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Abstract

This thesis studies a problem that has been proposed as a novel way to
disrupt communication networks: the load maximization problem. The
load on a member of a network represents the amount of communication
that the member is forced to be involved in. By maximizing the load on
an important member of the network, we hope to increase that member’s
visibility and susceptibility to capture. In this thesis we characterize load
as a combinatorial property of graphs and expose possible connections be-
tween load and spectral graph theory. We specifically describe the load
and how it changes in several canonical classes of graphs and determine
the range of values that the load can take on. We also consider a connec-
tion between load and liquid paint flow and use this connection to build
a heuristic solver for the load maximization problem. We conclude with a
detailed discussion of open questions for future work.
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Chapter 1

Introduction

One prominent and relatively modern application of mathematics has been
to study networks. Networks can informally be thought of as models of the
way objects and/or people interact, and a substantial amount of mathe-
matical interest developed as communication and transportation networks
were built. As cities were planned, for example, and mass public trans-
portation systems grew, it became natural to ask how to best create these
systems; how could mathematical tools let you build a train or subway
system that moved as many people as possible on routes that were as con-
venient as possible in the most cost-effective way?

As people saw mathematics applied to answer these questions, interest
in network theory grew. Networks arise in virtually every academic dis-
cipline and their study has led to rich connections between mathematics
and these disciplines. One of the most popular, and important, modern
applications is to social networks. Social networks model the way people
interact, and through “friend graphs” on sites like Facebook, many people
have unwittingly seen some of the mathematical relationships underlying
network theory. These social networks can be thought of as communication
networks, networks which models the way objects communicate. As in a
social network, these objects can be people, but they can also be technology
involved in communication, like computers, servers and phone systems.

One useful way that mathematics has been used to study networks is
through the study of resilience. Roughly speaking, resilience refers to the ro-
bustness of a network and can be modeled in many different ways. We will
intuitively say that a network is resilient if, when parts of it are removed,
the overall network can still continue to function. A resilient transportation
network comprising a subway system, for example, would be one where
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people could still efficiently get to almost all stations if a few stations had
to be shut down for maintenance. Likewise, a social network consisting of
people who communicate only through in-person conversation would be
resilient if news could still quickly pass through the network if any small
group of people left the network.

The importance of resilience can be viewed from two different perspec-
tives. First, we want our own networks to be resilient: we want to build
some redundancy in any network so that, if a few pieces of the network
shut down, it can still continue to function. Second, we might be trying
to exploit a network’s lack of resilience. We might, for example, view a
criminal organization as a social network. Here we want to know the net-
work’s weaknesses and we might ask questions like: are there members of
the network whose arrest will effectively cripple the organization?

While we might be able to intuitively understand the resilience of small
networks, many networks are too large to be comprehended intuitively.
Moreover, the trivial ways of making networks as resilient as possible are
often impractical. For example, one might build a resilient network by con-
necting every pair of members. Doing so, however, quickly leads to a very
large number of direct connections. Consider, for instance, the network
of public airports in the United States. There are more than 5,000 public
airports in the United States, so that an airline wishing to operate a single
daily direct flight between each pair of airports would require more than
12 million flights each day.

Many models for calculating or exploiting the resilience of a network
have been proposed. In what follows we will discuss a relatively new
metric for resilience, the load. The load on a member of a network can
be thought of as the amount of information forced to be routed through
that member. In a social network, this information might be communica-
tion flowing between people, and a higher load on a person correlates with
higher visibility of that person.

This model can be applied to networks with critical elements. For exam-
ple, most commercial airlines have a hub, an airport through which many
flights are transferred in order to connect many pairs of cities with air ser-
vice. Airlines like to use hubs because they allow them to efficiently con-
nect pairs of cities. We saw previously 12 million flight legs would be re-
quired to directly connect every pair of 5,000 airports. Using a hub, an
airline could only operate flight routes between the hub and each other air-
port. Then passengers can fly between any pair of cities with just 5,000
flight legs, though almost all routes would require a connection at the hub.
In addition, such a network would be very vulnerable. Its lack of resilience



Motivation 3

stems from having so much dependence on its hub: if the hub was shut
down, perhaps because of weather, the airline would not be able to operate
a single flight.

These types of networks, where there are a few critically important
members, are quite common. They may not be as concentrated or vul-
nerable as in the previous example, but many networks still rely heavily on
a few key actors. In a criminal network, it might be the leader or it might
be the person who finances the criminal activities. In a communications
network, it might be a central server through which all communication is
routed.

The load on one of these key members measures how much information
must pass through them. We will formalize these ideas in the next chapter,
and we will primarily apply them to communication and social networks.
We will also use a specific example, introduced below, of a transportation
network to show how these concepts might be applied in a commercial
setting.

1.1 Motivation

The concept of load is particularly natural in communication networks but
it can also be applied to many other types of networks. We will start by in-
troducing a more concrete example of load in a transportation network, and
we will refer back to this example throughout parts of this thesis to provide
context for our work. This example focuses on network destabilization and
is, to be candid, somewhat contrived and is to be taken as a lighthearted
example. At the same time, it should not detract from the importance of re-
silience and methods of network disruption. One particularly relevant ap-
plication of this work is to the destabilization of terrorist networks. Much
of the research about network disruption focuses on terror networks, and
indeed the initial motivation for the concept of load comes from terrorist
networks (see Martonosi et al. (2011)). Appropriately discussing the struc-
ture of terror networks, however, is beyond the scope of this thesis and the
interested reader should consult works by Hoffman (2006) and Sageman
(2004).

Suppose that the company Cheap Unequaled Transportation (CUT) owns
an airline. The set of airports that the airline serves and the routes between
airports that passengers can take serve as our network.

An airline operator, Flights out of this World, (FloW) owns the Menger
airport. They let other airlines, including CUT, fly through the Menger
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airport, but the other companies have to pay a considerable fee to FloW.
Company FloW wants to acquire another hub, so they will buy out and
renovate a different airport. At the same time, this acquisition will cost
FloW a tremendous amount of money, and to complete their renovations,
they need to raise profits during the renovation period.

As they renovate, they will effectively close the airport they acquire for
several years, causing other airlines to reroute flights through different air-
ports. The key question for FloW is then: which airport should we temporarily
close so that company CUT has to route more flights through the Menger airport,
increasing our profits? This question is essentially asking how to select an
airport to remove from the network so that the load on the Menger airport
increases the most. Though contrived, this example shows how a company
might be interested in the load metric.

In the remainder of this thesis we will examine the relationship be-
tween the structure of networks and load. We will start by discussing what
the load actually can look like and then highlight connections to a beau-
tiful field of mathematics: spectral graph theory. Our ultimate goal is to
contribute theorems and empirical results that help characterize the rela-
tionship between load and network structure so that a company like FloW
could quickly solve their problem.

1.2 Outline

As much as possible, we would like for this thesis to be comprehensible to a
motivated and patient underclassmen with some exposure to college math-
ematics. In particular, we assume familiarity with calculus, linear algebra
and proof-based mathematics. For someone familiar with those courses,
we will present material with enough background so that this thesis can be
self contained and accessible. We will also provide several references for
further exploration of related material.

We will begin this thesis, in the next chapter, by providing a more math-
ematical context for the load metric. We will discuss background from
graph and network theory as well as the most important characterizations
of load from previous literature.

In the third and fourth chapters, we present new theorems that are con-
tributions of this thesis project. These new contributions fall into two broad
categories. First, in Chapter Three we answer questions that help to char-
acterize load as a structural property of networks. We will describe the
load, and how it changes, in broad classes of networks. In addition, we
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will bound how large the load can actually be in a network. These sorts
of questions provide insight into the load as a metric as well as intuition
about when it is large.

In Chapter Four, we will study load using tools from spectral graph
theory. Spectral graph theory studies networks through the eigenvalues
and eigenvectors of matrices that can be associated with graphs. Tech-
niques from the field have been successfully applied to many problems
in network theory and have been used to study the structural properties of
graphs. These techniques have notably been used to study other sorts of
flow problems. In this chapter we will highlight one of these problems, the
paint spilling problem. We will define this problem formally and provide
empirical data connecting it to load.

Chapter Five explains a series of open problems and describes areas for
further research. Chapter Six then briefly concludes this thesis, summariz-
ing the main motivations and contributions.





Chapter 2

Background

We begin this chapter by describing the relevant technical background,
starting with pertinent details from graph and network theory. We then
introduce the method of network disruption studied in this project and de-
scribe the work that has been done so far.

2.1 Network and Graph Theory

We previously described a network as a tool to understand the relation-
ships between objects, and we provided examples of communication, trans-
portation and social networks. Networks are often studied and visualized
as graphs, which we formally define below. One of the challenges of graph
theory is getting used to the vocabulary, so below we emphasize what is
relevant to this thesis.

Readers familiar with graph theory may jump to Section 2.2, but we
encourage them to at least skim the following to become familiar with the
terminology we will use. For a more thorough introduction to the graph
theory involved in studying networks, see chapters six through eight of
Newman (2010). Readers interested in learning more about graph theory
in general are referred to West (2001), an approachable and well-written
introductory textbook.

Definition 2.1 (Graphs). A graph G = (V(G), E(G)) is defined as two sets,
E(G) and V(G). Elements of E(G) are sets consisting of two elements of V(G).
V is referred to as the vertex set, and E, the edge set. We typically let n = |V(G)|
and m = |E(G)|. If {u, v} ∈ E, we say u is adjacent to v, or equivalently that
u is a neighbor of v, and write u ∼ v. An edge {u, v} is said to be incident to u
and v.
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An example graph G is shown below in Figure 2.1. In this graph the vertex
set is

V(G) = {Alice, Bob, Charlie, Dan, Key}

and the edge set is

{{Alice, Bob},{Alice, Dan}, {Alice, Key}, {Bob, Charlie},
{Charlie, Dan}, {Charlie, Key}}.

KeyAlice

Bob Charlie

Dan

Figure 2.1 Visualizing a social network as a graph.

Elements of the vertex set will be referred to as vertices, though the
term node is also frequently used in related literature. In a network, ver-
tices typically symbolize objects, and edges, relationships between those
objects. In our motivating example of an airport network, each airport that
CUT operates out of would be a vertex. An edge exists between two ver-
tices if CUT operates a direct flight between the airports corresponding to
those vertices. In a social network, vertices might represent people, and
edges, ways those people can directly communicate. Such a social network
is shown in Figure 2.1. In the picture, Alice and Bob can directly commu-
nicate as there is an edge between the vertices representing them. Bob can
communicate with the Key vertex (who might represent a leader in the net-
work), but his communication is indirect and must pass through at least
one other person.

The previous definition of a graph can be modified in several ways. We
will study simple graphs, which are graphs that do not allow loops and
repeated edges. A loop is an edge of the form {v, v} where v ∈ V(G).
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Having no repeated edges means we do not allow {u, v} with u, v ∈ V(G)
to appear in E(G) multiple times (in other words, in a simple graph G,
E(G) is a set of distinct two-element subsets of V(G), each consisting of
two distinct elements).

Our graphs are also undirected,which means that u ∼ v is equivalent
to v ∼ u. In a directed graph, we would alternatively define E(G) to be
a subset of V(G)× V(G) so that edges would be expressed as (u, v) with
u, v ∈ V(G). This edge would be described as an edge from u to v, and
would be used, for example, to model situations where a person repre-
sented by u could send information to the person represented by v, but
not vice versa. Again, we will assume that our edges are undirected. In
this case, we refer to the degree of a vertex as the number of vertices it is
adjacent to. Thus, in Figure 2.1, Bob has degree 2 while Alice has degree 3.

Adjacency and edges allow us to represent direct connections between
vertices, but we also want to express indirect connections. In Figure 2.1
communication can still flow between Bob and the Key vertex by using
Alice or Charlie as an intermediary. Because communication can still flow
between them, we say that Bob and the Key vertex are connected. This,
more formally, means that there exists a path between Bob and the Key
vertex:

Definition 2.2 (Paths). Let G be a graph with vertices u and v. A u-v path is
a sequence of vertices u = w1, w2, ..., wk = v such that wi is adjacent to wi+1
and no vertex occurs twice in the list. The length of a path is the number edges
traversed between u and v, equal to k− 1. Two paths are edge disjoint if no edge
of G occurs in both paths, and a set of paths are pairwise edge disjoint, or just
edge disjoint, if every pair of paths in the set is edge disjoint.

