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ABSTRACT

A variety of two-dimensional fluid systems, known as dipole-mediated systems,
exhibit a dipole-dipole interaction between their fluid constituents. The com-
petition of this repulsive dipolar force with the cohesive fluid forces cause these
systems to form intricate and patterned structures in their boundaries. In this
thesis, we show that the microscopic details of any such system are irrelevant in
the macroscopic limit and contribute only to a constant offset in the system’s
energy. A numeric model is developed, and some important stable domain
morphologies are characterized. Previously unresolved bifurcating branches
are explored. Finally, by applying a random energy background to the numer-
ics, we recover the smörgåsbord of diverse domain morphologies that are seen
in experiment. We develop an empirical description of these domains and use
it to demonstrate that the nondimensional parameter, �, which is the ratio of
the line tension to the dipole–dipole density, can be extracted for any domain
using only its shape.
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R the real numbers
Z the integers
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@
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�
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g
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R �

p
A=� domain characteristic radius

F � E=�2R dimensionless energy
L � l=R dimensionless perimeter
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� � �

�2 � log R
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CHAPTER I

INTRODUCTION

There is a diverse class of systems in two dimensions which are principally fluid-
like, but also exhibit a long-range interaction between constituent particles. In
this thesis, we will examine systems for which this long-range interaction is
due to dipole–dipole coupling. We will henceforth refer to any two-dimensional
fluid system with a dipole–dipole interaction between its particles as a dipole-
mediated system. As a fluid, any dipole-mediated system is subject to strong
cohesive forces which manifest as an interfacial tension, while the dipole–dipole
interaction causes a long-range repulsion between its fluid particles. The com-
petition between these forces leads to the formation of intricate and patterned
morphological phases in the boundaries of these systems. When in bulk, for
instance, they can form labyrinths or foams, and these phases are well stud-
ied. When isolated, the boundaries of dipole-mediated systems form complex
branching structures.

A great many of these systems exist in nature and are studied by researchers
experimentally. Two key examples are Langmuir films and ferrofluids confined
to a Hele-Shaw cell. Langmuir films are monolayers of polymer molecules de-
posited atop a fluid substrate that have a liquid phase and experience dipole–
dipole interactions via their molecular dipole moments. Ferrofluids are ordi-
nary liquids that have small particles of ferromagnetic material suspended in
them, and in a Hele-Shaw cell such a fluid is confined between glass plates.
Once subjected to an external magnetic field, the mean alignment of the fer-
romagnets is in the direction of the field and the ferromagnetic particles repel
each other on average. Examples of each of these can be found in Fig. 1.1.
Other such systems include different types of polymer layers, such as those
found in vesicles and cell membranes, and in the formation of block copolymer
or magnetic garnet films [32]. These systems and others are reviewed in [31].
More examples of research on pattern formation in ferrofluids can be found in
[7, 10, 11, 30], and in Langmuir films in [20, 5, 23, 27, 36].

In this thesis, we develop a new way for describing the energy of arbitrary
dipole-mediated systems. We demonstrate that the microscopic details of such
a system are irrelevant in the macroscopic limit, and any fluid system with a
few general properties can be well described by our construction. The energy
expression we produce is particularly useful because it also separates out all
the system parameters from the problem. In the end, the energy depends only
on a single parameter, �, and the shape of the system’s boundary. We confirm
several known analytic calculations using our energy formalism to ensure its

1



2 Introduction
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Figure 1.1: Examples of two-dimensional dipole-mediated systems in exper-
iments. (a, b) Ferrofluid enclosed in a Hele-Shaw cell. Images provided by
D. P. Jackson [13, 7, 22]. (c, d) 8–CB Langmuir films, or monolayers of polymer
molecules, condensed into their fluid phase. Images provided by E. K. Mann
[24]. (e, f) Results of the numerics which are developed in this thesis.



Introduction 3

consistency.
Besides the elegance of such a description, reducing the model to a single

parameter allows us to build a powerful numeric model of dipole-mediated sys-
tems. We use C++ to simulate growth and pattern formation in these systems
via energy minimization routines. This is where our approach diverges from
that of many others, who have predominantly modelled these systems using
dynamic simulation [1, 7, 16, 19, 23, 34]. We are able to use this numeric sys-
tem to trace many heretofore unknown solution branches and resolve precisely
for the first time a well-studied one, the dogbone. The few stable solutions
we find look very much like long rectangles with altered ends, and we use a
simple model involving the exact behavior of a rectangular domain to describe
their growth. However, neither the stable nor unstable solution branches we
find reproduce the intricacy, asymmetry, and branching found in experimental
systems.

We postulate that the lack of such structure is due to the unrealistic ho-
mogeneity that comes with simulating isolated domains. One could imagine
that in experiment, small inhomogeneities in the substrate lead to a small ran-
dom energy landscape which, in turn, can stabilize metastable domains. After
implementing a random energy background in our numeric system to model
this idea, we find that the desired features emerge with even modest levels of
background. Examples of our numeric results over a random background can
be seen in Fig. 1.1(e–f). Moreover, we find that the simple model we developed
for describing the growth of the stable solution branches continues to work well
for describing the growth of domains on the random energy background and
is largely independent of the nature of that background. This is perhaps the
most important result of this thesis: using a simple empirical model, one can
use only the shape of a dipole-mediated domain at equilibrium to extract the
defining parameter �. Using this method, one could use a series of experi-
ments to find the values of the physical parameters which compose �, again
using only pictures of the system being studied.

Finally, we also produce a numeric system for studying domains confined
in a finite potential well. This sort of domain is important, because most
experiments in systems such as Langmuir films do not typically study isolated
domains, but rather domains in a confined bulk. We verify that the system we
develop works well, and even show that labyrinthine patterns result. Extension
of this research into confined domains is an obvious next step.





CHAPTER II

ENERGY FRAMEWORK

§1. Fluid Energy

In general, we are interested in finding the energy associated with arbitrary
static geometric configurations of a two-dimensional liquid phase under con-
stant external pressure. We will assume that the system at hand is in a regime
with binary phases, so that the region of space containing the liquid phase of
interest is sharply defined. Upon choosing a system of units, points of physical
space naturally correspond to vectors in R

2. Denote by 
 � R
2 the set of

vectors corresponding to points within the region occupied by the liquid phase
of interest. In order for this description to make physical sense, 
 must be
compact, and thus it is sensible to refer to the boundary of 
, which we will
denote by @
. See, for instance, Fig. 2.1.

In three dimensions, liquids are subject to a surface tension. In fact, surface
tension is but one manifestation of a much more general thermodynamic phe-
nomenon: interfacial tension [21, page 517]. The interfacial tension associated
with some phase boundary is defined to be the energy per unit boundary of
the interface, and is always positive. When a phase exists in three dimensions,
its boundary is an area. Ergo, surface tension is the energy per unit area of
interface. However, in two dimensions, the interface is one-dimensional and the
interfacial tension is the energy per unit length of interface. We will henceforth
refer to this as the line tension of a domain, denoted by �. The line tension
is a property which can be easily determined experimentally for most fluids in

Figure 2.1: A possible fluid domain. 
 is the set of all points contained by the
black line and @
 is the set of points in the black line.
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6 Energy Framework §2

two dimensions; see [37] or [1] for examples of this in Langmuir films. Given
the line tension �, we can write the energy E as

E = �l = �

I
@


ds

Here we have simply defined the perimeter l of a region in the usual way: as
the length of the region’s boundary (which, in turn, is the length of its phase
interface).

The astute reader will have already remembered a more familiar lesson
from thermodynamics: that isobaric macroscopic systems also have an energy
proportional to their spatial extent. In three dimensions, the proportionality
constant between volume and energy is the pressure. Such an energy also exists
for two dimensional systems, now proportional to the area of the system, with
yet another constant of proportionality analogous to pressure. However, we will
restrict ourselves solely to incompressible fluids. Therefore, we can presuppose
that the domain has an area A, and any change of geometric configuration
will also leave this area, and hence the energy associated with it, constant. If
one wishes to do a similar analysis on a compressible phase, one must consider
this term, but we will henceforth neglect it as a constant contribution to the
energy.

It follows that, for an otherwise featureless, two-dimensional static fluid
domain, the energy is given by E = �l. A thermodynamically stable domain
will minimize this energy, and therefore minimize its perimeter. The minimum
perimeter of a simply connected compact region is known from the isoperimet-
ric theorem to be a circle [8, page 33]. Thus, if 
 is simply connected, its only
stable configuration is a circle. This should not be particularly surprising; after
all, droplets in three dimensions naturally form spheres, which are surface area
minimizers, just as circles are perimeter minimizers.

§2. Dipole–Dipole Energy

We saw in the previous section that there is only one stable configuration for
a basic fluid in two dimensions: the circle. The problem becomes considerably
more interesting (and difficult!) upon the addition of long-range intermolecular
forces. In particular, we suppose that the particles in our fluid exhibit a dipole–
dipole interaction. If the position of the ith dipole is ~ri and its dipole moment
is ~�i, then the total dipole–dipole energy of the domain is

Edip =
1

2

NX
i=1

NX
j=1
j 6=i

~�i � ~�j
k~ri � ~rjk3



§2 Dipole–Dipole Energy 7

We wish to transition this double sum into an integral over the area of the
domain. This transition can be done exactly by simply writing

Edip =
1

2

NX
i=1

NX
j=1
j 6=i

~�i � ~�j
ZZ



ZZ



�(~r � ~ri)�(~r 0 � ~rj)
k~r � ~r 0k3 dA0 dA

Since the domain in question is at thermal equilibrium, the positions of the
dipoles inside it will be dynamic, causing the energy to fluctuate slightly over
their motion. However, in the thermodynamic limit, these fluctuations vanish
and the energy is very reliably constant. Therefore, the quantity we are actually
interested in is the ensemble average of the energy, or

Edip =
1

2

*
NX
i=1

NX
j=1
j 6=i

~�i � ~�j
ZZ



ZZ



�(~r � ~ri)�(~r 0 � ~rj)
k~r � ~r 0k3 dA0 dA

+

We now make a simplifying assumption: that the orientation of the dipoles
relative to the plane of the domain is approximately constant (or, at least,
averages to a constant over length scales much smaller than the domain). This
assumption is reasonable for many systems. For instance, in many varieties of
Langmuir film, the molecular orientation is very close to constant and, when
not, the distribution of orientations is not ordered [9, 14, 39, 35]. The same
approximation is also commonly used in the literature concerning the study
of ferrofluids confined to a Hele-Shaw cell, which, as fluids, do not sustain
large-scale magnetic ordering and so are well-approximated this way [19, 22].

In this case, it is reasonable to pull the dipole moment dot product out
of the double sum and replace it with an average dipole dot product over all
particles, or

Edip ' 1

2

*
h~�i � ~�jiij

NX
i=1

NX
j=1
j 6=1

ZZ



ZZ



�(~r � ~ri)�(~r 0 � ~rj)
k~r � ~r 0k3 dA0 dA

+

Here, we have used the notation

hf(i; j)iij �
NX
i=1

NX
j=1
j 6=i

f(i; j)

N2

to denote the particle average of a function f of the indices i and j. This
average will, of course, also become constant in the thermodynamic limit, so
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that it may be removed from the ensemble average, yielding

Edip =
1

2
h~�i � ~�jiij

*
NX
i=1

NX
j=1
j 6=i

ZZ



ZZ



�(~r � ~ri)�(~r 0 � ~rj)
k~r � ~r 0k3 dA0 dA

+

=
1

2
h~�i � ~�jiij

ZZ



ZZ



DPN
i=1

PN
j=1;j 6=i �(~r � ~r1)�(~r 0 � ~rj)

E
k~r � ~r 0k3 dA0 dA

(2.1)

We now recognize the factor in the numerator of the integral in (2.1) as the
2-particle density

�
(2)
N (~r; ~r 0) =

*
NX
i=1

NX
j=1
j 6=i

�(~r � ~r1)�(~r 0 � ~rj)
+

The 2-particle density gives the probability distribution for finding a particle
at each of the coordinates ~r and ~r 0 in the ensemble average. While somewhat
esoteric, it is a widely known and studied quantity in the statistical mechanics
of fluid systems. If the system under consideration is homogeneous, then �(2)N

relates to the pair distribution function g
(2)
N by

g
(2)
N (~r; ~r 0) =

�
(2)
N (~r; ~r 0)

�2

where � is the number density of the fluid. If the system is also isotropic, then
g
(2)
N only depends on the separation r = k~r � ~r 0k and not their relative orien-
tation, and we may simply write g(2)N (r), often called the radial distribution
function [15, page 29]. The radial distribution function gives the distribution
of particle centers about a given particle in the fluid.

