
Claremont Colleges
Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2014

A New Subgroup Chain for the Finite Affine Group
David Alan Lingenbrink Jr.
Harvey Mudd College

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Lingenbrink, David Alan Jr., "A New Subgroup Chain for the Finite Affine Group" (2014). HMC Senior Theses. 55.
https://scholarship.claremont.edu/hmc_theses/55

https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

A New Subgroup Chain for the
Finite Affine Group

David Lingenbrink

Michael E. Orrison, Advisor

Mohamed Omar, Reader

Department of Mathematics

May, 2014

Copyright c© 2014 David Lingenbrink.

The author grants Harvey Mudd College and the Claremont Colleges Library the
nonexclusive right to make this work available for noncommercial, educational
purposes, provided that this copyright statement appears on the reproduced ma-
terials and notice is given that the copying is by permission of the author. To dis-
seminate otherwise or to republish requires written permission from the author.

Abstract

The finite affine group is a matrix group whose entries come from a finite
field. A natural subgroup consists of those matrices whose entries all come
from a subfield instead. In this paper, I will introduce intermediate sub-
groups with entries from both the field and a subfield. I will also examine
the representations of these intermediate subgroups as well as the branch-
ing diagram for the resulting subgroup chain. This will allow us to create a
fast Fourier transform for the group that uses asymptotically fewer opera-
tions than the brute force algorithm.

Contents

Abstract iii

Acknowledgments ix

1 Background 1
1.1 A Review of Representation Theory 2
1.2 Finite Fields . 6
1.3 Discrete Fourier Transform . 6

2 The Affine Group 11
2.1 A natural subgroup chain for Aff(q) 12
2.2 The conjugacy classes of Aff(q) 12
2.3 The representations of Aff(q) 13
2.4 Cooley-Tukey Algorithm . 15

3 The Intermediate Affine Group 21
3.1 A better subgroup chain for Aff(q) 22
3.2 The conjugacy classes of Aff(q, q2) 22
3.3 The representations of Aff(3, 32) 23
3.4 Representations of Aff(p, p2) 29
3.5 Representations of Aff(q, q2) 34
3.6 Cooley-Tukey Algorithm . 34
3.7 Conclusion . 39

4 Future work 41

Bibliography 43

List of Figures

1.1 Branching Diagram for Z/4Z > 2Z/4Z > 4Z/4Z 10

2.1 Branching Diagram for Aff(32) > Aff(3) > {1} 16

3.1 Branching Diagram for Aff(32) > Aff(3, 32) > Aff(3) > {1} 30

Acknowledgments

I would like to express my deepest appreciation to my advisor, Prof. Michael
Orrison; without his support and kindness, I could never have completed
this project. Thanks, too, to my second reader, Prof. Mohamed Omar. Thanks
to Emily Fischer and Matt McDermott for reading drafts of my thesis and
helping me understand what was unclear. Finally, thanks to my family and
friends who have supported me through all my endeavors. I would not be
here without them, and I feel incredibly blessed for their love and warmth.

Chapter 1

Background

We will first start with a motivating example. Consider some some finite
group, G, and functions f , g that take G to C. We then define the convolution
of f and g to be the function

(f ? g)(x) := ∑
y∈G

f (y)g(y−1x)

for any x ∈ G.
We often define multiplication for spaces of functions via convolutions.

Another example is in combinatorics: the product of the generating func-
tions for sequences {an} and {bn} is the generating function of {an ? bn}.

A brute force calculation of the convolution is computationally difficult
and would involve three steps: the evaluation of f (y) and g(y−1x) for all
y ∈ G, the multiplications of the form f (y)g(y−1x), and then the summa-
tion of all these summands. This would mean 2|G| total evaluations of f
and g, |G|multiplications and |G| − 1 summations of the terms in the sum.
However, the discrete Fourier transform (or DFT) is an isomorphism that
modifies the functions f and g to make convolutions (and the multiplica-
tion of very large integers (Emerencia, 2007)) much easier to compute. The
DFT is an isomorphism between functions over G to the direct sum of rings
of complex matrices. So, if f is a function from G → C, the DFT of f , or
D(f), is an element of

⊕n
i=1 Cdi×di where di is an integer for each i.

When we evaluate the DFT of a convolution, we get

D(f ? g)(x) = D(f)D(g).

The DFT turns a convolution into a matrix multiplication! Since the convo-
lution is normally very inefficient to calculate, it seems like a more efficient
approach to evaluating a convolution could utilize the DFT.

2 Background

In systems engineering, it is common to compute the DFT of the finite
cyclic group Z/nZ. Like the convolution in the example above, the discrete
Fourier transform allows for computations that are difficult in the “untrans-
formed” setting to become easy once they are “transformed.” So, some-
times it is much faster to transform a computation using the DFT, compute
the easier version in the transformed space, and then transform back using
the inverse DFT. In the example above, it is often much more efficient to
transform f and g using the DFT, compute their product, and then invert
the transformation than simply evaluating f ? g by brute force.

It remains unclear how long the DFT (and the inverse DFT) take to com-
pute? The answer depends on the group, but a brute force algorithm exists
for all finite groups that runs in O(|G|2) (Terras, 1999). Any algorithm that
applies the discrete Fourier transform to a group G in asymptotically faster
time than this is called a fast Fourier transform, or FFT for G. Let q = p2n

for some prime p. Aff(q) is a finite matrix group over a finite field. Finding
a FFT for Aff(q) is the motivation for this thesis.

The Cooley-Tukey algorithm is a fast Fourier transform that relies on
a subgroup chain (Terras, 1999). The goal of this thesis is to construct a
subgroup chain for the finite affine group, Aff(q), that relies on field ex-
tensions and makes the Cooley-Tukey algorithm efficient. Since the group
Aff(q) is a subgroup of Aff(q2), one chain to consider is Aff(p) < Aff(p2) <
· · · < Aff(q) < Aff(q2). In Chapter 2, we will examine this subgroup chain
and its associated FFT. The discrete Fourier transform is the direct sum of a
group’s “irreducible” representations, so our first task is to understand the
irreducible representations of Aff(q).

In Chapter 3, we will examine another subgroup chain. This chain in-
volves a group, Aff(q, q2), that is both a subgroup of Aff(q2) and a super-
group of Aff(q). We will analyze this group, and examine its irreducible
representations. The FFT for this subgroup chain is asymptotically better
than the brute force algorithm. Finally, Chapter 4 touches on remaining
questions from this research.

1.1 A Review of Representation Theory

We will start with a brief overview of representation theory before we dive
into the discrete Fourier transform. For any group G, we define a represen-
tation of G to be a group homomorphism ρ : G → GL(V) for some vector
space V. So, it is a map from G to GL(V) such that ρ(g1g2) = ρ(g1)ρ(g2)
for all g1, g2 ∈ G. We call the dimension of V the dimension of our rep-

A Review of Representation Theory 3

resentation, ρ. For the most part, we let V = Cn, but it depends on the
representation.

1.1.1 Equivalent definitions for representations

For a group G, we define the group ring of G over C to be the ring

CG :=

{
∑
g∈G

agg

∣∣∣∣∣ ag ∈ C

}

where if a = ∑g∈G agg ∈ CG and b = ∑g∈G bgg ∈ CG, we define

a + b := ∑
g∈G

(ag + bg)g

and
ab := ∑

g,h∈G
(agbh)gh.

An equivalent definition of a group ring is

CG := { f : G → C} ,

since each x = ∑g∈G agg ∈ CG (from our original definition) can be seen as
a function, f , from G → C by setting f (g) = ag.

For any representation, ρ : G → GL(Cn), we can extend the represen-
tation to the homomorphism ρ̃ : CG → Cn×n (where Cn×n is the ring of all
complex n× n matrices) where

ρ̃

(
∑
g∈G

αgg

)
:= ∑

g∈G
αgρ(g).

This allows us to discuss representations in two ways: as homomorphisms
between G and GL(Cn) and as homomorphisms between the group ring
CG and Cn×n. Depending on the context, both definitions are used.

1.1.2 Tools from Representation Theory

The theorems behind the material presented in this section can be found in
Dummit and Foote (2004).

Consider representations ρ (with associated vector space V) and ρ′ (with
associated vector space V ′). We say ρ and ρ′ are equivalent if there exists a

4 Background

linear transformation T : V → V ′ such that Tρ(g) = ρ′(g)T for all g ∈ G.
Notice that if ρ is 1-dimensional, it will only be equivalent to itself, since
Tρ(g)T−1 = ρ(g) for all T, since T is a scalar and multiplication is com-
mutative for scalars. The group Z/2Z has representations ρ1 and ρ2 that

both send 0 ∈ Z/2Z to
(

1 0
0 1

)
and send 1 ∈ Z/2Z to

(
−1 0
0 1

)
and(

1 0
0 −1

)
, respectively. We say that ρ1 and ρ2 are equivalent because, for

all g ∈ Z/2Z, (
0 1
1 0

)
ρ1(g) = ρ2(g)

(
0 1
1 0

)−1

.

A representation is called reducible if it has a non-trivial invariant sub-
space: there exists a subspace U ⊂ V where U 6= {0} and U 6= V such
that ρ(g)u ∈ U for all u ∈ U. In the above, ρ1 and ρ2 are reducible because

U1 =

〈[
0
1

]〉
and U2 =

〈[
1
0

]〉
are invariant subspaces for both ρ1 and

ρ2. If a representation is not reducible, we say it is irreducible. In general,
there are a finite number of irreducible representations of a group, up to
isomorphism.