In Figure 2.1, there are three paths between Bob and Alice. These are
the path of length one corresponding to moving directly from Bob to Alice,
which we denote by P1, the path of length three expressed in a list as: Bob,
Charlie, Dan, Alice, which we denote by P2, and another path of length
three: Bob, Charlie, Key, Alice, which we denote by P3. P1 and P2 are edge
disjoint, so the set {P1, P2} is also edge disjoint. Because P2 and P3 share the
edge between Bob and Charlie, they are not edge disjoint and both of the
sets {P1, P2, P3} and {P2, P3} are not edge disjoint. The maximum number
of edge disjoint paths between Alice and Bob is then two.

If a path P is listed as w1, . . . , wn, we will refer to w1 and wn as end-
points of P. The other vertices, w2, . . . , wn−1, will be described as internal
vertices of P. In our motivating example, a path between two vertices u
and v means that there exists a series of flights that will take a passenger
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from airport u to airport v. Any internal vertices on that path correspond to
the airports where a passenger would experience connections while flying
from airport u to airport v.

Definition 2.3 (Cycles). A cycle is a sequence of vertices u = w1, w2, ..., wk = u
such that such that wi is adjacent to wi+1 and u is the only vertex that appears
twice in the list. A graph G is said to be acyclic if it contains no cycles. The
length of a cycle is the number of distinct vertices it contains, namely k− 1.

Intuitively, a cycle is a path from w1 to wn−1 followed by a return to w1
using an edge {w1, wn−1}. There are multiple cycles of length four in Figure
2.1. One example is Alice, Bob, Charlie, Dan, Alice. Note that we could
define the same cycle moving in either direction, and we could equivalently
define it as starting from any vertex in the cycle.

In many graphs, there exist paths between all pairs of vertices. In our
motivating example, this would mean that it is possible, with enough con-
necting flights, to go between any pair of airports owned by CUT. These
graphs are referred to as connected:

Definition 2.4 (Connectedness). A graph G is said to be connected if, for any
u, v ∈ V(G), there exists a u-v path. A subset S of V(G) is similarly said to
be connected if, for every u, v ∈ S there exists a u-v path. If the graph is not
connected, maximal connected subsets of vertices are called components.

A “maximal connected subset” informally means any subset of vertices that
is connected and cannot be made bigger without resulting in a subset that
was no longer connected.

We use the idea of a path to define the distance between two vertices:

Definition 2.5 (Distance in a Graph). Let G be a graph with vertices u and v.
The distance between u and v, denoted by d(u, v), is the length of the shortest u-v
path. We refer to shortest paths as geodesics. If no u-v path exists, we use the
convention that d(u, v) = ∞.

Above we have defined the basic tools that we will use from network
and graph theory. These tools allow us to mathematically define what it
might mean for a vertex to be important.

2.2 Centrality and Load

One common method of network disruption is to remove a critical vertex
and it is thus important to formalize measures of a vertex’s prominence
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in a graph. We mathematically formalize that prominence through a ver-
tex’s centrality. There are many measures that try to describe how central a
vertex is in a graph, and we will pay particular attention to the following:

Definition 2.6 (Centrality).

(a) The degree centrality of a vertex v in a graph G is its degree.

(b) The closeness centrality of v is defined as

n
∑u∈V(G) d(u, v)

.

(c) The betweenness centrality of v is defined as

∑
u,w∈V(G)

gu,w(v)
gu,w

,

where gu,w is the number of geodesics between u and w, while gu,w(v) is the
number of geodesics between u and w containing v as an internal vertex.

The degree centrality is a relatively simple measure of a vertex’s im-
portance within a graph and assumes that the more important a vertex is,
the more neighbors it will have. Closeness centrality measures how close a
given vertex v is to every other vertex, and betweenness centrality counts
the number of geodesics v is involved in. If communication is expected to
flow as efficiently as possible it will flow through geodesics. The between-
ness centrality then measures the number of times v lies between two ver-
tices on a path where efficient communication is expected to flow. (Note
that the expressions defining these centrality measures can be scaled with-
out changing their meaning, and the reader is advised that they appear in
different forms in different literature. For consistency, we have used defi-
nitions from Newman (2010).)

It many networks, however, it is not the case that communication will
tend to flow along the shortest possible path. We thus consider the load
on a given vertex k which measures the number of distinct paths that are
forced to include k.

Definition 2.7 (Load). The load on a vertex k in a graph G is

L(k, G) := ∑
u,v 6=k

nu,v(G)− ∑
u,v 6=k

nu,v(G\k),

where nu,v(G) is the maximum number of edge disjoint u-v paths in a graph G
and G\k is the graph G with the vertex k and all edges incident to k removed.
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The first term in this definition sums over all pairs of non-key vertices
and counts the maximum number of edge disjoint paths between them. In a
communication network, this term can be intuitively thought of as adding
together all of the distinct ways pairs of people can communicate. The
second term repeats the calculation, but in the network with the key vertex
removed. The result effectively measures the amount of communication
the key vertex is forced to participate in.

This intuition extends beyond communication. In our motivating ex-
ample, we want to increase the number of CUT’s flights that are forced to
fly through the Menger airport; this is analogous to increasing the load on
the Menger airport. FloW, by closing another airport, is removing a vertex
from the graph representing CUT’s transportation network. FloW wants to
find the airport whose removal most increases the load on the Menger air-
port in CUT’s network. This problem is known as a special case of the load
maximization, or LoMax, problem which is the main study of this thesis.

2.3 LoMax

To formalize the load maximization problem we need to define the load
effect of a subset S ⊂ V(G) on a key vertex.

Definition 2.8 (Load Effect). Let S ⊂ V(G) be a subset of vertices in a graph G
such that k /∈ S. Then the load effect of S on k is:

ε(S, k, G) := L(k, G\S)− L(k, G),

where G\S is the graph G with every vertex in S removed.

The load effect of a subset of vertices with respect to a key vertex k thus
measures how much the load on k increases when that subset is removed.

To disrupt a network, our goal is to increase, as much as possible, the
load on the key vertex. In social networks, the key vertex is often a leader
of the network whose removal from the network would substantially affect
the network’s ability to function. The leader is thus typically expected to
be a highly central vertex.

Definition 2.9 (LoMax). Let G be a graph with a key vertex k. The load maxi-
mization, or LoMax, problem is:

max
S⊂V(G\k)

ε(S, k, G).
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The special case of LoMax that FloW would be interested in is the single-
LoMax problem. This problem adds the constraint that the subsets consid-
ered must contain exactly one vertex. Algebraically, single-LoMax can be
expressed as

max
v∈V(G\k)

ε({v}, k, G).

One might wonder if or when it is possible to increase the load on a
fixed vertex in a graph. The former question will be answered in the af-
firmative by the following example, and answering the latter is one of the
primary goals of research into load.

Example 2.1 (Computing Load and Solving LoMax). Consider the network
shown in Figure 2.1 and let S = {Dan}. The maximum numbers of edge-disjoint
paths between pairs of vertices in G, G\k, G\S and (G\S)\k are shown in Table
2.1 and were computed as in the remarks following Definition 2.2. The load on the
key vertex in G is, following Definition 2.7:

L(k, G) = ∑
u,v 6=k

nu,v(G)− ∑
u,v 6=k

nu,v(G\k)

= 13− 12

= 1.

Similar computations show that L(k, G\S) = 3 so that removing Dan from the
network increases the load on the key vertex to 3. By trying all subsets of vertices, it
can be shown that this is optimal. Thus, an optimal solution to the LoMax problem
is S = {Dan}, and ε(S, k, G) = 2.

In the preceding example, we made the comment that, to show that S
was optimal, it would be sufficient to consider all 2n−1 possible subsets of
V(G\k), where n is the number of vertices in G. This strategy, however, be-
comes exponentially more difficult to compute with the size of the network
and is very inefficient. One principal question, then, is characterizing the
subsets of vertices with large load effects on highly central vertices.

2.4 Approaches to LoMax

Martonosi et al. (2011) first presented the LoMax and single-LoMax prob-
lem with applications to disrupting terrorist networks. They argued that
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Maximum Number of Edge Paths in Figure 2.1 and Related Graphs
Endpoints (u,v) nu,v(G) nu,v(G\k) nu,v(G\S) nu,v((G\S)\k)
Alice, Bob 2 2 2 1
Alice, Charlie 3 2 2 1
Alice, Dan 2 2 n/a n/a
Bob, Charlie 2 2 2 1
Bob, Dan 2 2 n/a n/a
Charlie, Dan 2 2 n/a n/a
Total 13 12 6 3

Table 2.1 Computing the load in Example 2.1.

classical network disruption methods are not always effective. These meth-
ods, for example, tend to focus on preventing all communication through a
network (which is very rarely feasible) or increasing the length of geodesics.
The latter would, intuitively, make it more difficult for communication
to flow between members of the network, but might not be helpful since
covert networks may already use long paths of communication.

Martonosi et al. also introduced two broad ways of considering the
LoMax problem: computing solutions efficiently and identifying graph-
theoretic structural properties of optimal solutions. This thesis primarily
explores the latter, but its importance is motivated by the difficulty of im-
plementing LoMax solvers, and we now briefly discuss previous work in
this area.

2.4.1 Solving LoMax Computationally

The LoMax problem was described in Martonosi et al. (2011), and the au-
thors presented a genetic algorithm that tended to find good (but not nec-
essarily optimal) solutions to the LoMax problem. Paul (2012) then imple-
mented LoMax as a mixed integer linear program. This program found the
subset of vertices S that maximized ε(S, k, G), and tended to run success-
fully in under four minutes on graphs with up to 30 vertices and 68 edges.
However, even with some simplifications, it failed to determine the optimal
subsets on graphs with 30 vertices and more than 75 edges.

Quickly solving LoMax on large networks seems to be computationally
intractable, so in both Martonosi et al. (2011) and Paul (2012), the authors
began to more theoretically examine the subsets of vertices whose removal
most increases the load on a key vertex. If the subsets of vertices that solved
the LoMax problem could be structurally characterized, new and more ef-
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ficient LoMax solvers could be developed by searching for subsets with
those properties.

2.4.2 Characterizing Optimal Solutions

Below, we summarize the previous theoretical results relevant to this the-
sis, beginning with the original results in Martonosi et al. (2011). In the
following, let G be a graph with key vertex k. Then:

Theorem 2.1 (Theorem 1 in Martonosi et al. (2011)). If k has degree two, and
v ∈ V(G) is such that v ∼ k, then ε({v}, k, G) ≤ 0.

Theorem 2.2 (Theorem 2 in Martonosi et al. (2011)). Suppose G is a cycle on
n vertices (so that every vertex has degree two and the graph is connected). Then
for any v ∈ V(G), ε({v}, k, G) ≤ 0.

Theorem 2.3 (Theorem 3 in Martonosi et al. (2011)). If there is a single edge-
disjoint path between k and a vertex v, then ε({v}, k, G) ≤ 0.

Theorem 2.4 (Theorem 4 in Martonosi et al. (2011)). Let v 6= k be a vertex
and C be a set of edges whose removal disconnects G into two components, Gk and
Gv, respectively containing k and v. Let v1, . . . , vp be vertices in Gv that, in G,
are adjacent to vertices in Gk, and let k1, . . . , ks be vertices in Gk that, in G, are
adjacent to at least one vertex in Gv. Suppose further that vj has at least b|C|/2c
edge disjoint paths to every other vi using just vertices in Gv\i and kl has at least
b|C|/2c edge disjoint paths to every other ki using just vertices in Gk\k. Then
ε({v}, k, G) ≤ 0.

These theorems highlight connections between cycles and vertices whose
removal increases the load on a key vertex. Theorem 2.3 is equivalent to
saying that vertices whose removal increases the load on a key vertex k must be
in at least one cycle with k and Theorem 2.2 adds that there must be some addi-
tional structure in this cycle.

