n− k, k). Then, by Theorem 2.4, we know that

CSn CXλ ∼=
⊕ ∼=

⊕
µDλ

κµ,λSµ

So, in order to find the irreducible decomposition of CXλ, we need merely
find the Kostka numbers associated with shapes that dominate λ. first, we
see by inspection that µ D λ if and only if µ = (n− `, `), where 0 ≤ ` ≤ k.
However, as tabloids of shape λ have only two rows, we see that Kλ will
only ever have, at most, two distinct entries: 1 and 2. Further, we know
by the Kostka constraints on the columns that any Kostka filling of µ must
have all of the 1s in Kλ in the first row of µ. But, then there is only one
distinct entry, 2, in Kλ left. Thus, we must continue filling µ by simply
filling in the remaining entries with 2s. Therefore, there is only one Kostka
filling of µ, so κµ,λ = 1, for any µ D λ. Thus,

CXλ ∼=
⊕
`≤k

S(n−`,`).

We will refer to this result as the condition on two-rowed tabloids that they
are multiplicity free because their decompositions require no irreducible rep-
resentations with multiplicity.

Now that we have detailed the definition of the space CSn CXλ and de-
scribed how it decomposes into irreducible submodules, we are ready to
define the type of basis that will be ideal to extract this qualitative informa-
tion out of any data set f ∈ CXλ. To do so, we must explore the notion of a
symmetry adapted basis.





Chapter 3

Symmetry Adapted Bases

3.1 Introduction

We have claimed that transforming our space CXλ from the standard, data-
collection basis C = Xλ into one that is “symmetry adapted” would reveal
qualitatively meaningful information regarding a dataset over Xλ. To un-
derstand this claim, recall Theorem 2.4. This theorem tells us that for any
λ ` n, the module CSn CXλ decomposes according to the following formula:

CSn CXλ ∼=
⊕
µDλ

κµ,λSµ.

If we define the space Vλ
µ to be

Vλ
µ = κµ,λSµ =

κµ,λ⊕
i=1

Sµ,

then we see that we also have

CSn CXλ ∼=
⊕
µDλ

Vλ
µ .

This type of decomposition of a module is called an isotypic decomposition,
as the set of subspaces are pairwise inequivalent and invariant, but all mul-
tiplicity has been suppressed by combining all spaces of the same “type,”
or, that correspond to the same irreducible representation. In addition to
being a module decomposition, we see that this decomposition is also a
vector space decomposition, so any f ∈ CXλ will also decompose uniquely
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into
f = ∑

µDλ

fµ,

where fµ ∈ Vλ
µ . It is this decomposition that we need when we want to

make sense of partially ranked data. Let us analyze this for a moment.
Why is this decomposition better, or more interesting, than any other de-
composition of the vector space CXλ? We recall that we use the structure of
a group in this question particularly because a group enables us to encap-
sulate some notion of symmetry on the set of options Xλ. But, if our group
is defining our notion of “symmetry,” then every way that these symme-
tries can be informative is contained in the module decomposition of CXλ,
as this totally defines the action of G on our data space. Moreover, as each
inequivalent irreducible submodule expressed in this decomposition is or-
thogonal, each component fµ will reveal a different expression of meaning-
ful symmetry. So, if we apply this analysis to a dataset f , which, we recall,
lives in the space CXλ, this will enable much more informative statistics to
be drawn about the population than merely examining the expression of f
in the standard, delta function basis C.

In order to access this decomposition of any data vector, we will need
some way to express this isotypic decomposition of CXλ. This is where
the notion of a “symmetry adapted basis” will be so helpful. We make the
following definition:

Definition 3.1. Let G be a finite group, (Θ, V) an n-dimensional complex
representation of G, and θρ, 1 ≤ ρ ≤ M a complete set of irreducible rep-
resentations of G, whose matrix forms are known. Then, we know that Θ
decomposes completely into a direct sum

Θ ∼=
M⊕

ρ=1

cρθρ,

where cρ ∈ Z≥0. We say that a basis B for V is symmetry adapted if, for any
g ∈ G, we have that [Θ(g)]B is block diagonal, with a block for each θρ such
that cρ > 0, such that all cj blocks corresponding to θj are all equal to the
known matrix θj(g), as opposed to just merely equivalent.

These types of bases enable us to capture the structure of an isotypic
decomposition in a particularly natural way. In particular, we can see that
the isotypic decomposition of a module encapsulates symmetries by con-
densing all components corresponding to a given irreducible representa-
tion into one, invariant subspace. In this way, an isotypic decomposition
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highlights the relevant information, namely, to which irreducible represen-
tation a component of the space corresponds, and masks the irrelevant in-
formation, such as to which isomorphic copy of this irreducible representa-
tion the component corresponds. Similarly, when expressed in a symmetry
adapted basis, each irreducible representation is expressed differently, but
the isomorphic copies of each irreducible representation behave in exactly
the same way under the action of any group element.

In order to make use of a symmetry adapted basis, we will need some
algorithm to produce one for the symmetric group. In Section 3.2, we’ll ex-
plore and construct algorithms to produce symmetry adapted bases, both
in general and on Sn explicitly. Then, in Section 3.3 we will detail some
theoretical tools used to analyze these algorithms. Finally, in Section 3.4 we
will detail our implementation of these algorithms.

3.2 Algorithms to Produce Symmetry Adapted Bases

This section’s work is largely based on an algorithm presented in Stiefel
and Fässler (1992), Chapter 5. The interested reader should consult this text
for more information on the topics of this section. Additional noteworthy
references are Clausen and Baum (1993) and Terras (1999).

3.2.1 Theoretical Justification

Let us begin with a theorem proving the existence of a symmetry adapted
basis for a general complex representation of a finite group. Through-
out this section, let G be a finite group, (Θ, V) an n dimensional complex
representation, and θ1, . . . , θM a complete set of irreducible, pairwise non-
isomorphic representations of G, that are known in the form of matrix ta-
bles.

Theorem 3.1. Given G, (Θ, V) as above, there exists a symmetry adapted basis
on V, with respect to θ1, . . . , θM.

Proof. Given the complete set of irreducible representations of G, θ1, . . . , θM,
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we can decompose Θ via

Θ ∼=
M⊕

ρ=1

cρθρ

V ∼=
M⊕

ρ=1

Vρ

∼=
M⊕

ρ=1

cρ⊕
i=1

Vi
ρ,

where Vρ corresponds to the cρ copies of θρ, with each copy given by Vi
ρ. Let

us construct the following, alternative representation for G, (Θ′, V ′ = V),
such that

Θ′ =
M⊕

ρ=1

cρθρ

Note that here, Θ′ is equal to this direct product, not merely isomorphic
to it. Consequently, the standard basis for V ′ is clearly symmetry adapted
on Θ′, as, by construction, Θ′(g) will have the desired form for all g ∈
G. But, we can also see that Θ′ ∼= Θ. Thus, there exists a vector space
isomorphism between V ′ and V that respects the actions of Θ′ and Θ. As
V ′ and V are canonically isomorphic, this isomorphism is merely a change
of basis on V. Thus, there exists a basis for V that is symmetry adapted for
Θ, as desired.

We will now use the abstract existence of a symmetry adapted basis to
justify and drive the creation of an algorithm to produce such a basis. To
do so, recall the definition of a Discrete Fourier Transform.

Definition 3.2. Recall that CG is the complex group algebra of G, given by
CG = { f : G → C}. Any C-algebra isomorphism

D : CG→ Cn1×n1 ⊕ · · · ⊕CnM×nM ,

where the operations on the right are component-wise addition and multi-
plication, is a discrete Fourier transform (DFT) of G.

Recall that for any DFT D of G, the component maps θ1, . . . , θM form a
complete set of irreducible representations for G.
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Definition 3.3. Let H ≤ G. We say a DFT D = θ1 ⊕ · · · ⊕ θM is subgroup-
adapted or merely adapted to the chain H ≤ G if, for all h ∈ H and 1 ≤ i ≤ M,

1. θi(h) is block diagonal, with blocks corresponding to irreducible rep-
resentations of H, and,

2. blocks inside the matrix θi(h) corresponding to equivalent irreducible
representations of H are actually equal.

Note that this can be expressed differently: a DFT D is subgroup adapted
to H ≤ G if the known matrix forms of each irreducible representations θi
are encoded with respect to a symmetry adapted basis on H.

We see that Definition 3.3 can also be used to describe a DFT adapted
to any finite chain of subgroups H1 ≤ H2 ≤ · · · ≤ Hn ≤ G. Now, we will
define an operator that will be integral in constructing a symmetry adapted
basis.

Definition 3.4. Let D be a DFT for G, with component maps θ1, . . . , θM.
Then, define

b̂j
k,` =


(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

k−1

,



`

0 · · · 0 · · · 0
...

. . .
...

. . .
...

k 0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


,
(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

h−k


and

bj
k,` = D−1

(
b̂j

k,`

)
.

Note that
(

b̂j
k,`

)
k,`,j

forms a basis for Im(D), so, as D is an isomorphism,(
bj

k,`

)
k,`,j

forms a basis for CG (as a complex vector space). This basis is

called the dual matrix coefficient basis, and its elements are called dual matrix
coefficients or dual matrix coefficient functions.

Proposition 3.1. Given the DFT D, the dual matrix coefficients obey the follow-
ing relationship:

bj
k,1bj

1,1 = bj
k,1
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Proof. As D is an algebra isomorphism, we have that

bj
k,1bj

1,1 = D−1
(

b̂j
k,1b̂j

1,1

)
But,

b̂j
k,1b̂j

1,1 =


(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

j−1

,



0 · · · 0 · · · 0
...