One of the most important tools from representation theory is character
theory. Given a representation ρ of G, we define its character to be a function
from G to C defined by

χ(g) := Tr(ρ(g))

for each g ∈ G. Let χ1 be the character of ρ1 and χ2 the character of ρ2. We
see that χ1(0) = χ2(0) = 2, and χ1(1) = χ2(1) = 0.

An important result of representation theory states that two represen-
tations ρ, ρ′ have the same character if and only if they are equivalent.

In addition, we can define an inner product for characters: for some
group G and characters χ : G → C and ψ : G → C, define the inner product
of χ and ψ to be

〈χ, ψ〉 :=
1
|G| ∑

g∈G
χ(g)ψ(g).

The inner product allows for some very efficient calculation: χ is the char-
acter of an irreducible representation if and only if 〈χ, χ〉 = 1. If χ and ψ are
characters of irreducible representations ρ and γ, respectively, and χ 6= ψ,
then 〈χ, ψ〉 = 0 and χ and ψ are called orthogonal. However, if χ = ψ, then
ρ and γ are equivalent representations.

A Review of Representation Theory 5

Any finite group G will have an equal number of irreducible representa-
tions and conjugacy classes. So, suppose G has irreducible representations
ρ1, . . . ρN . Then, it must have N distinct conjugacy classes. If the represen-
tations’ dimensions are d1, . . . dN , respectively, we will have |G| = ∑N

i=1 d2
i .

Maschke’s theorem states that every representation of a group, G, is
equivalent to a direct sum of irreducible representations of G. This allows
us to decompose representations into their irreducible parts. By doing so,
we can narrow our sights to the calculation of irreducible representations,
since all other representations are just direct sums of the irreducible ones.
So, if we know some representation σ of G is equal to

⊕
i ρi for irreducible

representations ρi, for any g ∈ G, we can calculate σ(g) just by taking the
direct sum of the ρi(g)’s.

1.1.3 Induced Representations

A common method for creating a representation of a group is to “induce” a
representation from a subgroup. Assume we have groups H and G where
H ≤ G and the index, |G : H|, is s. Let H have a representation, ρ.

Let {g1, . . . , gs} be a complete set of left coset representatives of H in
G. Consider also any g ∈ G and coset representative gi. By the definition
of our coset reps, ggi = gjh for exactly one coset representative gj and
h ∈ H. Next, assume g−1

j ggi ∈ H. This implies there is an h ∈ H such that

g−1
j ggi = h, or equivalently, ggi = gjh. By the above, there is precisely one

gj and h such that the ggi = gjh. So, g−1
j ggi ∈ H for precisely one j.

We will first expand the definition of ρ. Let ρ′(h) = ρ(h) for all h ∈ H
and ρ′(g) = 0 for all g /∈ H. Then, we define the induced representation ρ ↑ G
to be

ρ ↑ G(g) :=

ρ′(g−1

1 gg1) ρ′(g−1
1 gg2) · · · ρ′(g−1

1 ggs)
ρ′(g−1

2 gg1) ρ′(g−1
2 gg2) · · · ρ′(g−1

2 ggs)
...

...
. . .

...
ρ′(g−1

s gg1) ρ′(g−1
s gg2) · · · ρ′(g−1

s ggs)

 .

Note that, clearly, any representation of G can be restricted to a represen-
tation of H. Let ρ be a representation of G with associated vector space V.
We denote ρ ↓ H to be the restriction of ρ into H. We define ρ ↓ H(h) = ρ(h)
for all h ∈ H, so ρ ↓ H : H → GL(V). We know ρ ↓ H will satisfy
ρ ↓ H(h1h2) = ρ ↓ H(h1)ρ ↓ H(h2) for h1, h2 ∈ H, and thus ρ ↓ H is a valid
representation of H.

6 Background

1.2 Finite Fields

Our work will primarily deal with a specific matrix group over finite fields.
Because of this, understanding the basics of finite field theory will help us
understand this group.

For any prime p and n ≥ 1, there is exactly one field (up to isomor-
phism) of order pn (Garling, 1986). We denote this field Fpn . Although Fp
is isomorphic to the field Z/pZ, Fpn for n > 1 is generally more compli-
cated. In fact, Fpn is the splitting field over F of the polynomial xpn − x.
That is, Fpn is the smallest algebraic extension of Fp containing all the roots
of xpn − x = 0. Put another way, Fpn can be viewed as Fp[x]/(f), where we
take the polynomials with coefficients in Fp and mod out by an irreducible
degree n polynomial, f .

Consider any k ∈ Z. If G is a multiplicative cyclic group of order n with
generator z, we can define the representation χk/n on G by

χk/n(zj) = e2πijk/n.

Notice this only needs to be defined up to mod n, since

χk/n(zj) = e2πijk/n = e2πijk/ne2πij = e2πij(k+n)/n = χ(k+n)/n(z
j).

So, this gives us n distinct irreducible one-dimensional representations
of G.

The multiplicative group of a finite field (which we denote F×q) is cyclic.
So, F×q is cyclic and has q − 1 elements. Once we find a generator of this
cyclic group, we have q− 1 one-dimensional representations of F×q of the
form χk/q−1 as demonstrated above.

By Garling (1986), Fpa is a subfield of the field F if and only if F = Fpab

for some b ∈ Z.

1.3 Discrete Fourier Transform

By Wedderburn’s theorem (see page 36 of Clausen and Baum (1993)), for
any finite group G, CG is isomorphic to the direct sum of matrix algebras,
⊕iC

di×di , with the isomorphism given by the direct sum of a complete set of
pairwise-inequivalent irreducible representations of G. This isomorphism
is called the discrete Fourier transform, or DFT, of G.

Let D denote the DFT of G. Since D is an isomorphism and CG is a
|G|-dimensional complex vector space, so is ⊕iC

di×di . Since each Cdi×di has

Discrete Fourier Transform 7

dimension d2
i , we must have ∑ d2

i = |G|. So, for any element g ∈ G, D(g)
has at most |G| non-zero entries.

Consider any a ∈ CG. We can write a = ∑g∈G agg, for ag ∈ C. If we
want to calculate D(a), we could simply compute

D(a) = D

(
∑
g∈G

agg

)
= ∑

g∈G
D(agg) = ∑

g∈G
agD(g).

First, let us examine how long this calculation takes to evaluate through
brute force. We see that evaluating each D(g) would take O(|G|) operations
per g. Then, we would scale each D(g) to get the summands agD(g), which
would take O(|G|) operations per g. Since there are |G| g’s, we would have
already preformed O(|G|2) operations. Then, we would have to sum each
of the agD(g)’s which would take O(|G|) operations per binary sum and
since there are |G| terms to sum, this brings our total run time to O(|G|2).
Any algorithm that takes asymptotically fewer operations than O(|G|2) is
called a fast Fourier transform, or FFT.

One common approach to creating an FFT is to utilize a subgroup.
Imagine we have a group G where we want to calculate the DFT. Also
suppose we have a subgroup H < G. Let g1, . . . gs be a complete set of
the left coset representatives of H. In other words, G is the disjoint union
G =

⋃s
i=1 gi H. We can write

a = ∑
g∈G

agg =
s

∑
i=1

∑
g∈gi H

agg =
s

∑
i=1

gi ∑
h∈H

agihh =
s

∑
i=1

giai,

where ai = ∑h∈H agihh ∈ CH. This could allow us to speed up the calcula-
tion of the discrete Fourier transform of a, D(a). Since D is a ring isomor-
phism,

D(a) = D

(
s

∑
i=1

giai

)
=

s

∑
i=1

D(giai) =
s

∑
i=1

D(gi)D(ai).

We could precompute D(gi), since this part of the calculation will be
identical no matter what the a is. So, unless we are calculating the DFT
for very few a’s, we don’t need to include the computation of D(gi) in our
calculation. Also, it only adds s O(|G|) operations.

In addition, we will need to evaluate D on s = |G : H| elements of
CH (the D(ai)’s). Then, once we have computed these, we perform the s
multiplications D(gi)D(ai) and the s− 1 additions in ∑ D(gi)D(ai).

8 Background

Immediately, this does not seem to necessarily be an improvement in
running time. However, if our DFT has a nice structure, it can be very ben-
eficial. For example, if we could choose the gi so that D(gi) were sparse,
our s multiplications of the form D(gi)D(ai) would be very quick. Simi-
larly, if D(gi) was a product of sparse matrices, we might see a decrease in
running time.

By Maschke’s theorem, D ↓ H is equivalent to a direct sum of irre-
ducible representations of H. Imagine we select D so that D ↓ H is in
fact equal to this direct sum, and all equivalent direct summands are them-
selves equal. If we do this, then D(ai) reduces to evaluating ρ(ai) for sev-
eral different irreducible representations ρ of H. By Frobenius Reciprocity
(Dummit and Foote, 2004), we know that any irreducible representation of
H occurs in at least one irreducible representation of G, and thus a direct
summand of D. Thus, evaluating the DFT of G is equivalent to calculating
ρ(ai) for all irreducible representations ρ of H.

1.3.1 Branching Diagrams

My project is not to construct branching diagrams (Spaide, 2009), but they
are very useful at communicating subgroup and representation structure.

Let G be a group and H < G a subgroup of G. Let ρ1, . . . , ρp and
σ1, . . . , σs be a complete set of inequivalent irreducible representations of
G and H, respectively. Let si be the dimension of representation σi and pi
be the dimension of representation ρi. By Maschke’s theorem, ρi ↓ H =
⊕s

j=1ajσj, where each aj is a nonnegative integer, and pi = ∑s
j=1 ajsi. This

holds for each ρi, and a branching diagram is a common way of presenting
this information. A branching diagram is a multigraph whose vertices cor-
respond to the irreducible representations of G and H. If ρi ↓ H = ⊕s

j=1ajσj,
there is an edge of multiplicity aj between the vertex ρi and σj for each j.