Continuing the work initiated by Martonosi et al. (2011), Paul (2012)
proved several new theorems. Paul (2012) extended several of the above
theorems to the full LoMax case. For example, the following is a full LoMax
analogue of 2.3:

Theorem 2.5 (Theorem 5.7 in Paul (2012)). If there is a single edge-disjoint path
between k and a vertex v and S ⊂ V(G) is such that v, k /∈ S, then

ε(S, k, G) ≥ ε(S ∪ {v}, k, G).
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Just as removing an individual vertex v with a single edge disjoint path
to k does not increase the load on k, adding v to any subset of vertices al-
ready removed will not increase the load effect on k. This theorem thus says
that we need never consider removing v. Paul uses this idea to construct
graph simplification algorithms. Theorems like this highlight the ways the-
oretical study of load can be used to improve solvers for LoMax.

Many of the initial theorems in Martonosi et al. (2011) focused on the
load effects of single vertices. There are many ways to extend these results
to larger subsets. For example, Paul (2012) considers the load effect of pairs
of vertices:

Theorem 2.6 (Theorem 5.11 Paul (2012)). If

ε({u, v}, k, G) > max{0, ε(u, k, G), ε(v, k, G)},

then neither u nor v has a single edge-disjoint path to k.

Thus, one approach to theoretically examining LoMax is to prove theorems
about the load effects of single vertices and then extend them to larger sub-
sets of vertices. This is an approach we will take occasionally in Chapter
Three, and the data we present in Chapter Four will also first focus on sin-
gle vertices.

Results like the above are very important for a large number of rea-
sons. They help us to understand the structure of networks, and, in single-
LoMax, immediately let us eliminate vertices from consideration. They also
often form the basis of theorems that can be applied to the full LoMax prob-
lem. These theorems could be incorporated into future LoMax solvers to
potentially increase the sizes of graphs on which LoMax can be run.

We now turn to the primary contribution of this thesis: extending our
theoretical understanding of load.



Chapter 3

Characterization of Load

In this chapter we provide results that help characterize load. The load on a
vertex, just like the degree of a vertex, can be thought of as simply a number
assigned to a given vertex in a given graph. One might then wonder how
the load can vary: what range of values can it take on and, in particular,
how large can it be? What is it on vertices in well-known classes of graphs
with lots of structure that are often studied to build intuition? Moreover,
how does the load in those classes of graphs change when subsets of ver-
tices are removed?

We intuitively think of load on a key vertex as the amount of flow forced
through that vertex. In the problems that we expect research on load to be
applied to, this key vertex is often highly central. One might thus wonder
if it is always possible to increase the load on these vertices. While it is easy
to find small graphs for which the load cannot be increased, and while it
is similarly straightforward to create trivial large graphs where the load
cannot be increased (for example, the graph with no edges), one might ask
if it is always possible to increase the load on highly central vertices in large
graphs with many edges.

This chapter will address the above questions. We begin, in Section
3.1, by describing both the load and changes in load in several well-known
classes of graphs. In Section 3.2 we discuss the range of values the load can
take on. In particular, we show that the maximum possible load on any ver-
tex in any graph of size n is of order n3 and construct a graph for which this
bound is achieved. In Section 3.3 we then describe how the load on a key
vertex can change in any graph when vertices of low degree are removed.
We conclude, in Section 3.4, by briefly answering our final question: is it
always possible to increase the load on vertices in large graphs with many
edges?
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3.1 Combinatorial Results

The load on a key vertex in a given graph is computable in polynomial time,
meaning that the time it takes to compute the load scales as a polynomial
function of the number of vertices. Similarly, the load effect on a key vertex
when a specific subset is removed is computable in polynomial time. For
some classes of graphs, however, we do not need to compute the maximum
number of edge disjoint paths between pairs of vertices to determine the
load on a key vertex. Instead, we can directly compute the load on vertices
in these graphs using formulas. Some of these formulas are used implicitly
in proofs of the theorems discussed previously, but most of them are neither
explicitly nor implicitly discussed. These examples may not be realistic
networks, but the following combinatorial results also serve as examples
of the load and load effects on key vertices in different types of graphs, and
thus provide intuition about load.

Before looking at graphs, we state one basic proposition which implies
that we only need to look at the component of a graph containing k. This
proposition can be used to simplify calculations in networks consisting of
multiple components. It will also be useful in the propositions below when
removing vertices in such a way that disconnects the graph.

3.1.1 Components

Proposition 3.1 (Components). Let G be a graph having multiple components.
Let Gk denote the component containing k. Then L(k, G) = L(k, Gk), and in
determining the load effect of a subset S, we need only concern ourselves with the
load effect of S ∩V(Gk) on Gk.

Proof. This proposition follows because the only vertices that have an effect
on the load on k, or on the load effect of a subset S on k, are those that have
at least one edge disjoint path containing k. This requires both endpoints
to be in component Gk. More formally:

L(k, G) = ∑
u,v 6=k

nu,v(G)− ∑
u,v 6=k

nu,v(G\k).
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If there is a u-v path, both vertices must be in the same component and so
we separately consider the case when u, v ∈ Gk:

= ∑
u,v/∈Gk

nu,v(G)− ∑
u,v/∈Gk

nu,v(G\k)

+ ∑
u,v∈Gk :
u,v 6=k

nu,v(G)− ∑
u,v∈Gk :
u,v 6=k

nu,v(G\k).

Note that ∑u,v/∈Gk
nu,v(G)−∑u,v/∈Gk

nu,v(G\k) = 0 since no paths in compo-
nents outside Gk can use k. Thus:

= ∑
u,v∈Gk :
u,v 6=k

nu,v(G)− ∑
u,v∈Gk :
u,v 6=k

nu,v(G\k)

= L(k, Gk).

For the sake of brevity, in the following proofs we will not always make
a strict bookkeeping argument.

3.1.2 Paths

We begin by looking at path graphs. The path graph on n vertices, Pn, is
a connected graph with n− 1 edges. In Pn, the vertices can be ordered as
v1, v2, . . . , vn with v1 ∼ v2, v2 ∼ v3, . . . , vn−1 ∼ vn defining the edges. An
example is shown in Figure 3.1a.

Proposition 3.2 (Paths). Using the notation above, let G be Pn. Then

L(vi, G) = (i− 1) ∗ (n− i)

for all i.

Proof. Any pair of vertices in Pn will have exactly one path between them.
The paths that contribute to the load are those that use vi as an internal
vertex. To obtain such a path, one endpoint must be a vertex vj with index
j < i, and the other, a vertex vk with index k > i. There are (i − 1)(n− i)
such choices.
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a: 𝑃6  

b: A sample tree 

c: 𝑆7 

d: 𝐶5 

e: 𝐾4 

Figure 3.1 Types of graphs having a closed-form expression for the load on a
given vertex.

Note that the L(vi, G) = 0 for i = 1 and i = n. Consider, however, P2j+1.
Then L(vj+1, P2j+1) = j2. It can be shown that vj+1 is the vertex in P2j+1
with the largest load, and thus in a path graph on n vertices the load on a
given vertex is between 0 and roughly n2

4 .
We can also study the load effect of arbitrary subsets of vertices in path

graphs. Removing a vertex other than v1 or vn will disconnect the graph,
and using Proposition 3.1, we only need to study the component containing
the key vertex vi.

Proposition 3.3 (Load Effects in Paths). Let G be the graph Pn and let S ⊂
V(G\vi). We consider three cases:

• If S contains only vertices with indices less than i, let vj be the vertex in
S with maximum index. Then L(vi, G\S) = (i − j − 1)(n − i). Thus
ε(S, k, G) = −j(n− i).

• If S contains only vertices with indexes greater than i, let vj be the vertex
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in S with minimum index. Then L(vi, G\S) = (i − 1)(j − i − 1). Thus
ε(S, k, G) = −(n− j + 1)(i− 1).

• If S contains vertices with indexes both greater and less than i, let vj be the
vertex in S with maximum index such that j < i and let vl be the vertex in S
with minimum index such that l > i. Then L(vi, S) = (i− j− 1)(l− i− 1)
so ε(S, k, G) = (i− j− 1)(l − i− 1)− (i− 1)(n− i).

Proof. We consider the second case, and the remaining cases are analogous.
By 3.1, L(vi, G\S) will be the same as L(vi, Pj−1) and we apply 3.2. To com-
pute the load effect, note that

(i− 1)(j− i− 1)− (i− 1)(n− i) = −(i− 1)(n− j + 1).

By including vi+1 or vi−1 in S, L(vi, G\S) = 0. Thus, the removal of a
single vertex can decrease the load on any path graph to 0.

3.1.3 Trees

Paths are special cases of trees, defined to be connected, acyclic graphs (or
equivalently, any connected graph on n vertices with n− 1 edges). An ex-
ample tree is shown in Figure 3.1b. In general, let k be a key vertex in a tree
and denote the degree of k by d(k). Then G\k consists of d(k) components,
each of which is a tree. The edges adjacent to k can be labeled e1, . . . , ed(k),
each of which connects k to a tree in G\k. These trees in G\k can be respec-
tively labeled T1, . . . , Td(k), where Ti is the tree adjacent to k via ei. Finally,
let ni denote the number of vertices in Ti so that n1 + . . . nd(k) = n− 1.

Proposition 3.4 (Trees). Let G be a tree on n vertices using the notation above.
Then L(k, G) = ∑i<j ninj .

Proof. The proof is analogous to the proof of Proposition 3.2. It follows by
considering all pairs of vertices which pass through k.

Therefore, to determine the load on any vertex k in a tree, sum over
each pair of edges incident to k and, for each pair, multiply the number of
vertices connected to each edge in G\k. For the general case of removing
subsets we do not provide explicit formulas. Still, we note the following:

Proposition 3.5 (Load Effects in Trees). Let G be a tree on n vertices. If k has
d(k) neighbors, then at least d(k) − 1 vertices must be removed to decrease the
load on k to 0.
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Proof. Let S be a subset of vertices of G\k such that |S| < d(k)− 1. Then
k has at least two neighbors, u and v, in G\S, connected by a single path
through k. Thus the load on k in G\S will be at least one.

We also consider a special tree, Sn the star graph on n vertices. This tree
consists of a single vertex k adjacent to n− 1 neighbors (and each neighbor
has degree 1). An example is shown in Figure 3.1c. This network corre-
sponds to a single highly central vertex, and would model, for example, an
airline transportation network with a single hub. Then:

Proposition 3.6 (Load and Load Effects in Star Graphs). L(k, Sn) = (n−1
2 ).

If S ⊂ V(G\k), then

ε(S, k, Sn) =

(
n− 1− |S|

2

)
−
(

n− 1
2

)
.

Proof. This proof follows from Proposition 3.4 and the fact that G\S =
Sn−|S|.

Note that the load on the center vertex in a star graph is approximately
n2/2, so that the load on the center vertex of Sn is asymptotically twice as
large as the maximum load on a vertex in Pn.

3.1.4 Cycles

After studying trees, the next step is to consider cycles. Cn, the cycle on n
vertices, can be visualized as adding a single edge between v1 and vn in Pn.
An example is shown in Figure 3.1d. The load on any vertex in a cycle is
exactly the same as the load on the center vertex of a star graph:

Proposition 3.7 (Cycles). L(k, Cn) = (n−1
2 ).

Proof. For each pair of vertices u and v (with u, v 6= k), there are two distinct
paths from u to v corresponding to moving clockwise and counterclockwise
through Cn. One of these paths will contain k as an internal vertex, and so
each of the (n−1

2 ) pairs contributes 1 to the load.

Removing any subset of vertices from Cn will create a set of compo-
nents, each of which is a path graph. Removing the two vertices adjacent
to k will reduce the load to 0.
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Proposition 3.8 (Load Effects in Cycles). The load effect of a single vertex S =
{v} 6= {k} on a cycle Cn is

(d(k, v)− 1)(n− d(k, v)− 1)−
(

n− 1
2

)
.

If |S| > 1, label the vertices in the cycle as follows:

• Label k as v1.

• Move clockwise through the cycle, labeling the clockwise neighbor of vi with
vi+1 until you reach vn.

Let vi be the vertex in S with minimum index and let vj be the vertex in S with
maximum index. Then the load effect of S ⊂ V(G\k) on Cn is:

(i− 2)(n− j)−
(

n− 1
2

)
.