Luckily, most fluids are both homogeneous and isotropic, and we will as-
sume that the domain has these properties. Therefore, the dipole energy of
the domain can be written simply as

Edip =
1

2
�2h~�i � ~�jiij

ZZ



ZZ



g
(2)
N (k~r � ~r 0k)
k~r � ~r 0k3 dA0 dA

For brevity, we define �2 � �2h~�i � ~�jiij as the dipole density of our domain
and write g = g

(2)
N , so that the dipole energy is, more succinctly,

Edip =
�2

2

ZZ



ZZ



g(k~r � ~r 0k)
k~r � ~r 0k3 dA0 dA (2.2)

Further analysis depends on the form of the radial distribution function g(r).
A similar expression is used by McConnell et al. with g(r) set to the Heaviside
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0 5 10 15 20 25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g
HrL

r�Å
Figure 2.2: The radial distribution function for liquid argon at 85 K; data from
[38]. The small fluctuations near zero are a remnant of the Fourier transform
used to analyze the data.

function [28]. For any classical material, g(0) = 0 because two particles cannot
occupy the same location. The radial distribution function must remain very
near to zero for a small distance to account for the minimum spatial extent
of the fluid particles. After that point, g(r) may exhibit complex behavior
that depends heavily on the geometry of the fluid particles. However, fluids
quickly become disordered, and given our assumption of homogeneity, g(r)
must quickly approach one. This behavior is precisely what is seen in physical
fluids; for instance, see Fig. 2.2 for a typical radial distribution function, in this
case for liquid argon [38]. Choosing a functional form for g(r) is a challenging
theoretical problem (see [29] for a taste), and would force us to settle on a
particular fluid system. In the spirit of generality, we will attempt to bring
Edip into quadrature without making such a choice. We simply make the
following postulates about g(r):

1. limr!0 g(r)=r
3 <1

2. g(r) can be well-approximated by 1 for all r > �.
The distance � will be on the order of the size of individual fluid particles, per-
haps a few molecular diameters. Part of our analysis of the energy expression
(2.2) will involve taking the limit of the energy with small �.

First, in order to make (2.2) more useful, we will convert from an area
integration to a line integration. Green’s theorem states, for some functions
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Q(x � x0) and P (y � y0) with continuous partial derivatives in the region 
,
that ZZ




�
@Q

@x
� @P

@y

�
dA =

I
@


(P dx+Q dy)

Applying the theorem again, but now with respect to the primed coordinates,
this expression becomesZZ




ZZ



�
@2Q

@x@x0
+

@2P

@y @y0

�
dA0 dA =

= �
ZZ



ZZ



�
@2Q

@x2
+
@2P

@y2

�
dA0 dA =

I
@


I
@


(P dx0 dx+Q dy0 dy)

where the second step is allowed because @xQ = �@x0Q. If we write Q = P =
�(x� x0; y � y0) = � (k~r � ~r 0k), this statement becomes

�
ZZ



ZZ



~r2� (k~r � ~r 0k) dA0 dA =

I
@


I
@


� (k~r � ~r 0k) (n̂ � n̂0) ds0 ds

where n̂ is the unit normal to the parameterization of the boundary ~r(s).
Therefore, if we define a function �(r) such that ~r2�(r) = g(r)=r3, the dipole
energy in (2.2) can be rewritten as

Edip = ��
2

2

I
@


I
@


�(k~r � ~r 0k)(n̂ � n̂0) ds0 ds (2.3)

Recall that the radial Laplacian in polar coordinates is given by 1
r@rr@r. We

can write a formal solution for �(r) by inverting this and integrating by parts.
This process yields

�(r) =

Z r

0

1

r0

Z r0

0

r00
�
g(r00)

r003

�
dr00 dr0

=
g(r)

r
�
Z r

0

"
g0(r0)

r0
� 1

r0

Z r0

0

g0(r00)

r00
dr00

#
dr0 (2.4)

This form of the dipole energy is certainly more useful than the area integral,
but it still cannot be evaluated explicitly without making a choice for the pair
correlation function. We will show in the next section that this choice is largely
arbitrary and results only in constant shifts to the effective line tension for the
system.

It is worth discussing why we only consider a molecular pair energy that
is dipolar. What about higher-order moments, which complex molecules in-
evitably have? The short answer is that higher-order moments contribute solely



§3 Taking the Small-� Limit 11

to the line tension � in the macroscopic limit. Therefore, the contribution of
these terms to the energy expression is already accounted for by the experimen-
tal determination of the line tension. The dipole energy is different, however,
because its contribution (as we shall see very explicitly) relies strongly on the
large-scale structure of the domain. The longer answer, in which these facts
are demonstrated in a toy system, can be found in Appendix A.

§3. Taking the Small-� Limit

In this section, we will make use of some techniques from asymptotic analysis
to take the limit as �! 0 in the dipole energy expression (2.3). Note that we
cannot simply do this in the naïve way by bringing � ! 0 immediately and
carrying on from there. This is because, when � ! 0, g(r) = 1 for all r > 0,
and, using (2.4), the function �(r) = 1=r. The energy would then be

Edip = ��
2

2

I
@


I
@


n̂ � n̂0
k~r � ~r 0k ds0 ds

which has a divergent and non-integrable integrand when ~r = ~r 0. As we will
show, the dependence of Edip on � cannot completely be removed. Instead,
we will do the next best thing and remove � dependence from the integration.

First, we explicitly parameterize the integral (2.3) by arc length, which
yields

Edip = ��
2

2

Z l

0

Z l

0

�(k~r(s)� ~r(s0)k) [n̂(s) � n̂(s0)] ds0 ds

Defining � � s0 � s, we can reparameterize this integral yet again so that it is
in the form

Edip = ��
2

2

Z l

0

Z l
2

� l
2

�(k~r(s)� ~r(s+ �)k) [n̂(s) � n̂(s+ �)] d� ds (3.1)

Consider some function j(r;�) with the following two properties:

lim
�!0

j(r;�) =
1

r
J(�) � 1

2

Z l
2

� l
2

j(j�j;�) d� <1 (3.2)

To simplify the formulae, we also define

� � k~r(s)� ~r(s+ �)k cos � n̂(s) � n̂(s+ �)

Keep in mind that each of these expressions is an implicit function of s and �.
Given these, the energy (3.1) is

Edip = ��
2

2

Z l

0

Z l
2

� l
2

�(�) cos d� ds (3.3)
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Now we simply add and subtract j(r;�) from the integrand of (3.3) to find

Edip = ��
2

2

Z l

0

Z l
2

� l
2

�
�(�) cos � j(j�j;�) + j(j�j;�)

�
d� ds

= ��
2

2

Z l

0

Z l
2

� l
2

�
�(�) cos � j(j�j;�)

�
d� ds� �2

2

Z l

0

Z l
2

� l
2

j(j�j;�) d� ds

= ��
2

2

Z l

0

Z l
2

� l
2

�
�(�) cos � j(j�j;�)

�
d� ds� �2

Z l

0

J(�) ds

= ��
2

2

Z l

0

Z l
2

� l
2

�
�(�) cos � j(j�j;�)

�
d� ds� �2J(�)l (3.4)

We can now take the limit as �! 0 of the remaining integrand. The function
j(r;�) behaves as described in (3.2). Since, as � ! 0, g(r) = 1 for all r > 0,
it follows that g0(r) = 0 for r > 0 as well, and (2.4) yields

lim
�!0

�(r) =
1

r

Therefore, when we take � ! 0 in the integrand of (3.4), we find, returning
to our original notation, that

Edip ' ��
2

2

Z l

0

Z l
2

� l
2

�
n̂(s) � n̂(s+ �)

k~r(s)� ~r(s+ �)k �
1

j�j
�
d� ds� �2J(�)l (3.5)

This integral, which without the addition of j(r;�) would be singular, does
converge. This can be seen by examining the behavior of the integrand where
it is possibly divergent, or when � = 0. Using elementary differential geometry,
the Taylor expansion of ~r(s+ �) about � = 0 is

~r(s+ �) = ~r(s) + �
@~r(s+ �)

@�

����
�=0

+
�2

2

@2~r(s+ �)

@�2

����
�=0

+O(�3)

= ~r(s) + �t̂(s) +
�2

2
�(s)n̂(s) +O(�3)

where �(s) is the curvature of the boundary at ~r(s) [8]. The expansion of the
normed factor in the denominator of the integrand of (3.5) therefore comes to

k~r(s)� ~r(s+ �)k = k�t̂(s) + �2

2
�(s)n̂(s) +O(�3)k = j�j+O(�3) (3.6)

The tangent to the boundary has a similar expansion, given by

t̂(s+ �) = t̂(s) + ��(s)n̂(s) +O(�2)
It follows that the dot product of normals, which is equivalent to the dot
product of tangents, is given by

n̂(s) � n̂(s+ �) = t̂(s) � t̂(s+ �) = t̂(s) � �t̂(s) + ��(s)n̂(s) +O(�2)�
= 1 +O(�2) (3.7)
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Thus, upon substitution of the vector expansions (3.6) and (3.7), the asymp-
totic behavior of the integrand of (3.5) around small � is

n̂(s) � n̂(s+ �)

k~r(s)� ~r(s+ �)k �
1

j�j =
1 +O(�2)
j�j+O(�3) �

1

j�j = O(�2)

and hence is not divergent as � ! 0.
Therefore, we have been able to completely remove the dependence on g(r)

from the integration. This may seem worrisome, since g(r) implicitly contained
information about the microscopic parameters of the system, like the length
scale �. This parameter still enters the energy, but now through the function
J(�), which we have yet to choose. For instance, we could choose

j(r;�) =
�(r � �

2 ) + �(�r � �
2 )

r

where � is the Heaviside function. This clearly fulfills the first condition of
(3.2), and it follows immediately that

J(�) =
1

2

Z l
2

� l
2

j(j�j;�) d� =
1

2

 Z ��

2

� l
2

1

j�j d� +
Z l

2

�

2

1

j�j d�
!
= log

l

�

Using this, the dipole energy would become

Edip = ��
2

2

Z l

0

Z l
2

� l
2

�
n̂(s) � n̂(s+ �)

k~r(s)� ~r(s+ �)k �
1

j�j
�
d� ds� �2l log l

�

This choice of j(r;�) is motivated mostly by its simplicity. Many other op-
tions are available, though for consistency with the small � approximation one
usually must then expand J(�) around �

l = 0 and use the highest-order term.
In any such case, given the asymptotic behavior of j(r;�) as defined above,
the highest-order term will be proportional to log l

� , and the particular choice
of j will only modify the proportionality constant. It is natural to ask how
much error is introduced by making the approximation �! 0 in the integrand
of (3.5). In general, g(r) can be assumed to be a C1 function, and so it will
have a Taylor expansion about r = 0. The error contributed by the nth order
term gn(r) � g(n)(0)rn=n! is given by

En =
�2

2

Z l

0

Z l
2

� l
2

(
gn(�)

�
+

Z �

0

"
g0n(r

0)

r0
� 1

r0

Z r0

0

g0n(r
00)

r00
dr00

#
dr0

)
d� ds

= �2g(n)(0)l[�n � (��)n]
2n(n� 2) + 1

2(n� 1)2n!n
/ �2g(n)(0)l�n

The error contribution is of order �n and is only nonzero for odd n.
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§4. Background Energy

Later, we will also want to subject our domain to a static external spatial
potential. In general, we can write an energy per unit area of domain u(~r).
Then, the total energy of the domain due to this background will be given by

Eback =

ZZ



u(~r) dA

We can apply Green’s theorem precisely as we did before. If ~	 is a function
such that ~r � ~	(~r) = u(~r), then we may write

Eback =

I
@


~	(~r) � n̂ ds (4.1)

We cannot produce a more explicit form for this background until we specify
the function u(~r). We will do this when it becomes relevant in the numerics
chapter. Unless explicitly stated otherwise, one can assume that u(~r) = 0 in
this thesis.