We can extend branching diagrams to handling subgroup chains G1 >
G2 > . . . > Gn where we draw edges between adjacent groups as we did
above. See Figure 1.1 for an example of a branching diagram; below is the
derivation.

For an example, consider the subgroup chain Z/4Z > 2Z/4Z > 4Z/4Z.
The elements of Z/4Z are {0, 1, 2, 3}, with addition modulo 4 as the group
operation. The elements of 2Z/4Z are {0, 2} with addition modulo 4.
Then, finally, we will let 4Z/4Z has elements {0}. In this way, the sub-
group structure 4Z/4Z < 2Z/4Z < Z/4Z is clear.

Each of those groups is cyclic, so we already know some of their one-
dimensional irreducible representations. Z/4Z has four irreducible in-

Discrete Fourier Transform 9

equivalent one-dimensional representations of the form (for 0 ≤ k < 4)

χk/4(x) = e2πixk/4.

By the same logic as above, 2Z/4Z has two irreducible inequivalent one-
dimensional representations of the form (for 0 ≤ k < 2)

χk/2(x) = e2πixk/4

and 4Z/4Z has one irreducible inequivalent one-dimensional representa-
tions of the form

χ0/1(x) = e2πix0/1 = 1.

We can see that these are a complete set of inequivalent irreducible representa-
tions for Z/4Z since we found four inequivalent irreducible one-dimensional
representations, and the sum of the squared dimensions for these represen-
tations is 4, which is the order of the group. Thus, there are no more irre-
ducible representations to find. The same argument holds for 2Z/4Z and
4Z/4Z.

We see that χk/4(2) = −1 if k = 1 or k = 3, and χk/4(2) = 1 otherwise.
Thus,

χ1/4 ↓ 2Z/4Z = χ3/4 ↓ 2Z/4Z = χ1/2

and
χ0/4 ↓ 2Z/4Z = χ2/4 ↓ 2Z/4Z = χ0/2.

Then, both χ0/2 and χ1/2 is equal to χ0/1 when restricted to Z/1Z since
4Z/4Z only contains the identity which is always sent to the identity by
representations. This gives us the edges of our branching diagram. The
branching diagram is presented in Figure 1.

10 Background

Z/4Z

χ0/4

χ1/4

χ2/4

χ3/4

2Z/4Z 4Z/4Z

χ0/2

χ1/2

χ0/1

Figure 1.1 Branching Diagram for Z/4Z > 2Z/4Z > 4Z/4Z

Chapter 2

The Affine Group

We define Aff(q) to be the finite affine group over Fq as follows:

Aff(q) :=
{(

x y
0 1

)∣∣∣∣ x, y ∈ Fq, x 6= 0
}

with matrix multiplication as the group operation.

For convenience, in the element A =

(
x y
0 1

)
∈ Aff(q), we call x the

diagonal entry of A and y the non-diagonal entry of A.
We can see that Aff(q) is, in fact, a group by the following. First, since

it is a subset of the general linear group, GL2(Fq), all we need to show is
that it is closed under multiplication and that inverses exist in Aff(q). So, if

A =

(
a b
0 1

)
, B =

(
c d
0 1

)
∈ Aff(q), then

AB =

(
a b
0 1

)(
c d
0 1

)
=

(
ac ad + b
0 1

)
.

Since a and c are non-zero, ac is nonzero. So, AB ∈ Aff(q), and Aff(q) is
closed under the group operation.

Next, we must show that inverses exist in Aff(q). Let A′ =
(

a−1 −a−1b
0 1

)
.

Since a 6= 0, a−1 6= 0, so A′ ∈ Aff(q). Next, notice

AA′ =
(

a b
0 1

)(
a−1 −a−1b
0 1

)
=

(
1 b− b
0 1

)
=

(
1 0
0 1

)
= I,

where I is the identity of Aff(q). Thus, A′ = A−1, the inverse of A, and
inverses exist in Aff(q). Aff(q) is a subgroup of GL2(Fq).

12 The Affine Group

2.1 A natural subgroup chain for Aff(q)

The order of |Aff(q)| is fairly easy to calculate. There are (q − 1) possi-
ble diagonal entries (since it is in Fq, and is non-zero) and q possible non-
diagonal entries (since it can be any element of Fq, including zero). So,
|Aff(q)| = (q− 1)q.

Consider any A =

(
a b
0 1

)
and nonnegative integer m (we denote this

m ∈ Z≥0). By Garling (1986), Fq ≤ Fqm . So, since a, b ∈ Fq ≤ Fqm , a, b ∈ Fqm

and A ∈ Aff(qm). Thus, Aff(q) ≤ Aff(qm). Thus, since q = pn, Aff(pn) ≤
Aff(pnm).

This gives us a very natural subgroup chain. For any non-zero integers
a, b, c, . . .,

Aff(pa) ≤ Aff(pab) ≤ Aff(pabc) ≤ · · · .

So, in particular, for the group Aff(p2n
), we have the subgroup chain

Aff(p) ≤ Aff(p2) ≤ · · · ≤ Aff(p2n−1
) ≤ Aff(p2n

).

2.2 The conjugacy classes of Aff(q)

Recall that the number of representations of Aff(q) is equal to the number
of conjugacy classes of Aff(q). We will first find the conjugacy classes of
this group, so we will know how many irreducible representations to look

for. Consider any A =

(
a b
0 1

)
∈ Aff(q). We recall that A is precisely

conjugate to the elements of Aff(q) of the form BAB−1, where B ∈ Aff(q).

So, for B =

(
c d
0 1

)
,

BAB−1 =

(
c d
0 1

)(
a b
0 1

)(
c−1 −c−1d
0 1

)
=

(
a cb + d(1− a)
0 1

)
.

From the definition of conjugacy, we see that the identity is in its own con-
jugacy class (it is only conjugate to itself). Next, if we let a = 1 and b 6= 0,
the matrix is conjugate to matrices of the form(

1 cb
0 1

)

The representations of Aff(q) 13

where c 6= 0. Since b 6= 0, we can choose c = b−1e for any nonzero e ∈ Fq

so that
(

1 b
0 1

)
is conjugate to

(
1 e
0 1

)
. Thus, this conjugacy class contains

q− 1 elements: all the elements of Aff(q) with diagonal entry 1 and nonzero
non-diagonal entry.

Next, the matrix A =

(
a 0
0 1

)
where a 6= 1 is conjugate to matrices of

the form (
a d(1− a)
0 1

)
where d ∈ Fq. Since (1− a) 6= 0, we can choose d = (1− a)−1e where e ∈

Fq. So,
(

a 0
0 1

)
is conjugate to all elements of the form

(
a e
0 1

)
. This gives

us q− 2 more conjugacy classes, since there are q− 2 nonzero and non-one
choices for a. This has exhausted all the conjugacy classes of Aff(q).

In total, there are 1 + 1 + (q− 2) = q conjugacy classes for Aff(q).

2.3 The representations of Aff(q)

As we noted in 1.2, the group F×q comes with a few convenient multiplica-
tive representations. Since F×q is cyclic of order q− 1, there exist q− 1 one-
dimensional representations

χk/(q−1)(γ
j) := e2πikj/(q−1).

This allows us to define several of the irreducible representations of Aff(q)

easily. Let A =

(
a b
0 1

)
∈ Aff(q). Since a 6= 0, we can write a = γj for

some j ∈ Z≥0. So, A =

(
γj b
0 1

)
. We can define

χk/(q−1)

((
γj b
0 1

))
:= χk/(q−1)(γ

j).

This defines q − 1 distinct irreducible one-dimensional representations of
Aff(q). Since there are q irreducible representations in total, this means
there is one more representation to find.

If a group G has n irreducible representations and di is the dimension
of the ith representation, then ∑n

i=1 d2
i = |G|. Thus, in our case,

q(q− 1) =
q

∑
i=1

d2
i .

14 The Affine Group

The first q− 1 representations are all one-dimensional, so

q(q− 1) =
q

∑
i=1

d2
i = (q− 1)1 + d2

q.

This implies d2
q = (q− 1)2, and the last representation has dimension q−

1. The representations we just found only used the diagonal entry of the
elements of Aff(q). Our next representation will also use the non-diagonal
entry.

Define
Tr(x) := x + xp1

+ . . . + xpn−1

for x ∈ Fq. Since Fq can be seen as elements of Fp[x] modulo some ir-
reducible polynomial of degree n, Fq has characteristic p (p1 = 1 + 1 +
. . . + 1 = 0) (Garling, 1986). Since Fq has characteristic p, we have, by the
binomial theorem,

(x + y)p =
p

∑
i=0

(
p
i

)
xiyp−i.

The only i such that p does not divide (p
i) are i = 0 and i = p. Thus,

(x + y)p =
p

∑
i=0

(
p
i

)
xiyp−i = xp + yp

since all the other terms are divisible by p, and p = 0 in Fq.
Because of this, we see that

Tr(x)p =
(

x + xp1
+ · · ·+ xpn−1

)p
= xp +

(
xp1

+ . . . + xpn−1
)p

.

We can recursively apply this to get

Tr(x)p = xp1
+ . . . + xpn−1

+ xpn
.

If x = 0, Tr(x) = 0 = Tr(x)p. Otherwise, x ∈ F×q , which is a multiplicative
group of order pn − 1. So, xpn−1 = 1, and xpn

= x. So,

Tr(x)p = xp1
+ . . . + xpn−1

+ x = Tr(x).

Similarly,

Tr(x + y) = (x + y) + · · ·+ (x + y)pn−1
= y + · · ·+ ypn−1

+ x + · · ·+ xpn−1

= Tr(x) + Tr(y).