Proof. First consider the case where |S| = 1. As noted above, G\v will be
a path graph. We thus apply Proposition 3.2 to compute L(k, G\v). There
will be d(k, v)− 1 vertices to one side of k in this path, and n− d(k, v)− 1
on the other side.

If |S| > 1, then G\S is still a path graph. There will be i− 2 vertices to
one side of k (with indices v2 through vi−1) and n− j vertices on the other
side (corresponding to vn through vj+1).

3.1.5 Complete Graphs

Finally, we consider the load and load effects on complete graphs. Kn, the
complete graph on n vertices, is defined as the graph where every pair of
vertices is adjacent so that Kn has all possible (n

2) edges. An example is
shown in Figure 3.1e. These graphs often resemble small social networks
where “everyone knows everyone”. We have:

Proposition 3.9 (Complete Graphs). L(k, Kn) = (n−1
2 ).

Proof. For each pair of vertices u and v (with u, v 6= k), there are n− 1 dis-
tinct paths from u to v (one path corresponding to taking the edge between
u and v and n − 2 paths of length 2 going through each of the other ver-
tices in Kn). There are at most n− 1 edge disjoint paths from u to v since
d(u) = n− 1. Thus we have found the maximum number of edge disjoint
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paths between any pair of vertices in G. Noting that G\k = Kn−1, anal-
ogous reasoning shows that the maximum number of edge disjoint paths
between any pair of vertices in G\k is n− 2.

Thus, for each pair of vertices in G, there is exactly one path that is
forced to go through k, and there are (n−1

2 ) paths considered in computing
the load.

We can similarly compute the load effect of any subset:

Proposition 3.10 (Load Effects in Complete Graphs). Let S ⊂ V(G\k). Then
ε(S, k, Kn) = (n−1−|S|

2 )− (n−1
2 ).

Proof. This proof follows because removing |S| vertices from G yields Kn−|S|,
and we can use the previous proposition to directly compute the load after
removing the vertices.

3.2 The Range of Load

When defining a metric like load it is natural to wonder about the range of
values that the metric can take on. The degree of a vertex in a graph, for
example, can only take on values between 0 and n− 1. In this section we
similarly begin to characterize the range of values the load can take on.

It is straightforward to show that the load must always be at least zero
(and that there do exist graphs where the load is zero); that the load is
nonnegative follows from its definition:

L(k, G) = ∑
u,v 6=k

nu,v(G)− ∑
u,v 6=k

nu,v(G\k)

= ∑
u,v 6=k

(nu,v(G)− nu,v(G\k)).

Between any pair of vertices u and v, there are at least as many edge disjoint
paths in G as there are in G\k, and so nu,v(G)− nu,v(G\k) ≥ 0. Hence all
terms in the sum defining load are nonnegative and the entire sum is as
well.

In addition, this bound is best possible. The trivial graph with n vertices
and no edges clearly has load zero: there are no paths between any pair of
vertices in that graph. Moreover, the load can still be zero in connected
graphs. For example, we saw that the load on one of the endpoints (v1 or
vn) of a path graph is zero. This information is summarized in the following
proposition:
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Proposition 3.11 (Lower Bound on Load). In any vertex v of a connected graph
G, L(v, G) ≥ 0 and this bound is tight.

We will use the word tight to denote when a bound is best possible. A
lower bound is tight if it is both a valid lower bound and no larger lower
bound can exist, and a tight upper bound is defined analogously. One way
to show that a bound is tight is to show that it is both a valid bound and
that it is achieved. For example, the lower bound in Proposition 3.11 is tight
because we argued that it was a lower bound and that it was achieved by
the endpoints of a path graph.

3.2.1 Bounding the Maximum Load from Above

Constructing a tight upper bound for the load is more difficult. In what
remains, we will show that the load on any vertex in any graph is at most of
order n3. Here the phrase of order n3 means that the maximum possible load
is bounded above by some constant multiple of n3. We will also show the
stronger statement that the maximum possible load grows asymptotically
with n3. More formally:

Definition 3.1 (Order). A function f (n) is of order g(n) if there exists some
constant c1 such that, for all sufficiently large n, f (n) ≤ c1g(n). We use big-O
notation and write f ∈ O(g). If, for sufficiently large n, we also have f (n) ≥
c2g(n), then we use big-Θ notation and write f ∈ Θ(g).

The qualifier that a property holds “for sufficiently large n” means that
there exists some natural number N such that, for n > N, the property
holds. We will show that load is in Θ(n3). We are also interested in the
constants c1 and c2 and we will show that c1 ≤ 1

4 and that c2 ≥ 1
8 − ε (for

any ε > 0). We will not be able to construct a tight upper bound of c1n3,
but we will be able to tightly show that the upper bound is Θ(n3).

Note that, when we consider the order to be something like n3, smaller
terms like c3n2, c4n and c5 become negligible (where the ci are constants).
When we want to show that the load is of order n3, we might bound it
as c1n3 + O(n2). This notation means that we are effectively disregarding
terms that negligibly contribute to the load as n grows.

To tightly show that the maximum possible load on any vertex in any
graph of size n is Θ(n3), we first bound the load from above as being at
most n3. Next, we construct a graph and identify a vertex for which the
load on that vertex is approximately c2n3. Though we will not show that
this vertex has as high as possible of a load among all graphs of size n, we
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will show that it has the highest load in an infinite family of graphs (and
namely, in a family of graphs with high load). These steps are handled
separately below.

3.2.2 The Load on any Vertex in any Graph is at most O(n3)

Proposition 3.12 (Upper Bound). Let |V(G)| = n. Then the load on any vertex
k in G is bounded above by 1

4 n3.

Proof. Using the definition of load,

L(k, G) = ∑
u,v 6=k

nu,v(G)− ∑
u,v 6=k

nu,v(G\k)

= ∑
u,v 6=k

(nu,v(G)− nu,v(G\k)).

Consider any pair of vertices u, v 6= k. Let lu,v(k) denote the number
of edge disjoint u-v paths that include k that contribute to nu,v(G). Any
path from u to v that includes k must use two edges incident to k. k has at
most n− 1 neighbors, so there are at most n−1

2 edge disjoint u-v paths that
contain k. That is, lu,v(k) ≤ n−1

2 .
Note also that

nu,v(G\k) ≥ nu,v(G)− lu,v(k).

This statement follows because there are at least nu,v(G)− lu,v(k) edge dis-
joint paths from u to v in G\k. Namely, the paths counted by nu,v(G) but
not lu,v(k). Rearranging the formula and using our bound for l yields:

nu,v(G)− nu,v(G\k) ≤ lu,v(k) ≤
n− 1

2
.

Then:

L(k, G) = ∑
u,v 6=k

(nu,v(G)− nu,v(G\k))

≤ ∑
u,v 6=k

n− 1
2

=

(
n− 1

2

)
n− 1

2
.
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Finally, (
n− 1

2

)
n− 1

2
=

1
4
(n− 1)(n− 1)(n− 2) ≤ 1

4
n3.

Thus, the maximum possible value that the load can take on is 1
4 n3. In

particular, it is of order n3 and the constant c1 used above is at most 1
4 .

Below we will conjecture that the constant is in fact 1
8 .

3.2.3 A Graph for which the Load Is Θ(n3)

Proposition 3.13 (The Maximum Load is at Least c2n3.). Let |V(G)| = n ≥ 5
Then there exist graphs with a key vertex whose load is 1

8 n3 −O(n2).

Proof. First suppose that n is odd so that n = 2m − 1. Then consider the
graph G obtained by taking two complete graphs on m vertices and over-
laying them so that they share a single vertex. This single vertex will be our
key vertex, and this process is illustrated below.

Figure 3.2 The load on the shared, red vertex is O(n3).

To compute the load we first compute ∑u,v 6=k nu,v(G). For any u, v 6= k,
both u and v have degree m− 1. Thus nu,v(G) ≤ m− 1. If u, v are in the
same component of G\k, then m− 1 edge disjoint paths can be found in G:
consider the edge between u and v as well as the m− 2 paths of length two
of the form u, w, v (where w is in the same component of G\k as u and v).
Hence, if u, v are in the same component of G\k, nu,v = m− 1.

If u and v are in different components of G\k, we can still find m − 1
paths. One path is of the form u, k, v. The remaining m− 2 paths are of the
form u, u′, k, v′, v where u′ and v′ are respectively in the same component
of of G\k as u and v. These paths correspond to starting at u, moving to
another vertex u′ in the same component of of G\k to take a new edge to
k, then moving from k along a new edge to v′ in the same component of of
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G\k, and finally moving from v′ to v. Again, and therefore in all cases, we
have nu,v = m− 1.

Since there are n − 1 = 2m − 2 non-key vertices we can compute the
first term in our formula for the load:

∑
u,v 6=k

nu,v(G) = ∑
u,v 6=k

(m− 1)

=

(
2m− 2

2

)
(m− 1)

= (m− 1)(2m− 3)(m− 1).

Next, consider the graph G\k. This graph has two components, each of
which is a complete graph on m− 1 vertices. The only pairs of vertices for
whom edge disjoint paths exist are those in the same component. In a Km−1,
there are (m−1

2 ) pairs of non-key vertices, and there are at most m− 2 edge
disjoint paths between each pair (as the degree of each vertex is m− 2). We
can identify m− 2 such paths: between u, v in the same component of G\k,
there is the path obtained by taking the edge from u to v and there are m− 3
paths of the form u, w, v (for each of the m− 3 other vertices w in the same
component). Thus, nu,v(G\k) equals zero if u, v are in different components
and m− 2 otherwise. We have two equivalent components and so:

∑
u,v 6=k

nu,v(G\k) = 2 ∑
u,v in the

first component

nu,v(G\k)

= 2 ∑
u,v in the

first component

(m− 2)

= 2
(

m− 1
2

)
m− 2.

We can simplify the right expression to (m− 1)(m− 2)(m− 2). Therefore
the load is:

L(k, G) = ∑
u,v 6=k

nu,v(G)− ∑
u,v 6=k

nu,v(G\k)

= (m− 1)(2m− 3)(m− 1)− (m− 1)(m− 2)(m− 2).
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Substituting in for m = n+1
2 and simplifying, we obtain that the load on

the key vertex of this graph is:

L(k, G) =
1
8
(n3 − n2 − 5n + 5) =

1
8

n3 −O(n2).

If n is even, consider making a graph on n − 1 vertices as described
above and adding a single isolated vertex. This graph will still have a load
of 1

8 n3 −O(n2).

By putting together Propositions 3.12 and 3.13, we obtain the following
theorem:

Theorem 3.1 (Max Load is Θ(n3)). Let |V(G)| = n. Then the maximum pos-
sible load on a graph is bounded between 1

8 n3 −O(n2) and 1
4 n3. In particular, it

is Θ(n3) with a constant between 1
8 and 1

4 .

Proof. This result follows directly from the previous two propositions.

3.2.4 A Conjecture about the Maximum Load

While we have only been able to bound the maximum possible load by 1
4 n3,

we conjecture that the load on the vertex used in Proposition 3.13 achieves
the maximum load. That is:

Conjecture 3.1 (Conjectured Max Load). The maximum possible load, on any
vertex in any graph, is 1

8 n3 −O(n2).

This statement remains a conjecture, but below we present intuition for
why it might be true. We also present a template for proving the conjecture.

Intuitively, the shared vertex k in the graph in Figure 3.2 has a very large
amount of flow through it. Using our motivating example, if these vertices
were airports, then the two components of G\k could be thought of as sep-
arate countries, with all flights between those countries going through a
fixed airport. There are many distinct (i.e. edge-disjoint) ways to fly be-
tween a pair of airports, but all routes between countries must pass through
the fixed airport k. It might seem like the load on a fixed vertex would be
as high as possible in these types of graphs where all the flow between two
large sets of vertices had to pass through a single vertex.

We have generated data on the load on all vertices in all graphs of size
up to n = 7, and for these small graphs it seems that the load is maximized
when the structure is of that in Proposition 3.13. Looking at the load on
all possible vertices in all possible graphs of some size is computationally
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intensive, and we have not generated data on any larger graphs. However,
the limited data we have suggests that the maximum load on a vertex k in
a graph G is as large as possible when G\k is disconnected and consists of
two complete graphs of equal size.