. . .
...

. . .
...

k 1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


,
(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

M−j


×


(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

j−1

,


1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0

 ,
(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

M−j



=


(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

j−1

,



0 · · · 0 · · · 0
...

. . .
...

. . .
...

k 1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


,
(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

M−j


= b̂j

k,1.

Thus,

bj
k,1bj

1,1 = D−1
(

b̂j
k,1

)
= bj

k,1.
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Recall that we know that Θ decomposes into a direct product of irre-
ducibles via

Θ ∼=
M⊕

ρ=1

cρθρ, dim(θρ) = nρ.

Thus, if B is a symmetry adapted basis, we see that for all g ∈ G,

[Θ(g)]B =



n1︷︸︸︷ · · ·
n1︷︸︸︷ n2︷︸︸︷ · · ·

ni︷︸︸︷ · · ·
nM︷︸︸︷ · · ·

nM︷︸︸︷
c1

{ θ1(g) · · · 0 0 · · · 0 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...
0 · · · θ1(g) 0 · · · 0 · · · 0 · · · 0
0 · · · 0 θ2(g) · · · 0 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...
0 · · · 0 0 · · · θi(g) · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...

cM

{ 0 · · · 0 0 · · · 0 · · · θM(g) · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 0 · · · θM(g)


where each θi(g) is a block of size ni × ni. Thus, we can see that, for the
elements bj

k,`, where cj 6= 0, we have

[Θ(bj
k,`)]B =



θ1

(
bj

k,`

)
· · · 0 0 · · · 0 · · · 0 · · · 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 · · · θ1

(
bj

k,`

)
0 · · · 0 · · · 0 · · · 0

0 · · · 0 θ2

(
bj

k,`

)
· · · 0 · · · 0 · · · 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 · · · 0 0 · · · θi

(
bj

k,`

)
· · · 0 · · · 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 · · · 0 0 · · · 0 · · · θM

(
bj

k,`

)
· · · 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 · · · 0 0 · · · 0 · · · 0 · · · θM

(
bj

k,`

)


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=



. . .
`

. . . 0 0 0
k 0 0 1 0

0 0 0 0

0 0 0
. . .

. . .cj

`
. . . 0 0 0

k 0 0 1 0
0 0 0 0

0 0 0
. . .

. . .


where the omitted entries are 0 and all nonzero blocks correspond to the cj
different images of θj in the direct product expansion of Θ. This operator
will be very important, so let us define it as follows.

Definition 3.5. Let D = θ1 ⊕ · · · ⊕ θM be a DFT for the group G. Then, the
k, ` slice operator associated with representation θj, P(j)

k` , is given by the image

of the element bj
k,` ∈ CG under the representation Θ. In particular,

P(j)
k` = Θ

(
bj

k,`

)
.

Let us analyze some properties of P(j)
k` . First, note that our decomposi-

tion of Θ,

Θ ∼=
M⊕

ρ=1

cρθρ,

implies a similar decomposition of V,

V ∼=
M⊕

ρ=1

cρ⊕
i=1

Vi
ρ

∼=
M⊕

ρ=1

Vρ,
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where Vi
ρ is the irreducible subspace corresponding to the ith “copy” of

θρ. At this point, let us note that any symmetry adapted basis on V must
be able to be expressed as a union of bases for the irreducible subspaces
Vi

ρ, for all ρ, i. Thus, our symmetry adapted basis B can be described by a
collection of bases for every value j of the index ρ (1 ≤ j ≤ M), of the form

V1
j =

〈
vj

1
1, vj

1
2, . . . , vj

1
nj

〉
(3.1)

V2
j =

〈
vj

2
1, vj

2
2, . . . , vj

2
nj

〉
...

V
nj
j =

〈
vj

cj
1 , vj

cj
2 , . . . , vj

cj
nj

〉
,

With this formulation of the basis B, we can prove the following theorem.

Proposition 3.2. The k, ` slice operator associated with irreducible θj obeys the
following relationship, for the symmetry adapted basis B:

P(j)
k`

(
vj′

m
`′

)
=

{
0 if j′ 6= j or `′ 6= `

vj′
m
k = vj

m
k if j′ = j, `′ = `.

Proof. This can be seen readily from an algebraic perspective, but perhaps
easiest is simply to note the (known) matrix form for P(j)

k` under basis B. We
recall

[P(j)
k` ]B = [Θ(bj

k,`)]B

=



. . .
`

. . . 0 0 0
k 0 0 1 0

0 0 0 0

0 0 0
. . .

. . .cj

`
. . . 0 0 0

k 0 0 1 0
0 0 0 0

0 0 0
. . .

. . .


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where the omitted entries are zero. With this formulation, the images of
the basis vectors in B can be read off directly from the columns of P(j)

k` . In

particular, we see immediately that for any j′ 6= j, P(j)
k` vj′

m
`′
= 0, as P(j)

k` has
columns of zeros for all spaces other than Vj. Further, if ` 6= `′, then we
see that even when restricted to the mth block of cj, we will be selecting a
column of all zeros. Thus, the only time we ever receive a nonzero output is
when j = j′ and ` = `′. In this case, we receive a column, when restricted to
the block corresponding to Vm

j , with all 0s save a 1 at the kth position. Thus,
this output is, in a basis independent sense, the vector vj

m
k , as desired.

Corollary. P(j)
k` maps the spaces Vρ to {0} for all ρ 6= j, and maps Vj into itself.

Furthermore, P(j)
k` has rank cj.

Proof. We see that Vρ is spanned by all basis vectors in B of the form vρ
m
`

.

If ρ 6= j, then P(j)
k` maps all of these vectors to zero. The first part of the

proposition follows. We can also see that P(j)
k` maps the set of basis vectors

vj
m
`

, for 1 ≤ m ≤ cj to a linearly independent set, and these are the only

vectors that are mapped to nonzero results. Thus, the rank of P(j)
k` is cj.

Note a special case of these results: The slice operator P(j)
kk maps Vj onto

Vj and is a true projection operator as it maps all basis vectors vj
m
k to them-

selves, and maps the space V into the space spanned by the cj basis vectors
in the kth column of Equation 3.1, which are exactly vj

m
k , for 1 ≤ m ≤ cj.

Let x ∈ V be a vector such that

P(j)
11 x = x1 6= 0 (3.2)

(this will exist if and only if cj 6= 0).

By the above, we have that x1 ∈
〈

vj
1
1, . . . , vj

cj
1

〉
, so

x1 = α1vj
1
1 + · · ·+ αcj vj

cj
1 .

Therefore, if we produce vectors xµ, 2 ≤ µ ≤ nj via

xµ = P(j)
µ1 x1,

we see by Theorem 3.2 that

xµ = α1vj
1
µ
+ · · ·+ αcj vj

cj
µ

.
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In particular, xµ ∈ Vm
j and is composed of the exact same linear combina-

tion of the basis vectors vj
1
µ
, . . . , vj

cj
µ

as x1 is of vj
1
1, . . . , vj

cj
1 . Let us note that

from a module description, we can realize these vectors xi in a different
way: As P(j)

k` is merely Θ
(

bj
k,`

)
, their action on vectors in V is exactly the

same as the action of bj
k,` on these vectors from a CG-module perspective.

Thus, in this way, we can also realize xµ as

xµ = bj
µ,1

(
bj

1,1x
)

for the fixed x in 3.2. But, by the definition of the action in a module, we
see that this reveals

xi =
(

bj
µ,1bj

1,1

)
x

= bj
µ,1x

by Theorem 3.1.
As P(j)

k` has rank cj, there exist cj linearly independent vectors xi that
generate analogous, but linearly independent sequences of xi

m as did the
fixed element x. In this way, we generate the following sets:{

bj
1,1x1, bj

2,1x1, . . . , bj
nj,1

x1
}

,
{

bj
1,1x2, bj

2,1x2, . . . , bj
nj,1

x2
}

, . . . ,
{

bj
1,1xcj , bj

2,1xcj , . . . , bj
nj,1

xcj
}

.

Note that as all njcj of these linearly independent elements live in Vj, which
has dimension njcj, we can say that

Aj =
{

bj
1,1x1, bj

2,1x1, . . . , bj
nj,1

x1, bj
1,1x2, bj

2,1x2, . . . , bj
nj,1

x2, · · · , bj
1,1xcj , bj

2,1xcj , . . . , bj
nj,1

xcj
}

is a basis for Vj. Moreover, we see that the collections

{bj
1,1xi, . . . , bj

nj,1
xi}

span an nj dimensional space, and there are exactly cj such spaces. To char-
acterize these spaces, let

Ai
j =

(
bj

1,1xi, . . . , bj
nj,1

xi
)

denote our resulting basis, and let

Ui
j =

〈
Aj

i

〉
.
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Performing this procedure for all j generates a basis for V, and analo-
gous bases Ai

j and spaces Ui
j , for all j. Let us denote this total basis via

A =
M⋃

j=1

Aj (3.3)

with

〈A〉 = V.

Let us analyze the images of these basis vectors for these Ui
j under Θ(g),

for an arbitrary g ∈ G. We recall that, from a module theoretic perspective,
the action Θ(g)x is given by gx, so we can see that

Θ(g)
(

bj
µ,1xi

)
= g

(
bj

µ,1xi
)

= gbj
µ,1xi

Now, we note that the product gbj
µ,1 has a very specific form. We see,

D
(

gbj
µ,1

)
= (θ1(g), . . . , θh(g))×


(
0
)

, . . . ,
(
0
)

,︸ ︷︷ ︸
k−1



0 · · · 0 · · · 0
...

. . .
...

. . .
...