Cooley-Tukey Algorithm 15

A theorem from Galois theory (see Garling (1986)) says that the Frobenius
monomorphism ψ(a) = ap, where p is the characteristic, only fixes the
elements that are in the prime field, or the elements that are equal to integer
multiples of the identity. In fact, ψ generates the automorphism group of
Fq. In our case, the prime field is simply Fp. So, Tr(x)p = Tr(x) implies
that Tr(x) ∈ Fp ∼= Z/pZ. Thus, Tr(x) can be viewed as an integer modulo
p, and φ(x) := e2πiTr(x)/p is well-defined. Since Tr(x + y) = Tr(x) + Tr(y),
we see that φ(x + y) = φ(x)φ(y). So, φ is a one-dimensional representation
of the additive group of Fq.

Let

H :=
{(

1 y
0 1

)
|y ∈ Fq

}
.

We see that H is a group and that H ≤ Aff(q). We can define a representa-
tion, φ, of H by

φ

((
1 y
0 1

))
:= φ(y).

We can then induce this representation to our group Aff(q). We see that{(
x 0
0 1

)}
x∈F×q

is a complete set of left coset representatives of H in Aff(q). Call these
representatives g1, . . . , gq−1. So, we let our representation ρ to be

ρ(g) := φ ↑ Aff(q)(g) =

ρ(g−1

1 gg1) ρ(g−1
1 gg2) · · · ρ(g−1

1 ggq−1)
ρ(g−1

2 gg1) ρ(g−1
2 gg2) · · · ρ(g−1

2 ggq−1)
...

...
. . .

...
ρ(g−1

q−1gg1) ρ(g−1
q−1gg2) · · · ρ(g−1

q−1ggq−1)

 .

By Spaide (2009), this representation is irreducible. Figure 2.1 shows the
branching diagram for Aff(32) > Aff(3) > {1}.

2.4 Cooley-Tukey Algorithm

To calculate the DFT of some a ∈ CAff(q2), we will use the Cooley-Tukey
algorithm described in the introduction. Recall we will use a subgroup
chain for this algorithm; in this case we will use Aff(q2) ≥ Aff(q) ≥ If
a = ∑g∈Aff(q2) agg (where each ag ∈ C), then

16 The Affine Group

Aff(32)

γ

χ0/8

χ1/8

χ2/8

χ3/8

χ4/8

χ5/8

χ6/8

χ7/8

Aff(3) {1}

ρ

χ0/2

χ1/2

1

Figure 2.1 Branching Diagram for Aff(32) > Aff(3) > {1}

Cooley-Tukey Algorithm 17

D(a) = D

 ∑
g∈Aff(q2)

agg

 = ∑
g∈Aff(q2)

agD(g).

If {g1, . . . gs} is a complete set of left coset representatives of Aff(q) in Aff(q2),
then

D(a) = ∑
g∈Aff(q2)

agD(g)

=
s

∑
i=1

∑
g∈giAff(q)

agD(g)

=
s

∑
i=1

D(gi) ∑
h∈Aff(q)

agihD(h)

=
s

∑
i=1

D(gi)D(ai)

for ai = ∑h∈Aff(q) agihh. So, to evaluate D(a), we need to evaluate D(ai)

for s = |Aff(q2) : Aff(q)| = q(q + 1) i’s, as well as take the s products
D(gi)D(ai), and then do the s− 1 sums between the terms.

The question remains: how long this will take? We will calculate the
operations required for each step. We let L(Aff(q2)) denote the number of
operations it takes to calculate D(a) for a ∈ CAff(q2). It will be useful to
calculate L(Aff(q2)) in terms of L(Aff(q)). We will split the calculation into
three steps. So,

L(Aff(q2)) ∈ O (A + P + S)

where A is the time to calculate the D(ai)’s, P is the time to calculate the
products D(gi)×D(ai), and S is the time to calculate the sums of the terms
D(gi)D(ai).

Evaluating D(ai) Time time to calculate D(ai) is L(Aff(q)) by our defini-
tion. We need to calculate this for each of the s ai’s. So,

A = sL(Aff(q)) = q(q + 1)L(Aff(q)) ∈ O
(
q2L(Aff(q))

)
.

Evaluating the product D(gi)× D(ai) Let δ1 = ∑i di be the sum of the di-
mensions of the irreducible representations of Aff(q2).

Both D(gi) and D(ai) will have up to |Aff(q2)| non-zero entries (in
the same locations) arranged in a block diagonal δ1 × δ1 matrix. Each

18 The Affine Group

block of size di will take d3
i operations to multiply. So, the entire multi-

plication D(gi)×D(ai) takes δ3 = ∑i d3
i . Recall that Aff(q2) has q2− 1

one-dimensional representations and one (q2− 1)-dimensional repre-
sentation. Thus, δ3 = (q2 − 1)13 + 1(q2 − 1)3 = q2(q2 − 1)2 ∈ O(q6).
We need to perform s of these multiplications, so the multiplication
requires

P = sq2(q2 − 1)2 = q(q + 1)q2(q2 − 1)2 ∈ O
(
q8)

operations.

Evaluating the sums D(gi)D(ai) + D(gi+1)D(ai+1) In general, it should be
hard to make the D(gi)D(ai)’s sum nicely, since D(b) (for b ∈ CAff(q2))
does not in general have significantly fewer than |Aff(q2)| = q2(q2 −
1) non-zero entries.

In the worst case, ∑m
i=1 D(gi)D(ai) and D(gi+1)D(ai+1) both have

|Aff(q2)| = q2(q2 − 1) non-zero entries (in the same positions), so the
sum will take |Aff(q2)| = q2(q2 − 1) operations. We need to perform
this sum s− 1 = q(q+ 1)− 1 times, no matter how we split it up. Our
total number of operations is

S = (s− 1)|Aff(q2)| = (q(q + 1)− 1)q2(q2 − 1) ∈ O
(
q6) .

So, in total, we have

L(Aff(q2)) ∈ O (A + P + S)
∈ O

(
q2L(Aff(q)) + q8 + q6)

∈ O
(
q2L(Aff(q)) + q8)

∈ O
(
|Aff(q)|L(Aff(q)) + |Aff(q2)|2

)
.

This recurrence relation is not reassuring. We know we can calculate
L(Aff(p)) ∈ O(|Aff(p)|2) = O(p4). Then, since |Aff(p)| = (p− 1)p and
|Aff(p2)| = (p2 − 1)p2,

L(Aff(p2)) ∈ O
(

p2L(Aff(p)) + p8)
∈ O

(
p6 + p8)

∈ O
(

p8) .

Cooley-Tukey Algorithm 19

I claim that L(Aff(p2i
)) ∈ O(p4·2i

) = O
(
|Aff(p2i

)|2
)

for i ≥ 1. We see

it holds for the base case above. Assume it holds for L(Aff(p2n
)). Then,

L(Aff(p2n+1
)) ∈ O

(
p2n+1

L(Aff(p2n
)) + p4·2n+1

)
∈ O

(
p2n+1

p4·2n
+ p4·2n+1

)
∈ O

(
p3·2n+1

+ p4·2n+1
)

∈ O
(

p4·2n+1
)

∈ O
(
|Aff(p2n+1

)|2
)

,

as desired. This running time is the same as could be obtained through a
brute force algorithm! It seems like our index is really causing us trouble
here, since the dominating terms is found by multiplying the index by the
size of the larger group. This will not allow our algorithm to have the
speed-up we desire. It seems like the best way to reduce the running time
is to decrease the index of the subgroup chain, since that contributed so
heavily to the running time. The next section will evaluate a new subgroup
chain for Aff(q) that has a smaller index.

Chapter 3

The Intermediate Affine Group

We define Aff(q, q2) to be the intermediate affine group over Fq and Fq2 as
follows:

Aff(q, q2) :=
{(

x y
0 1

)∣∣∣∣ x ∈ Fq, y ∈ Fq2 , x 6= 0
}

.

Once again, in the element A =

(
x y
0 1

)
∈ Aff(q, q2), we call x the diagonal

entry of A and y the non-diagonal entry of A.
We can see that Aff(q, q2) is, in fact, a group by the following. First,

since it is a subset of Aff(q2), all we need to show is that it is closed under

multiplications and that inverses exist. So, if A =

(
a b
0 1

)
, B =

(
c d
0 1

)
∈

Aff(q, q2), then

AB =

(
a b
0 1

)(
c d
0 1

)
=

(
ac ad + b
0 1

)
.

Since a and c are non-zero and in Fq, ac is nonzero (Fq is a field and contains
no zero divisors). So, AB ∈ Aff(q, q2), and Aff(q, q2) is closed under the
group operation (which is multiplication).

Next, we must show that inverses exist in Aff(q, q2). So, if A =

(
a b
0 1

)
∈

Aff(q, q2), we must show there exists some A−1 ∈ Aff(q, q2) such that

AA−1 = I. Well, let A′ =
(

a−1 −a−1b
0 1

)
. Since a 6= 0, a−1 6= 0, so

A′ ∈ Aff(q, q2). Next, notice

AA′ =
(

a b
0 1

)(
a−1 −a−1b
0 1

)
=

(
1 b− b
0 1

)
=

(
1 0
0 1

)
= I.

22 The Intermediate Affine Group

Thus, A′ = A−1, inverses exist in Aff(q, q2), and Aff(q, q2) is a subgroup of
Aff(q2).

3.1 A better subgroup chain for Aff(q)

Next, let’s calculate the order of |Aff(q, q2)|. There are (q − 1) possible
diagonal entries (since it is in Fq, and is non-zero) and q2 possible non-
diagonal entries (since it can be any element of Fq2 , including zero). So,
|Aff(q, q2)| = (q− 1)q2.