§5. Nondimensionalization

The total energy of a dipole-mediated domain can now be written as

E = �l+ Edip + Eback

= �l� �2

2

I
@


Z l
2

� l
2

�
n̂(s) � n̂(s+ �)

k~r(s)� ~r(s+ �)k �
1

j�j
�
d� ds� �2l log l

�
+

+

I
@


~	(~r) � n̂ ds (5.1)

A similar expression for the energy of Langmuir films in particular has been
used previously by McConnell and de Koker, who were able to make an identical
separation of the quantity � from the integration in the boundary-integration
form [26, 4]. However, in that case the separation was made using a particular
form of g(r) chosen specifically to describe Langmuir films. Our approach is
more powerful in that it works for any of a wide variety of dipolar fluid systems.
In addition to this energy expression, the systems we study are also subject to
a constant area constant, which can be expressed explicitly by

A =

ZZ



dA =
1

2

I
@


k~r � @~r

@s
k ds

The expression (5.1) can be framed in a far simpler way by defining di-
mensionless versions of the physical quantities involved. First, we define R �
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p
A=� as the characteristic radius of the domain. This distance is a length

scale for the domain, and gives the actual radius if the domain is circular.
Using this, we then proceed to define

F � E

�2R
L � l

R
~% � ~r

R
� � �

�2
� log

R

�
~� �

~	

�2R

Upon substitution of these quantities into (5.1), we find that

F = �L� 1

2

I
@


Z L
2

�L
2

�
n̂(s) � n̂(s+ �)

k~%(s)� ~%(s+ �)k �
1

j�j
�
d� ds� L logL+

+

I
@


~�(~r) � n̂ ds (5.2)

This expression, along with the now dimensionless area constraint

� =
1

2

I
@


k~�� @~�

@s
k ds

fully describe the system at hand. This expression only depends on one pa-
rameter, �, and on the shape of the domain boundary @
. The constant � is
an effective line tension that is the ratio of the real line tension to the dipole
density, shifted by a constant which depends on the scale of the system. This
means that, for isolated shapes, the parameter space of the system is only one
dimensional!

We have now brought our description of the dipole-mediated system to an
exceedingly simple form. The separation of the parameter � from its implicit
dependence within the integrand will prove invaluable when we attempt to
numerically simulate these domains. Previous researchers have approached the
modelling problem without making such a reduction, but were subsequently
forced to choose � such that their numerics were tractable. For instance,
Heinig, Helseth, and Fischer set � = 1:5 µm in simulations of Langmuir films
using dynamic evolution, which is arguably an unphysical value [16]. The
encapsulation of this parameter into the new dimensionless parameter � outside
the integral is the main result of this energy chapter.

It is important to note that, for shapes confined to some finite region, a sec-
ond parameter also enters, the packing fraction f . Additional parameters will
also arise when we introduce a random energy background in Chapter 4, like
the characteristic amplitude a0 and wavenumber k0 of the energetic noise. We
will discuss these other parameters more later. For now, as we study isolated
domains, the fact that the system is described by only � will considerably ease
our numerical analysis.





CHAPTER III

ANALYTIC RESULTS

Unfortunately, there are very few domain geometries for which the energy (5.2)
can be evaluated exactly. However, a few tractable and insightful examples do
exist. In this chapter, we will evaluate the energy and stability of two simple
domain geometries: the circle and the rectangle. As we will see in subsequent
chapters, these two geometries are of special importance in the study of dipole-
mediated systems, and the results from this chapter will play a key role in
testing the accuracy of our numerics and in providing powerful models of more
complicated domain morphologies.

§6. The Energy & Stability of Circular Domains

The circular domain is important to the study of dipolar fluids because it is so
commonly found. We saw why in §1: lacking other energetic terms, an isolated
and simply connected fluid domain will have a circle as its energy minimum,
as circles minimize a domain’s perimeter. This corresponds to a regime where
the parameter � is large, and once � is sufficiently large, the energy minimizer
remains a circle for all larger �. In this section, we will answer two important
questions about circular domains. First, we will find the energy of a circular
domain explicitly. Then, we will determine when a circular domain becomes
unstable to perturbations of various orders. These calculations have been made
already by a number of authors, first by McConnell [25] and later by Goldstein
et al. [13], Deutch et al. [6], and Otto [30]. Dynamic analyses have also been
done of the circular instabilities [33].

Given our nondimensionalization, the dimensionless area A=R2 must equal
�. Therefore, the circular domain must have unit radius and its boundary can
be parameterized by arc length using the radius vector

~%(s) = cos s x̂+ sin s ŷ (6.1)

Since s is the arc-length of a unit circle, it also corresponds to the angle about
the circle. Therefore, L = 2�, so that (5.2) becomes

F� = �2�� 1

2

I
@


Z �

��

�
n̂(s) � n̂(s+ �)

k~%(s)� ~%(s+ �)k �
1

j�j
�
d� ds� 2� log(2�) (6.2)

Here � is the angle between ~%(s) and ~%(s+ �). This geometry is illustrated in
Fig. 3.1. Since ~% is always perpendicular to the boundary of the circle and of

17
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~%(s)

~%(s+ �)

�

Figure 3.1: A circular fluid domain.

unit length, it follows that

n̂(s) � n̂(s+ �) = ~%(s) � ~%(s+ �) = cos �

The norm of their difference also follows quickly using the law of cosines, or

k~%(s)� ~%(s+ �)k2 = 2� 2 cos � = 4 sin2
�

2

Therefore, the expression (6.2) becomes

F� = �2� � 1

2

I
@


Z �

��

�
cos�

2j sin �
2 j
� 1

j�j
�
d� ds� 2� log(2�)

The integration in s may be carried out immediately to yield a factor of the
perimeter,

F� = �2� � �
Z �

��

�
cos�

2j sin �
2 j
� 1

j�j
�
d� � 2� log(2�)

Since the integrand is symmetric in �, we may halve the limits of integration
and double the result, nullifying the absolute values and yielding

F� = �2� � 2�

Z �

0

�
cos�

2 sin �
2

� 1

�

�
d� � 2� log(2�)

This integral has now been reduced to quadrature and can be solved using
symbolic computation software or integral tables. The result is

F� = �2� + 2�
�
2 + log

�

4

�
� 2� log(2�) = 2� (� + 2� log 8)
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This expression for the energy of a circular domain is consistent with that
found previously by McConnell [25].

The circular domain does not remain a stable shape when � becomes suffi-
ciently small, however. At some point, the repulsive forces within the fluid bulk
make it energetically favorable to increase the perimeter in order to stretch out
the domain. This happens when the circle stops being an energy minimizer,
so that small perturbations away from a circular shape cause the energy of the
system to decrease. Because of the circle’s natural symmetry, the resulting
bifurcating shapes have broken rotational symmetry of various orders. The
circle becomes unstable to perturbations of different orders at different values
of �. We therefore wish to find the points at which a circular domain becomes
unstable to harmonic perturbations to its boundary, or perturbations of the
type

�~%n(�) = [� + " cos(n�)] ~%(�) (6.3)

Here "� 1, n 2 Z+ and n � 2, %(�) is given by (6.1), and � is a dimensionless
parameter which we will later fix to ensure that the area of the perturbed
domain is constant. We will also denote by

~%n(�) = ~%(�) + �~%n(�)

the boundary of a perturbed circle. Note that this boundary is no longer
parameterized by arc length. For each n, we hope to find �n, the value of �
at which a circular domain becomes unstable to perturbations of the type �~%n.
In particular, one expects that the circular domain first becomes unstable at
�2, which corresponds to the lowest-order perturbation.

In order for such a perturbation to be consistent with our energy expression
from §5, it must not change the area of the domain. For a stability analysis,
precision of up to quadratic order in the small parameter " will suffice. The
area of a perturbed domain is given by

A =

ZZ



dA =

Z 2�

0

Z %n(�)

0

%0 d%0 d� =

Z 2�

0

1

2
%2n(�) d�

=

Z 2�

0

1

2
k~%(�) + �~%n(�)k2 d� = �

�
1 + 2� + �2 +

"2

2

�

For the area to remain the same, A = �, so that

� =

r
1� "2

2
� 1 = �"

2

4
+O("4) (6.4)

With the addition of (6.4), (6.3) becomes

�~%n(�) =

�
�"

2

4
+ " cos(n�)

�
~%(�)

These perturbations now result in consistent domain areas.
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To evaluate the integral in (5.2), we must parameterize this curve by arc
length rather than angle. We first seek the angle along the perturbed domain
is a function of arc length, or �n(s). By the Pythagorean theorem,

dsn
d�

=

@~%n@�
 =p%2n + @�%n

= 1 + " cos(n�)� "2

4

�
1 + n2 [1� cos(2n�)]

	
+O("3)

We can now easily find the domain’s perimeter, or

Ln =

Z 2�

0

dsn
d�

d� = 2�

�
1 +

"2

4

�
n2 � 1

��
+O("3)

We can also partially evaluate this integral to find the arc length as a function
of angle, or

sn(�) =

Z �

0

ds

d�
d�

= � +
"

n
sin(n�) +

"2

8

�
2�(n2 � 1) + n sin(2n�)

�
+O("3) (6.5)

In order to find �n(s), we need to find the inverse of this expression. However,
its complexity makes this prohibitive. Therefore, we will take an iterative
approach in orders of the parameter ". To zeroth order in ", we have

s(0)n (�) = �

so that

�(0)n (s) = s

To first order in ", the arc length as a function of � is given by

s(1)n (�) = � +
"

n
sin(n�)

Once again, we invert this expression, but replace � in higher order terms with
our previous level of approximation, �(0)n . Therefore, we have

�(1)n (s) = s� "

n
sin[n�(0)n (s)] = s� "

n
sin(ns)

The expression (6.5) is already second order in ". Continuing the iterative
pattern and only keeping terms to second order in ", we have

�(2)n (s) = s� "

n
sin[n�(1)n (s)]� "2

8

n
2�(0)n (s)(n2 � 1) + n sin[2n�(0)n (s)]

o
= s� "

n
sin
n
n
h
s� "

n
sin(ns)

io
� "2

8

�
2s(n2 � 1) + n sin(2ns)

�
= s� "

n
sin(ns) � "2

8

�
2s(n2 � 1) + n sin(2ns) +

8

n
sin(ns) cos(ns)

�
+O("3)
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Table 3.1: The exact forms of the first few constants Zn and approximate
values for associated �n.

n Zn �n n Zn �n

2 10/3 �1:254 7 3077/693 �2:361
3 11/3 �1:587 8 864202/189189 �2:488
4 98/25 �1:841 9 1054393/225225 �2:602
5 433/105 �2:044 10 17269258/3610035 �2:704
6 47342/11025 �2:215 11 50679253/10392525 �2:797

This is sufficiently precise in " for integration. The function ~%n[�
(2)
n (s)] pa-

rameterizes the domain by arc length to second order in ", and can be substi-
tuted into the integral (5.2), which is then reduced to quadrature and can
be computed using symbolic mathematics software. Once the energy En

of a perturbed domain is computed, the critical � can be found by solving
En(�n)�E�(�n) = 0, since, at the critical value, the energy of the perturbed
domain will cross over from greater than circle energy to less than circle energy.