One might then wonder if it is optimal, in general, to have G\k be dis-
connected into two components (and moreover, into two components of
equal size rather than some other number of components of potentially
different sizes). We will now show that neither of these alternative options
are preferable: if you suppose that G\k is disconnected into complete com-
ponents (while G is connected), then the load on k is at most 1

8 n3 + O(n2).

Theorem 3.2 (Proving Conjecture 3.1 in a Special Case). Let k be a vertex in
a connected graph G such that G\k is disconnected into several complete compo-
nents. The load on k is at most 1

8 n3 + O(n2).

Proof. The main part of this proof will proceed using induction but requires
first introducing some new notation. Suppose that G\k has j components.
We will say that the i-th component has ni vertices in it and we let αi =

ni
n−1 . For convenience, suppose we have indexed our components so that
0 ≤ nj ≤ . . . ≤ n2 ≤ n1. Note that ∑i ni = n− 1.

This proof will require several steps and we will break it into separate
claims below.

Claim 3.1. If each component is a complete graph, then the load on k is

∑
1≤i<l≤j

nin2
l + ∑

1≤i≤j

(
ni

2

)
.

Proof. First, note that;

L(k, G) = ∑
u,v 6=k

nu,v(G)− ∑
u,v 6=k

nu,v(G\k)

= ∑
u,v 6=k

u,v in different
components

nu,v(G) + ∑
u,v 6=k

u,v in same
component

(nu,v(G)− nu,v(G\k))

= ∑
1≤i<l≤j

nin2
l + ∑

1≤i≤j

((
ni

2

)
ni −

(
ni

2

)
(ni − 1)

)
.

In the last line, the first summand can be found by considering all pos-
sible ninl pairs of vertices between the i-th and l-th components. For each
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pair of vertices, say u in the i-th component and v in the l-th, there are nl
edge-disjoint paths between them. First, there is the path from v to k to u.
In addition, since nl ≤ ni and each component forms a complete graph,
you can move from v to any of the other nl − 1 vertices in the l-th compo-
nent, then through k to any vertex in the i-th component, and finally, from
that vertex to u.

The second summand follows because, in the i-th component, there are
(ni

2 ) pairs of vertices. This component is a complete graph on ni vertices
and so there are ni − 1 paths between any pair of these vertices. There is
an additional path, only in G, between vertices u and v by taking the edge
from u to k, then the edge from k to v.

Claim 3.2. The term

∑
1≤i≤k

(
ni

2

)
is at most n2 and so we are only concerned with bounding

∑
1≤i<j≤k

nin2
j .

Proof. Note that

∑
1≤i≤k

(
ni

2

)
=

1
2
(
n1(n1 − 1) + . . . + nj(nj − 1)

)

≤ ∑
j
i=1 n2

i
2

.

We also note that ∑
j
i=1 n2

i
2 is at most (n− 1)2/2. To see this, write n− 1 =

n1 + n2 + . . . + nj. Thus

(n− 1)2 = (n1 + . . . + nj)(n1 + . . . nj)

= ∑
i

n2
i + ∑

i 6=l
ninl .

Since ni ≥ 0, we have that

(n− 1)2 ≥∑
i

n2
i ,

and the claim follows.
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Remark 3.1. As a consequence of the previous claim, the only term that is poten-
tially O(n3) in our sum is

∑
1≤i<l≤j

nin2
l .

In what follows we will use induction to bound this term by 1
8 n3. To do so, first

note that
∑

1≤i<l≤j
nin2

l = (n− 1)3 ∑
1≤i<l≤j

αiα
2
l .

We will thus concern ourselves with bounding

∑
1≤i<l≤j

αiα
2
l .

Claim 3.3. Suppose j > 2. Then

∑
1≤i<l≤j

αiα
2
l ≤

1
8

.

Again, assume that ∑
j
i=1 αi = 1 and αi ≥ 0.

Proof. We prove this by induction. For the base case let j = 2. Then we
want to show that

∑
1≤i<l≤j

αiα
2
l = α1α2

2 ≤
1
8

.

Because α1 = 1− α2, we want to maximize (1− α2)α2
2. Because α1 ≥ α2 and

α1 + α2 = 1, we have that 0 ≤ α2 ≤ 1
2 . Setting the derivative of (1− α2)α2

2
with respect to α2 equal to zero, we find that the maximum value occurs at
the endpoints of the interval where α1 = α2 = 1

2 , in which case α1α2
2 = 1

8 .
Hence, α1α2

2 ≤ 1
8 , completing our base case. Note also that this shows that,

if G\k has two complete components, then both components will have half
of the vertices to maximize the load on k.

Now we continue on to the inductive step. We will assume that
∑1≤i<l≤j αiα

2
l ≤

1
8 for any αi such that αi ≥ 0 and ∑

j
i=1 αi = 1. We will use

this to show that ∑1≤i<l≤j+1 αiα
2
l ≤

1
8 when ∑

j+1
i=1 αi = 1. Note that:

∑
1≤i<l≤j+1

αiα
2
l = ∑

1≤i<l≤j
αiα

2
l +

(
j

∑
i=1

αiα
2
j+1

)
. (3.1)



The Range of Load 33

Now set α′i = αi
1−αj+1

. Then, since ∑
j
i=1 αi = 1 − αj+1, we have that

∑
j
i=1 α′i = ∑

j
i=1

αi
1−αj+1

= 1. Thus α′1, . . . , α′j satisfy the conditions of our in-
ductive hypothesis and so

∑
1≤i<l≤j

α′iα
′2
j ≤

1
8

.

This implies that

1
(1− αj+1)3 ∑

1≤i<l≤j
αiα

2
j = ∑

1≤i<l≤j
α′iα
′2
j ≤

1
8

.

Returning to Equation 3.1, we have:

∑
1≤i<l≤j+1

αiα
2
l = ∑

1≤i<l≤j
αiα

2
l +

(
j

∑
i=1

αiα
2
j+1

)

≤
(1− aj+1)

3

8
+ α2

j+1

j

∑
i=1

αi.

Since ∑
j
i=1 αi = 1− αj+1 :

=
(1− aj+1)

3

8
+ α2

j+1(1− αj+1).

As previously, we note that αj+1 ≤ 1
j+1 ≤

1
3 . With this constraint, the maxi-

mum value of the load is when αj+1 = 0, in which case the maximum value
is 1

8 . Hence

∑
1≤i<l≤j+1

αiα
2
l ≤

1
8

.

This completes both the proof of our final claim and the proof of the
entire theorem. That is, we have shown that the load, on a graph consisting
of several complete components sharing a single vertex, is at most 1

8 n3 +
O(n2). The O(n2) potentially comes from the term ∑1≤i≤k (

ni
k ) in our second

claim.
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The preceding theorem is a bit complicated, and so we will highlight
the following:

Corollary 3.1 (Load when Removing k Disconnects G). If G is a connected
graph such that G\k is disconnected into complete components, then the load on k
is asymptotically as high as possible when G\k is separated into two components
of equal size.

Proof. We achieve a load of 1
8 n3 −O(n2) in this case, and above we have

argued that you can never get a better bound on the constant in front of the
n3 term.

Corollary 3.2 (The Structure of Potential Counterexamples to Conjecture
3.1). If there exists a graph G on n vertices with some vertex k such that L(k, G) >
1
8 n3 + O(n2), then G\k does not consist of several complete components sharing
a single vertex.

In other words, the result above says that, to prove our conjecture and
show that an upper bound on the load of 1

8 n3 + O(n2) is tight, we need
only consider graphs such that G\k is connected or that its components
must not be complete. One might be able to separately consider these cases
and exploit the additional information to show the bound of 1

8 n3 + O(n2)
is tight.

Lastly:

Remark 3.2. The load on a key vertex seems to be quite large when G\k is discon-
nected. One possible approach to increasing the load on k could be to remove some
subset of vertices S such that G\S is connected but G\(S ∪ {k}) is not.

3.2.5 One Way to Prove Conjecture 3.1

We conclude this section by mapping a proof of Conjecture 3.1. To prove
our conjecture, it suffices to prove the following:

Conjecture 3.2 (Load Between Vertices in the Same Component). The con-
tributions to the load of pairs of vertices in the same component of G\k is O(n2).

Note that this agrees with what we saw in every connected graph stud-
ied in the previous section.

Proposition 3.14 (Conjecture 3.1 Follows from Conjecture 3.2). If Conjecture
3.2 holds, then the maximum load is 1

8 n3 + O(n2).
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Proof. At the beginning of the argument, we considered

L(k, G) = ∑
u,v 6=k

nu,v(G)− ∑
u,v 6=k

nu,v(G\k)

= ∑
u,v 6=k

u,v in different
components

nu,v(G) + ∑
u,v 6=k

u,v in same
component

(nu,v(G)− nu,v(G\k).

We were able to use the fact that each component of our graph was a
complete graph to bound the second sum as O(n2). As long as we can
make that step, the rest of our proof will follow logically. In this case it
would show that the maximum load is 1

8 n3 + O(n2) on any graph where
G\k consists of at least two components.

We could, however, also modify our argument so that it applies to
graphs where G\k is connected: let G be a graph such that G\k is connected.
Let G′ be the graph obtained by adding a single vertex u and connecting it
only to k. Then:

L(k, G′) = L(k, G) + (n− 1).

This follows because u is of degree one and cannot be used as an internal
vertex in any path. Hence, the only difference between L(k, G) and L(k, G′)
will be what comes from the paths that use u as an endpoint. Assuming
that G is connected, each vertex will have exactly one path to u and this
path must go through k. There are n− 1 other vertices in V(G)\k, and so
the load on k in G′ will be exactly n− 1 more than the load on k in G.

However, G′\k will consist of two components: G\k and u. Thus,
L(k, G′) ≤ 1

8 n3 + O(n2), and

L(k, G) = L(k, G′)− (n− 1) ≤ 1
8

n3 + O(n2).

One way to prove the above Conjecture 3.2 would be to consider any
graph G such that G\k is disconnected, then show that the load changes by
at most O(n2) when you make each component complete.

3.3 Structural Theorems

We now return to theorems that help characterize the load. Our first theo-
rem states Proposition 3.1 more formally:
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Theorem 3.3 (Vertices in Different Components). Let G be a graph, and let
S = {v1, ..., vn} ⊂ V(G) be such that G\S is disconnected. Further, let i be
a vertex in a different component of G\S than k, and let T = S ∪ {i}. Then
εk(G, T) = εk(G, S).

Proof. Let Gk and Gi respectively denote the components of G\S containing
k and i. Note that, since i is not in Gk, G\T will also contain Gk as a distinct
component. Moreover, the only paths of flow that can contribute to the
load on k are those that occur between vertices in Gk, as these are the only
paths that can include k. Since the components containing k are identical in
G\T and G\S, the loads on k will be the same. The proof then follows from
the remarks in the proof of Proposition 3.1.

Next, we add a corollary to Theorem 2.3. This corollary adds another
interpretation to Theorem 2.3, and can be viewed as adding a new mem-
ber (with few connections) to the network. This could correspond to the
CUT company adding a new airport to its network, but only offering flights
between this new airport and one other destination (perhaps because cus-
tomers in one region requested a specific route to an airport CUT had not
previously operated out of). If FloW already determined which airport they
wanted to buy, they might be interested in how much would change when
CUT made this move.

Corollary 3.3 (Adding Vertices of Degree One). Adding a vertex v of degree
one cannot decrease the load on a key vertex in any graph G.

Proof. It is equivalent to consider the load effect of v on k in the graph G′

which we define to be the graph after v has been added. Because v will
be degree one, it will have a single edge disjoint path to k. The load effect
of removing this vertex is nonpositive, which is equivalent to stating that
adding this vertex cannot decrease the load.

Moreover, while adding v can only increase the load, we can exactly
characterize the change in load if v’s single edge is incident to the key vertex
k.

Proposition 3.15 (Adding Vertices of Degree One Adjacent to the Key Ver-
tex). Let G be connected, let v be a vertex not in G. Let G + v be the graph
obtained by adding v to G and adding a single edge between v and a key vertex k.
Then L(G + v, k) = L(G, k) + n− 1, where n = |V(G)|.

