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Abstract: An inquiry-based project that discusses immune system dynamics
during HIV infection using differential equations is presented. The complex
interactions between healthy T-cells, latently infected T-cells, actively infected
T-cells, and the HIV virus are modeled using four nonlinear differential equa-
tions. The model is adapted to simulate long term HIV dynamics, including
the AIDS state, and is used to simulate the long term effects of the traditional
antiretroviral therapy (ART). The model is also used to test viral rebound over
time for the combined application of ART and a new drug that blocks the
reactivation of the viral genome in the infected cells and locks the HIV virus
into a state of latency.

1 Introduction

Human Immunodeficiency Virus (HIV) is a devastating public health challenge that affects
approximately 38.4 million people worldwide [1]. HIV is a virus that destroys a person’s
immune system by attacking T-helper cells and using them as hosts for viral replication.
The immune system functions as a defense against antigens, foreign substances in the
body which can induce an immune response. The immune system has two different paths
for an immune response which interplay with each other: the adaptive immune system
and the innate immune system [2]. The innate immune system is a non-discriminatory
form of protection that the body employs to begin immune system responses. It consists
of neutrophils and macrophages that can both “secrete highly destructive substances
including enzymes that digest proteins and reactive chemicals [. . . and] engulf and digest
what they have damaged” [2]. Macrophages are essential to the adaptive immune system
as they activate the adaptive immune response by presenting antigens to CD4+ T-helper
cells [2].

The adaptive immune system’s pathway has 3 general components: T-helper cells (or
more simply T-cells), cytotoxic T-cells, and B-cells. Though B-cells and cytotoxic T-cells
directly function as the body’s defense in response to infection, T-cells are the cells which
coordinate the immune response and “make antibodies [. . . to] send out signals to attract
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macrophages and neutrophils to the site of the infection” [2]. HIV infects these T-cells and
uses them as viral replicating hosts, constructing HIV viruses within the T-cell until the
release of HIV viral bursts lead to T-cell death [3]. Once HIV infects T-cells, T-cells can
no longer notify other immune cells of an infection; therefore, a person infected with HIV
is more likely to get other “infections or infection-related cancers” [4]. As HIV replication
progresses, the concentration of T-cells in the blood continues to decrease and weakens
the immune system [3]. A measure of about 200 T-cells per𝑚𝑚3 or less signals that HIV
has progressed to acquired immunodeficiency syndrome (AIDS) [3]. The AIDS stage is
extremely dangerous for the infected individual because their immune system cannot
easily fight off any opportunistic illnesses or infections, and various illnesses can be life
threatening, such as the cold or flu [5].

HIV infection and viral replication is a permanent process and proceeds through
fusing with a cell, reverse transcribing the single-stranded HIV RNA into HIV DNA for
integration with the host T-cell’s DNA, producing HIV viral proteins using T-cell cellular
machinery, and assembling mature HIV virions for further HIV spread [7].

Even though there is no cure, HIV can be controlled through a cocktail of antiretroviral
drugs that target different stages of the HIV viral replication cycle such as HIV entry,
reverse transcription, integration inhibitors, or virus assembly and production [6]. An-
tiretroviral therapy (ART) can dramatically prolong a patient’s life and lower the chance
of the patient infecting others with HIV. Before ART, people infected with HIV could
progress to AIDS and die within a few years. Today, people with HIV that are treated
before the disease advances to AIDS “can live nearly as long as someone who does not
have HIV” [4]. Despite traditional ART treatments controlling the HIV virus while the
medication is taken by the individual, treatments have many negative side effects on
the long term and include loss of bone marrow, nausea, diarrhea, hypertriglyceridemia,
kidney stones, gallstones, and heart disease [8]; for this reason, traditional ART treatment
is often supplemented with another type of drug to form a cocktail of anti-HIV drugs.
Furthermore, a major drawback of ART is that it cannot affect latently infected T-cells,
which can switch to become actively producing viral hosts in time; therefore, when ART
is interrupted, latently infected cells can reactivate and replenish the viral reservoirs.

