The Volume of a Sphere

Lisl Gaal
University of Minnesota

Crosby Lewy
Berkeley, CA

Follow this and additional works at: https://scholarship.claremont.edu/jhm

Recommended Citation

Gaal, L. and Lewy, C. "The Volume of a Sphere," *Journal of Humanistic Mathematics*, Volume 2 Issue 1 (January 2012), pages 58-60. DOI: 10.5642/jhummath.201201.06. Available at: https://scholarship.claremont.edu/jhm/vol2/iss1/6

©2012 by the authors. This work is licensed under a Creative Commons License.

JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/

The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information.
The Volume of a Sphere

Lisl Gaal
University of Minnesota, Minneapolis, MN
gaalx001@math.umn.edu

Crosby Lewy
Berkeley, CA
hclewy@speakeasy.net

Synopsis
This picture (with a brief explanation) and poem are intended to show that even serious mathematics can be fun for all ages.

Archimedes noticed that when two objects always have the same cross-sectional area at the same height, then they must have the same volume. He also knew that a cylinder with radius and height both equal to \(r \) would have volume \(\pi r^3 \) and that a circular cone with the same dimensions would have volume \(\frac{1}{3} \pi r^3 \). So when you cut out such a cone from a cylinder, you are left with a volume of \(\frac{2}{3} \pi r^3 \). Moreover he calculated that such a hollow cone and a hemisphere with the same dimensions would always have the same cross section at the same height. Thus the volume of the hemisphere would be \(\frac{2}{3} \pi r^3 \) and the volume of the whole sphere would be \(\frac{4}{3} \pi r^3 \).

1Lisl Gaal, now retired from the Mathematics Department at the University of Minnesota in Minneapolis, is still pursuing her hobby of printing lithographs, so it is not surprising that some of these have mathematical content. This essay contains one of these. The lithograph in question started out as a 20" \(\times \) 30" black and white image and this was colored in with watercolors, so no two copies of the image ever turn out to be quite the same. She thinks it is more interesting that way!

2Crosby Lewy is a California writer, painter, and translator. Her oddball verse has appeared widely in newspapers and magazines. Crosby Lewy is most recently the author of Amusings from a Life: Tales, Poems, Translations and Nonsense, see http://www.helencrosbylewy.com/amusings.htm for more.
PICTURE BY LISL GAAL
POEM BY CROSBY LEWY

This ancient scholar
Knew how to deduce!
 By Zeus!
This Archimedes of Syracuse*

Hydrostatics, Levers, the Screw, the Claw,
And the volume of a sphere
Were the special fields
Of this sage pioneer.

Now, we can calculate
Whenever the need is:
We have some tools
Not there for Archimedes:

Without Arabic numbers
And no scrap-papers,
He came up with
Some astounding capers

Which made him more famous
Than even Candide is!
Lets celebrate this Master:
HOMAGE TO ARCHIMEDES!

*Sicily, silly, not NY State