Proof. This statement was proved in Proposition 3.14.
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This proposition ends up providing an upper bound for the increase in
load when we add a vertex of degree one anywhere in our graph:

Proposition 3.16 (Adding Vertices of Degree One Not Adjacent to the Key
Vertex). Let G be connected, let v be a vertex not in G. Let G + v be the graph
obtained by adding v to G and adding a single edge between v and some other
vertex u. Then L(G + v, k) ≤ L(G, k) + n− 1, where n = |V(G)|. Further, if
u 6= k then this inequality is strict.

Proof. Since v has degree one, it cannot be used as an internal vertex in
any path. Thus, the only change in load will be due to the new paths which
have v as one endpoint. There are n− 1 such paths ending with v and some
other vertex u 6= k in G, which may or may not go through k. Thus, we can
add at most n− 1 to the load. If v is not adjacent to k, at least one of these
paths (namely, the path of length one between v and v’s neighbor) will not
go through k and the inequality is strict.

The preceding two propositions give us insight into the potential effect
of adding (or removing) a single vertex of degree one from a graph, and it
is natural to ask what happens when we add vertices of larger degree. As
soon as we consider vertices of degree two, however, what we say becomes
much less specific:

Proposition 3.17 (Adding Vertices of Degree Two). Let G be a graph with key
vertex k. Let G + v be the graph obtained by adding a single vertex of degree two
to G. Then

L(k, G)−
(

n
2

)
≤ L(k, G + v) ≤ L(k, G) +

(
n
2

)
,

where n = |V(G)|.

Proof. The preceding proposition follows because v has degree two, and
thus can add at most one edge disjoint path between any pair of vertices.
It can add a path that must go through k, increasing the load by one for
each pair of vertices. Alternately, it can be used to reroute a single path that
was previously forced to go through k, decreasing the load by one for each
pair of vertices. Hence the load on k in G + v can be either greater or less
than the load on k in G, but it always must be within (n

2) of the load on k in
G.

Remark 3.3. The bounds in Proposition 3.16 are optimal in the sense that there ex-
ist graphs such that, as n goes to infinity, L(k, G + v) asymptotically approaches
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L(k, G) + (n
2) and there exist graphs such that L(k, G + v) asymptotically ap-

proaches L(k, G)− (n
2).

In the case where G + v has a higher load on k than G, consider a path graph
Pn where k is one of the endpoints. Adding a vertex of degree two by connecting
it to the two endpoints of the path creates a cycle on n + 1 vertices, increasing the
load on k from 0 to (n

2).
To see that graphs exist such that L(k, G + v) asymptotically approaches

L(k, G)− (n
2), consider G to be the cycle Cn. Add v so that it is adjacent to k’s two

neighbors, creating a detour around k. The load decreases from (n−1
2 ) to 1.

3.4 Random Graphs

A final direction of research has been to analyze the properties of random
graphs. Empirically, Martonosi et al. (2011) found that if k is selected to
be a highly central vertex, there are almost always vertices whose removal
increases the load on k in certain types of random graphs. There are many
different models for constructing random graphs, each with its own pa-
rameters. Martonosi et al. (2011) considered multiple such models, and in
each model and with each choice of parameters they used, they almost al-
ways found vertices whose removal increased the load on a highly central
vertex.

For our purposes, a highly central vertex will be a vertex with high
degree, betweenness and closeness centrality. We can show, however, that
no matter how large n is, there exist graphs with highly central key vertices
such that there is no way to increase the load on the key vertex. Moreover,
these graphs need not be trivial in the sense that they can have arbitrarily
many edges, and the key vertex can be chosen so that it is the unique vertex
with the highest degree, betweenness and closeness centrality.

We show this result in the following theorem, but first clarify what we
mean by there exist graphs with a desired property and “arbitrarily many
edges.” We do not just mean that for every M, there exists a graph G hav-
ing m > M edges that has the desired property. Instead, we will make a
stronger statement and consider the edge density. The edge density is the
proportion of all possible edges in the graph, namely

|E(G)|
(n

2)
,

where n = |V(G)|. The edge density is then between 0 and 1. When we
say there exists a graph with “arbitrarily many edges” we mean that there
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exists a graph whose edge density is arbitrarily close to 1 so that the pro-
portion of edges it has is as high as possible.

Theorem 3.4 (Central Vertices whose Load Cannot be Increased). Let ε > 0
be given. There exists a connected graph with edge density at least 1 − ε such
that no vertex can be removed to increase the load on the vertex with the highest
betweenness, closeness and degree centrality k.

Proof. Let n > 3
ε and consider the graph Gn on n vertices obtained as fol-

lows: start with a Kn−1, select one vertex k from the graph, then add an n-th
vertex v by connecting it directly to k. Note that d(v) = 1, d(k) = n − 1,
and d(u) = n− 2 for all other u in V(Gn). Such a graph is shown below, in
Figure 3.3, for n = 5.

k

v

Figure 3.3 Example of a graph used in Theorem 3.4 for n = 5. The red vertex
is the vertex chosen to be k and the green vertex is the vertex v added in the
proof. This example is of G5.

Our proof contains three main steps. We begin by showing that k has
the highest betweenness, closeness and degree centrality. Next we compute
the load on k in Gn and show that it cannot be increased by removing any
subset of vertices. Finally, we compute the edge density, which approaches
one as n goes to infinity.

First, we claim that k is the most central vertex of Gn. The remarks
above suffice to show it has the highest degree centrality. It also has the
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highest closeness centrality: this follows because it is a distance one away
from every other vertex in the graph, while every other vertex is a distance
two away from at least one vertex (any u 6= k in the Kn−1 is distance two
away from v.) Finally, k also has the highest betweenness centrality. This
statement follows because k is the only vertex appearing in the middle of a
geodesic (every other vertex only appears as the endpoints of geodesics).

Next, note that the load on k is (n−2
2 ) + n− 2. This follows because the

added edge {v, e} cannot be used in any paths that do not contain v as an
endpoint and so v cannot be a internal vertex. We then have n − 2 paths
between v and vertices other than k in the Kn−1, and all of these paths will
not be present in G\k. We also must consider all paths with endpoints u, w,
both not equal to k or v. Since no other paths can use v as an internal vertex,
we only need to examine paths between pairs of vertices in the original
Kn−1 that are entirely contained in the Kn−1. Using Proposition 3.9, the load
contributions from these vertices will be (n−2

2 ).
We now show that the load on k in G will be reduced by the removal

of any subset of V(Gn) (not including k). First, suppose that our subset
contains v. Removing v reduces the graph to a Kn−1, so by Proposition
3.9, removing v will decrease the load on k to (n−2

2 ). Removing any subset
S ⊂ V(Gn) including v (but not k) is equivalent to first removing v and the
removing S\v, which we define to be S′. The load on k in G\S is then equal
to the load on k in Kn−1\S′. Using the proof in Proposition 3.10, this is just
(n−2−|S′|

2 ), and since |S′| ≥ 0:

L(k, Gn\S) =
(

n− 2− |S′|
2

)

<

(
n− 2

2

)
+ n− 2 = L(k, Gn).

Hence, any subset including v decreases the load.
Next, consider removing any subset |S| that does not contain v (or k).

Doing so reduces the graph Gn to Gn−|S|, which has load (n−2−|S|
2 ) + n− 2−

|S|. Thus:

L(k, Gn\S) = L(k, Gn−|S|) =

(
n− 2− |S|

2

)
+ n− 2− |S|

<

(
n− 2

2

)
+ n− 2 = L(k, Gn).
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Hence, any subset not including v also decreases the load. Since the re-
moval of any nontrivial subset decreases the load on k, there is no way to
increase the load on k.

Finally, the edge density, or the proportion of all possible (n
2) edges, of

this graph is
(n−1

2 ) + 1
(n

2)
=

n2 − 3n + 4
n2 − n

.

Note that:

n2 − 3n + 4
n2 − n

≥ n2 − 3n
n2

=
n− 3

n

≥
3
ε − 3

3
ε

=
3− 3ε

3ε
= 1− ε.

Thus our edge density is at least 1− ε, completing our proof.





Chapter 4

Spectral Approaches and the
Paint Spilling Problem

In our introduction we described spectral graph theory as a powerful field
that studies the structural and combinatorial properties of graphs through
the eigenvalues and eigenvectors of associated matrices. We have thus far
been studying load as a combinatorial property, so one might hope that
spectral graph theory may be a useful tool for studying load.

Moreover, spectral graph theory has previously been used to study
other types of flow problems. Spielman (2010), for example, discusses
problems involving liquid paint flow as well as electrical flow. Paint, elec-
tricity and communication ostensibly all flow differently, but one might
hope that they flow in related ways. If different types of network flow are
correlated, we might be able to develop heuristic approaches to LoMax that
take advantage of flow problems and that can be solved more efficiently.

In this chapter, after introducing the matrices studied, we specifically
focus on empirically connecting the paint flow problem to load. Here wet
paint flows through a network and eventually dries, accumulating at ver-
tices. We examine special vertices, where either an abnormally large or an
abnormally small amount of paint dries. We specifically look to see if these
special vertices are also special vertices in the LoMax problem (vertices we
either want or do not want to remove). After presenting empirical data
about these connections, we will consider a heuristic approach to LoMax
motivated by them.
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4.1 Spectral Graph Theory Background

In this section we briefly describe the matrices frequently studied in spec-
tral graph theory. For more detail, the interested reader is referred to Spiel-
man (2012), Spielman (2010) and Chapter 11 of Newman (2010). Spiel-
man (2012) and Spielman (2010) are sets of lecture notes used by Profes-
sor Daniel Spielman, who teaches spectral graph theory at Yale University.
These notes are accessible and thorough, and they describe many com-
pelling applications of spectral graph theory.

To consider matrices that can be used to describe graphs we require
some ordering on the vertices. Such an ordering will allow us to index the
rows and columns of the matrices we will use. Any ordering can be used,
but it must be used consistently. When we refer to the graph in Figure 2.1,
we will assume that the vertices are ordered alphabetically. That is, Alice
will be referenced as vertex 1, Bob, as vertex 2, etc.

Perhaps the most intuitive matrix is the adjacency matrix denoted A. It
is the n× n matrix where Ai,j is 1 if vertex i is adjacent to vertex j and zero
otherwise. The adjacency matrix for Figure 2.1 is:

A =


0 1 0 1 1
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
1 0 1 0 0

 .

Note that the matrix is symmetric and there are zeros along the diagonal.
Since there is an edge between Alice and Bob, the adjacency matrix has
a 1 in both the first row, second column and the second row, first column.
This matrix allows us to determine which pairs of vertices are adjacent, and
from the matrix we can uniquely recreate the graph. It is thus a natural way
to store information about a graph.

Another common matrix is the degree matrix, D. This n × n matrix is
diagonal, and Di,i is the degree of vertex i. In our example

D =


3 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 3

 .

One of the most ubiquitous matrices studied in spectral graph theory,
and the final matrix we will discuss, is the Laplacian, denoted L. This ma-
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trix can be defined as L := D − A. The Laplacian, for the graph in Figure
2.1 is:

L =


3 −1 0 −1 −1
−1 2 −1 0 0
0 −1 3 −1 −1
−1 0 −1 2 0
−1 0 −1 0 3

 .

Though this matrix might at first appear unnatural, its eigenvalues and
eigenvectors has been used to reveal information about the properties of
graphs. These applications are discussed in detail in Spielman (2012).

Before discussing the paint spilling problem, we note that a natural
question to first ask could be: do the eigenvalues and eigenvectors of ma-
trices associated with graphs reveal anything about load (or the way load
changes when vertices are removed)? Indeed, this is the first question we
studied when considering spectral graph theory, and one direction of our
research has been to generate data and to search for connections between
eigenvalues, eigenvectors and load. While we are optimistic that such con-
nections exist, we have not yet formally shown any. We will defer this
discussion Chapter Five, where we will address open problems and briefly
present preliminary data.

4.2 The Paint Spilling Problem

This problem, and the related mathematics, comes from Spielman (2010)
and is discussed in the notes for the eleventh lecture. In this problem a
bucket of wet paint is spilled throughout the network according to a spe-
cific initial distribution. The paint then flows and dries through the net-
work. At each time step, some proportion of the paint at each vertex will
dry, and the paint that remains wet will continue to flow through the net-
work. The question of interest is: when all the paint is dry, how much paint
has accumulated at each vertex?