µ 1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


,
(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

h−k


=

(0) , . . . ,
(
0
)

,︸ ︷︷ ︸
k−1

 | | · · · |
θj(g)~µ 0 · · · 0
| | · · · |

 ,
(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

h−k



where by θj(g)~µ, we mean the µth column of θj(g) (which, we recall, is a
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known matrix). But, we see that this is

D
(

gbj
µ,1

)
=


(
0
)

, . . . ,
(
0
)

,︸ ︷︷ ︸
j−1


θj(g)1µ · · · 0 · · · 0

...
. . .

...
. . .

...
θj(g)µµ · · · 0 · · · 0

...
. . .

...
. . .

...
θj(g)njµ · · · 0 · · · 0

 ,
(
0
)

, . . . ,
(
0
)︸ ︷︷ ︸

M−j


=

nj

∑
m=1

θj(g)mµb̂j
m,1.

Thus, as D is a ring isomorphism,

gbj
µ,1 =

nj

∑
m=1

θj(g)mµbj
m,1.

So,

Θ(g)bj
µ,1 =

nj

∑
m=1

θj(g)mµbj
m,1xi

We recall that the space Ui
j is given by

Ui
j =

〈
bj

1,1xi, . . . , bj
nj,1

xi
〉

,

so,

Θ(g)
(

bj
µ,1xi

)
=

nj

∑
m=1

θj(g)mµbj
m,1xi ∈ Ui

j .

As g is arbitrary, and bj
µ,1xi an arbitrary basis vector of Ui

j , this shows that
Ui

j is is invariant under Θ. Furthermore, let us express Θ(g) in matrix form
under the given basis of Ui

j . We recall from basic linear algebra that[
Θ(g)|Ui

j

]
Ai

j

=

([(
Θ(g)|Ui

j

)
bj

1,1xi
]
Ai

j

[(
Θ(g)|Ui

j

)
bj

2,1xi
]
Ai

j

· · ·
[(

Θ(g)|Ui
j

)
bj

nj,1
xi
]
Ai

j

)
where each entry in this matrix denotes a column vector. But, As Ui

j is
invariant under Θ, we have already computed these products, with

Θ(g)
(

bj
µ,1xi

)
=

nj

∑
m=1

θj(g)mµbj
m,1xi.
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Thus, the µth column vector of (Θ(g)|Ui
j
) is given by

[(
Θ(g)|Ui

j

)
bj

µ,1xi
]
Ai

j

=

[ nj

∑
m=1

θj(g)mµbj
m,1xi

]
Ai

j

=
nj

∑
m=1

θj(g)mµ

[
bj

m,1xi
]
Ai

j

=


θj(g)1µ

θj(g)2µ
...

θj(g)njµ

 .

So,

[
Θ(g)|Ui

j

]
Ai

j

=


θj(g)11 θj(g)12 · · · θj(g)1nj

θj(g)21 θj(g)22 · · · θj(g)2nj
...

...
. . .

...
θj(g)nj1 θj(g)nj2 · · · θj(g)njnj

 (3.4)

= θj(g).

Note that this holds for all i. In particular, we see that the spaces Ui
j corre-

spond exactly to the cj copies of irreducible representation θj, with isomor-
phic copies each equal to θj(g). This reveals the following theorem.

Theorem 3.2. Let G, (Θ, V), be given as before. Then, the basis A constructed
in Equation 3.3 is symmetry adapted.

Proof. Given the argument in the preceding paragraph, this is immediate.
By definition, a basis for a representation (Θ, V) is symmetry adapted if it
renders Θ in block diagonal form, with blocks corresponding to isomorphic
irreducible representations actually equal. But, this is precisely what was
shown in 3.4.

Note that this construction relies explicitly on the ability to actually con-
struct the primitive idempotents. To do so, recall the following theorem
(See Clausen and Baum (1993), page 84).

Theorem 3.3. Let G be a finite group with irreducible representations θ1, . . . , θM,
each of dimension n1, . . . , nM. Then, if a ∈ CG,

a(g) =
1
|G|

M

∑
i=1

ni tr
(

θi(g−1)θi(a)
)

.



Algorithms to Produce Symmetry Adapted Bases 43

With this theorem, we can directly compute the dual matrix coefficients.
We see

bj
k,`(g) =

1
|G|

M

∑
i=1

ni tr
(

θi(g−1)θi(b
j
k,`)
)

=
nj

|G| tr
(

θj(g−1)θj(b
j
k,`)
)

=
nj

|G|

(
θj(g−1)

)
`,k

.

Thus,

bj
k,` =

nj

|G| ∑
g∈G

(
θj(g−1)

)
`,k

g.

With this, we now know how to construct the dual matrix coefficient func-
tions, and hence the adapted basis A. We can thus now present the follow-
ing algorithm. Note that, for ease of use computationally, we will focus on
the slice operators Pj

k,` = Θ(bj
k,`).

3.2.2 Final Algorithm

Input A finite group G, such that the M irreducible, pairwise inequivalent
complex representations of G, denoted θρ, are known and presented
in matrix form. A complex representation (Θ, V) is also given such
that Θ is of dimension n and Θ : g 7→ Θ(g). We also presume that the
decomposition of Θ is known:

Θ =
⊕
ρ≤M

cρθρ.

This decomposition also decomposes V into invariant subspaces

V ∼=
(

V1
1 ⊕V1

2 · · ·V1
c1

)⊕ (
V2

1 ⊕ · · ·V2
c2

)⊕
· · ·

⊕ (
VM

1 ⊕VM
cM

)
,

where V j
i
∼= V j

k for all i, k, j. Now, perform the following steps for each
irreducible representation θj, j ≤ M. As these steps are independent,
throughout the rest of the algorithm, let j be a fixed, but arbitrary in-
dex of the irreducible representation θj. This will enable some useful
notational freedom, by omitting notational dependence on j of objects
that, in fact, do depend on j.
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Step 1—The Projection Matrices Compute the projection matrices

π(j) =
|G|
nj

Θ(bj
1,1)

= ∑
g∈G

(
θj(g−1)

)
1,1

Θ(g)

Step 2—Extracting the Columns The image of the matrix π(j) is a cj di-
mensional space, spanned by the columns of π(j). Choose a basis for
this space. Let this basis be denoted by v1

1, v2
1, . . . , v

cj
1 .

Step 3—The Remaining Sections Compute the slice operators

P(j)
µ,1 = Θ

(
bj

µ,1

)
=

nj

|G| ∑
g∈G

(
θj(g−1)

)
1,µ

Θ(g)

for all µ ∈ {2, 3, . . . , nj}.

Step 4—Forming the Basis Form an adapted basis for each nj dimensional
irreducible subspace Vi

j , where i ≤ cj, by acting on the vectors v1 with

the operators P(j)
µ,1 for all µ ∈ {2, . . . , nj}. Specifically, let

vi
µ = P(j)

µ,1vi
1.

for all µ ∈ {2, . . . , nj}. Then, the spaces V j
i are spanned by the vectors

{vi
1, vi

2, . . . , vi
nj
}.

Output The bases produced in this way for all irreducible subspaces in-
dexed by each j ≤ ρ, arranged in any order.

The proof of correctness of this algorithm is immediate as it follows di-
rectly from the previous two sections. Note that this algorithm is presented
in a different formulation in Stiefel and Fässler (1992).

It is important to note that in Step 2 there is an aspect of unspecified
choice. Specifically, any mechanism of finding a basis for the span of the
columns of π(j) will still yield an adapted basis, though some of those
mechanisms may result in bases that enable much faster conversion than
others. In order to counter this ambiguity in this work, we produced code
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to analyze a variety of choices and the resultant bases. In particular, even
when using Gram-Schmidt to produce an orthonormal basis of the column
space of π(j), the initial ordering of the delta basis C of CXλ changes the
final output. A large number of possible permutations of this choice were
tested; none made any significant difference on the speed of the resulting
transformation.

Recall that it is this adapted basis that we will use to decompose our
dataset into meaningful parts. With this algorithm, we now know how
to compute the final basis for our transformation, and thus the actual de-
composition of the space can be performed using standard, linear algebra,
change of basis transformations. In the remainder of this work, we focus
on how to make these transformations faster.

3.3 Theoretical Tools and Transformation Efficiency

The algorithm concluding the previous section will enable us to compute a
symmetry adapted basis for any Sn and CXλ. However, our primary con-
cern here is not whether or not we can find a symmetry adapted basis,
but rather how quickly we can transform from the delta basis to a symme-
try adapted basis. The transformation matrix from C to A immediately, in
“one jump,” is fixed as soon as A is specified. However, we do not neces-
sarily need to compute this change of basis in just one jump. In particular,
the strategy we will take here is to use the fact that the DFT we use here is
naturally adapted to the chain S1 ≤ S2 ≤ · · · ≤ Sn to produce intermediate,
adapted basesAj which is symmetry adapted for Sj, and then compute the
transformation factors given by the change of basis matrices from Aj−1 to
Aj.

Fj(λ) = MAj←Aj−1

It will almost always be the case that due to the only incremental differ-
ences between Sj and Sj+1 that Fj(λ) (often denoted Fj if the context is clear)
will be very sparse. In order to prove real bounds on this sparseness, con-
sider the following.

Definition 3.6. Given G, D,
(

bk
i,j

)
as before, the primitive idempotents for CG

are given by the elements bk
i,i for all applicable i, k. Note that these are true

idempotents, as their matrix images square to themselves.

Let X be a finite set on which G acts transitively. Then, consider the
collection {bk

i,iCX}i,k. We see that this must span all of CX as ∑i,k bk
i,i =
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1CG. But, further, as bk
i,ib

d
j,j = δi,jδk,d, we see that these actually separate the

space into a collection of disjoint subspaces. Let us thus make the following
definition.