The resulting critical values of � are given by �n = log 8 � Zn, where the
first few Zn are tabulated in Table 3.1. These are also the values of Zn which
were found by McConnell in [25] for Langmuir domains explicitly. These values
also match those found by Goldstein & Jackson, who, in addition, supplied a
closed form for Zn, given by

Zn =
5

2
+

1

2

�
4n2 � 1

n2 � 1

� nX
j=2

1

2j � 1

which coincides exactly with the values of Zn we computed individually [13].
These instability points have also been observed to occur in experiments on
Langmuir systems [12]. We will use these critical values to test the accuracy
of our numerics later, as each harmonic instability can be easily found using
our numeric system.

§7. The Energy & Stability of Rectangular Domains

Another important shape is the rectangle, especially in the limit of high as-
pect ratio. When one looks at experimental domains, the most common pat-
tern after circle formation is stripe-like, either in the form of labyrinths or
long branching arms. It seems reasonable to model the behavior of individual
branches as if they were rectangles. As we will later see in our numerics, phys-
ical domains are surprisingly well modelled using rectangular domains in the
limit of large �, and so expressions for their perimeter and energy in this limit
will prove vital.

If a is the aspect ratio of the domain, then the x and y dimensions of the
domain are given by dx =

p
a� and dy =

p
�
a , respectively. The boundary of
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such a rectangle parameterized by arc length is given by

~%(s) =

8>>><
>>>:
sx̂ s < dx

dxx̂+ (s� dx)ŷ dx < s < dx + dy

(2dx + dy � s)x̂+ dy ŷ dx + dy < s < 2dx + dy

(2dx + 2dy � s)ŷ 2dx + dy < s < 2dx + 2dy

By integrating this boundary in the energy expression (5.2), we can determine
the energy of this rectangle. In the limit of large a, or high aspect ratio, the
energy is given by

Frec = 2
p
�a

�
�� 1

2
log

�

a

�
+O(a�1=2)

The domain will be stable when this energy is minimized with respect to a.
The value of the aspect ratio which minimizes the energy is given by

a(�) = �e�2(�+1)

which corresponds to a domain perimeter of

Lrec(�) = 2(dx + dy) = 2�e���1

and a rectangle energy of Frec(�) = �2�e���1. Remarkably, we find that as
� decreases, the aspect ratio of a rectangular domain grows exponentially, and
as a result so does its perimeter. We also find that the minimum energy of a
rectangle becomes more negative exponentially with negative �. This result
matches what has been found previously by McConnell et. al [22] and Jackson
et. al [28].

Since the energy of a rectangle decreases exponentially with decreasing
negative �, the rectangle will eventually have lower energy than the circle. This
will happen when Frec(�) = F�(�). Though rectangles themselves will clearly
not be minimizers for physical domains, the presence of stripe-like components
in physical domains does suggest that at least the rectangle structure is similar
to a minimizing structure. Both circle and rectangle energies are plotted in
Fig. 3.2, and the intersection point is given by � = �1:374. Recall that the
circle first becomes unstable at �2 = �1:254. The fact that these two values
of � are so similar is not a coincidence: we will show in the numeric results
of Chapter 5 that the energy-minimizing shape past the circle instability is a
single stripe, precisely the extension of a rectangle. Even beyond the global
minimizer, stripe-like branching structures unambiguously dominate in this
region.

Such a minimizing solution is not useful, however, if it becomes unstable
during its evolution. In particular, we would like to find whether the long,
stripe-like portion of a rectangular domain becomes unstable at some length,
or rather thickness. McConnell, de Koker, & Jiang found previously that an
infinite stripe becomes unstable when its width is greater than the critical
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Figure 3.2: The energy of a circular and rectangular domain.

width wc(�) = e�++2, where  is Euler’s constant [3]. The width is simply
given by dy, so that

wrec(�) = dy = e�+1

Since wrec(�) < wc(�) for all values of �, this theory predicts that the body of
energy-minimizing rectangular or rectangle-like domains will remain stable at
all values of �. Thus, we should expect stripe-like patterns to remain stable.





CHAPTER IV

NUMERICS

§8. Discretization

To perform numeric simulations of dipole-mediated domains, we discretized
the boundary @
 in the energy expression (5.2). Consider a set of N points
~xi = (xi; yi), each equidistant from its adjacent neighbors. Note that we will
treat the ~xi as indexed periodically, so that ~xN+i = ~xi. The condition of
equidistance can be expressed by the set of N consistency equations

L

N
= k~xi+1 � ~xik (8.1)

Define ~%i � 1
2 (~xi+1 + ~xi) and ~ti � 1

2 (~xi+1 � ~xi) to be the position and tangent
vectors of boundary points, respectively. It should be easy to see that ~ti does
indeed lie tangent to ~%i for all i = 1; : : : ; N . We will also denote by t̂i the
unit vector in the ~ti direction and by n̂i the unit vector orthogonal to ~ti and
oriented outwards. The obvious discretization of the energy given this discrete
system is given by

F = �L� 1

2

NX
i=1

N�1

2X
j=�N�1

2

 
t̂i+j � t̂j

k~%i+j � ~%jk �
1

L
N jjj

!
L2

N2
� L logL+

+

NX
i=1

~�(~xi) � n̂i L
N

Here, we have changed the integrals to sums over the boundary points and
the measures to the distance between adjacent points, L=N . The only other
nontrivial change comes from writing � ! jL=N , which corresponds to the
polygonal arc length at the index j. The expression above can be simplified
considerably by computing the sum over the second term in the summand and
reparameterizing the sum, yielding

F = (� +HN�1

2

)L� 1

2

NX
i=1

NX
j=1
j 6=i

~ti � ~tj
k~%i � ~%jk � L logL+

NX
i=1

~�(~xi) � ~ni (8.2)
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where ~ni = L
N n̂i and Hn is the nth harmonic number, defined by

Hn =

nX
k=1

1

k

The harmonic numbers can also be defined for positive real n by

Hn =  +  0(n+ 1) = log n+  +
1

2n
� 1

12n2
+O(n�4)

where  0 is the digamma function. The area of this polygon approximation
is given simply by the sum over the areas of triangles made by the origin and
pairs of adjacent points. To ensure that the area of a domain stays constant,
this polygon area must fulfill the consistency expression

� =
1

2

NX
i=1

k~xi+1 � ~xik = 1

2

NX
i=1

(xiyi+1 � xi+1yi) (8.3)

This form of the energy allows us to simulate domains as a set of points repre-
senting their boundary. We have now constructed a numeric system involving
an energy function (8.2) under the explicit constraints (8.1) and (8.3). Our
principle interest will be to minimize that energy without violating the con-
straints. Before we describe the methods and algorithms involved in performing
this constrained minimization, we will introduce two forms for ~�, the external
line potential.

§9. Random Background

In §16, we will want to simulate the effect of an inhomogeneous substrate on
fluid domains. To do this, we implement a static random energy background
that we can then relax domains atop. The form of the random energy back-
ground will be a superposition of random plane waves. The set of waves is
constructed in the following way. First, we choose positive real numbers k0
and a0 to characterize the scale of the noise and an integer M to give the
number of modes included. Then, we create a set of vectors f~kig and sets of
scalars faig and f�ig, where i = 1; : : : ;M . The ~ki are taken from a uniform
distribution in the circle of radius k0 centered at the origin, the ai are taken
uniformly from the interval [0; 2a0=M ], and the �i are taken uniformly from
the interval [0; 2�]. The background energy is then given by the density

u(~%) =

MX
i=1

ai cos(~ki � ~%+ �i)

Our choices for the sets f~kig, faig and f�ig should be clear now. The back-
ground energy is a sum of random sinusoids whose wavenumber is bounded
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above by k0, and whose average magnitude is

hju(~%)ji =
*�����

MX
i=1

ai cos(~ki � ~%+ �i)

�����
+

=Mhaiiihj cosxji = a0
2

whence a0 gives the mean amplitude of the noise. Consider now the function
~� : R2 ! R

2 defined by

~�(~%) =
1

2

MX
i=1

ai sin(~ki � ~%+ �i)

�
k�1ix
k�1iy

�

It follows that

~r � ~� =
@�x

@x
+
@�y

@y
=

MX
i=1

ai cos(~ki � ~R+ �i) = u

This is precisely the condition we have on the external line potential ~� from
§4. Therefore, the energy due to this potential is given from (4.1) by

Frand =

I
@


~� � n̂ ds =

I
@


(�xn̂x +�yn̂y) ds

=
1

2

I
@


MX
i=1

ai sin(~ki � ~R+ �i)

�
t̂y
kix

� t̂x
kiy

�
ds

where we have used n̂x = t̂y and n̂y = �t̂x, true for the tangents and normals
of positively oriented domains. This means that, given the discretization of
the domain boundary we used in the previous section,

Frand =
1

2

NX
j=1

MX
i=1

ai sin(~ki � ~Rj + �i)

�
yj+1 � yj

kix
� xj+1 � xj

kiy

�
(9.1)

where the first sum is over the points making up the sides of the domain and
the indices are defined cyclically. We can now simulate domains over such
backgrounds by simply adding this term to the energy (8.2).

§10. Confining Well

We may also want to confine our domains to a finite region of the plane.
However, we cannot use our boundary energy method without a potential
that is everywhere smooth, so that Green’s theorem can operate as normal.
Therefore, we want to use an energy density that is nearly zero for most of the
confining region and goes quickly to a value much larger than the standard
domain energy at the edge of that region. For a square region of size 2w, we
can write

uwell(~%) = es(x�w) + e�s(x+w) + es(y�w) + e�s(y+w)
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where s gives an idea of the steepness of the well. In this case, the total energy
of the well would be

Fwell =

ZZ



uwell dA

=

ZZ



�
es(x�w) + e�s(x+w) + es(y�w) + e�s(y+w)

�
dA

We would like to use Stokes theorem to convert this to a line integral. Consider
the function ~� : R2 ! R

2 defined by

~�(~x) =
1

s

�
es(x�w) � e�s(x+w)
es(y�w) � e�s(y+w)

�

It follows that

~r � ~� =
@�x

@x
+
@�y

@y
= es(x�w) + e�s(x+w) + es(y�w) + e�s(y+w) = uwell

Therefore, by Stokes theorem,

Fwell =

ZZ
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�
t̂x

i
ds

where we have used n̂x = t̂y and n̂y = �t̂x, true for the tangents and normals
of positively oriented domains. This means that, given the discretization of
the domain boundary we are using,

Fwell =
1

s

NX
j=1

h�
es(xj�w) � e�s(xj+w)

�
(yj+1 � yj)�

�
�
es(yj�w) � e�s(yj+w)

�
(xj+1 � xj)

i
(10.1)

This expression provides the desired energy well by simply adding this energy
term to the energy in (8.2).

§11. Lagrange’s Method

We now have a constrained numeric system for which we would like to find
the minimizers of an energy function. Therefore, we will turn to the method
of Lagrange multipliers. It is well known from elementary calculus that an
optimization problem in N variables of the function f under theM constraints
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gi = 0 (i = 1; : : : ;M) is equivalent to the unconstrained optimization problem
in N +M variables of the new function

L � f �
MX
i=1

�igi

The function L is known as the Lagrangian of the system, and the new system
variables �i, i = 1; : : : ;M , are known as Lagrange multipliers. When L is
minimized, it is clear that f is minimized and the constraints are satisfied,
since minimization of L implies that ~rf = 0 and that

0 =
@L
@�i

= �gi

for all i = 1; : : : ;M . However, the converse is not, in general, true. That is,
if x is a critical point of f which satisfies the constraints and minimizes f ,
then while there exists an extension of x to RN+M such that that extension
is a critical point of L which satisfies the constraints, it does not necessarily
minimize L. The reason for this is that the Lagrange multipliers may be
metastable at this point, though these parameters do not actually affect the
stability of the system being modelled.