Spielman (2010) starts by having all of the paint at a single vertex, but
any initial distribution of the paint is appropriate. We can encode this dis-
tribution as a vector w0 associating to each vertex in the network the pro-
portion of paint initially placed at that vertex. If we consider our original
graph in Figure 2.1 having vertex set {Alice, Bob, Charlie, Dan, Key}, the
vector

w0 = (
1
2

,
1
4

, 0, 0,
1
4
)T
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would correspond to spilling half of the paint on Alice’s vertex, spilling a
quarter of the paint on each of the vertices corresponding to Bob and Key,
and spilling no paint on Charlie and Dan. Any vector w0 = (w1, w2, . . . , wn)
will be appropriate so long as ∑n

i=1 wi = 1 and wi ≥ 0.
At each time step, some proportion α of the paint at each vertex v will

dry and become fixed to v. Half of the remaining wet paint will stay as wet
paint at v, and the other half will flow uniformly to each neighbor of v. In
general, wt will be a vector recording the proportion of the paint that is wet
remaining at each vertex.

An analogous vector dt can be defined to record the proportion of paint
that is dry at each vertex at time t. We are interested in

limt→∞dt,

the amount of paint that has dried at each vertex when all of the paint has
dried. In Spielman (2010) it is shown that:

limt→∞dt = β(In − (1− β)W)−1w0,

where β = 2α
1+α , In is the n× n identity matrix, W is the walk matrix, equal

to AD−1, and A and D are the adjacency and degree matrices discussed
above. For example, in the network in Figure 2.1, we have:

W =


0 1

2 0 1
2

1
3

1
3 0 1

3 0 0
0 1

2 0 1
2

1
3

1
3 0 1

3 0 0
1
3 0 1

3 0 0

 .

The i, j-th entry of W is then 0 if i and j are not adjacent vertices, and if i ∼ j,
then Wi,j =

1
dj

.
With the paint spilling problem we have flexibility in choosing α and

w0. For each choice of these parameters, the distribution of dried paint
on the vertices, limt→∞dt, which we will refer to as d∞, may vary. Some
vertices will be left with either a particularly small or a particularly large
proportion of the dried paint. In the next section we will present empirical
data connecting these vertices to vertices that are highlighted in the LoMax
problem. Before doing so, we briefly highlight the impact of varying the
parameters.
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4.2.1 The Impact of Varying α and w0

Figure 4.1 shows an 18 vertex graph on which we will run the paint spilling
algorithm with different choices of α and w0. The vertex set is {1, 2, . . . , 18}
and the vertices are labeled in the figure. We choose the key vertex to be
the vertex with the highest closeness centrality: vertex 18. This vertex will
be denoted with a flag instead of a circle.

1

3

7

10

15

2

11

14

9

13

17

18

4

5

6

8

1216

Figure 4.1 The original graph we will use to study the impact of varying pa-
rameters in the paint spilling problem. Each vertex is labeled according to the
ordering imposed, and the key vertex is vertex 18.

We are interested in connections to the load on highly central vertices
(like vertex 18). One might thus start by choosing to have all of the paint
placed at the key vertex by setting

w(k)
0 = (0, 0, 0, . . . , 0, 1)T.

Figures 4.2a, 4.2b and 4.2c show the final paint distribution with this choice
of w0 respectively for α = 0.25, 0.05 and 0.01. Each vertex in this figure
is colored corresponding to how much paint accumulates at that vertex,
with darker colors representing more accumulated paint. (The coloring is
relative to the paint accumulated in all vertices in all six images).

We can see that for a larger α, when paint is drying faster, the distribu-
tion of accumulated paint is more varied and biased towards being close
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Figure 4.2 The accumulated paint at each vertex using different initial distri-
butions and values of α. Numbers above each vertex represent the ultimate
proportion of paint accumulated at each vertex and vertices are shaded accord-
ing to these numbers over all six graphs, with darker shading reflecting larger
proportions of dried paint. They key vertex is shown as a flag. Captions denote
the initial distribution and value of α used.
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to the key vertex. Note that the key vertex is guaranteed to accumulate at
least a proportion of α in the first time step, which partially explains why
so much paint is at the key vertex in 4.2a. Similarly, each vertex adjacent to
the key vertex accumulates at least a proportion of α(1−α)

d(18) in the next time
step, where d(18) is the degree of vertex 18.

As α decreases, the distribution is less varied and biased towards the
key vertex. In all three cases, the key vertex, where paint was initially
placed and which had the highest closeness centrality, accumulates the
most paint. At the same time, it accumulates less paint as α decreases: when
α = 0.25, nearly 45% of the paint dries at vertex 18, but when α = 0.01, only
about 11% of the paint dries at that vertex.

Another possible starting distribution is to place the paint uniformly
among the vertices, setting

w(u)
0 = (

1
18

,
1
18

, . . . ,
1
18

)T.

It might seem disconcerting that this distribution, by itself, does not re-
flect any information about the key vertex. However, we typically consider
the load on highly central vertices. The distribution w(u)

0 might correlate
more with actual communication flow by allowing flow to begin at each
vertex. Thus the vertices that accumulate a particularly large or a particu-
larly small amount of paint in this distribution might correlate with places
where communication flow “gets stuck” in the entire network. Figure 4.2
also shows how the paint accumulates with this initial distribution and the
same values of α.

Note that Figures 4.2d, 4.2e and 4.2f seem more similar than 4.2a, 4.2b
and 4.2c. Though vertices accumulate different amounts of paint, there is
less bias towards being close to the key vertex. Similarly, the amount of
paint at a given vertex, especially at vertices close to the key vertex, does
not change as significantly with α.

To capture both information about the key vertex and overall commu-
nication flow, we might also consider taking the average of the previous
initial distributions. This corresponds to placing half of the paint at the key
vertex and distributing the remaining half of the paint uniformly among
the vertices. Here

w(a)
0 =

1
2

w(k)
0 +

1
2

w(u)
0 .

In this case,
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limt→∞dt = β(In − (1− β)W)−1w(a)
0

= β(In − (1− β)W)−1 1
2

(
w(k)

0 +
1
2

w(u)
0

)
=

1
2

β(In − (1− β)W)−1w(k)
0 +

1
2

β(In − (1− β)W)−1w(u)
0 .

Thus, the proportion of paint accumulated at each vertex with w(a)
0 and

some choice of α is just the average of the paint accumulated at each vertex
with starting distributions w(k)

0 and w(u)
0 , using that choice of α.

Now that we have seen how the choice of initial parameters can affect
the final paint distribution, we examine connections between load and the
final paint distribution. In the next section we will consider larger graphs
and will set α = 0.01 so that the paint is drying slowly enough that it has
time to flow through the network, but quickly enough so that it readily
distinguishes between vertices. We will also use the distribution w(k)

0 that
starts with all paint at the key vertex, though similar data can be generated
using different values of α and different initial distributions.

4.3 Empirical Data

In this section we examine connections between accumulated paint and
load effects in random graphs. We specifically consider Erdős - Rényi ran-
dom graphs using the G(n, p) model. This model creates an n vertex graph
where each of the (n

2) edges is included independently with probability p.
We specifically will generate m random graphs according to the above

model. To create each graph, we randomly select a number of vertices n ∈
[nmin, nmax] then use the G(n, 7

n ) model to create a graph. In each graph, we
choose the key vertex to be the vertex with the highest closeness centrality.
(The choice of p = 7

n means that np will be fixed to equal 7. Note that
the expected degree of a vertex is (n− 1)p so that, for large n, fixing np =
7 effectively fixes the expected degree of each vertex to be close to 7. In
Martonosi et al. (2011), the authors considered 100 vertex graphs with p =
0.1 so that np = 10. We are considering graphs on a range of vertices and
will fix np rather than p so that vertices have similar degrees across all
graphs we test. We primarily test graphs with approximately 70 vertices
and choose p = n

7 so that our value of np is comparable to what was used
in Martonosi et al. (2011).)
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Figure 4.3 Plot of accumulated paint versus normalized change in load on one
hundred 60-80 vertex graphs. The parameters were nmin = 60, nmax = 80,
m = 100 and α = 0.01.

Our algorithm will then take each graph and run the paint spilling prob-
lem with a chosen value of α. For each non-key vertex v in each graph, it
plots the accumulated paint at that vertex against the normalized change
in load when v is removed (where we normalize by dividing the change in
load by n).

We can use the above algorithm to compare the accumulated paint at
each vertex to the load effect of that vertex on a highly central vertex (the
key vertex) over many graphs. In Figure 4.3, we consider vertices in 100
graphs having between 60 and 80 vertices. Again, we use α = 0.01 and
w(k)

0 . In the figure we see an interesting shape. In general, removing ver-
tices with more accumulated paint tends to decrease the load. The removal
of vertices that accumulate little paint tends to either increase or decrease
the load substantially.

This trend also can be observed in graphs on a narrower range of ver-
tices and when run on a single graph. Figure 4.4 considers 100 graphs, each
of which is constructed on 70 vertices. Figure 4.5 shows the results from a
single 200 vertex graph. We see analogous trends, especially in Figure 4.4.

Though the above only considers the load effect of single vertices, it
suggests that vertices where a large amount of paint accumulates might
also tend to be vertices that we do not want to remove. Intuitively, these
vertices might be important for routing communication in a network, and
removing them does not tend to reroute communication through a highly
central vertex. We conclude this chapter by using this idea to develop a
heuristic.
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Figure 4.4 Plot of accumulated paint versus normalized change in load on one
hundred 70 vertex graphs. The parameters were nmin = 70, nmax = 70,
m = 100 and α = 0.01.
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Figure 4.5 Plot of accumulated paint versus normalized change in load on a
single 200 vertex graph. The parameters were nmin = 200, nmax = 200,
m = 1 and α = 0.01.
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4.4 Heuristic Data

We now consider a heuristic approach to LoMax that does not allow you
to remove vertices where a large amount of the paint accumulates. This
heuristic takes in a graph G and first runs the paint spilling problem with
all paint initially distributed at the key vertex. It then creates a set Vf ixed of
size b n

2 c of the vertices which accumulate the most paint. Finally, it runs
LoMax on G with the additional constraint that all vertices in Vf ixed may
not be removed.

By not removing vertices in Vf ixed, our algorithm only considers remov-
ing half of the vertices. Instead of potentially searching 2n subsets of ver-
tices, this heuristic thus only considers the 2

n
2 =
√

2n subsets of vertices of
V(G)\Vf ixed. Choosing Vf ixed to be of size n

2 was arbitrary, and the heuris-
tic could be modified to choose Vf ixed to be of size f (n), for any function f
such that 0 ≤ f (n) ≤ n. Then at most 2 f (n) subsets would be considered.

Due to the computational difficulty of finding solutions to LoMax, we
cannot run our approach on large graphs. We similarly cannot provide
reliable data as to what the ideal function f (n) might be so that the heuristic
efficiently finds good solutions to LoMax. We can, however, consider how
it works on small graphs using f (n) = b n

2 c and gather preliminary data to
motivate heuristic approaches.

Table 4.1 shows how the solutions found by our heuristic compare to
the optimal solutions. We ran both full LoMax and our heuristic on three
sets of graphs: graphs of size 15, 18 and 21, randomly created using the
G(n, 5

n ) model. (Here we are testing smaller graphs and have set p = 5
n

rather than 7
n so that, especially in the 15 vertex graphs, the probabilities of

each edge appearing are more reasonable.) The table records, on average,
how quickly and effectively the heuristic was on each set. For each data
set, the table shows the average value of the heuristic solution divided by
the optimal solution using full LoMax (where by “value” of the solution we
mean the value of the load on the key vertex when the subset found by the
heuristic or LoMax was removed). The table also records the time it took to
find a solution using the heuristic solver as a percentage of the time it took
to find the solution to LoMax.

In general, we see that the heuristic tends to find good solutions. It runs
much more quickly as only half of the vertices are considered for removal.
While the heuristic ran in less than a minute on each 21 vertex graph, the
full LoMax solution took more than three and a half hours on each 21 vertex
graph.
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n Number of Graphs Tested Percent of Optimal Solution Percent of Time
15 50 89.0% 3.05%
18 25 82.1% 0.813%
21 5 76.0% 0.407%

Table 4.1 Performance of the paint spilling heuristic by graph size. The max-
imum value of the solution found by the heuristic is given as a percentage of
the value of the optimal solution. The running time of the heuristic is given as a
percentage of the running time for solving LoMax.