Definition 3.7. Given G, X,
(

bk
i,i

)
i,k

as above, we will refer to the compo-

nent bk
i,iCX as the frequency space of CX associated to bk

i,i.

Theorem 3.4. Let X be a finite set and G be a finite group such that G acts on X
transitively. Let H ≤ G. Then the frequency spaces of CHCX are direct sums of
the frequency spaces of CGCX.

Proof. Let us first clarify some notation. We will let θ1, . . . , θM be a com-
plete set of irreducible representations of G, such that the associated G-DFT
D = θ1 ⊕ · · · ⊕ θM is adapted to the chain H ≤ G. Let bk

i,i be the associ-
ated primitive idempotents. Let θ̃1, . . . , θ̃M̃ be a complete set of irreducible
representations of H, with D̃ the associated H-DFT, and b̃k

i,i the primitive
idempotents. We will presume that the matrix forms for θρ, θ̃ρ are known
for all ρ

With that notation in mind, we begin by expressing the frequency spaces
of CH CX. We see that they are given by b̃k

i,i CX, for some choice i, k. What is
b̃k

i,i? It is an element such that

θ̃k

(
b̃k

i,i

)
=



i
0 · · · 0 · · · 0
...

. . .
...

. . .
...

i 0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0

.

Recall that the adaptivity of the DFT D implies that θj
∣∣
CH is in block di-

agonal form with blocks corresponding to irreducible representations of H
such that all blocks associated with representation θ̃ρ are given by θ̃ρ(h), for
all h ∈ H.

Throughout the rest of the proof, let k represent a fixed, but arbitary,
index of the irreducible representation θ̃k of H and i represent a fixed, but
arbitrary index of a primitive idempotent with respect to θ̃k. We fix these
values for notational convenience; we will now often omit any notational
dependence on k and i for certain constants that, in fact, do depend on
which primitive idempotent of H we are examining. But, as k and i remain
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arbitrary, this can be done without loss of generality, and result will still
follow from a much cleaner presentation.

Then, the adaptivity of D implies

θj

(
bh

k
i,i

)
=



. . . 0 0 0 0
0 θ̃`

(
b̃k

i,i

)
0 0 0

0 0 θ̃m

(
b̃k

i,i

)
0 0

0 0 0 θ̃n

(
b̃k

i,i

)
0

0 0 0 0
. . .



=



. . . 0 0 0 0 0

0

. . . 0 0
0 1 0

0 0
. . .

0 0 0 0

0 0
. . . 0 0 0

0 0 0

. . . 0 0
0 1 0

0 0
. . .

0 0

0 0 0 0
. . . 0

0 0 0 0 0
. . .


where each nonzero block corresponds to θ̃k and the singular 1 in each
nonzero block appears at position (i, i) within that block. If θj, when viewed
as a representation of H by restriction, contains c̃j copies of θ̃ρ, then there
will be exactly c̃j such blocks. As all blocks are square, the 1s contained in

each block also appear on the diagonal of the overall matrix θj

(
b̃k

i,i

)
. Let the

indices of these 1s with respect to the full matrix be given by
(

I j
1, I j

1

)
, . . . ,

(
I j
c̃j

, I j
c̃j

)
.

Note these indices exist for all j such that c̃j > 0; if c̃ = 0, we will merely
presume the set of such indices is empty, and any sums over the indices in
this case would return zero. Then, we can see that

θj

(
b̃k

i,i

)
= θj

(
bj

I j
1,I j

1

+ · · ·+ bj

I j
c̃j

,I j
c̃j

)
.
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Note the following. By the definition of the primitive idempotents,

θj

(
bρ
`,`

)
= 0,

for all ρ 6= j. Therefore, we can also write

θj

(
b̃k

i,i

)
= θj

(
M

∑
ρ=1

(
bρ

Iρ
1 ,Iρ

1
+ · · ·+ bρ

Iρ
c̃ρ

,Iρ
c̃ρ

))
.

Note that this identification will hold for all j. Thus, if we examine the
image of b̃k

i,i under the G-DFT D, we see

D
(

b̃k
i,i

)
= D

(
M

∑
ρ=1

(
bρ

Iρ
1 ,Iρ

1
+ · · ·+ bρ

Iρ
c̃ρ

,Iρ
c̃ρ

))
.

But, D is an isomorphism. Thus,

b̃k
i,i =

M

∑
ρ=1

(
bρ

Iρ
1 ,Iρ

1
+ · · ·+ bρ

Iρ
c̃ρ

,Iρ
c̃ρ

)
.

But, by the linearity of the action of CH or CG on CX, this implies

b̃k
i,i CX ∼=

M⊕
ρ=1

(
bρ

Iρ
1 ,Iρ

1
CX+ · · ·+ bρ

Iρ
c̃ρ

,Iρ
c̃ρ

CX
)

.

As k and i were arbitrary, this shows that the frequency spaces of H are
direct sums of those with respect to G.

Note that this theorem implies that in order to transform from an adapted
basis for H to an adapted basis for G, we only need to transform all of
the frequency spaces of H! This follows directly from the fact that the fre-
quency spaces over H are direct sums of those over G, and the frequency
spaces naturally contain both the adapted basis for H and for G, by 3.3.
This reveals the following theorem.

Theorem 3.5. Let G be a finite group with subgroup H and let D be a DFT for
G adapted to the chain H ≤ G. Let X be a finite set of options, such that G
acts transitively on X. Let the frequency spaces of CX with respect to H have
dimensions α1, . . . , α f . Then, given an adapted basis BH over H and an adapted

basis BG, the change of basis matrix MBH←BG requires at most ∑
f
i=1 α2

i nonzero
entries, or at most max1≤i≤ f α f nonzero entries per row/column.



Theoretical Tools and Transformation Efficiency 49

Proof. This stems directly from the previous theorem and our observation.
By the definition of an adapted basis, we see that BG and BH can be written
as unions of bases for the frequencey spaces of CX with respect to G or H,
respectively. As the frequency spaces of G are direct sums of those of H, to
perform a change of basis from BH to BG will never require more work than
would performing a change of basis from the frequency spaces of H to the
frequency spaces of G locally. These have dimension α1, . . . , α f here, and
thus performing the necessary f change of basis operations on these spaces
requires at most ∑

f
i=1 α2

i nonzero entries per row/column. It is clear that
this also implies that it requires no more than max1≤i≤ f α f nonzero entries
per row/column.

These theorems will lay the groundwork for our investigations into the
complexity of computing the various factors Fj in the full decomposition
with which we work. In particular, there we will mostly task ourselves
with trying to compute the dimensions of the frequency spaces over the
decomposition of Sj−1 in Sj. To make this result even more useful, let us
characterize exactly what the dimensions of these frequency spaces are.

Theorem 3.6. Let G be a finite group, with H ≤ G and D a G-DFT adapted to
the chain H ≤ G. Let H have irreducible representations given by θ̃1, . . . , θ̃M̃,
with associated irreducible modules given by Ni. Suppose G acts transitively on
a finite set X. Then let X = X1 ∪ X2 ∪ . . . ∪ Xω be the orbital decomposition
of X with respect to H. This orbital decomposition inherently produces a module
decomposition of CH CX via

CH CX =
ω⊕

i=1
CH CXi .

Let the irreducible decomposition of each of these modules be given by

CH CXi
∼=

M̃⊕
ρ=1

αi
ρNρ.

Then, the dimension of the frequency space b̃k
i,i CX is given by

dim
(

b̃k
i,i CX

)
=

ω

∑
i=1

αi
k.

Furthermore, there are exactly dim (Nk) copies of this frequency space.
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Proof. The proof of this theorem is relatively straightforward. Let us ex-
pand the definition of the frequency space:

b̃k
i,i CX = b̃k

i,i

ω⊕
i=1

CH CXi

=
ω⊕

i=1

b̃k
i,iCH CXi

=
ω⊕

i=1

b̃k
i,i

 M̃⊕
ρ=1

αi
ρNρ


=

ω⊕
i=1

b̃k
i,i

 M̃⊕
ρ=1

αi
ρ⊕

m=1

Nρ


=

ω⊕
i=1

⊕̃
ρ=1

αi
ρ⊕

m=1

b̃k
i,i
(

Nρ

)

where in the last step we recognize the symbolic meaning of the product
αi

ρNρ. But, by the construction of the bh
k
i,i, we see that bh

k
i,iNρ = 0 if ρ 6= k

and is a one dimensional space otherwise. Thus,

b̃k
i,i CX =

ω⊕
i=1

αi
k⊕

m=1

b̃k
i,iNk

But, as this is a collection of one-dimensional spaces, we can find its dimen-
sion immediately. We see that it has dimension

dim
(

bh
k
i,i CX

)
=

ω

∑
i=1

αi
k,

as desired. The second statement in the theorem is merely a recognition
that there are exactly dim

(
Nρ

)
primitive idempotents associated with Nρ,

namely b̃ρ
1,1 CX through b̃ρ

dim(Nρ),dim(Nρ)
CX. This proves the theorem.

Note that all of these theorems about the decomposition of H ≤ G can
be extended to arbitrary finite chains, G0 ≤ G1 ≤ · · · ≤ Gn ≤ G, as the



Theoretical Tools and Transformation Efficiency 51

orbits of each Gi will nest within those of Gi+1, so that we can always restrict
our attention to a single orbit of Gi+1, and then examine the decomposition
of Gi restricted to this orbit exactly as in these theorems.