This fact becomes important when we want to do stability analysis of any
numeric result using a Lagrange multiplier system. Normally, if

Hf �

2
666664
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1
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...
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. . .
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� � � @2f
@x2

N

3
777775

is the Hessian matrix of the function f(x1; : : : ; xN ), the function f is at a
minimum (or the system it describes is stable) if the eigenvalues of Hf are
positive. However, this is no longer true of a system described by a Lagrangian.
Rather, such a system is stable if the generalized eigenvalues � of the Hessian
for the Lagrangian that describes that system are all positive. � is a generalized
eigenvalue of a Lagrangian L(x1; : : : ; xN ; �1; : : : ; �M ) if there exists a vector
~v 2 RN+M such that

(HL)~v = �

�
IN 0
0 0

�
~v (11.1)
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where IN is the N �N identity matrix and

HL �
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is the Hessian matrix extended to the multiplier variables. This new stability
condition will also be important when we begin to discuss the algorithms we
choose to use. An algorithm that strictly minimizes the Lagrangian is disad-
vantageous because it necessarily ignores solutions for which the multipliers are
at saddle points. In fact, it is not hard to see that a minimization routine will
nearly always diverge on a multiplier system, since the multipliers themselves
are not bounded from below.

For our system, the Lagrangian is given by the difference between the energy
(8.2) and the constraints (8.1) and (8.3), or

L = F �
NX
i=1

�i

�
L2

N2
� k~xi+1 � ~xik2

�
� �A

 
� � 1

2

NX
i=1

(xiyi+1 � xi+1yi)
!

(11.2)

If we choose to minimize over a random background or in a confining well
(or both!), F is simply the energy (8.2) with (9.1) or (10.1) added. This is a
numeric system of 2N + 1 physical variables: xi and yi for i = 1; : : : ; N , and
L. In addition, it has N + 1 multiplier variables. The state of this system can
be described by a state vector ~z 2 R3N+2, which looks schematically like

~z =

2
664
~x
~y
L
~�

3
775

This will be the system we consider when there is some nontrivial background
potential to break natural symmetries. However, lacking such a potential, we
will often make use of a slightly modified system. First, in order to anchor the
domain’s orientation, we fix the point y1 = 0, reducing the physical variables
of the problem to 2N . Next, we introduce two more constraints to the system:
that the ‘center of mass’ of the boundary points lies at the origin, or

0 =

NX
i=1

xi =

NX
i=1

yi

This also introduces two new Lagrange multipliers to the system, which will
be denoted �x and �y, and raises the number of constraints (and multipliers)
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to N+3. The schematic representation of the state vector ~z is the same, albeit
with a slightly shorter vector ~y, and now as a vector in R3N+3.

§12. Algorithms

We now have an explicit unconstrained numeric system with which to work.
For the duration of this section, we will denote the number of physical variables
as N , the number of constraints (and hence multipliers) as M , the state vector
of the system by ~z, the non-multiplier variables as xi, i = 1; : : : ; N , and the
multipliers by �i, i = 1; : : : ;M . While this is inconsistent with the notation of
the previous section, it will simplify the discussion of the numerics that follows.

For cases in which we are not concerned with producing stable domains or
have some other method of controlling the stability of our results, Newton’s
method of optimization is ideal. Recall that the ith step of Newton’s method
is given by

�~zi = ��[HL(~zi)]�1 ~rL(~zi)

where � is a relaxation parameter used to improve the convergence of the al-
gorithm. The parameter � can be chosen by any number of means, but we
will always use the Armijo rule for determining it [2]. Newton’s method is
very powerful, as it has quadratic convergence, and will quickly converge to
the nearest critical point of the function L. Therefore, in the proceeding sec-
tions involving branch-following as a way to investigate stable and metastable
solutions, Newton’s method is invaluable and its shortcomings (no differenti-
ation between stable and metastable solutions, poor global convergence) are
forgivable.

However, there will come times when we wish to relax domains which are
very far from their minima and to ensure that those relaxed domains are, in
fact, stable. Here, Newton’s method proves useless. However, with a slight
modification, its shortcomings can be remedied. The Levenberg–Marquardt
algorithm (LMA) is a well-known modification to Newton’s method that pro-
vides global convergence and minimization while not giving up the convergence
properties of Newton’s method near the solution [2]. This algorithm works by
using a modified Hessian matrix HLMA defined by

HLMAL = HL+ IN+M

where In is the n � n identity matrix and  is an algorithmically determined
constant. The ith LMA step is simply the ith Newton’s method step with this
Hessian substituted for the usual one. The algorithm begins with relatively
large , so that HLMAL � IN+M and the Newton’s method step is very close
to the gradient, so the algorithm effectively does gradient following. However,
as  is scaled down, the steps smoothly transition from gradient following to
the Newton step, so that as one nears a critical point the improved convergence
of the latter can kick in.
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However, as mentioned in the previous section, we don’t actually want to
minimize the Lagrangian of our system: we only want to minimize the La-
grangian with respect to the first N variables and keep the final M multipliers
constantly at a critical point (so that the constraints are constantly satisfied).
Therefore, we use a modified version of the LMA that instead uses the Hessian

H 0
LMAL = HL+ 

�
IN 0
0 0

�

The parameter  now only scales gradient following for theN real parameters of
the system. When  is sufficiently large�, the Newton’s method step resulting
from using this Hessian will always decrease L given that the constraints are
satisfied, and will always drive the constraints toward a critical point. We
determine the value of  in our algorithm using a crude measure of convergence.
A constant 0 is fixed at the beginning of the algorithm, and after every step
the comparison

k~rLk < 

0

is made. If true,  is decreased by an order of magnitude. Otherwise,  is
unchanged. For our domains on random backgrounds,  typically starts at 1
and 0 = 1� 10�7. Improvement of the algorithm for determining  would be
a very useful direction for future work on this project.

§13. Implementation

The algorithms described above were implemented in a series of C++ libraries
by the author. The code for the core algorithm, our modified LMA, is included
in this document in Appendix C. The minimization code, while the core of
the numeric system, is only a small piece it. We computed the gradient and
Hessian of L analytically, and produced a large library for creating the gradient
and Hessian from a state vector ~z. The exact expressions for the various terms
of the gradient can be seen in Appendix B. This appendix is meant to be
instructive, and the methods it uses can be easily extended to the calculation
of the Hessian as well.

An application was developed for discovering and following bifurcations of
domains. This essentially works by slowly varying � for a given domain until
one of the generalized eigenvalues changes sign, indicating the presence of a
critical point. The generalized eigenvector associated with that eigenvalue is
then produced and used to perturb the domain at the critical point, pushing
it onto the new branch, which can then be traced by continuing to vary �. In
practice, computing the generalized eigenvalues has a very long runtime com-
pared to making minimization steps, and so eigenvalues are only occasionally
computed until a critical point has been found.

�That is, greater than the largest negative generalized eigenvalue of the system’s Hessian.
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When we begin looking at domains over a random background, we usu-
ally begin with a perturbed circular domain and then subject it suddenly to
the desired value of �, creating large domain structures in one run of the
minimization algorithm. Upon minimization, a large collection of Mathe-
matica routines were created to plot and otherwise analyze the numeric re-
sults. All of the libraries and methods created for this thesis are available at
https://github.com/kentdobias/dipole under the GPL.





CHAPTER V

NUMERIC RESULTS

§14. Circle Instabilities & Bifurcations

This section strictly uses the energy expression with an anchored orientation
and ‘center of mass’ without an additional potential, as described in the last
paragraph of §11. Beginning with a circular domain, we can slowly vary � to
larger negative values until instabilities of various orders are reached. Each
such point is characterized by the change in sign of a generalized eigenvalue of
the Hessian of the Lagrangian, as defined in (11.1). In principle, the first such
change should happen at �2, with successive changes occurring at �n for larger
integer values of n. We used the first generalized eigenvalue’s sign change to
gauge the accuracy of our numeric system. If �2(N) is the point that the first
generalized eigenvalue of the Hessian for a circular domain becomes zero for a
simulated domain on N points, then the error in our numerics for the value of
�2 is given by

E(N) =

�����2 � �2(N)

�2

����
The value of E(N) for N up to 500 is shown in Fig. 5.1, along with a fit of N�2

convergence. As can be seen from that data, our numerics reflect the expected
theoretical behavior and converge to it quadratically with the number of points
used to model the domain.

At any point on the solution manifold where a generalized eigenvalue of
the Hessian becomes zero, there exists a bifurcating solution that branches off
from that point in the direction of the corresponding generalized eigenvector.
In particular, there is such a solution branching from the circle at every critical
�n. The bifurcations corresponding to the circle instabilities will henceforth
be referred to as harmonic bifurcations. We developed code which traces solu-
tion branches to bifurcating points, then uses the generalized eigenvalue and
eigenvector information at the critical point to perturb the state onto the bi-
furcating solution branch, which can then be traced. Using this methodology,
we traced the first five harmonic bifurcations, examples of which can be seen
in Fig. 5.2. The branches themselves are represented well by the behavior of
their perimeter, L, and the branching in L corresponding to these bifurcations
can be seen in Fig. 5.3. That figure also shows the theoretical points at which
each of those instabilities occur. As can be seen, the agreement is excellent.

35
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Figure 5.1: The error E(N) in our numeric approximation of the critical value
�2 as a function of the number of boundary points used. The solid line depicts
a best fit of N�2.

Fig. 5.3 also shows the stability of these solutions, denoting the stable
branches by solid lines and the unstable branches by dotted lines. As can be
seen, all of the harmonic bifurcating domains are unstable with the exception
of the first, which becomes stable after its subcritical branch. The marked
subcritical branches of each bifurcation are also worth noting. This is the
first time these branches have been resolved numerically. Examples of the
subcritical harmonic bifurcations can be seen in Fig. 5.2(g-l). Theoretical and
experimental work Jackson et. al has previously probed the structure of this
region of the solution space, but our numerics have fully resolved it [18, 17]. Of
particular interest is the bifurcation of the stripe, which in its early evolution
is known as the dogbone, from a circular domain. This is the system that
was studied by Jackson et. al, and also by McConnell & de Koker [4]. The
bifurcation as represented by the perimeter L is shown in Fig. 5.4. The power
of this improved resolution is that we can find the value of � for the beginning
of the upper branch with high precision and accuracy. The branch is found to
start at � = �1:227.

In our study of the harmonic bifurcations and their stability, we found sev-
eral other shapes which bifurcate from these. However, the only stable shapes
we found other than the dogbone/stripe were those with threefold junctions,
which we call the forked and doubly forked domains. These stable shapes are
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Figure 5.2: A circular domain alongside the first five harmonic bifurcations
from a circle. (a–f) Supercritical domain structures. These shapes were taken
with � values of (a) �1:2, (b) �1:38, (c) �1:52, (d) �1:65, (e) �1:69, and (f)
�1:77. (g–l) Subcritical domain structures. These shapes were taken with �
values of (g) �1:25, (h) �1:24, (i) �1:52, (j) �1:67, (k) �1:82, and (l) �2:01.
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Figure 5.3: The perimeters of the first five harmonic bifurcations from a cir-
cular domain. The black dots represent the theoretical bifurcation points �n,
the solid lines denote stable numeric solutions, and the dashed lines denote
unstable numeric solutions.

shown in Fig. 5.6. The presence of any other higher order junction is associated
with the instability of that shape. We also found that, when compared with
any stable or metastable shape, the stripe always has a lower energy, lower
than even that of the theoretical rectangle. The energies of the harmonic bi-
furcations along with those of the circle and rectangle are shown in Fig. 5.5.
Therefore, we suspect strongly that the stripe domain is the global minimizer
after the circle becomes unstable.