Notice that, in addition to Aff(q, q2) being a subgroup of Aff(q2), Aff(q)
is a subgroup of Aff(q, q2). Thus, we get a new subgroup chain

Aff(q) < Aff(q, q2) < Aff(q2).

In the case where q = p2n
, we can write

Aff(p) < Aff(p, p2) < Aff(p2) < . . . < Aff(p2n−1
, p2n

) < Aff(p2n
).

3.2 The conjugacy classes of Aff(q, q2)

For any group G, the number of inequivalent irreducible representations of
G is equal to the number of conjugacy classes of G. So, we will first find the
conjugacy classes of Aff(q, q2) so that we can figure out its representations.

Consider any A =

(
a b
0 1

)
∈ Aff(q, q2). We recall that A is precisely

conjugate to the elements of Aff(q, q2) of the form BAB−1, where B ∈ Aff(q).

So, for B =

(
c d
0 1

)
,

BAB−1 =

(
c d
0 1

)(
a b
0 1

)(
c−1 −c−1d
0 1

)
=

(
a cb + d(1− a)
0 1

)
.

From the definition of conjugacy, we see that the identity is in its own con-
jugacy class (it is only conjugate to itself). Next, if we let a = 1 and b 6= 0,
the matrix is conjugate to matrices of the form(

1 cb
0 1

)
where c 6= 0 and c ∈ Fq. Thus, this matrix is conjugate to q − 1 matri-
ces, since cb will be different for each choice of c. There are q2 matrices

The representations of Aff(3, 32) 23

with diagonal entry 1; there are q2 − 1 of this form that aren’t the identity.
Each non-identity matrix with diagonal entry 1 is in a conjugacy class with
(q− 1) other matrices of this form. Thus, there are q + 1 conjugacy classes
for these non-identity matrices with diagonal entry 1, or q + 2 in total (in-
cluding the identity).

Next, the matrix A =

(
a 0
0 1

)
where a 6= 1 is conjugate to matrices of

the form (
a d(1− a)
0 1

)
where d ∈ Fq. Since (1 − a) 6= 0, we can choose d = (1 − a)−1e where

e ∈ Fq2 , since d is any element of Fq2 . So,
(

a 0
0 1

)
is conjugate to all elements

of the form
(

a e
0 1

)
. This completes our search for conjugacy class, and gives

us q− 2 more conjugacy classes, since there are q− 2 nonzero and nonone
choices for a. In total, there are q + 2 + (q− 2) = 2q conjugacy classes for
Aff(q, q2).

3.3 The representations of Aff(3, 32)

We will now restrict ourselves to the case of Aff(3, 32). After doing so, we
will move to Aff(p, p2), for prime p. Then, finally, we will discuss why the
representations of Aff(q, q2) for q = pn are hard to find.

By the above, there are 2q = 2× 3 = 6 irreducible representations for
Aff(3, 32). Then, since |Aff(3, 32)| = (3− 1)32 = 18, the sum of the squares
of the representation is 18. Let σ1, . . . σ6 be the six irreducible representa-
tions of Aff(q, q2) in increasing order of dimension (so, σ1 has the highest
degree, etc.). We can now figure out the degrees of the representation with-
out too much more work. We know that

18 =
6

∑
i=1

(dim σi)
2

Assume for the sake of contradiction that dim σ1 ≥ 5. Then,

18 = (dim σ1)
2 +

6

∑
i=2

(dim σi)
2 ≥ 25,

24 The Intermediate Affine Group

which is a contradiction. Next, assume dim σ1 = 4. Then,

18 = (dim σ1)
2 +

6

∑
i=2

(dim σi)
2 = 16 +

6

∑
i=2

(dim σi)
2.

Since dim σi ≥ 1, this implies 18 = 16 + ∑6
i=2(dim σi)

2 ≥ 16 + 5, which is a
contradiction. Next, suppose dim σ1 = 3. This implies

18 = 9 +
6

∑
i=2

(dim σi)
2.

Clearly dim σ2 6= 3 and dim σ2 6= 1 (since if dim σ2 = 1, dim σ3 = dim σ4 =
dim σ5 = dim σ6 = 1, which would not allow that sum to be 18), so dim σ2 =
2. This implies ∑6

i=3(dim σi)
2 = 5. Again, this says that dim σ3 = 2, which

quickly leads to a contradiction. So, dim σ1 ≤ 2. We can’t have dim σ1 = 1,
since that would imply σi = 1 for all i. Thus, dim σ1 = 2. The only pos-
sible solution to the remaining equation is dim σ1 = dim σ2 = dim σ3 =
dim σ4 = 2, and dim σ5 = dim σ6 = 1.

This information can help our search quite a bit. First, we will find the
one-dimensional representations and then the two-dimensional ones. But,
first we will discuss the representations of the additive group of Fq, F+

q .

3.3.1 The additive group of Fq

The additive group of Fp, F+
p , is cyclic, since it is isomorphic to Z/pZ. Say

it has generator γ. So, each x ∈ F+
p can be written as γj for j ∈ Z and

0 ≤ j < p. There are p irreducible one-dimensional representations of F+
p .

Denote them by ρk(y), for 0 ≤ k < p, and let

ρk(γj) := e2πijk/p.

Since q = pn, the index of the field extension [Fq : Fp] = [Fpn : Fp] = n.
So, Fq can be seen as a vector space with n basis vectors from Fq and scalars
coming from Fp. Let v1, . . . , vn be those basis vectors. Consider any x ∈ Fq.
We can write

x =
n

∑
i=1

xivi

where xn ∈ Fp. For convenience, we also represent x = (x1, . . . xn).
For j1, . . . jn where 0 ≤ ji < p, define the representation ρj1,...,jn : Fq → C

to be
ρj1,...,jn(x) := ρj1(x1)ρj2(x2) · · · ρjn(xn).

The representations of Aff(3, 32) 25

Since this is a one-dimensional representation, it is irreducible. Next, notice
that if ρj1,...,jn = ρj′1,...,j′n , all ji = j′i , since for x = vi,

ρj′i
(1) = ρj′1,...,j′n(x)(vi) = ρj1,...,jn(x)(vi) = ρji(1).

Thus, ji = j′i . We’ve found all pn inequivalent irreducible one-dimensional
representations of F+

q .

3.3.2 One-dimensional representations

The one-dimensional representations of Aff(q, q2) are very similar to the
one-dimensional representations found for Aff(q). In fact, they are essen-
tially the same. Recall we defined

χk/(q−1)

((
γj b
0 1

))
:= χk/(q−1)(γ

j)

where
χk/(q−1)(γ

j) := e2πikj/(q−1).

We will define it exactly the same here! So, we define σk : Aff(3, 32) → C

by

σk

((
γj b
0 1

))
:= χk/(3−1)(γ

j)

for k = 0 and 1. Note that γ = 2. So, we have found the two one-
dimensional representations of Aff(3, 32).

3.3.3 Two-dimensional representations

We will first define the subgroup, H = Aff(1, 32) ∼= F32 where

H :=
{(

1 y
0 1

)
, y ∈ F32

}
.

We can define nine irreducible representations of H using the nine irre-
ducible representations of F+

32 :

ρj1,j2

(
1 y
0 1

)
:= ρj1,j2(y).

26 The Intermediate Affine Group

Now, we will induce these to representations of Aff(3, 32). First, notice that

we can use
(

a 0
0 1

)
∈ Aff(3, 32) as our left coset reps, since

(
a 0
0 1

)
H =

{(
a ay
0 1

)∣∣∣∣ y ∈ F32

}
=

{(
a y
0 1

)∣∣∣∣ y ∈ F32

}
.

Call B1 =

(
1 0
0 1

)
and B2 =

(
2 0
0 1

)
.

Consider any A ∈ Aff(3, 32). We see that ABi = Bjh, for exactly one j
and h ∈ H. So, if B−1

j ABi ∈ H, then there is an h ∈ H so that ABi = Bjh.

Thus, B−1
j ABi ∈ H for precisely one j.

We define our induced representation using the following. First, for
A ∈ Aff(3, 32)− H, define ρj1,j2(g) = 0. Then, our induced representation
is

ρj1,j2 ↑ Aff(3, 32)(A) :=
(

ρj1,j2(B−1
1 AB1) ρj1,j2(B−1

1 AB2)
ρj1,j2(B−1

2 AB1) ρj1,j2(B−1
2 AB2)

)
.

We know B1 is the identity and B2 = B−1
2 , so,

ρj1,j2 ↑ Aff(3, 32)(A) =

(
ρj1,j2(A) ρj1,j2(AB2)

ρj1,j2(B2A) ρj1,j2(B2AB2)

)
.

Now, we let A =

(
x y
0 1

)
and consider the case where x = 1 and where

x = 2 separately:

x = 1 case In this case,

ρj1,j2 ↑ Aff(3, 32)

(
1 y
0 1

)
=

(
ρj1,j2(y) 0

0 ρj1,j2(2y)

)
.

x = 2 case In this case,

ρj1,j2 ↑ Aff(3, 32)

(
2 y
0 1

)
=

(
0 ρj1,j2(y)

ρj1,j2(2y) 0

)
.

Next comes the question of whether this representation is irreducible. We
see that the character of ρj1,j2 is

χj1,j2

(
x y
0 1

)
=

{
ρj1,j2(y) + ρj1,j2(2y) x = 1
0 x 6= 1

.