A particular class of antiretroviral medications are those which target the virus as-
sembly and production after integration of the viral genome to prevent large quantities
of viral load from being produced by a single cell. These medications inhibit HIV tran-
scription, viral assembly and production, and protease processing [6]. A new drug called
didehydro-Cortistain A (dCA) blocks off reactivation of the viral genome in the infected
cells and locks the HIV virus into a state of latency. This drug inhibits the HIV protein Tat
that recruits the cell to initiate HIV production. When Tat is inhibited, any production,
reactivation, and replenishment of the viral reservoir is stopped [9]. This medication is the
first to target HIV in such early stages of its life cycle. It was tested on Bone-Liver-Thymus
(BLT) mouse models; the viral rebound after stopping ART in the BLT mouse models
occurred within seven days. In contrast, the viral rebound of the new dCA medication
was delayed to up to 19 days. Researchers expect that “longer treatments [with the novel
dCA medication] will result in longer, or even permanent, rebound delays,” but further
testing is necessary to evaluate the duration of the delays [9].

This promising new strategy has only been used on mice, and further exploration
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of the dCA medication’s therapeutic application in humans to block HIV reactivation
in the T-cell’s genome is a high research priority, especially as part of a combinatorial
approach for treatment [10]. One way to understand the complex interactions between
the human immune system, HIV, and the new drug in combination with ART is through
the means of mathematical modeling. Mathematical models are useful tools that can
answer questions regarding chemotherapy such as proper dosage, duration of treatment,
periodicity of doses, and defining the best treatment strategy for a patient. A variety of
working hypotheses may be tested through mathematical modeling to refine the most
probable one, which then may be tested in clinical environment. A mathematical model is
a viable tool that allows a comprehensive theoretical outlook on the effects of the variation
of model’s parameters before running expensive and exhaustive human trials.

This project uses mathematical modeling to simulate the effect of the novel dCA drug
on HIV viral rebound over time in the human immune system. As this medication is
applied together with the traditional ART treatment, a particular reverse transcription
inhibitor called Zidovudine (ZDV) is used to model the ART application [11]. The long
term effects of ZDV treatment and combined ZDV plus dCA treatment are assessed. For
this purpose, a mathematical model of interactions between HIV and the human immune
system using differential equations is derived under certain assumptions. The model
is also modified to simulate the AIDS stage of the disease. The effect of the novel dCA
treatment on the HIV infected human immune system is simulated by varying the level
of inhibition the drug has on HIV infected cells. Parameters in the model are based on
data from clinical observations of HIV patients and data from the BLT mouse tests in the
in vivo trials of the dCA medication. The results of this study can be useful for medical
practitioners to understand the dynamics of the novel HIV treatment before testing it on
humans.

The rest of the paper is organized as follows. Section 2 presents the assumptions,
variables, parameters, and differential equations that make up the mathematical model.
Section 3 discusses the values of the model’s parameters which are derived based on real
observational data. Section 4 discusses the modification of the mathematical model to
simulate AIDS dynamics. In Section 5, numerical simulations are performed to study the
long term behavior of the immune system’s dynamics and the virus under different drug
treatments using the modified model. Section 6 summarizes the important mathematical
results obtained in this study and provides evidence-based answers to the biological
questions that motivated this study. Some model limitations are also discussed in Section
6. Student Exploration Exercises are included throughout the paper, which can be used to
supplement discussions and analysis of the mathematical model in the classroom.

2 Mathematicalmodel of the immune systemdynamicswith
HIV infection

Start from a simple mathematical model describing the rate of change of T-cells in a
healthy human immune system and assume logistic growth of the T-cells. This model
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was first suggested by Perelson, Kirschner, and De Boer in [12].

𝑑𝑇

𝑑𝑡
= 𝑠 + 𝑟𝑇

(
1 − 𝑇

𝑇𝑚𝑎𝑥

)
− 𝜇𝑇𝑇, (2.1)

where 𝑇 = 𝑇 (𝑡) is the concentration of uninfected, healthy T-cells, 𝑠 is the supply rate of
the T-cells from precursors in the thymus, 𝑟 is the growth rate of uninfected T-cells, 𝜇𝑇 is
the death rate of uninfected T-cells, and 𝑇𝑚𝑎𝑥 is the maximum T-cell concentration.