We now recall that the dimensions and multiplicities of the irreducible
representations of Sn are both well understood, through standard tableaux
and Kostka numbers, respectively. As such, Theorems 3.5 and 3.6 give us
an immediate way to bound the complexity of transforming an adapted
basis from Sj to Sj+1, within the chain S1 ≤ S2 ≤ · · · ≤ Sn over Xλ for
λ ` n. In particular, we see that we will obtain a rough bound for the
complexity required by any factor Fj = MBj←Bj−1 as follows.

First, we decompose the space CXλ into orbits of Sj. Recall from Theo-
rem 2.2 that this decomposition is given by

CSj CXλ ∼=
⊕

η∈λ∗n−j
CSj CXη

Each of these orbits is thus described by the transitive action of Sj on the set
Xη . Further, we see that each space CSj CXη decomposes further into orbits
of Sj−1, via

CSj−1 CXη ∼=
⊕
ν∈η∗

CSj−1 CXν .

The union of these trivially intersecting submodules of Sj−1 will yield the
total module CSj−1 CXλ. But, we know that our adapted basis for Sj−1 will
respect its orbital decomposition, as the orbits of Sj−1 span invariant sub-
spaces of Sj−1 CXλ, so we can describe any adapted basis for Sj−1 as a col-
lection of adapted bases for each orbit of Sj−1. The same holds for Sj. Thus,
the desired change of basis operator, Fj, can be realized as a direct sum of
operators on each orbit of Sj. But, each of these transformations can be
bounded with the frequency space dimensions, via Theorem 3.5. These fre-
quency space dimensions, by Theorem 3.6, will be given exactly by sums
of Kostka numbers across the orbits of Sj−1 that are associated to the same
irreducible representation. As these Kostka numbers can, in principle, be
computed directly, this gives a mechanism to provide a total complexity
bound for using this subgroup chain factorization of a change of basis over
CXλ from the data collection basis to an adapted basis, in particular, basis
A. We will explore this further in Chapter 4, and, in particular, in Theo-
rem 4.1.
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3.4 Implementation

This algorithm permits us the ability to decompose our data space with re-
spect to each Sj ≤ Sn first, then doing incremental transformations to the
data rather than a full transform all at once. But, in order to see how fast
it truly performs, we must run experiments. To gather this experimental
data about the complexity of the factors Fj and to test various other strate-
gies with the algorithm in general, code was written in C++, first providing
merely an implementation of the algorithm discussed in Section 3.2, then
extending it in several ways that enabled greater experimentation. Here,
we will give a brief introduction to the code base.

3.4.1 Object Design

To implement these algorithm, code was written in C++, providing func-
tionality to express and manipulate elements of Sn, to create and represent
tabloids for any λ ` n, to explore the actions of Sn on CXλ, to produce the
matrix forms of the irreducible representations θρ of Sn, and to produce a
final, symmetry adapted basis for all j ≤ n in the context of a given space
CXλ. This code has three major classes that simplify the problem:

SymGpElm Class This class provides access to a symmetric group element
object, capable of multiplying against other symmetric group element
objects, being decomposed to a product of adjacent transpositions,
being extended to an element of a larger symmetric group or restricted
to an element of a smaller symmetric group. Finally, and most impor-
tantly, these objects can act on elements of the LambdaTableau class to
produce other elements of the LambdaTableau class. In this way, we
explicitly specify the action of Sn on Xλ.

Elements σ ∈ Sn are realized in implementation by explicit storage of
n and an explicit map from {1, . . . , n} → {1, . . . , n}, stored through a
permuted list such that map[i] = σ(i). It is important to note that,
though relevant, these implementation details are far from the driv-
ing cost on the efficiency of this code and as such are less important
than the overall implementation details of the algorithm.

LambdaTablaeu Class This class provides access to tabloids of shape λ ` n.
Note that this is a strict requirement; the class does not provide access
to tabloids over tabloids of shape λ � n. Note also that this imple-
mentation does not provide a mechanism to take formal linear com-
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binations of tabloids. This may seem counterintuitive, as CXλ is com-
posed of exactly formal linear combinations of elements of Xλ with
coefficients in C; however, as all of our efforts can restrict their atten-
tion to the basis of CXλ given by Xλ whenever it needs to deal with
real tabloids and as such we do not need any explicit implementation
of CXλ. There are several common computational representational
strategies for tabloids; in this work, tabloids are represented by a vec-
tor of length n cataloging the rows in which various numbers appear.
More explicitly, in the code, the tabloid t ∈ X(3,2) given by

t = 1 2 3

4 5

would be represented by the map

t.pos_ = [1,1,1,2,2].

Matrix Class This class merely enables basic linear algebra constructions,
Gram-Schmidt orthogonalization, and some documentation features.
The code previously used the Boost Basic Linear Algebra library for
these computations, but this has been phased out of the system com-
pletely and is no longer required.

3.4.2 Algorithm Flow

Elements of the design are only interesting and useful in so much as they
aid the global algorithm design. The current version of the code imple-
ments the following algorithm:

Input A choice n ∈N, λ ` n which indicate that we seek a change of basis
of the space CXλ which respects the action of Sn.

Step 1 Compute the final, symmetry adapted basis for Si for all i ≤ n.
This step is done following the algorithm described in Section 3.2
and Stiefel and Fässler (1992) to construct a symmetry adapted ba-
sis given a finite group. Specifically, however, we compute these
bases such that they are also orthogonal, by modifying the “choose”
step by using Gram-Schmidt to select our cj linearly independent
columns. One amendment made to ease experimentation is that there
is a mechanism in the code to permute all possible starting orderings,
of the set Xλ, so as to artificially enable different choices to be made at
the step of unspecified choice.
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Step 2 Compute the change of basis matrices Si−1 → Si for all 2 ≤ i ≤ n. In
this way, we choose the decomposition of the global change of basis
matrix S1 → Sn by factorizing it as (Sn−1 → Sn) · · · (S2 → S3)(S1 →
S2).

Output The basis found in Step 1, factorization found in Step 2, and the
number of total nonzero entries across all factors of the factorization
in Step 2.

Note that, though important for the viability of experimentation, the
complexity of this algorithm to produce this final basis and decomposition
is not of prime importance to this work; our focus is instead on minimiz-
ing the complexity of changing from the starting basis to the final basis,
measured in particular by the number of nonzero entries in the final de-
composition.



Chapter 4

Results

Thus far, we have devised an algorithm to perform fast data analysis on
partially ranked data, but performing a change of basis on the data space,
from a basis natural for data collection, to a basis natural for data anal-
ysis. We factored this change of basis transformation into a product of
smaller transformations, each of which captured more symmetry on the
space. Now, we are ready to begin analyzing the complexity of these algo-
rithms, both experimentally and theoretically, which will show their viabil-
ity for real-world applications.

4.1 General Tabloids

We begin with a definition, that will guide our discussion onto general
complexity:

Definition 4.1. Let λ be partition of n. Then, let

O(λ) = {ρ|ρ is obtainable by removing any number of boxes from any rows of λ}.

We can see that O(λ) is the set of all tabloids describing orbits or sub-orbits
of λ. Next, define K(λ) be the maximum over all tabloids in O(λ) of the
maximum sum of the Kostka numbers associated to the irreducible decom-
position of the orbits of the given tabloid shape in O(λ). In particular,

K(λ) = max
µ∈O(λ)

(
max
ρDµ∗

(
∑

t∈µ∗
κρ,t

))
where the ‘D’ symbol here denotes the dominance order. We recall that the
notation µ∗ denotes the set of all orbits of µ under the action of S∑ µ−1. Or,
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equivalently, µ∗ = {µi|µi > 0}. Further, we use notation ρ D µ∗ to mean
ρ D µ′, for some µ′ ∈ µ∗. Finally, we recall that κλ1,λ2 = 0 if λ1 6D λ2.

Note that another way to define K(λ) is as the maximum dimension of
a frequency space associated any orbit or sub-orbit of λ over any group Sj,
j ≤ n.

With this definition, we will prove the following theorem that will sim-
plify our investigations into specific tabloid decompositions.

Definition 4.2. Let Fj(λ) represent the jth factor in the overall Sn change of
basis. Then, let cj(λ) denote the average number of the nonzero entries per
row/column in Fj(λ). In particular, define

cj(λ) =
The number of nonzero entries in Fj(λ)

dim
(

CXλ
) .

Theorem 4.1. Let λ ` n be given. Then, cj(λ) ≤ K(λ).

Proof. Though quite general in statement, the proof of this theorem is sur-
prisingly straightforward. We see that CSj CXλ decomposes into a collection
of orbits. In particular,

CSj CXλ ∼=
⊕

µ∈λ∗
n−j

CXµ.

But, each of these orbits in turn decomposes into at most k orbits over Sj−1.
In particular, for any given µ ∈ λ∗

n−j
, we have

CSj−1CXµ ∼=
⊕
ρ∈µ∗

CXρ. (4.1)

But, the bases Bj and Bj−1 are, by construction, adapted, so they will still
break apart into our orbit decomposition. But, this means that our factors
Fj(λ) will be expressible as a direct sum of change of basis operators over
each orbit. In particular, we have that

Fj(λ) ∼=
⊕

µ∈λ∗
n−j

Fµ
j (λ).

But, by the orbit decomposition expressed in Equation 4.1, each orbit-operator
is a map described via Fµ

j (λ) :
(⊕

ρ∈µ∗ CXρ
)
→ CXµ. So, each Fµ

j (λ)
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describes a transformation over a transitive set (CXµ) from the set of or-
bits of µ ∈ O(λ). Therefore, the irreducible decomposition of each of the
spaces CXρ has maximum sum of Kostka number bounded above by K(λ).
Said alternatively, the maximum frequency space dimension transformed
by Fµ

j (λ) is bounded above by K(λ). Expressed differently, this says that
the maximum number of nonzero entries per row/column in the transfor-
mation of Fµ

j (λ) is bounded above by K(λ). But, this applies to all µ ∈ λ∗
n−j

,
which therefore means that this bound holds for Fj(λ) in total. As j is gen-
eral, this proves the theorem.