The representations of Aff(3, 32) 27

Consider some representation ρ with character χ. Recall that ρ is irre-
ducible if and only if 〈χ, χ〉 = 1. So, we will check whether

〈
χj1,j2 , χj1,j2

〉
=

1.
Notice the character is only nonzero at x if x = 1, or, in other words,

A ∈ H. So, the inner product is

〈
χj1,j2 , χj1,j2

〉
=

1
|Aff(3, 32)| ∑

A∈Aff(3,32)

χj1,j2(A)χj1,j2(A) =
1
18 ∑

A∈H
χj1,j2(A)χj1,j2(A).

So, for A =

(
x y
0 1

)
,

〈
χj1,j2 , χj1,j2

〉
=

1
18 ∑

y∈F32

(
ρj1,j2(y) + ρj1,j2(2y)

) (
ρj1,j2(y) + ρj1,j2(2y)

)
.

For space, we will let ρj1,j2 = ρ. We can expand this sum:

〈
χj1,j2 , χj1,j2

〉
=

1
18 ∑

y∈F32

ρ(y)ρ(y) + ρ(2y)ρ(2y) + ρ(y)ρ(2y) + ρ(2y)ρ(y).

We know that, for any a, aa = |a|2. Thus, since ρ(y) is a root of unity,

ρ(y)ρ(y) = ρ(2y)ρ(2y) = |ρ(y)|2 = |ρ(2y)|2 = 1.

So, 〈
χj1,j2 , χj1,j2

〉
=

1
18 ∑

y∈F32

2 + ρ(y)ρ(2y) + ρ(2y)ρ(y)

= 1 +
1
18 ∑

y∈F32

ρ(y)ρ(2y) + ρ(2y)ρ(y).

Thus, χj1,j2 is irreducible if and only if ∑y∈F32
ρ(y)ρ(2y) = −∑y∈F32

ρ(2y)ρ(y).

We will first consider the sum ∑y∈F32
ρ(y)ρ(2y). Recall that every y ∈ F32

can be viewed us av1 + bv2 where a, b ∈ F3 and v1, v2 are the basis vectors
of the F3-linear vector space, F32 . Then,

ρ(a, b) = ρj1(a)ρj2(b) = e2πij1a/3e2πij2b/3 = e2πi(j1a+j2b)/3

and, recall, ρ(a, b) = e2πi(−j1a−j2b)/3.

28 The Intermediate Affine Group

So,

∑
y∈F32

ρ(y)ρ(2y) = ∑
(a,b)∈F32

e2πi(j1a+j2b)/3e2πi(2j1a+2j2b)/3

= ∑
(a,b)∈F32

e2πi(j1a+j2b)/3e2πi(−2j1a−2j2b)/3.

Recall that −2 = 1 in F3. So,

∑
y∈F32

ρ(y)ρ(2y) = ∑
(a,b)∈F32

e2πi(2j1a+2j2b)/3

= ∑
a∈F3

(
e2πi(2j1a)/3 ∑

b∈F3

e2πi(2j2b)/3

)

We see that unless j2 = 0, ∑b∈F3
e2πi(2j2b)/3 = 0, since the sum is just the

sum of the third roots of unity. If j2 = 0, then ∑b∈F3
e2πi(2j2b)/3 = 3. Then,

the outer sum will be zero unless j1 = 0. If j1 = j2 = 0, it will sum to 9.
Similarly,

∑
y∈F32

ρ(2y)ρ(y) = ∑
(a,b)∈F32

e2πi(2j1a+2j2b)/3e2πi(j1a+j2b)/3

= ∑
(a,b)∈F32

e2πi(2j1a+2j2b)/3e2πi(−j1a−j2b)/3

= ∑
(a,b)∈F32

e2πi(j1a+j2b)/3

= ∑
(a,b)∈F32

e2πi(j1a+j2b)/3

= ∑
a∈F3

e2πi(j1a)/3 ∑
b∈F3

e2πi(j2b)/3.

Again, unless both of j1 and j2 is zero, this will sum to 0. If j1 = j2 = 0, it
will sum to 9 again. So,

〈
χj1,j2 , χj1,j2

〉
=

{
2 j1 = j2 = 0
1 else

Thus, χj1,j2 is irreducible if and only if one of j1 and j2 is non-zero. So,
since there were 3 choices for each of j1 and j2, this leaves 32 − 1 = 8 ir-
reducible representations of this form. We are only looking for four repre-
sentations, so some of these that we have found must not be unique. Recall

Representations of Aff(p, p2) 29

that two representations are equivalent if they share the same character. So,
when does χa,b = χc,d?

If χa,b = χc,d, we have that for all y ∈ F32 ,

ρa,b(y) + ρa,b(2y) = χa,b(y) = χc,d(y) = ρc,d(y) + ρc,d(2y).

Recall that, since y ∈ F32 , we can write y = y1v1 + y2v2 where y1, y2 ∈ F3.
So,

ρa,b(y)+ ρa,b(2y) = ρa,b(y1, y2)+ ρa,b(2y1, 2y2) = e2πi/3(ay1+by2)+ e2πi/3(2ay1+2by2)

= e2πi/3(ay1+by2) + e−2πi/3(ay1+by2) = 2Re
(

e2πi/3(ay1+by2)
)

We can apply the same argument to χc,d. Thus,

2Re
(

e2πi/3(ay1+by2)
)
= 2Re

(
e2πi/3(cy1+dy2)

)
.

If we set y2 = 0 and y1 = 1, we see that Re
(

e2πi/3(a)
)
= Re

(
e2πi/3(c)

)
, or

a = ±c. A similar argument show that b = ±d. Imagine a = c 6= 0 and
0 6= b = −d. Then, for y1 = y2 = 1,

Re
(

e2πi/3(a+b)
)
= Re

(
e2πi/3(a+d)

)
,

which is not possible. Similarly, if b = d 6= 0, then a = c. So, we see
that χa,b = χc,d iff and only if either (a, b) = (c, d) or (−a,−b) = (c, d).
So, out of the eight irreducible representations we found earlier, there were
four inequivalent irreducible two-dimensional representations. We have
found all six irreducible representations of Aff(q, q2). Figure 3.1 shows the
branching diagram for Aff(32) > Aff(3, 32) > Aff(3) > {1}.

3.4 Representations of Aff(p, p2)

By the above, Aff(p, p2) has 2p irreducible representations. By Garling
(1986), we know Fp2 forms a Fp-linear vector space with 2 basis vectors,
v1 and v2.

First, we will concentrate on the one-dimensional ones. Just like in the
above, we inherit our one-dimensional representations from Aff(p). We
define

σk

((
γj b
0 1

))
:= χk/(p−1)(γ

j)

30 The Intermediate Affine Group

Aff(32)

γ

χ0/8

χ1/8

χ2/8

χ3/8

χ4/8

χ5/8

χ6/8

χ7/8

Aff(3, 32)

ρ1,0

ρ0,1

ρ1,1

ρ1,2

χ0/2

χ1/2

Aff(3) {1}

ρ

χ0/2

χ1/2

1

Figure 3.1 Branching Diagram for Aff(32) > Aff(3, 32) > Aff(3) > {1}

Representations of Aff(p, p2) 31

for 0 ≤ k ≤ p− 1. So, we have found p− 1 one-dimensional representa-
tions of Aff(p, p2).

Let H ≤ Aff(p, p2) be the subgroup of elements with 1 as the diagonal

entry. First, notice that the set
{(

a 0
0 1

)
∈ Aff(p, p2)

}
is a complete set of

left coset representatives, since(
a 0
0 1

)
H =

{(
a ay
0 1

)∣∣∣∣ y ∈ Fp2

}
=

{(
a y
0 1

)∣∣∣∣ y ∈ Fp2

}

and thus each
(

a 0
0 1

)
is in its own coset, and each

(
a y
0 1

)
∈ Aff(p, p2) is

in the same coset as
(

a 0
0 1

)
. Thus,

{(
a 0
0 1

)}
is a valid complete set of

left coset representatives. Let g1, . . . gq−1 denote these coset representatives,

where gi =

(
ai 0
0 1

)
for some ai ∈ F×p .

We define, for 0 ≤ a, b < p, the representation pa,b : H → C by

pa,b

(
1 y
0 1

)
:= ρa,b(y),

using the representations we know for the additive group F+
p2 . That is, if

y = y1v1 + y2v2,

ρa,b(y) = ρa(y1)ρb(y2) = e2πiay1/pe2πiay2/p.

As we’ve done before, we will induce this representation to the entire group.
Let ρa,b = pa,b ↑ Aff(p, p2). By definition,

ρa,b(g) = pa,b ↑ Aff(q)(g) :=

pa,b(g−1

1 gg1) pa,b(g−1
1 gg2) · · · pa,b(g−1

1 ggq−1)
pa,b(g−1

2 gg1) pa,b(g−1
2 gg2) · · · pa,b(g−1

2 ggq−1)
...

...
. . .

...
pa,b(g−1

q−1gg1) pa,b(g−1
q−1gg2) · · · pa,b(g−1

q−1ggq−1)

 .

The character of this representation is

χa,b

(
x y
0 1

)
=

{
∑z∈F×p

ρa,b(zy) x = 1

0 x 6= 1

32 The Intermediate Affine Group

since g−1
i ggi ∈ H if and only if g ∈ H, and thus pa,b(g−1

i ggi) = 0 if

g /∈ H. When g =

(
x y
0 1

)
∈ H, pa,b(g−1

i ggi) = ρa,b(y). Thus, χa,b =

∑ai∈F×p
ρa,b(aiy).

We can write y = y1v1 + y2v2, where y1 and y2 are in Fp. We defined

ρa,b(y1, y2) = ρa(y1)ρb(y2) = e2πiay1/pe2πiby2/p = e2πi(ay1+by2)/p.

We first need to show when ρa,b is equivalent to ρc,d. Recall this is the case
if and only if χa,b = χc,d.