§15. Stable Domains

Of particular interest to us are the energy minimizing domain structures. First,
it is remarkable that there are so few: the stripe, the forked, and the doubly
forked structures. The issue of this scarcity will be resolved in the next section.
In the meantime, the study of these stable domains will prove very useful for
our eventual analysis of arbitrary domain structures. Representatives of these
three domains can be seen in Fig. 5.6.

All three stable morphologies evolve in a similar way, becoming very long
and stripe-like with large ��. The perimeter of these domains as a function of
� can be seen in Fig. 5.7(a). The perimeters of all three evolve exponentially,
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Figure 5.4: The bifurcation of the stripe/dogbone from the circle. The solid
lines denote stable numeric solutions and the dashed lines denote unstable
ones.

and in fact almost identically to the analytic rectangle perimeter Lrec(�). The
close connection between the perimeters of these stable shapes and that of
Lrec(�) can be seen in Fig. 5.7(b), which shows the relative error between the
perimeters of each stable shape and Lrec(�). As can be seen from that figure,
the difference between the perimeters of these shapes and the analytic rectangle
becomes less than 2% as quickly as � ' �2 and less than 1% at � ' �2:5. In
fact, even the metastable domains we discovered behave like this, approaching
asymptotically the rectangle perimeter as � becomes more negative.

Note further that the stripe has a slightly lower perimeter than the rect-
angle, while the forked and doubly forked domains have progressively higher
perimeters. The central bulk of the stripe is geometrically identical to the
rectangle in all respects. Therefore, the curved ends of the stripe domain must
be responsible for the deviation. These ends have a size proportional to the
width of the stripe, which is in turn proportional to wrec(�), the asymptotic
rectangle width. The difference between the perimeters of the stripe domain
and the rectangle should likewise be proportional to the size of the anomalous
ends. Hence, in the limit of large negative �, the expressions

Lstripe � Lrec
wrec

Ldouble � 2Lforked � Lrec
wrec

(15.1)
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Figure 5.5: The energies of the first five harmonic bifurcations from a circular
domain. The solid lines denote those numeric solutions, the dashed line denotes
the theoretic circle energy, and the dashed line denotes the theoretic rectangle
energy.
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Figure 5.6: Representatives of (a) stripe, (b) forked, and (c) doubly forked
domain morphologies at � = �2. These are the only stable morphologies in
the absence of a random energy backdrop.
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Figure 5.7: The asymptotic behavior of the perimeter of the three stable do-
main morphologies for N = 8196. (a) The perimeter of each morphology as a
function of �. (b) The relative error between the perimeter of each morphology
and Lrec, the asymptotic rectangle perimeter.
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should go to the same constant c. This is a nontrivial statement, since wrec

decreases exponentially as � becomes more negative, so Lstripe � Lrec will
have to decrease equally exponentially in order for c to converge. However,
this is exactly what we see. Both expressions in (15.1) can be seen plotted
as a function of � in Fig. 5.8(a–b) for various N . As can be seen in that
figure, resolving the constant c pushed our numerics to their limit because
of the fine nature of the differences involved. Also plotted is a line denoting
the Richardson extrapolation calculated from the N = 4096 and N = 8192
curves. Richardson extrapolation is a way to improve the accuracy of a numeric
model by extrapolating its behavior at various N . Though our numerics have
appreciable error, especially as � approaches�3 or so, the constant convergence
is evidenced clearly nonetheless. The constant itself can be roughly determined
by sampling along the relatively constant region between �2:8 and �3:1 and
averaging, yielding c = �0:482� 0:001.

In addition, we need to account for the perimeter differences of the forked
and doubly forked domains. When a threefold junction is added to a stripe-like
shape, another anomalous end is added. Like the ends, the size of the junction
itself also scales with the width of the domain. Therefore, we should expect
that there is a cost per threefold junction which scales like wrec(�), so that
in the limit of large negative �, the expressions

Lforked � Lstripe
wrec

Ldouble � Lforked
wrec

Ldouble � Lstripe
2wrec

should go to the same constantm. As can be seen in Fig. 5.8(c–e), this is indeed
the case. All three ratios tend to the same constant, which can be determined
to be m = 0:819� 0:001 by averaging the Richardson extrapolation for each at
a variety of sample points. For both constants m and c, the errors are given
by standard deviations of the sample set.

Given this description, one might imagine that the perimeter of any simply
connected domain with n threefold junctions and no junctions of higher order
will be, for sufficiently high �,

L = Lrec + (c+mn)wrec

This is a remarkably simple characterization of complicated domain structure,
but, as we will see, it indeed holds for domains which resemble the intricate
structure of those seen in experiment. Though this model necessarily restricts
itself to domains with threefold junctions, recall that we only found stable
shapes with threefold junctions. As it turns out, junctions of higher order are
never seen in stable shapes in our forthcoming numerics, and rarely seen in
experimental domains. Therefore, this model is almost entirely general.

§16. Domains Over Random Backgrounds

Finally, we return to the question which should have been gnawing at the
reader throughout the previous two sections: why do the stable (and even



§16 Domains Over Random Backgrounds 43

HaL
-3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

IL s
t
r
ip

e
-
L

r
e
c
M�w

r
e
c

L

HbL

1200

4098

8196

Richardson

-3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

H2L
fo

r
k
e
d

-
L

d
o
u
b
le

-
L

r
e
c
L�w

r
e
c

L

HcL
-3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8

0.75

0.80

0.85

0.90

IL f
o
r
k
e
d

-
L

s
t
r
ip

e
M�w

r
e
c

L

HdL
-3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8

0.80

0.82

0.84

0.86

0.88

0.90

0.92
HL d

o
u
b
le

-
L

fo
r
k
e
d

L�w
r
e
c

L

HeL
-3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8

0.80

0.82

0.84

0.86

0.88

0.90

0.92

IL d
o
u
b
le

-
L

s
t
r
ip

e
M�2

w
r
e
c

L

Figure 5.8: The ratios of the rectangle width wrec to linear combinations of
the perimeters of the (a) stripe and rectangle, (b) doubly forked, forked, and
rectangle, (c) forked and stripe, (d) doubly forked and forked, and (e) doubly
forked and stripe domains. Each is plotted at N = 1200; 4096; 8192, and the
Richardson extrapolation between 4096 and 8192.
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metastable) domain morphologies resemble so little of the richness seen in
experimental settings? This is because the domains considered in the previous
two sections were generated in a distinctly unexperimental setting: over zero
background potential u(r). In reality, no film or confined fluid rests on a
perfectly homogeneous and passive substrate, but instead must contend with
both microscopic interactions with the substrate material and possibly domain-
scale inhomogeneities in the material surface. This will inevitably cause a
coarsening in the energy landscape of the fluid: adjacent points on the substrate
may contribute slightly differently to the energy of the domain resting over
them.

Imagine two branches of the branching structure typical of dipole-mediated
systems, like those in Fig. 5.9. Our analysis of the threefold harmonic shape
suggests such a configuration is unstable and will decay by shortening one
branch down into the other. We wish to find the energy gradient associated
with this decay. Consider a small cross section of the upper branch. We will
roughly compute the energy it takes to move this piece onto the lower branch.
Since such a move conserves the perimeter of the shape, the line tension and
logarithmic terms in the energy do not change. The dipole energy of the small
section with respect to the bulk scales like the area of the section, wrec � �x,
over the cube of the mean distance of that section from the rest of material,
which we expect to scale like Lrec. There is a scaling constant c1 that depends
on the geometry of the bulk relative to the upper branch. Upon moving to the
lower branch, the scaling behavior is identical, but the bulk relation constant
changes to c2. Therefore, we have

�F =
wrec�x

L3rec
(c2 � c1)

Using the known scaling behavior of Lrec and wrec, this can be written

�F

�x
� e4(�+1)

Thus, as � becomes negative, like it does in the regime where we see branching
structures emerge, the energy gradient which destroys branching structures
becomes smaller exponentially. Therefore, as � gets to around �2, we should
expect to see branching structures begin to emerge over random backgrounds
of even modest amplitude, say, a0 � 10�4.

We now anneal domains on the random background described in §9. Re-
call that our strategy for creating domains with complex branching structure
was to begin with a perturbed circular domain sitting atop the random back-
ground, then immediately minimize this at some high � value. An example
of the resulting domain morphologies can be seen in Fig. 5.10. As that figure
shows, branching structures do emerge quickly as � becomes more negative,
The domain morphologies pictured here are only a limited selection of the ones
we were able to generate, and both these and the others resemble experimental
domains qualitatively.
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¬Bulk

Figure 5.9: An example of two branches in a more complex branching domain.

Domains generated over random backgrounds continue to have perimeters
which closely resemble the asymptotic rectangle perimeter Lrec. Fig. 5.11(a)
shows the perimeters of a collection of such domains plotted with Lrec, and
Fig. 5.11(b) shows the relative error of those perimeters from the rectangle
perimeter. As can be seen, the asymptotic rectangle perimeter describes the
perimeters of far more complex shapes up to about 5%. The description begins
to get worse, however, with large �. This is due to the steady increase in the
number of threefold junctions seen in shapes as a function of �. This increase is
detailed in Fig. 5.12. As we saw previously, increasing the number of threefold
junctions causes the perimeter to get larger than the rectangle approximation
predicts, and this is precisely what we observe in our random domains.

Recall our model for the perimeter of a domain; that is, if a domain has n
threefold junctions, then

L = Lrec + (c+mn)wrec

where c and m were constants computed earlier using our data for the stable
shapes. We can use this empirical rule to solve for � in terms of L and n,
yielding

�0 = log

"
L�

p
L2 � 8�(c+mn)

2(c+mn)

#
� 1 (16.1)

Here �0 is used to denote values of � that our rule predicts as opposed to those
that were used to generate the domain (the ‘true’ value of �). Since c and m
have an error associated with them, �0 also does, and this is given by

��0 =
4
p
2�(c+mn)

p
�c2 + n �m2p

L2 � 8�(c+mn)� [L2 � 8�(c+mn)]
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Figure 5.10: A sampling of stable domains generated over a random energy
background. Moving along the x axis corresponds to changing a0, the average
magnitude of the background, and moving along the y axis changes �. Note
that though all shapes are sized to fit in equally sized boxes, each has the same
area in reality. All domains shown here have N = 1200.
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Figure 5.11: (a) The perimeters of domains generated over random energy
backgrounds as a function of �. The solid line denotes Lrec(�). (b) The
relative error of those perimeters from the rectangle perimeter. All data is
taken from shapes with N = 1200.
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Figure 5.12: The mean number of threefold junctions seen in annealed shapes
as a function of �. The error bars denote standard error. Data is taken from
shapes with N = 1200

using standard error propagation. We wish to test the validity of this model
on domains generated over a random background. From Fig. 5.8, we clearly
must use domains generated on a random background at N � 8192 if we wish
to see accurate results for �0, since lower values of N do not result in constant
values for c or m. However, the relaxation process at this number of boundary
points becomes very computationally taxing, and at the time of this printing
we were not able to produce a statistical sample of such domains. We were
able to produce a statistical sample of domains at N = 1200 points. Despite
the clear systematic inaccuracies implied by using data from such domains, the
model (16.1) still provides remarkably good agreement with the actual value
of � the domains were generated at. Four examples of the model analysis are
shown in Table 5.1, and Fig. 5.13 shows the mean difference from true � for
sets of 50 such shapes at a variety of constant �. From the figure, the presence
of systematic error is clear, and is what we would expect from Fig. 5.8: c
and m are effectively larger for domains at N = 1200. However, despite the
consistent inaccuracies, our simple model is still able to consistently predict
�0 to within 0:5% of � in the range �3 � � � �1:6. Our limited data at
N = 8192 suggests that this model is indeed valid for domains on random
backgrounds without systematic error, and is likely to give valid values of �
for experimental domains. An example of the empirical rule applied to one
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Table 5.1: Example domains at N = 1200 with generating � value, perimeter
L, number of threefold junctions n, predicted value �0, and prediction error
��0.