Corollary. Let κ be the maximum Kostka number attained in the decomposition
of any tabloid µ ∈ O(λ). Then, K(λ) ≤ |λ| · κ
Proof. We see the following.

K(λ) = max
µ∈O(λ)

(
max
ρDµ∗

(
∑

t∈µ∗
κρ,t

))

≤ max
µ∈O(λ)

(
max
ρDµ∗

(
∑

t∈µ∗
κ

))

≤ max
µ∈O(λ)

(
max
ρDµ∗
|λ|κ

)
= |λ|κ

as desired.

Corollary. Given any tabloid of shape λ ` n, with |λ| ≤ k, the full factorization
of change of basis matrix requires no more than

dim
(

CXλ
)
(n− 1)K(λ) ≤ dim

(
CXλ

)
(n− 1)|λ|κ

nonzero entries, as compared to potentially
(
dim

(
CXλ

))2 for the naïve, full
transformation.

Proof. By the preceding theorem, in the subgroup decomposition, each fac-
tor has at most K(λ) nonzero entries per row/column, and each is of size
dim

(
CXλ

)
. Thus, each factor contributes at most K(λ)dim

(
CXλ

)
nonzero

entries, and there are (n− 1) such factors. This yields a total of dim
(
CXλ

)
(n−

1)K(λ) nonzero entries across the factorization. But, by the previous corol-
lary, this is at most dim

(
CXλ

)
(n− 1)|λ|κ. The naïve algorithm potentially

can have a completely full transformation matrix, which requires at most(
dim

(
CXλ

))2 nonzero entries.
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We can use this theorem to provide nearly immediate bounds on vari-
ous, specific tabloid shapes. In particular, consider the following theorem,
which provides a bound on the overall complexity of the factor Fj for an
arbitrary r-rowed tabloid.

Theorem 4.2. Let λ = (λ1, . . . , λr) ` n. Let u(λ) be given via

u(λ) =
((

λr + 1
r− 2

))((
λr−1 + 1

r− 3

))
· · ·
((

λ4 + 1
2

))((
λ3 + 1

1

))
.

Then,
K(λ) ≤ ∑

µ∈λ∗
u(µ).

Proof. To prove this, first note that u(λ) is an increasing function λi for all
applicable i. Given that we regard the orbits of λ as compositions of n, with
row lengths allowed to be zero, then this shows that u(λ) is increasing over
all orbits and sub-orbits of λ, yielding maximal behavior at λ itself. Thus,
if we show that this inequality holds for only the top-most level of orbits
of λ, this will establish the inequality in general. To do this, let us first note
that

max
µDλ

κµ,λ ≤ u(λ).

This can be seen from a straightforward combinatorics argument. We note
that any Kostka filling of µ must completely fill up the rth row of µ with
rs, as using any other number would violate the Kostka constraints on the
columns. Thus, when we ask the question, “in how many ways can we
place the rs in µ?” we intrinsically have at most r− 1 rows in which to place
them. But, distributing λr things among r− 1 rows is a clear combinatorics
question. We see that there are

((
λr+1
r−2

))
ways to distribute λr things among

r− 1 slots. Once we have done this, we see that any remaining slots in the
r − 1st row must be filled with r − 1s, just as the rth row was mandated.
Thus, we similarly have at most r− 2 rows in which to place the r− 1s for
any placement of the rs. So, the total number of fillings is bounded above
by the product of the number of individual fillings, given by((

λr + 1
r− 2

))((
λr−1 + 1

r− 3

))
.

We see that this pattern will continue, all the way until we are placing the
3s. We see that these will be the last entry we’ll need to place, as follows.
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Note that the positions of the 1s are mandated in any Kostka filling of µ;
they must go in the left-most positions of the first row. Thus, once we place
the 3s, the only number remaining that must be placed are the 2s. But, if
there is only one number left to place, it simply must fill up every available
slot. So, there will only ever be one way to fill the twos if we have placed all
numbers at least 3. Thus, we see that the termination point for our product
is at λ3 + 1, so we find, as desired,

max
µDλ

κµ,λ ≤
((

λr + 1
r− 2

))
· · ·
((

λ3 + 1
1

))
We take convention that if r ≤ 2, then this product is an empty product,
and hence u(λ) = 1.

Now that we have shown that this bounds the Kostka number on λ,
the result is immediate. The function u can therefore bound the Kostka
numbers on each orbit of λ, which is exactly what is encapsulated by

K(λ) ≤ ∑
µ∈λ∗

u(µ).

This completes the proof.

Corollary. Given u(λ) as in Theorem 4.2, the full factorization over CXλ requires
no more than

dim
(

CXλ
)
(n− 1)

(
∑

µ∈λ∗
u(µ)

)

nonzero entries.

Proof. This is an exact application of Theorems 4.1 and 4.2.

Corollary. If we only let the first two rows of a tabloid shape grow towards infin-
ity, then this factorization method has complexity

O
(
(n− 1)dim

(
CXλ

))
versus

O
(

dim
(

CXλ
)2
)

Proof. We see that K(λ) ≤ ru(λ) and that ru(λ) is constant relative to λ1, λ2.
Thus, letting these approach infinity along any path doesn’t change the
value of ru(λ). The result follows.
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4.2 Two-Rowed Tabloids

4.2.1 Theoretical Complexity Bounds

First, we note that the bound in Theorem 4.2 predicts that two-rowed tabloids
should never have any factor that needs more than two nonzero entries
per row/column. In fact, this is the best bound obtainable for two-rowed
tabloids using this method. To showcase this, consider the following exam-
ple

Example 4.1. Let λn =
( n

2 , n
2

)
for all even n. Then, consider the last factor

Fn(λn). We can bound its number of non-zeros by considering the decom-
position of the module given by the action of Sn−1 on each orbit of λn.
We see that these orbits are described by the compositions of n given by( n

2 − 1, n
2

)
and

( n
2 , n

2 − 1
)
. As these are merely reordered versions of each

other, in fact these two orbits are isomorphic as modules. Thus, they have
the same decomposition. As every Kostka number of an irreducible rep-
resentation over a two-rowed space is 1, but each of them appears in both
orbits, we see that all frequency spaces have dimension 2. Therefore, if we
only bound based on the dimension of the frequency space, for a general
two-rowed tabloid, we will never be able to bound lower than 2 nonzero
entries per row/column.

4.2.2 Experimental Data:

We also tested these bounds via the implementation discussed in Section 3.4
and collected data about the resulting factorizations. For 2-rowed tabloids,
in particular, we found that the bound of no more than 2 nonzero-entries
per row/column was respected in all cases, with additional behavior ob-
served in specific cases. In particular, consider the following sequences:

Let us first examine λ = (n− 1, 1). Decompositions over these shapes
were very clearly structured. See, for example, the nonzero entries in the
decomposition over n = 9, λ = (8, 1) in Figure 4.1.

This decomposition clearly obeys the rule of no more than 2 per row/column;
in fact, it typically has an average much closer to 1. A plot of the average
number of nonzero entries per factor as a function of n is shown in Fig-
ure 4.2

Given this structure, it might seem that we could do even faster in this
case. In fact, for this simple example, as the dimension of the space is so
small (n), it is faster to simply run the full factorization. We can compare
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Figure 4.1 Matrix plots of the factors of the decomposition of the space
CX(8,1).

the total number of nonzero entries required across the factorization with
those only required for the standard transformation via Figure 4.3.

For a more interesting example, let us examine the sequence (n− 3, 3),
for n = 6, 7, 8. We see from Figure 4.4 that its average obeys our bound and
is a decreasing function. Further, it is clear that even in this simple case, the
factorization performs much better than does the naïve, full decomposition.
We can also examine a sample decomposition, such as that over the space
CX(5,3), shown in Figure 4.5

We can also use this experimental data to analyze the distribution of
nonzero entries among the factors. Though yet unproven, the experimental
data on two and three-rowed tabloids indicates that the number of nonzero
entries for each factor forms a non-decreasing sequence. To illustrate this
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Figure 4.2 The average number of nonzero entries per row/column across all
factors of λ = (n− 1, 1) for n from 2 to 9.

2 3 4 5 6 7 8 9 10
n

20

40

60

80

100

120

140

Total ð NonzeroEntries

Figure 4.3 The total number of nonzero entries across all factors of the de-

composition of λ = (n− 1, 1) (orange), compared to dim
(
CXλ

)2
(blue) for n

from 2 to 9.

for two-rowed tabloids, consider Figure 4.6. Here, we see this trend, that
the number of nonzero entries is greatest in the last factor.

4.3 Three-Rowed Tabloids

For three-rowed tabloids, we can first form a bound based on Theorem 4.2,

Theorem 4.3. Let λ ` n be given by λ = (a, b, c), a ≥ b ≥ c > 0, a + b + c =
M. Then, K(λ) ≤ 3c + 2.

Proof. We can see that u((a, b, c, )) = c + 1. But, when summed over the
three, top-level orbits of λ, namely λ1 = (a− 1, b, c), λ2 = (a, b− 1, c), and
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Figure 4.4 Examining the factorization of the transformation when λ = (n−
3, 3), for n = 6, 7, 8. (left) The average number of nonzero entries across all fac-
tors. (right) The total number of nonzero entries across all factors (green), com-

pared to the theoretical bound 2(n − 1)dim
(
CXλ

)
(red) and dim

(
CXλ

)2

(blue) for n = 6, 7, 8.