Assume χa,b = χc,d. Then, they are equal for each y = y1v1 + y2v2 ∈
Fp,p2 . So, we see that

∑
z∈F×p

ρa,b(zy) = ∑
z∈F×p

ρc,d(zy),

and thus
∑

z∈F×p

e2πiz(ay1+by2)/p = ∑
z∈F×p

e2πiz(cy1+dy2)/p.

Assume ay1 + by2 = A 6= 0. Since a, y1, b, y2 ∈ Fp, A ∈ F×p . The sum

∑
z∈F×p

e2πiz(ay1+by2)/p = ∑
z∈F×p

e2πiz(A)/p

is simply

∑
z∈F×p

e2πiz(ay1+by2)/p = ∑
z∈F×p

e2πiz/p.

This is the sum of the pth roots of unity except when z = 0. Thus,

∑
z∈F×p

e2πiz(ay1+by2)/p = −1 + ∑
z∈Fp

e2πiz/p = −1.

However, when ay1 + by2 = 0, then

∑
z∈F×p

e2πiz(ay1+by2)/p = ∑
z∈F×p

e0 = p− 1.

So, χa,b = χc,d if and only if ay1 + by2 = 0 for the exactly same y =
y1v1 + y2v2 as when cy1 + dy2 = 0. If ay1 + by2 = 0, this would imply
ay1 = −by2. If a = 0, this implies c = 0 (notice if y = v1, cy1 + dy2 = c and
0y1 + by2 = 0) and b and d can both be zero or both be non-zero. Otherwise,

Representations of Aff(p, p2) 33

we can write y1 = − b
a y2 = − d

c y2. So, b
a = d

c . Thus, χa,b = χc,d if there exists
a z ∈ F×p such that c = za and d = za. So, each ρa,b is equivalent to p− 1
other ρc,d.

Next, we check whether these ρa,b are irreducible. Recall that 〈χa,b, χa,b〉 =
1 if and only if ρa,b is irreducible. We see

〈χa,b, χa,b〉 =
1

p2(p− 1) ∑
y∈Fp2

χa,b(zy)χa,b(zy)

=
1

p2(p− 1) ∑
y∈Fp2

 ∑
z∈F×p

ρa,b(zy)

 ∑
z∈F×p

ρa,b(zy)

.

As we argued above, χa,b(y1, y2) = −1 when ay1 + by2 6= 0, and it
equals p− 1 otherwise. First, assume a = 0 and b = 0. Then, ay1 + by2 = 0
always, and our character is p− 1 for all y ∈ Fp2 . So,

〈χ0,0, χ0,0〉 =
1

p2(p− 1) ∑
y∈Fp2

(p− 1) (p− 1) = p− 1.

If a = 0 and b 6= 0, then ay1 + by2 = by2 = 0 precisely when y2 = 0. So

〈χa,b, χa,b〉 =
1

p2(p− 1) ∑
y1∈Fp

 ∑
y2=0

(p− 1)2 + ∑
y2∈F×p

(−1)2

=

1
p2(p− 1)

p
(
(p− 1)2 + p− 1

)
=

p2(p− 1)
p2(p− 1)

= 1.

That argument is equivalent in the case where a 6= 0 and b = 0. Next, let
a 6= 0 and b 6= 0. Then ay1 + by2 = 0 precisely when y1 = − b

a y2. So,

〈χa,b, χa,b〉 =
1

p2(p− 1) ∑
y1∈Fp

∑
y2=− a

b y1

χa,b(zy)χa,b(zy)+ ∑
Fp3y2 6=− a

b y1

χa,b(zy)χa,b(zy)

=
1

p2(p− 1) ∑
y1∈Fp

(p− 1)2(1) + (p− 1)(1) = 1.

Thus, χa,b is reducible if and only if a = b = 0.
All χa,b are irreducible except for when a = b = 0. Thus, we found

p2 − 1 irreducible representations. We showed that each representation
was equivalent to p − 1 representations. So, we found p + 1 unique irre-
ducible (p− 1)-dimensional representations. Since we already found p− 1

34 The Intermediate Affine Group

one-dimensional representations, we have found all 2p irreducible repre-
sentations of this group. To verify, we see that the sum of the squares of the
dimensions is

(p− 1)1 + (p + 1)(p− 1)2 = (p− 1)(1 + p2 − 1) = |Aff(p, p2)|.

3.5 Representations of Aff(q, q2)

For q = pn, the irreducible representations are much more difficult to pin
down. It is unclear whether the representations of Aff(q, q2) have a nice,
general form. Figuring them out could help the multiplication step of the
Cooley-Tukey algorithm (see below). See Chapter 4 for more information
on the efforts to fine the irreducible representations of Aff(q, q2).

3.6 Cooley-Tukey Algorithm

To calculate the DFT of some a ∈ CAff(q2), we will use the Cooley-Tukey
algorithm described in the introduction and used in the previous chapter.
Here, we will use the subgroup chain Aff(q2) ≥ Aff(q, q2) ≥ Aff(q) ≥

If a = ∑g∈Aff(q2) agg (where each ag ∈ C), then

D(a) = D

 ∑
g∈Aff(q2)

agg

 = ∑
g∈Aff(q2)

agD(g).

If {g1, . . . gs} are a complete set of left coset representatives of H in G (for
H ≤ G), then

D(a) = ∑
g∈G

agD(g)

=
s

∑
i=1

∑
g∈gi H

agD(g)

=
s

∑
i=1

D(gi) ∑
h∈H

agihD(h)

=
s

∑
i=1

D(gi)D(ai)

for ai = ∑h∈H agihD(h). When we let G = Aff(q2) and H = Aff(q, q2),
we get a helpful relation. In this case, to evaluate D(a), we need to eval-

Cooley-Tukey Algorithm 35

uate D(ai) for s = |Aff(q2) : Aff(q, q2)| = (q + 1) i’s, as well as take the s
products D(gi)D(ai), and then do the s− 1 sums between the terms.

This analysis was what we used in 2.4, but it will not fully suffice here.
The relation of L(Aff(q, q2)) to L(Aff(q)) could be very different, and we
will need to understand it as well in order to figure out the asymptotic
running time. So, in the equation above, when we set G = Aff(q, q2) and
H = Aff(q), we have our index equal to s′ = |Aff(q, q2) : Aff(q)| = q,
leaving us s′ evaluations of D(ai), s′ products D(gi)D(ai) and s′ − 1 sums
between terms.

We will calculate the operations required for each step in the calcula-
tions of L(Aff(q2)) and L(Aff(q, q2)). We will split

L(Aff(q2)) ∈ O (A + P + S)

and
L(Aff(q, q2)) ∈ O

(
A′ + P′ + S′

)
where A is the time to calculate L(Aff(q2))’s D(ai)s (and A′ is the same
for L(Aff(q, q2))’s D(ai)s), P is the time to calculate the products D(gi) ×
D(ai) (P′ is the same for L(Aff(q, q2))’s D(gi)×D(ai)s), and S is the time to
calculate the sums of the terms D(gi)D(ai) (S′ is the same for L(Aff(q, q2))’s
D(gi)D(ai)s).

Evaluating D(ai) We will cover each case below.

L(Aff(q2)) Time time to calculate D(ai) is L(Aff(q, q2)) by our defi-
nition. We need to calculate this for each of the s ai’s. So,

A = sL(Aff(q, q2)) ∈ O
(
qL(Aff(q, q2))

)
.

L(Aff(q, q2)) By the same logic, D(ai) is calculated in time L(Aff(q)).
So,

A′ ∈ s′L(Aff(q)) ∈ O (qL(Aff(q))) .

Evaluating the product D(gi)× D(ai) We will cover each case below.

L(Aff(q2)) Let δ1 = ∑i di be the sum of the dimensions of the irre-
ducible representations of Aff(q2).
Both D(gi) and D(ai) will have up to |Aff(q2)| non-zero entries
(in the same locations) arranged in a block diagonal δ1 × δ1 ma-
trix. Each block of size di will take d3

i operations to multiply.
So, the entire multiplication D(gi)× D(ai) takes δ3 = ∑i d3

i . Re-
call that Aff(q2) has q2 − 1 one-dimensional representations and

36 The Intermediate Affine Group

1 q2 − 1 dimensional representation. Thus, δ3 = (q2 − 1)13 +
1(q2 − 1)3 = q2(q2 − 1)2 ∈ O(q6). We need to perform s of these
multiplications, so the multiplication requires

P = sq2(q2 − 1)2 = (q + 1)q2(q2 − 1)2 ∈ O
(
q7)

operations.

L(Aff(q, q2)) Next, let δ′1 = ∑i di be the sum of the dimensions of the
irreducible representations of Aff(q, q2).
Both D(gi) and D(ai) will have up to |Aff(q, q2)| non-zero en-
tries (in the same locations) arranged in a block diagonal δ′1 × δ′1
matrix. Each block of size di will take d3

i operations to multiply.
So, the entire multiplication D(gi)× D(ai) takes δ′3 = ∑i d3

i . We
do not know the irreducible representations for Aff(q, q2) beside
the q− 1 one-dimensional ones we inherit from Aff(q2), but we
can bound δ′3. The largest δ′3 can be is when all but one of the
remaining representations is 1 dimensional and the other has as
large dimension as possible. The sum of the squares of the repre-
sentations is δ′2 = ∑i d2

i = |Aff(q, q2)|. Thus, if di = 1 for i 6= 2q,

d2
2q = |Aff(q, q2)| − (2q− 1) = (q− 1)q2 − (2q− 1) ∈ O(q3).

So, δ′3 ∈ O((q3)3/2) = O(q9/2). We need to do s′ multiplications.
So,

P′ ∈ O(sq9/2) = O(q11/2).