This heuristic may or may not be reliable as n grows larger, but we have
included data showing that it works reasonably well on small graphs as a
“proof of concept.” Moreover, it indicates that relationships between differ-
ent types of network flow exist. We might be able to exploit these relation-
ships to develop efficient heuristics. Connections to other flow problems
might also reveal more insight into the types of vertices whose removal
most increases the communication forced through a highly central key ver-
tex.



Chapter 5

Future Work

In this chapter we describe, in detail, two open areas directly related to the
work in this thesis: characterizing load and applying spectral graph theory.
In our discussions of these areas we will explicitly list and motivate several
open questions and we will describe questions that can be answered both
theoretically and empirically.

The references provided throughout this thesis provide a natural start-
ing point for further investigations into load. A thorough introduction to
network theory can be found in Newman (2010), and a similar introduction
to graph theory can be found in West (2001). For readers interested in the
more specific topics discussed in this thesis, Spielman (2012) and Spielman
(2010) provide a phenomenal introduction to spectral graph theory and its
applications. A more detailed discussion of the computational implemen-
tation of LoMax, and the optimization techniques that went into the solver,
can be found in Paul (2012).

5.1 Characterizing Load

The majority of our work in Chapter Three of this thesis was spent char-
acterizing load as a structural property of graphs. There are several ad-
ditional questions that can be asked. One particularly relevant question
relates to Conjecture 3.1: is the maximum possible load, as a function of the
number of vertices n, actually 1

8 n3 + O(n2)? Is it achieved in any graphs
that are fundamentally different from the one presented in Figure 3.2 (i.e.,
graphs that are not obtained by trivially modifying Figure 3.2)?

Beyond the maximum load problem, there are several other questions
that can be asked. We saw, for example, that the load on central vertices in
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paths as well as on any vertex in a cycle or in a complete graph was Θ(n2).
Is the load on a highly central vertex in a graph almost always Θ(n2)? Are
there certain features of graphs that distinguish between load being Θ(n2)
and Θ(n3)? If such features existed, could they be used to develop heuris-
tics for the LoMax problem? That is, one approximate approach to LoMax
might be to take a graph with load Θ(n2) and try to remove some subset of
vertices to create features associated with load of Θ(n3).

We saw, for example, that graphs where G\k consisted of two complete
components of equal size had a high load on k. One heuristic approach
could then be to remove vertices to, as much as possible, make G\k consist
of two components of roughly similar size.

5.1.1 Random Graph Theory and Empirical Data

Answers to questions about random graphs could also reveal information
about many of the above questions. In particular, knowledge of the expec-
tation and variance of the load on both general and highly central vertices
in an entirely random network would help us to understand typical loads
in networks. Moreover, statements about typical random graphs can pro-
vide insight into how properties relating to load scale with the size of a
network. Does, for example, the probability of there being a subset of ver-
tices whose removal increases the load on a central vertex go to 1 as the size
of the network goes to infinity? Can we say something something about the
size of the subsets we need to look for? These questions can be asked in the
context of generic random graph models (like including each edge with a
fixed probability) but they can also be asked about models that describe the
types of networks studied in specific applications.

Beyond characterizing load as a property of graphs, some of the deepest
questions can provide information that we might be able to incorporate into
heuristics. For example, how is the size of solutions to LoMax distributed?
That is, if S is the subset whose removal most increases the load on k, how
big do we expect S to be as a function of n? How much of a load effect
can we expect S to have? Answering the former question might allow us
to bound the size of a subset that approximate LoMax solvers search for.
Answering the second question would provide an idea of when a good
(or close to optimal) solution might have been found and an approximate
LoMax solver could stop searching subsets once it finds a good solution.

While the above questions can be answered most accurately by a theo-
retical study of random graphs, one could also try to address them empiri-
cally.
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5.2 Spectral Graph Theory

In this thesis we have also started to study network disruption through
spectral graph theory. The spectrum of a graph has tended to reveal incred-
ible amounts of information about the structure of a graph and, to the best
of our knowledge, has not been applied to the concept of load. In Chap-
ter Four, we thus briefly noted that one might hope to find connections
between eigenvalues and eigenvectors of matrices associated with graphs,
like the Laplacian (again, defined as D − A, where D is the degree matrix
and A is the adjacency matrix. See Chapter Four).

5.2.1 The Spectrum of the Laplacian

While considering spectral graph theory, we began to study connections
between eigenvalues, eigenvectors and load. We started by examining
whether or not the changes in load (on highly central vertices) correlated
with changes in specific eigenvalues of a graph. It is worth noting that a
graph on n vertices has n eigenvalues, and so G\S will have n− |S| eigen-
values. Hence, G and G\S will have a different number of eigenvalues, and
we did not look for correlations between changes in load and changes in
the i-th eigenvalue. Instead, we considered changes in the i-th largest and
i-th smallest eigenvalues, where i was relatively small. Because G and G\S
have different sized vertex sets, we also looked at normalizing the changes
in load and the changes in eigenvalues by the size of these graphs.

We also considered connections between eigenvectors and load. An
eigenvector can be viewed as a function on the vertex set (if the vertices are
ordered v1, v2, . . . , vn, then an eigenvector v assigns the number vi to vi).
When viewed as such a function, an eigenvector could provide insight into
which vertices to consider (or not consider) removing during LoMax. For
example, if one of the eigenvectors assigned the same number to a vertex v
and the key vertex k, than removing v might be correlated with a particu-
larly large or a particularly small load effect on k.

While our results were inconclusive in both of the studies described
above, these questions are very broad. Also, towards the end of our re-
search we started noticing some connections between the largest eigen-
value and load (normalized by n2) There are many other ways the eigenval-
ues and eigenvectors could be connected to load and the LoMax problem.
There are also many other ways the eigenvectors, viewed as functions on
vertices, could be studied.

Even if no proofs can be established relating the spectrum to the load in
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a graph, correlations between them could be used in developing heuristics
akin to the heuristic presented in Chapter 4. Moreover, hinting at such con-
nections could lead to rich connections between network disruption and
spectral graph theory which, in turn, could lead to future work in both
fields.

Lastly, in this thesis we have highlighted graphs where the load is ab-
normally large or small. One way to start addressing spectral questions,
suggested at the 2014 Pacific Coast Undergraduate Mathematics Confer-
ence, would be to examine the spectra of the graphs we have highlighted.
For example, consider the graph from Proposition 3.13. If we label the ver-
tices with 1 through m− 1 in the first complete graph, then m as the shared
vertex, and m− 1 through 2m− 1 in the last component, the Laplacian is:



m− 1 −1 −1 · · · −1 −1 0 0 0 · · · 0
−1 m− 1 −1 · · · −1 −1 0 0 0 · · · 0

...
...

...
. . .

...
...

...
...

...
. . .

...
−1 −1 −1 · · · m− 1 −1 0 0 0 · · · 0
−1 −1 −1 · · · −1 2(m− 1) −1 −1 −1 · · · −1
0 0 0 · · · 0 −1 m− 1 −1 −1 · · · −1
0 0 0 · · · 0 −1 −1 m− 1 −1 · · · −1
...

...
...

. . .
...

...
...

...
...

. . .
...

0 0 0 · · · 0 −1 −1 −1 −1 · · · m− 1


.

The vertical and horizontal lines inside the matrix highlight the mid-
dle shared vertex. The matrix has the following eigenvalues: 2m− 1, with
multiplicity 1, m the multiplicity 2m− 4, 1 with multiplicity 1 and 0 with
multiplicity 1. To see this, we first construct 2m − 4 linearly independent
eigenvectors with eigenvalue m. There are m− 2 of the form:

1
−1
0
...
0
0
0
0
0
...
0


,



1
0
−1

...
0
0
0
0
0
...
0


,



1
0

...
−1
0
0
0
0
...
0


.

and m− 2 of the form:
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

0
0
0
...
0
0
1
−1
0
...
0


,



0
0
0
...
0
0
1
0
−1

...
0


,



0
0

...
0
0
1
0
0
...
−1


.

where the horizontal bars follow the same structure as above and box off
the m-th element.

We also have the eigenvalue 2m − 1, 1 and 0, respectively with eigen-
vectors: 

1
1
...
1

−2(m− 1)
1
1
...
1


,



−1
−1

...
−1
0
1
1
...
1


, and



1
1
...
1
1
1
1
...
1


.

This graph has a particularly structured spectrum with with many re-
peated eigenvalues and a substantial gap both between the largest and sec-
ond largest eigenvalue and between the second smallest and third smallest
eigenvalue.

5.2.2 Other Flows

In Chapter Four, we showed one way of studying connections between
load and the paint spilling problem. We considered correlations between
the way wet paint and communication might flow through the same net-
work. There are, however, many other types of flow that have been stud-
ied using spectral graph theory. For example, spectral graph theory can be
used to study electrical flow in networks (see Spielman (2010)).

Spielman (2014) has suggested studying electrical flow in networks in
light of the LoMax problem. The mathematics used to analyze these flow
problems could potentially be modified to study LoMax. Moreover, elec-
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trical flows might relate to communication flow and networks. That is, one
could study electrical flow, see how it correlates with communication flow,
and then attempt to develop approximate LoMax solvers like the one we
developed in Chapter Four.



Chapter 6

Conclusions

In this thesis we have motivated and defined load and the load maximiza-
tion, or LoMax, problem which was first introduced in Martonosi et al.
(2011). The optimal solution to LoMax forces as much communication as
possible through a key vertex. In social or communication networks, the
load represents the amount of communication forced through a vertex, and
increasing the load might correspond with increasing the visibility of that
person. In our motivating problem regarding airport transportation, the
optimal solution to LoMax would force as many of CUT’s flights through
the Menger airport as possible, increasing the profits for FloW.

We briefly described approaches to solving LoMax computationally.
However, such approaches tend to be infeasible to implement on large net-
works. Thus, we began to consider the LoMax problem more theoretically.
Continuing the work in Martonosi et al. (2011) and Paul (2012), our goal
was to provide insight into load that might help characterize the subsets of
vertices whose removal most increases the load on the key vertex.

Our primary contributions fall into two main categories: combinatorial
and spectral. In Chapter Three, we worked towards characterizing load as
a metric assigned to vertices in graphs. We mathematically described what
load looks like in several broad classes of graphs, and just as importantly,
mathematically described how the load changes in those graphs when ver-
tices are removed. Those results provide insight into what the load looks
like in graphs with a significant amount of structure.

Having computed the load on specific vertices in several types of graphs,
our next step was to characterize the range of values load can take on.
We were able to show that the maximum load is at most of order n3, and
that it is between 1

8 n3 −O(n2) and 1
4 n3. We conjectured that the maximum
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load is in fact only 1
8 n3 +O(n2) and provided several tools that might help

prove this statement. We were also able to prove that the maximum load is
1
8 n3 + O(n2) in specific family of graphs.

The final contributions of this chapter were several structural theorems
that described how the removal of vertices of low degree can change the
load and showed that it need not always be possible to increase the load
(even on highly central vertices in graphs with an arbitrarily large propor-
tion of edges present). These combinatorial results provide intuition about
what load looks like in large graphs, and they more thoroughly character-
ize load as a property of vertices in graphs.

In Chapter Four, we specifically looked at spectral graph theory. We
started highlighting connections between spectral graph theory and load
using empirical data. We studied the paint spilling problem and used it to
create a heuristic solvers for LoMax. While we were not able to compare
the solutions from our heuristic solver to the optimal LoMax solution on
large graphs, it performed efficiently and tended to find good solutions.
Moreover, it suggests ways that other heuristic solvers can be developed
using problems from spectral graph theory.

Perhaps the most exciting parts of research into load are the vast num-
ber of questions that can be asked and the equally vast number of perspec-
tives from which the problem can be studied. We specifically emphasized
combinatorics and spectral graph theory in this thesis, and highlighted sev-
eral open questions in Chapter Five. Our hope is that these questions pro-
vide motivation for future study.
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