λ3 = (a, b, c− 1), we see that this bound becomes

c + 1 + c + 1 + c = 3c + 2,

as desired.

Given this theorem, we can now see that any 3-rowed decomposition re-
quires at most (3c+ 2)(n− 1)dim

(
CXλ

)
nonzero entries per row/column,

where c is the length of the last row.
However, there is one specific case in which we can do better. For ex-

ample, we form the following theorem:

Theorem 4.4. Let λ = (n− 2, 1, 1), n ≥ 3. Then, the jth factor Fj(λ) requires
no more than 4 nonzero entries per row/column.

Proof. Here, let us examine the decomposition of Sn CXλ into orbits over
Sn−1. We see that it is a union of three orbits, each of the following form:

Orbit 1: λ1 = (n− 3, 1, 1): In this orbit, we work again with a three-rowed
tabloid, described by shape (n− 3, 1, 1). This shape breaks down via

CXλ1 ∼= S(n−1)
⊕

2S(n−2,1)
⊕

S(n−3,1,1).

Orbit 2: λ2 = (n− 2, 0, 1) = (n− 2, 1): Here, we act over the composition
described by λ2, which we identify with the partition (n− 2, 1) (as the
action of the symmetric group knows nothing about the row-lengths
of the tabloids on which it acts). This shape breaks down via

CXλ2 ∼= S(n−1)
⊕

S(n−2,1).
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Figure 4.5 Matrix plots of the factors of the decomposition of the space
CX(5,3).

Orbit 3: λ3 = (n− 2, 1, 0) = (n− 2, 1): Here, we act over the composition
described by λ3, which we identify with the partition (n − 2, 1) as
above. This shape breaks down via

CXλ3 ∼= S(n−1)
⊕

S(n−2,1).

Thus, across all orbits, we see that the decomposition is

CXλ ∼= CXλ1 ⊕
CXλ2 ⊕

CXλ3

∼= 3S(n−1)
⊕

4S(n−2,1)
⊕

S(n−3,1,1)

Thus, we see that the transformation over any transitive space described
by the action of Sk on a tabloid (k− 2, 1, 1), from the k− 1 level to the kth
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Figure 4.6 Examining the number of nonzero entries in each factor of the trans-
formation when λ is given by (upper left) (5, 1, 1), (lower left) (6, 1, 1), (upper
right) (2, 2, 1), and (lower right) (3, 2, 1).

level, requires no more than 4 nonzero entries per row/column. But, every
level is described as a collection of orbits describable either by tabloids with
fewer than 3 rows, or by a 3 rowed tabloid of shape (m− 2, 1, 1) for some m.
Thus, though this analysis only directly examines factor Fn, its conclusion
extends to factors Fj for all j ≤ n. This proves the theorem. Why does this
differ from the K(λ) bound found above? In that bound, we used a general
λ = (a, b, c). In fact, this analysis shows by a direct decomposition that
for λ = (n − 2, 1, 1), K(λ) ≤ 4. In fact, with a slightly more nuanced in-
vestigation int K(λ), this can be seen as well, but a full decomposition also
gives you access to the number of appearances of every frequency space of
each dimension, which would be very helpful for any large, industry level
system.

We summarize by describing three examples of 3-rowed tabloids and
the implied bounds.

λ = (n− 2, 1, 1): This shape could be used to select one’s ranked two fa-
vorites of n objects. Here, we have that CXλ can be transformed with
at most 4(n− 1)n(n− 1) entries, as opposed to (n(n− 1))2, as in the
naïve bound. This case is truly a distinct bound from the next two.
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λ = (n− k− 1, k, 1): This shape could be used to select a committee of size
k and a chairperson out of n candidates. In this case, we have that
CXλ can be transformed with at most 5(n− 1)( n

k,1) entries, as opposed

to ( n
k,1)

2. This case is an evaluation of the bound for the general case.

λ = (n− k− `, k, `): In this full general case, we have that CXλ can be
transformed with at most (3`+ 2)(n− 1)( n

k,`) entries, as opposed to

( n
k,`)

2.

4.3.1 Experimental Data:

Given the increased complexity of computing 3-rowed decompositions, we
only present limited examples here. It is also when we begin experiment-
ing on 3-rowed spaces that we begin to encounter computational round off
error. In particular, as the spaces grow larger, the size of typical, erroneous
round-off calculations computed in this decomposition increases. Simul-
taneously, the true size of the entries in these matrices decreases. It is in
complex, 3-rowed tabloids that these start to approach similar ranges, and
thus become indistinguishable. However, we can still gleam much struc-
tural information regarding these decompositions despite the occasional
erroneous entry. In particular, let us first examine the sequence (n− 2, 1, 1),
for n between 3 and 8. Figure 4.7 illustrates the average and total behavior
of the number of non-zeros given by this decomposition.
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Figure 4.7 Examining the factorization of the transformation when λ = (n−
2, 1, 1), for n between 3 and 8. (left) The average number of nonzero entries
across all factors. (right) The total number of nonzero entries across all fac-
tors (green), compared to the theoretical bound 4(n− 1)dim

(
CXλ

)
(red) and

dim
(
CXλ

)2
(blue) for n between 3 and 8.

Here, we can also examine the structure of the factors within a particu-
lar instance as well. Figure 4.8 shows each factor over the overall transfor-



Three-Rowed Tabloids 67

mation for the space CXλ, with λ = (6, 1, 1).
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Figure 4.8 Matrix plots of the factors of the decomposition of the space
CX(6,1,1).

We can observe more complicated behavior with tabloid shape λ =
(n− 3, 2, 1) or (n− 4, 2, 2). For (n− 3, 2, 1), average and total distributions
are shown in Figure 4.9 for n from 5 to 7. For (n− 4, 2, 2), the total factor-
izations are illustrated for n = 6 and n = 7 in Figure 4.10.
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Figure 4.9 Examining the factorization of the transformation when λ =
(n − 3, 2, 1), for n = 5, 6, 7. (left) The average number of nonzero entries
across all factors. (right) The total number of nonzero entries across all fac-
tors (green), compared to the theoretical bound 5(n− 1)dim

(
CXλ

)
(red) and

dim
(
CXλ

)2
(blue) for n between 5 and 7.

Like in the two-rowed case, here we also find that the last factor always
has the most nonzero-entries. This happened in all cases tested; several
relevant cases are illustrated in Figure 4.11.
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Figure 4.10 Matrix plots of the factors of the decomposition of the space (top)
CX(2,2,2) and (bottom) CX(3,2,2). Note the accumulation of round off error in
F7(3, 2, 2); the matrix appears to have lost most of its structure and clearly vi-
olates the theoretical bounds. This also appears in F6((2, 2, 2)), though less
prominently.
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Figure 4.11 Examining the number of nonzero entries in each factor of the
transformation when λ is given by (upper left) (5, 1, 1), (lower left) (6, 1, 1), (up-
per right) (2, 2, 1), and (lower right) (3, 2, 1). Note that we omit analysis of the
transformation F6(λ) so that the round-off error encountered in that case does
not bias the results.



Chapter 5

Future Work

5.1 Theoretical Expansions

The theoretical endeavors thus far represent attempts to bound the algo-
rithmic complexity of the change of basis transformations Fj, given The-
orems 3.5 and 3.6, and the relationships between Kostka numbers and ir-
reducible multiplicities for the symmetric group. But, in fact, our bound
K(λ) is a significant overshoot; as experimental data demonstrates, specif-
ically Figure 4.7, our bounds consistently overestimate the true complexity
to perform transformation Fλ. Why is this, and how can we improve it?
There are two reasons our bounds consistently overestimate the complex-
ity of Fj. First and foremost, 3.5 is in and of itself an upper bound; we have
no theorem that says these transformations will take at least some number
of operations, only at most. Secondly, however, we are not even crafting the
tightest bounds for our tabloids that Theorem 3.5 allows. Recall that our
guiding object K(λ) is given by

K(λ) = max
µ∈O(λ)

(
max
ρDµ∗

(
∑

t∈µ∗
κρ,t

))
.

What bound does Theorem 3.5 predict? Let G be a finite group with sub-
group H ≤ G and adapted DFT D. Let H have f frequency spaces, of
dimension α1, . . . , α f . Then, Theorem 3.5 predicts that a change of basis

from an adapted basis of H to one of G requires no more than ∑
f
i=1 α2

i . We
recall that the frequency spaces of H have dimensions specified exactly by
the orbital decomposition of H over X and the resulting irreducible decom-
position of each of the CH modules spanned by its orbits. Let us interpret
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these insights in the context of the Sn and Xλ. If we wish to use Theorem 3.5
to determine the tightest possible bound on the complexity of factor Fj, we
first must decompose the space CXλ according to the orbits of Sj on Xλ. We
recall from Theorem 2.2 that

CSj CXλ ∼=
⊕

η∈λ∗
n−j

CSj CXη .

Now, we must decompose each of these orbits with respect to CSj−1. Let us
restrict ourselves to one particular orbit η ∈ λ∗

n−j
. Then, we see that

CSj−1 CXη ∼=
⊕
ν∈η∗

CSj−1 CXν .

Each CXν then decomposes into irreducibles via

CXν ∼=
⊕
µDν

κµ,νSν.

Let us use notation µ D η∗ to mean that there exists a ν ∈ η∗ such that
µ D ν. To collapse irreducibles of the same type across orbits, we can then
write

CSj−1 CXη ∼=
⊕

µDη∗

(
∑

ν∈η∗
κµ,ν

)
Sµ.