Evaluating the sums D(gi)D(ai) + D(gi+1)D(ai+1) We will cover each case
below.

L(Aff(q2)) In general, it should be hard to make L(Aff(q2))’s terms
of the form D(gi)D(ai) sum nicely, since D(b) (for b ∈ CAff(q2))
has approximately |Aff(q2)| = q2(q2 − 1) non-zero entries.
In the worst case, ∑m

i=1 D(gi)D(ai) and D(gi+1)D(ai+1) both have
|Aff(q2)| = q2(q2 − 1) non-zero entries (in the same positions),
so the sum will take |Aff(q2)| = q2(q2 − 1) operations. We need
to perform this sum s− 1 = q times, no matter how we split it
up. Our total number of equal-cost operations is then

S = (s− 1)|Aff(q2)| ∈ O
(
q5) .

Cooley-Tukey Algorithm 37

Aff(q, q2) By the same logic, it should be hard to make the sum-
mands ofL(Aff(q, q2)) sum nicely, since D(b), for b ∈ CAff(q, q2),
has approximately |Aff(q, q2)| = q2(q− 1) non-zero entries. In
the worst case, ∑m

i=1 D(gi)D(ai) and D(gi+1)D(ai+1) both have
|Aff(q, q2)| = q2(q − 1) non-zero entries in the same positions,
so the sum will take |Aff(q, q2)| = q2(q− 1) operations. We need
to perform this sum s′ − 1 = q− 1 times, no matter how we split
it up. Our total number of equal-cost operations is then

S′ = (s′ − 1)|Aff(q, q2)| ∈ O
(

q4
)

.

So, in total, we have

L(Aff(q2)) ∈ O (A + P + S)
∈ O

(
qL(Aff(q, q2)) + q7 + q5)

∈ O
(
qL(Aff(q, q2)) + q7)

and

L(Aff(q, q2)) ∈ O
(

A′ + P′ + S′
)

∈ O
(

qL(Aff(q)) + q11/2 + q4
)

∈ O
(

qL(Aff(q)) + q11/2
)

.

This recurrence relation inspires more hope than the one from Aff(q2) ≥
Aff(q). We know we can calculate L(Aff(p)) by brute force so L(Aff(p)) ∈
O(|Aff(p)|2) = O(p4). Then, since |Aff(p)| = (p − 1)p, |Aff(p, p2)| =
(p− 1)p2, and |Aff(p2)| = (p2 − 1)p2,

L(Aff(p, p2)) ∈ O
(

pL(Aff(p)) + p11/2
)

∈ O
(

p5 + p11/2
)

∈ O
(

p11/2
)

.

and

L(Aff(p2)) ∈ O
(

pL(Aff(p, p2)) + p7)
∈ O

(
p13/2 + p7

)
∈ O

(
p7) .

38 The Intermediate Affine Group

I claim that

L(Aff(p2i+1
)) ∈ O(p7·2i

) = O
(
|Aff(p2i+1

)|7/4
)

and
L(Aff(p2i

, p2i+1
)) ∈ O(p11·2i−1

) = O
(
|Aff(p2i

, p2i+1
)|11/6

)
for i ≥ 1. First, when i = 1, notice

L(Aff(p2, p4)) ∈ O
(

p2L(Aff(p2)) + p11
)

∈ O
(

p11
)

and

L(Aff(p4)) ∈ O
(

p2L(Aff(p2, p4)) + p14
)

∈ O
(

p14
)

.

We see these properties hold for the base case when i = 0. Assume it
holds for L(Aff(p2n

, p2n+1
)); that is, assume L(Aff(p2n

, p2n+1
)) ∈ O(p11·2i−1

).
Then,

L(Aff(p2n+1
)) ∈ O

(
p2n

L(Aff(p2n
, p2n+1

)) + p7·2n
)

∈ O
(

p2n
p11·2n−1

+ p7·2n
)

∈ O
(

p13·2n−1
+ p7·2n

)
∈ O

(
p7·2n

)
∈ O

(
|Aff(p2n+1

)|7/4
)

,

as desired. Next, we must show the other step works. Assume it holds for
L(Aff(p2n+1

)); that is, assume L(Aff(p2n+1
)) ∈ O(p7·2n

). Then,

L(Aff(p2n+1
, p2n+2

)) ∈ O
(

p2n+1
L(Aff(p2n+1

)) + p11·2n
)

∈ O
(

p2n+1
p7·2n

+ p11·2n
)

∈ O
(

p9·2n
+ p11·2n

)
∈ O

(
p11·2n

)
∈ O

(
|Aff(p2n+1

, p2n+2
)|11/6

)
.

So, by induction, these forms hold for all n.

Conclusion 39

3.7 Conclusion

In Section 2, we showed that using the subgroup chain Aff(p) ≤ Aff(p2) ≤
· · · ≤ Aff(p2n+1

), one could obtain a running time of

L(Aff(p2n+1
)) ∈ O

(
p4·2n+1

)
= O

(
|Aff(p2n+1

)|2
)

.

In this section, we have used a smarter subgroup chain, Aff(p) ≤ Aff(p, p2) ≤
Aff(p2) ≤ · · · ≤ Aff(p2n+1

). This gave a running time of

L(Aff(p2n+1
)) ∈ O

(
p7·2n

)
= O

(
|Aff(p2n+1

)|7/4
)

.

This is a faster result asymptotically. The goal in the creation of this inter-
mediate affine group was to refine the Aff(p) ≤ Aff(p2) ≤ · · · ≤ Aff(p2n+1

)
subgroup chain, since the index of successive subgroups seemed to be too
large. This subgroup chain lends to a more efficient fast Fourier transform
for Aff(q).

Chapter 4

Future work

Originally, my results seemed to be far more substantial. At first, it seemed
like the multiplication step (called P and P′) in the Cooley-Tukey algorithm
would go much more quickly. Terras (1999) suggests that the degree q− 1
representation of Aff(q) can be represented as a monomial (q− 1)× (q− 1)
matrix, and this seemed like something we could exploit at first. However,
it is not obvious that the basis that allows this nice form for the degree
(q− 1) representation is the same as the adapted one we need for our sub-
group chain. If we can show these basis are the same, or at least very closely
related, we might be able to dramatically decrease the number of opera-
tions needed for the multiplication step. So, one question is how the D(ai)
matrices can be represented so multiplication is more efficient?

The irreducible representations of Aff(q, q2) proved difficult to find. I
attempted to create the representations in the same way we did for Aff(q),
but showing they were irreducible and pairwise inequivalent was more
difficult than I expected. It would be helpful to better understand the rep-
resentations of the group F+

q , since inducing these representations seemed
like a good strategy. Aff(q)’s degree q − 1 representation was found by
inducing the trace, which is a representation of F+

q ; what about the others?
I also attempted to restrict the degree q2 − 1 irreducible representation

down to Aff(q, q2). By rearranging the rows, it is possible to make this
representation a block diagonal matrix. I believe these blocks are equal to
the irreducible representations of Aff(q, q2), but I was not able to prove this.
How does the q2 − 1 representation restrict to Aff(q, q2)?

Finding the irreducible representations of Aff(q, q2), or even just their
dimensions, would really help this algorithm. When calculating P′, the
time to compute the multiplications for Aff(q, q2), we assumed the worst

42 Future work

about the dimensions of the remaining representations. So, if we could
figure these out, we would have a much better idea about the size of the
block-diagonal blocks are in the DFT, which would allow us to better un-
derstand the running time.

The group Aff(q, q2) can be viewed as a semidirect product between
two subgroups. The representations of semidirect products are well stud-
ied. This may be another avenue to explore.

Bibliography

Clausen, Michael, and Ulrich Baum. 1993. Fast Fourier transforms.
Mannheim: Bibliographisches Institut.

Dummit, David S., and Richard M. Foote. 2004. Abstract algebra. John
Wiley & Sons, Inc., Hoboken, NJ, 3rd ed.

Emerencia, Ando. 2007. Multiplying huge integers using fourier trans-
forms. Online slides. URL http://www.cs.rug.nl/~ando/pdfs/Ando_Emerencia_
multiplying_huge_integers_using_fourier_transforms_presentation.pdf.

Garling, D. J. H. 1986. A course in Galois theory. Cambridge University
Press, Cambridge.

Spaide, Theodore. 2009. Branching diagrams for group inclusions induced
by field inclusions. Harvey Mudd College Senior Thesis.

Terras, Audrey. 1999. Fourier analysis on finite groups and applications, Lon-
don Mathematical Society Student Texts, vol. 43. Cambridge: Cambridge
University Press.

http://www.cs.rug.nl/~ando/pdfs/Ando_Emerencia_multiplying_huge_integers_using_fourier_transforms_presentation.pdf
http://www.cs.rug.nl/~ando/pdfs/Ando_Emerencia_multiplying_huge_integers_using_fourier_transforms_presentation.pdf

	Claremont Colleges
	Scholarship @ Claremont
	2014

	A New Subgroup Chain for the Finite Affine Group
	David Alan Lingenbrink Jr.
	Recommended Citation

	Abstract
	Acknowledgments
	Background
	A Review of Representation Theory
	Finite Fields
	Discrete Fourier Transform

	The Affine Group
	A natural subgroup chain for Aff(q)
	The conjugacy classes of Aff(q)
	The representations of Aff(q)
	Cooley-Tukey Algorithm

	The Intermediate Affine Group
	A better subgroup chain for Aff(q)
	The conjugacy classes of Aff(q,q2)
	The representations of Aff(3,9)
	Representations of Aff(p,p2)
	Representations of Aff(q,q2)
	Cooley-Tukey Algorithm
	Conclusion

	Future work
	Bibliography