To incorporate HIV into the immune system’s dynamics, following [12], the class of T-
cell concentration is split into three classes: 𝑇 = 𝑇 (𝑡) are the healthy T-cells,𝑇1 = 𝑇1(𝑡) are
the infected T-cells that are latent and do not produce virus, and𝑇2 = 𝑇2(𝑡) are the infected
T-cells that actively produce virus. The variable 𝑉 = 𝑉 (𝑡) represents the concentration of
free, infectious HIV. The system of differential equations describing the dynamics between
T-cells and HIV is given by the following system of ordinary differential equations

𝑑𝑇

𝑑𝑡
= 𝑠 + 𝑟𝑇

(
1 − 𝑇 +𝑇1 +𝑇2

𝑇𝑚𝑎𝑥

)
− 𝜇𝑇𝑇 − 𝑘1𝑉𝑇

𝑑𝑇1

𝑑𝑡
= 𝑘1𝑉𝑇 − 𝜇𝑇𝑇1 − 𝑘2𝑇1

𝑑𝑇2

𝑑𝑡
= 𝑘2𝑇1 − 𝜇𝑏𝑇2

𝑑𝑉

𝑑𝑡
= 𝑁𝜇𝑏𝑇2 − 𝑘1𝑉𝑇 − 𝜇𝑉𝑉 .

(A)

The first equation in (A) is a modified equation (2.1) and represents the rate of change
of the uninfected T-cells. 𝑠 is a source term and represents the rate of generation of new
uninfected T-cells from precursors in the bone marrow and thymus. Uninfected T-cells
have a finite life span and are assumed to die at the same rate 𝜇𝑇 as in an uninfected
individual. It is also assumed that the latently infected T-cells (𝑇1) have the same death
rate 𝜇𝑇 as the uninfected T-cells due to challenges in the immune system differentiating
which T-cells are uninfected or latently infected.

To include the effects of HIV, the term 𝑘1𝑉𝑇 is subtracted in the right-hand side of the
first equation as it models the rate at which the free virus infects healthy T-cells. Once
T-cells have been infected, they become latently infected cells (𝑇1). Hence the same term
𝑘1𝑉𝑇 is added to the second differential equation that models the population dynamics
of latently infected cells. The term 𝑘2𝑇1 models the rate at which the latently infected
T-cells (𝑇1) are transformed to actively infected T-cells (𝑇2) (i.e. this term is subtracted from
the second equation and is added to the third equation). The third differential equation
models the rate of change of T-cells actively producing virus (𝑇2). The term 𝜇𝑏𝑇2 represents
the rate at which 𝑇2 cells die and exit the system. However, by the time a 𝑇2 cell dies, it
releases 𝑁 free, infectious viral particles in its lifetime. Hence, the term 𝑁𝜇𝑏𝑇2 is included
in the fourth differential equation that models the rate of change of the viral load in
the bloodstream. In Perelson et al.’s model [12], the parameters 𝑁 and 𝜇𝑏 are treated as
constants that are related to replication rate and are “characteristic of a particular viral
species.” In the fourth differential equation, the term 𝑘1𝑉𝑇 models the rate at which viral
particles infect healthy T-cells and exit the free virus population. The last term 𝜇𝑉𝑉 in the
fourth differential equation represents the viral clearance rate from the patient’s body.
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Student Exploration 1: Understanding the model and parameters

1. The model assumes that𝑇 -cells grow logistically. What does such an assumption
mean and why it is appropriate for our model? What other types of cellular
population growth do you know?

2. The terms ±𝑘1𝑉𝑇 participate in both equation two and equation four in (A).
They have the same coefficient 𝑘1. What will it mean for the model if the
coefficients are different?

3. The rate of change of the virus is described by the fourth equation in (A). What
does the term 𝑁𝜇𝑏𝑇2 tell us about the growth of 𝑉 ?