Shape � L n �0 ��0

�2:3 23:519 3 �2:297 0:003

�2:5 28:853 4 �2:502 0:003

�2:7 35:445 7 �2:703 0:004

�2:9 43:386 10 �2:905 0:005

domain at N = 8192 can be seen in Table 5.2, and the same analysis done to
two experimental domains is shown in Table 5.3. In the case of N = 8192, the
matching is excellent, and suggests that we may have overestimated the error
for c and m. Further numeric work to generate more domains at N = 8192 is a
clear future direction, as it would allow us to more thoroughly test our model.
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Figure 5.13: The difference between the generating value � and the mean
predicted value �0 for domains at N = 1200. The error bars denote standard
error.

Table 5.2: Example domains at N = 8192 with generating � value, perimeter
L, number of threefold junctions n, predicted value �0, and prediction error
��0.

Shape � L n �0 ��0

�2:7 35:039 5 �2:6996 0:0035
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Table 5.3: Ferrofluids confined to a Hele-Shaw cell, from D. P. Jackson. Table
includes dimensionless perimeter L, number of threefold junctions n, predicted
value �0, and prediction error ��0.

Shape L n �0 ��0

48:249 7 �3:024 0:004

56:867 11 �3:185 0:005

§17. Confined Domains

We implemented code to model the confined potential described in §10. Though
we have not yet been able to research the role of the packing fraction and the
phases of domains within such a confining well, we have been able to confirm
that the numerics operate as expected and produce, again, qualitative features
seen in experiment. An example of a domain evolving within a confining well
can be seen in Fig. 5.14. Two different packing fractions are shown: f � 0:2
and f � 0:75. The precise shapes at the ends of the evolution are not entirely
trustworthy; at that point, � is high enough to exceed our normal accuracy
for these domains (N = 600). Work on studying confined domains and their
morphological phases is an obvious next step in this research.



52 Numeric Results §17

HaL HbL HcL

HdL HeL HfL

HgL HhL HiL

HjL HkL HlL

Figure 5.14: Examples of domains in a confining potential. A domain is con-
fined to a square potential and allowed to evolve with slowly varying �. (a–f)
A domain with packing fraction f � 0:2. The values of � these domains were
stable at are (a) �2:11, (b) �2:25, (c) �2:39, (d) �2:53, (e) �2:67, and (f)
�2:81. (g–l) A domain with packing fraction f � 0:75. The values of � these
domains were stable at are (g) �2:11, (h) �2:45, (i) �2:6, (j) �2:77, (k) �2:95,
and (l) �3:1.



CHAPTER VI

CONCLUSIONS

In this thesis, we have developed a new energy formalism for describing dipole-
mediated domains and have demonstrated its generality and utility. This for-
malism is especially powerful in its reduction of the problem to one of a single
parameter. This reduction greatly eases our transition to numerics, and al-
lows us to probe the equilibrium morphologies of these shapes to a resolution
previously unobtainable.

Using our numeric system, we studied the stability of harmonic bifurcations
from the circle and found that most are metastable. Only three asymptotically
stable shapes were found: the stripe, singly forked, and doubly forked mor-
phologies. The perimeters of all three of these, as well as that of the metastable
results, display the same asymptotic behavior, behavior which is almost iden-
tical to that of the simple model of a rectangle which can be calculated exactly
and grows exponentially with the negative of the parameter �. We developed
a consistent description of the perimeters of these shapes in terms of the rect-
angle perimeter and empirical rules based on the number of threefold junctions
present in the shape.

However, the lack of diversity in the resulting stable and metastable do-
mains led us to question where the experimental diversity comes from. We
speculated that the discrepancy is due to inhomogeneities present in the sub-
strates of physical domains. The results that come from our simulation of
domains on a random energy background indicate strongly that this inhomo-
geneity is a contributing factor. We also demonstrated that our empirical rule
which relates the perimeter and number of threefold junctions in a domain to
� holds to high accuracy for domains on random backgrounds.

This final result is perhaps our most important. It means that, given just
the picture of an experimental domain, we can produce, with both precision
and accuracy, the value of �. Recall that � � �

�2 � log �
R . Many of the pieces

of � are easy to determine; R, for instance, only requires knowledge of the
area of the domain, and the line tension � can usually be determined by other
means [37]. Therefore, by varying some system parameter like R or �, one
can determine more elusive parameters, like � or �, by fitting to values of �
at various values of the known parameters. This is effectively a prescription
for pulling microscopic information about a complex system out from only
information about its equilibrium shape.

This work can be taken in many directions. We only investigated the dy-
namics of simply connected domains. Allowing other domain genera could be
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interesting, and if sufficiently many cuts are made, foaming behavior might
be modeled. Also, though we have developed a method for evolving confined
domains, we have not taken any time to perform an analysis of their states.
Research in how the packing fraction effects the bulk phases of dipole-mediated
domains would be very valuable. Finally, our core numerical algorithm uses a
rather naïve scaling mechanism for the parameter . Developing a more effi-
cient numerical method would be very useful to make more problems tractable
using our methods.



APPENDIX A

HIGHER ORDER ENERGETIC MOMENTS

Consider a two-dimensional fluid where the pair potential between particles is
given by r�n for some n � 3. It follows that the resulting energy contribution
of this term is

En =
�2n
2

ZZ



ZZ



g(k~r � ~r 0k)
k~r � ~r 0kn dA0 dA

In particular, n = 3 corresponds to the dipole energy. In order to gauge the
contribution of this energy term to an arbitrary domain, we will compute En

for a domain which covers the upper half-plane. Why is this a useful exercise?
If one looks at a fluid domain on a length scale much larger than � but much
smaller than R, the boundary of the domain will look straight and the opposite
boundaries of that domain will look vanishingly far away.

For brevity, we will define

un(r) � g(r)

rn
Fn � En

�2n

The total energy from this pair potential is then

Fn =
1

2

ZZ



ZZ



u(k~r � ~r 0k) dA0 dA

Given our assumptions about the form of g(r) in §2, integrating u(r) in a region
� about some point will result in some finite energetic contribution. We will
label this by

F 0
n �

1

2

Z 2�

0

Z �

0

un(r)r dr d� = �

Z �

0

un(r)r dr

Note that for r > �, un(r) = r�n, since g(r) = 1 in that regime. Parameter-
izing the energy integral explicitly, we have

Fn =
1

2

Z 1

0

Z 1

�1

Z 1

0

Z 1

�1

un(k~r � ~r 0k) dx0 dy0 dx dy

where

k~r � ~r 0k =
p
(x� x0)2 + (y � y0)2
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We define x00 � x0 � x and y00 � y0 � y. Then, our integral becomes

Fn =
1

2

Z 1

0

Z 1

�1

Z 1

0�y

Z 1

�1

un(r
00) dx00 dy00 dx dy

where r00 =
p
x002 + y002. We would now like to convert the inner integrals to

polar coordinates. For � between 0 and �, r00 runs from 0 to1. For � between
� and 2�, r00 is restricted from above by the lower boundary of the domain as
r00 = y csc �. We therefore have

Fn =
1

2

Z 1

0

Z 1

�1

"Z �

0

Z 1

0

un(r
00)r00 dr00 d� +

Z 2�

�

Z y csc �

0

un(r
00)r00 dr00 d�

#
dx dy

The first of these terms is easy to integrate: we have immediately

Fn =
1

2

Z 1

0

Z 1

�1

"
F 0
n +

Z �

0

Z 1

�

(r00)�nr00 dr00 d� +

Z 2�

�

Z y csc �

0

un(r
00)r00 dr00 d�

#
dx dy

=
1

2

Z 1

0

Z 1

�1

"
F 0
n +

���(n�2)

n� 2
+

Z 2�

�

Z y csc �

0

un(r
00)r00 dr00 d�

#
dx dy

(0.1)

In order to simplify our formulae, we define the constant

�n � 1

2

�
F 0
n +

���(n�2)

n� 2

�
(0.2)

Upon substitution into (0.1), we have

Fn = �n

ZZ



dA+
1

2

Z 2�

�

Z y csc �

0

un(r
00)r00 dr00 d� dx dy

If we ascribe our domain with some large but finite area A, then the first
integral above can be easily evaluated to yield

Fn = �nA+
1

2

Z 2�

�

Z y csc �

0

un(r
00)r00 dr00 d� dx dy (0.3)

This is simply an energy proportional to the area of the domain, which we
assume to be constant. Therefore, it can be safely neglected from the energy
expression. We would like to now attack the remaining term in (0.3). For
sanity’s sake, define

F 1
n �

1

2

Z �

0

Z 1

�1

Z 2�

�

Z y csc �

0

un(r
00)r00 dr00 d� dx dy

F 2
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�
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Z y csc �
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un(r
00)r00 dr00 d� dx dy
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Clearly, Fn = F 1
n + F 2

n once the area proportional term is neglected. First, we
will consider F 1

n . Because we lack detailed knowledge of the behavior of un(r)
for r < �, we cannot perform the integral explicitly. However, if we define a
function Vn(y) by

@Vn
@y

�
Z 2�

�

Z y csc �

0

un(r
00)r00 dr00 d�

then we may instead write

F 1
n =

1

2

Z �

0

Z 1

�1

@Vn
@y

dx dy =
1

2

Z 1

�1

[Vn(�)� Vn(0)] dx

The function Vn(y) should behave sensibly everywhere from 0 to �. If we
ascribe our domain with some large but finite perimeter l, then we have

F 1
n =

l

2
[Vn(�)� Vn(0)]

Now, we will turn to F 2
n . Further splitting the limits of integration, we have
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Again making use of �n from (0.2), we have
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Again neglecting the area proportional term, we can now write the total energy,
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If n � 4, then we have

Fn = l

(
1

2
[Vn(�)� Vn(0)]� �n�+

1

2
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��
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�
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)

Define the constant �n as

�n � 1

2
[Vn(�)� Vn(0)]� �n�+
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p
��
�
n�1
2

�
(n� 2)�

�
n
2

���(n+3)

n� 2

Then, we have Fn = �nl. That is, for potentials with n � 4, the energy
contribution is proportional to the perimeter, and the presence of that potential
term just adds to the line tension of the domain. However, if n = 3 (the dipole
term), then we have

F3 = l

�
1

2
[V3(�)� V3(0)]� �n�

�
� l

2

p
��
�
3�1
2

�
(3� 2)�

�
3
2

� log y����
y=1

y=�

Since the logarithm function is unbounded, the final term diverges. In reality,
we would evaluate this function at the opposite boundary of the domain, which
in this exercise is very far away. What the presence of this divergent term tells
us is that we cannot neglect the behavior of the domain’s boundary at long
distances. This is why the dipole interaction is fundamentally different from the
higher order terms: the dipole energy of the resulting domain depends highly
on the domain’s structure, while the energy contribution from the higher order
terms is encapsulated by the line tension in the macroscopic limit.



APPENDIX B

THE GRADIENT OF THE LAGRANGIAN

In this appendix, we show explicitly the calculation of the gradient ~rL of
our numeric system’s Lagrangian. Not shown are the calculation for the back-
ground and well energies, and that for the Hessian. The analysis here is mostly
meant to be instructive, and can be applied identically to the calculation of
the Hessian, which follows along identical lines to the gradient but simply has
far more terms to consider. If one wishes to see the explicit computation of the
Hessian terms, it is done in C++ at https://github.com/kentdobias/dipole
in the file domain_energy.cpp.