Thus, according to Theorem 3.6, the transformation restricted to the orbit
of Sj described by η requires no more than

∑
µDη∗

(
∑

ν∈η∗
κµ,ν

)2

dim(Sµ)

nonzero entries. To unpack this, recall that Theorem 3.6 reveals that the
dimension of a frequency space associated to the jth irreducible represen-
tation is precisely the sum of the multiplicities of this irreducible represen-
tation in the decompositions of the orbital spaces of the subgroup in ques-
tion. This yields our term ∑ν∈η∗ κµ,ν. Further, Theorem 3.6 also reveals that
there are precisely dim(θρ) frequency spaces associated with irreducible
representation θρ. Thus, we will have exactly dim(Sµ) frequency spaces of
dimension ∑ν∈η∗ κµ,ν. But, this is only over one orbit. To compute the total
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number of nonzero entries in Fj, we sum over all orbits. Thus, we need no
more than

∑
η∈λ∗

n−j

 ∑
µDη∗

(
∑

ν∈η∗
κµ,ν

)2

dim(Sµ)


nonzero entries, for a maximum average number of nonzero entries per
row/column of

cj ≤ Cj(λ) =
1

dim(CXλ)
∑

η∈λ∗
n−j

 ∑
µDη∗

(
∑

ν∈η∗
κµ,ν

)2

dim(Sµ)


=

1
|Xλ| ∑

η∈λ∗
n−j

 ∑
µDη∗

(
∑

ν∈η∗
κµ,ν

)2

dim(Sµ)

 . (5.1)

This bound is much more accurate than the bounds shown in Chapter 4, but
is also much more difficult to interpret. For example, though Equation 5.1
is more nuanced than is K(λ), it is really only useful when looking at a par-
ticular tabloid λ, as opposed to a class of tabloids, such as (n − 2, 1, 1) as
n → ∞ and so on. As this function is not obviously increasing with j, in
these situations we cannot, for example, simply evaluate this bound at the
top-most layer of orbits, like we did for many of the Kostka number bounds
such as u(λ) from Theorem 4.2. Granted, it may be the case that Cj(λ) is
increasing with respect to j and the component parts of λ; this just remains
unproven. It is certainly true that in all experimental evidence we have, the
last factor, Fn contributes the most nonzero entries to the entire factoriza-
tion. On the other hand, these bounds are not increasing functions when
restricted to the average number of nonzero entries within any particular
orbit of Sj. Certain orbits of Sj ≤ Sn, with j fixed as n → ∞, maintain
average nonzero counts that do not decay to one with n, whereas it can
be shown that the complexity of the last factor for two- and three-rowed
tabloids decays to 1 as n → ∞. However, it is possible that the orbits in
which this occurs only represent a small, decaying fraction of all orbits of
Sj, and thus the factor on the whole could still have a decaying complex-
ity cost even while certain small orbits maintain relatively high nonzero
densities. Given this confusion, a key area of future investigation with this
project is to determine whether or not Cj(λ) is an increasing function with
j; more generally, to determine whether or not the last factor truly always
has the most nonzero entries.
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This question is particularly valuable because, were it the case that
the last factor always bounded the complexity of the overall transforma-
tion, one could rapidly cull the computation of certain, unnecessary Kostka
numbers from the calculation of the overall complexity. Consider the fol-
lowing. Given a sequence {λn ` n}, there exist sequences {µn ` n − 1},
with µn D λ∗n, such that limn→∞

dim(Sµn )
|Xλn | = 0. For example, let λn be any-

thing but the all partition (n) and let µn = (n − 1) for all n. Then, Sµn is
the trivial module, and has dimension n, while |Xλn | will have some de-
pendence on n, and thus the limit will tend to 0. Why are such sequences
interesting? Note that we have, via Equation 5.1, the following bound on
the last factor cn,

cn ≤
1
|Xλn | ∑

µDλ∗

(
∑

ν∈λ∗
κµ,ν

)2

dim(Sµ)

= ∑
µDλ∗

(
∑

ν∈λ∗
κµ,ν

)2
dim(Sµ)

|Xλn | .

If λ is given, for each n, by λn ` n, then we have

lim
n→∞

cn ≤ lim
n→∞ ∑

µDλ∗n

(
∑

ν∈λ∗n

κµ,ν

)2
dim(Sµ)

|Xλn | .

For any sequence λn, µn as given above, we see that

lim
n→∞

 ∑
µDλ∗

(
∑

ν∈λ∗
κµ,ν

)2
dim(Sµ)

|Xλn |


= lim

n→∞

( ∑
ν∈λ∗n

κ2
µn,ν

)
dimSµn

|Xλ
n |

+ ∑
µDλ∗n,µ 6=µn

(
∑

ν∈λ∗n

κµ,ν

)2
dim(Sµ)

|Xλn |


= lim

n→∞

((
∑

ν∈λ∗n

κ2
µn,ν

)
dimSµn

|Xλ
n |

)
+ lim

n→∞

 ∑
µDλ∗n,µ 6=µn

(
∑

ν∈λ∗n

κµ,ν

)2
dim(Sµ)

|Xλn |

 .

Now, let us presume that λn simply reflects growth in the first two rows of
some base partition λ ` n, as is the case with all asymptotics investigated
in this report. Then κµn,λn is bounded over all n, via the bound u(λ), which
is independent from the lengths of the first two rows. But, this implies that

lim
n→∞

(∣∣∣∣∣
(

∑
ν∈λ∗n

κ2
µn,ν

)
dimSµn

|Xλ
n |

∣∣∣∣∣
)
≤ M lim

n→∞

dimSµn

|Xλ
n |
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for some constant M. But, by the construction of the µn, this reveals

lim
n→∞

((
∑

ν∈λ∗n

κ2
µn,ν

)
dimSµn

|Xλ
n |

)
= 0.

Thus,

lim
n→∞

cn ≤ lim
n→∞

 ∑
µDλ∗n,µ 6=µn

(
∑

ν∈λ∗n

κµ,ν

)2
dim(Sµ)

|Xλn |

 .

But, we can repeat this procedure for any other sequence {λ′n, µ′n}, continu-
ally adjusting the bound for cn to remove any additional sequence that has
this property. This shows that, in the limit as n → ∞, cn does not mean-
ingfully depend on any irreducible components whose dimensions decay
relative to the size of the Xλ. Therefore, in computing the limiting behavior
of cn, it suffices to only compute the Kostka numbers associated to irre-
ducible representations whose dimensions are on the order of the size of
Xλ.

If it is true that the last factor is an upper bound for the complexity
of all factors, this result would be even more powerful, because then one
could make limiting statements about all factors by only considering a very
select, and often quite small, set of Kostka numbers and their associated
irreducible representations.

5.2 Experimental Enhancements

There are a number of experimental enhancements that could be made
to improve the process of experimenting and testing various hypotheses.
Here, we focus on three specific prospects: round off error, implementing
sparse arrays, and randomized initial configuration permutations. Round
off error will be examined in Section, 5.2.1, but we will discuss the ideas
behind sparse arrays and randomized initial configuration permutations
here. Most matrices examined and produced by this algorithm are very
sparse, yet are still stored in memory and manipulated as standard arrays
of arrays. This is costly both in the space and time complexity of experi-
mentation; however, as Boost proved so ineffectual, this idea has not yet
been explored. The other idea espoused here revolves around truly ran-
domly permuting the initial configuration order of Xλ prior to computing
any bases. However, Xλ is often prohibitively large, forcing us to, until
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now, merely permute the first k columns for some small k. However, it
should be possible to gain nearly truly random behavior over all of S12, if
nothing else than by perhaps repeated shuffling. Both this and the sparse
array options are very theoretical options that have yet to be explored.

5.2.1 Round Off Error

Right now, the code cannot run on especially complex tabloid shapes or
over large n due to an overwhelming tendency towards round off error.
See, for example, Figure 5.1.
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Figure 5.1 Matrix plots of the factors of the decomposition of the space
CX(7,2,1) demonstrate the system’s propensity towards unchecked round-off er-
ror. The seemingly unstructured rows of entries are erroneous fragments. Later
versions of the code corrected this error; however, all current measures are
merely patches. A more systemic solution would be to use algebraically pre-
cise specialty number classes, such as a RATIONALS class and a SQRT class.

Currently, the code uses a very high precision setting and aggressive
round-off termination. However, as the size of the spaces grows larger, the
matrices grow more complicated and use smaller and smaller numbers,
rendering erroneous output harder to distinguish from correct output. The
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only true solution would be to use an algebraically infinite precision for-
mat, such as a combination of a RATIONALS and SQRT class. Obviously,
these would still be bounded by the machine size limits on integers (which
could again be extended should the need be) but right now the problem
is much closer to the precision, not range. It is important to note that the
irreducible representations of Sn can actually be seen as living in the field
of rational numbers and their square-roots, not just the complex numbers.
Thus, these are actually mathematically feasible ideas.

5.3 Additional Resources

Beyond the many works suggested throughout this text, there are sev-
eral resources available to the interested reader wishing to further pursue
these ideas. Of particular note, on the experimental side, all code I pro-
duced for this work is available via github, at https://github.com/mmcdermott/
symGpFactorizer. Additionally, there are several other, similar libraries for
these tasks, such as the Snob library, produced by Risi Kondor, available
at http://people.cs.uchicago.edu/~risi/SnOB/index.html. On the theoretical side,
the books Clausen and Baum (1993) and Terras (1999) are both excellent
introductions to Harmonic Analysis in general.

https://github.com/mmcdermott/symGpFactorizer
https://github.com/mmcdermott/symGpFactorizer
http://people.cs.uchicago.edu/~risi/SnOB/index.html
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