Recall that the Lagrangian of our system is given by (11.2) to be

L = F �
NX
i=1

�i

�
L2

N2
� k~xi+1 � ~xik2

�
� �A

 
� � 1

2

NX
i=1

(xiyi+1 � xi+1yi)
!

where the energy F is given by (8.2) to be

F = (� +HN�1

2

)L� 1

2

NX
i=1

NX
j=1
j 6=i

~ti � ~tj
k~%i � ~%jk � L logL

In addition, we sometimes impose the additional constraint terms

��x
NX
i=1

xi � �y
NX
i=1

yi

on the Lagrangian, which anchors the center of the domain at the origin. For
brevity, we make some redefinitions, writing

Cdist �
NX
i=1

�i

�
L2

N2
� k~xi+1 � ~xik2

�
CA � �A

 
� � 1

2

NX
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(xiyi+1 � xi+1yi)
!

Cx � �x

NX
i=1
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NX
i=1
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hij �
~ti � ~tj

k~%i � ~%jk
=

1

2

(xi+1 � xi)(xj+1 � xj) + (yi+1 � yi)(yj+1 � yj)p
(xi+1 + xi � xj+1 � xj)2 + (yi+1 + yi � yj+1 � yj)2

F� � �1

2

NX
i=1

NX
j=1
j 6=i

hij FL � (� +HN�1

2

)L� L logL

Using these definitions, we can write the Lagrangian as

L = F � Cdist � CA � Cx � Cy

and the energy as

F = FL + F�

By far, the most challenging terms to compute are the derivatives of F�, as
the double sum in that term provides many possibilities for coordinate combi-
nations. Before we give the derivatives of these energy and Lagrangian com-
ponents, we first do some preliminary work with the hij . Notice that hij is
a function of xi, xi+1, yi, and yi+1. Since it is symmetric in xi and yi, we
will only demonstrate the calculations for the xi derivatives. We will use a
derivative index notation for brevity, defining for a function f

f;i � @f

@xi

Define

Tij � ~ti � ~tj Rij � 1

4
(xi+1 + xi � xj+1 � xj)2 + 1

4
(yi+1 + yi � yj+1 � yj)2

Using this, the summand hij can be written

hij = TijR
�1=2
ij

The possible unique nonzero first derivatives of these terms beginning with an
i index are

Tij;i = �1
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For j 6= i; i� 1; i+ 1, we have

hij;i = Tij;iR
�1=2
ij + Tij(R

�1=2
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2
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For j 6= i; i� 1, we have
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Otherwise, there are two special terms where multiple presence of xi causes
the derivative to behave differently. These are when j = i� 1, or

hi(i�1);i = Ti(i�1);iR
�1=2
i(i�1) + Ti(i�1)(R
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and when j = i+ 1, or
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Only nonzero terms of the gradient are shown here. To get the gradient of L
with respect to a given variable, simply sum the contributions of the gradient
of each component term. Derivatives with respect to xk are shown in lieu of
ones with respect to yk if the formulae are symmetric in those variables. For
F�, we have

@F�
@xk
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2
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For the constraints, we have
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@CA
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FL only depends on the perimeter L, and its gradient contribution is

@FL
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2

� logL� 1

The only constraint with L dependence is Cdist, and it yields
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@L
= 2

L

N2
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�i

The derivative of any constraint term with respect to its Lagrange multiplier
simply yields the expression of that constraint, or

@CA
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These are all the nonzero terms of the gradient of our Lagrangian in the absence
of an external potential. A similar analysis can be done to recover terms for
the external potential and for the Hessian, albeit a lengthy one.



APPENDIX C

MODIFIED LEVENBERG–MARQUARDT

The following is the C++ header file for the core algorithm in our library. The
reason it is a header file is that we wish to use this algorithm with a va-
riety of Hessian matrices, e.g., the vanilla Hessian, the random background
Hessian, the fixed point Hessian, etc. Therefore, we make use of templates
to hand this function unspecified energy, gradient, and Hessian functions,
which we can later insert in other code. This code is released under the GPL,
whose license is available at https://www.gnu.org/licenses/gpl-3.0.txt.
It and all other libraries and methods used in this thesis can be found at
https://github.com/kentdobias/dipole.

domain_newton.h
1 #ifndef DOMAIN_NEWTON_H

#define DOMAIN_NEWTON_H

#include <math.h>
#include <iostream >

6 #include <string >

// GSL includes.
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>

11 #include <gsl/gsl_blas.h>
#include <gsl/gsl_sf.h>

// Eigen’s linear solving uses cheap parallelization.
#include <eigen3/Eigen/Dense >

16
/* This function is templated so that any set of functions which return an
* energy , gradient , and Hessian given an empty object , the size of the state
* vector , and the state vector can be used. This allows many such sets of
* functions , e.g., that for a fixed domain or a domain on a random background ,

21 * to be used. See the file domain_minimize.cpp for examples of construction
* of these functions.
*/

template <class energy_func , class grad_func , class hess_func >

26 int domain_newton(gsl_vector *state , unsigned size , unsigned params ,
energy_func get_energy , grad_func get_grad , hess_func get_hess , double
epsilon , unsigned max_iterations , double beta , double s, double sigma ,
double gamma , double eta_0 , double delta , double bound , bool verbose , bool
save_states) {

31 /* The function domain_newton carries out a modified version of Newton ’s
* method. On success , 0 is returned. On failure , 1 is returned.
*
* state - GSL_VECTOR
* On entry , state gives the system ’s initial condition. On

36 * exit , state contains the result Newton ’s method.
*
* size - UNSIGNED INTEGER
* On entry , size gives the size of the vector state. Unchanged
* on exit.

41 *
* params - UNSIGNED INTEGER
* On entry , params gives the number of non -multiplier elements

63
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* in state , which are assumed by the function to be the first
* elements of state. Unchanged on exit.

46 *
* get_energy - ENERGY_FUNC
* On entry , get_energy is a function that returns a double
* float. The first argument of get_energy is an unsigned
* integer and the second argument is a gsl_vector object. This

51 * function is expected to take size and state , respectively ,
* and return the energy of that state. Unchanged on exit.
*
* get_grad - GRAD_FUNC
* On entry , get_grad is a function that returns void. The

56 * first argument of get_grad is a gsl_vector object , the second
* argument of get_grad is an unsigned integer , and the third
* argument of get_grad is a gsl_vector object. This function
* is expected to take a vector of size size , size , and state ,
* respectively. It leaves the gradient of the energy function

61 * in the first argument. Unchanged on exit.
*
* get_hess - HESS_FUNC
* On entry , get_hess is a function that returns void. The
* first argument of get_hess is a gsl_matrix object , the second

66 * argument of get_hess is an unsigned integer , and the third
* argument of get_hess is a gsl_vector object. This function
* is expected to take a matrix of size size by size , size , and
* state , respectively. It leaves the Hessian of the energy
* function in the first argument. Unchanged on exit.

71 *
* epsilon - DOUBLE FLOAT
* On entry , epsilon gives the number that is used to judge
* convergence. When the norm of the gradient is less than
* epsilon * size , the process is deemed complete and the

76 * iterations are stopped. Unchanged on exit.
*
* max_iterations - UNSIGNED INTEGER
* On entry , max_iterations gives the maximum number of times
* the algorithm will repeat before failing. Unchanged on exit.

81 *
* beta - DOUBLE FLOAT
* On entry , beta gives the number which is exponentiated to
* scale the step size in Newton ’s method. Unchanged on exit.
*

86 * s - DOUBLE FLOAT
* On entry , s gives a constant scaling of the step size in
* Newton ’s method. Unchanged on exit.
*
* sigma - DOUBLE FLOAT

91 * On entry , sigma gives a scaling to the condition on the step
* size in Newton ’s method. Unchanged on exit.
*
* gamma - DOUBLE FLOAT
* On entry , gamma gives the amount by which the norm of the

96 * gradient must change for eta to decrement by a factor delta.
* Unchanged on exit.
*
* eta_0 - DOUBLE FLOAT
* On entry , eta_0 gives the starting value of eta. Unchanged

101 * on exit.
*
* delta - DOUBLE FLOAT
* On entry , delta gives the factor by which eta is decremented.
* Unchanged on exit.

106 *
* bound - DOUBLE FLOAT
* On entry , delta gives an upper bound to the gradient norm.
* If surpassed , the execution is halted and the program returns
* failure. Unchanged on exit.

111 *
* verbose - BOOLEAN
* On entry , verbose indicates whether verbose output will be
* printed to stdout by this program. Unchanged on exit.
*/

116
// Declaring variables.
double ratio , norm , old_norm , old_energy , energy , grad_dz_prod , alpha , eta;
unsigned iterations , m;
bool converged , bound_exceeded;
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// Declaring GSL variables.
gsl_vector *grad , *dz;
gsl_matrix *hess;

126 // Allocating memory for GSL objects
grad = gsl_vector_alloc(size);
dz = gsl_vector_alloc(size);
hess = gsl_matrix_alloc(size , size);

131 // Declaring Eigen map objects to wrap the GSL ones.
Eigen::Map <Eigen::VectorXd > grad_eigen(grad ->data , size);
Eigen::Map <Eigen::VectorXd > dz_eigen(dz->data , size);
Eigen::Map <Eigen::MatrixXd > hess_eigen(hess ->data , size , size);

136 // If epsilon > 0, use its value. Otherwise , set to machine precision.
if (epsilon == 0) epsilon = DBL_EPSILON;

// Initializes the starting value of old_norm at effectively infinity.
old_norm = 1 / DBL_EPSILON;

141
// Start the loop parameter at zero.
iterations = 0;

/* If the loop ends and this boolean has not been flipped , the program will
146 * know it has not converged.

*/
converged = false;

// Initializes the value of eta.
151 eta = eta_0;

// Begins the algorithm ’s loop.
while (iterations < max_iterations) {

156 // Gets the energy , gradient and Hessian for this iteration.
old_energy = get_energy(size , state);
get_grad(grad , size , state);
get_hess(hess , size , state);

161 // Adds eta along the diagonal of the Hessian for non -multiplier entries.
for (unsigned i = 0; i < params; i++) {

gsl_matrix_set(hess , i, i, gsl_matrix_get(hess , i, i) + eta);
}

166 // Use LU decomposition to solve for the next step in Newton ’s method.
dz_eigen = hess_eigen.lu(). solve(grad_eigen );

// Dots the gradient into the step in order to judge the step size.
gsl_blas_ddot(grad , dz, &grad_dz_prod );

171
// Initializes the Armijo counter.
m = 0;

// This loop determines the Armijo step size.
176 while (true) {

alpha = gsl_sf_pow_int(beta , m) * s;
gsl_vector_scale(dz , alpha);
gsl_vector_sub(state , dz);

181 energy = get_energy(size , state );

if (fabs(old_energy - energy) >= sigma * alpha * grad_dz_prod) break;
else {

gsl_vector_add(state , dz);
186 gsl_vector_scale(dz , 1 / alpha );

m++;
}

}

191 // Gets the new norm of the gradient for comparison.
norm = gsl_blas_dnrm2(grad) / size;

// Judges if the norm has changed sufficiently little to decrement eta.
if (fabs(norm - old_norm) < gamma * eta) eta *= delta;

196
// Prints several useful statistics for debugging purposes.
if (verbose) printf("NEWTON␣STEP␣%06d:␣m␣%i,␣grad_norm␣%e,␣eta␣%e,␣energy␣%e\n",

iterations , m, norm , eta , energy );
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201 // Determines if the process has converged to acceptable precision.
if (norm < epsilon) {

converged = true;
break;

}
206

// Causes the program to fail if norm has diverged to a large number.
if (norm > bound) break;

// Reset the norm for the next iteration.
211 old_norm = norm;

if (save_states) {
char str [40];
sprintf(str , "states/state -%06d.dat", iterations );

216 FILE *fout = fopen(str , "w");
gsl_vector_fprintf(fout , state , "%.15e");
fclose(fout);

}

221 // Increment the counter.
iterations ++;

}

// Gotta live free , die hard. No one likes memory leaks.
226 gsl_vector_free(grad);

gsl_vector_free(dz);
gsl_matrix_free(hess);

// Return conditions to indicate success or failure.
231 if (converged) return 0;

else return 1;
}

#endif
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