3 Discussing the values of the model’s parameters

When performing numerical simulations, one of the biggest challenges is finding ap-
propriate values for the model’s parameters such that they reasonably represent the
real biological processes that are modeled. For this purpose, observational studies are
necessary to estimate an appropriate value or range of values for each parameter based
on real life data. In this study, the parameters’ values derived in [12] will be used and
are provided in Table 1. Next, the process for how these parameters are obtained will be
discussed in detail.

Though the number of healthy, uninfected T-cells in the bloodstream fluctuates,
uninfected T-cell count is estimated at approximately 1000𝑚𝑚−3 because the normal
T-cell count in HIV-negative people is between 500-1,500 𝑚𝑚−3 [13]; thus, the initial
condition for T-cells in a healthy individual is assumed to be 𝑇 (0) = 1000𝑚𝑚−3. Along
those same biological values, the parameter 𝑇𝑚𝑎𝑥 is chosen as 𝑇𝑚𝑎𝑥 = 1500𝑚𝑚−3 because
it is the clinically relevant value of the maximum number of healthy T-cells. Next, the
parameters 𝑠 , 𝑟 , and 𝜇𝑇 are chosen so that the population of T-cells in the absence of HIV
is maintained at 1000𝑚𝑚−3. To define the growth rate 𝑟 , it is conservatively assumed
that the T-cells divide every 12-18 hours [14]. Therefore, the growth rate of an activated
cell is conservatively approximated to be 1 𝑑𝑎𝑦−1. After this, the growth rate is multiplied
by the fraction of dividing T-cells, which is 1% or 0.01. Based on observations, it is known
that T-cells, when not replicating due to antigen stimulated immune responses, have a
half-life of about 36 days. The death rate parameter is calculated as follows 𝜇𝑇 = (ln2)/36
= 0.02 𝑑𝑎𝑦−1. For the net rate increase of T-cells population to be 0.01, the growth rate 𝑟
is chosen as 𝑟 = 0.03 and the death rate as 𝜇𝑇 = 0.02. For these chosen parameters and
in the absence of HIV infection, the T-cells population maintains a steady state of 1000
𝑚𝑚−3 in the differential equation (2.1), which can be seen in Figure 1 for different initial
concentrations of healthy T-cells.
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Student Exploration 2: T-cells population behavior in the absence of infection
Recreate Figure 1 by solving the model (2.1) with the following initial values for

the T-cells: 𝑇0 = 250, 500, 1200, 1500; students can use the ode45 built in differential
equation solver in MATLAB. What could be said about the long term behaviour of the
immune system of a healthy person? Does the long term immune cell count depend
on the initial condition?

Figure 1: T-cell population distribution in a healthy individual. Four initial values 𝑇0 for
the T-cell concentration are considered: 250, 500, 1200, and the maximum of 1500 cells
per cubic millimeter. The stationary value for each case is 1000 cells per𝑚𝑚3.

The parameter 𝑘1 in the differential equations is a bimolecular rate constant that
represents the rate of infection of the healthy T-cells by the HIV virus particles, and it
has a dimension of 𝑚𝑚−3𝑑𝑎𝑦−1. To estimate this parameter, it is scaled such that the
product 𝑘1𝑇0 has the units 𝑑𝑎𝑦−1. The reason for such scaling is based on the fact that
viral infection of a cell occurs when it "encounter[s] the cell, bind[s to] CD4 or some other
receptor, and then enter[s] the cell” [12]. Then, to create an upper limit for the term 𝑘1𝑇0,
the Smoluchowski’s formula [15, 16] for diffusion-limited rate constants is applied, and
this product is estimated to be bounded by 𝑘1𝑇0 ≤ 0.36ℎ−1. Furthermore, assuming that
𝑘1𝑇0 = 0.001ℎ−1 = 0.024𝑑𝑎𝑦𝑠−1 as only 2-3% of the T-cells become actively infected T-cells
when viral particles attach and attempt to infect them; hence, 𝑘1 = 2.4 × 10−5𝑚𝑚−3𝑑𝑎𝑦−1

[12].
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To estimate the value of 𝜇𝑏 , the death rate of actively infected T-cells (𝑇2), it is assumed
based on observational studies that HIV-infected cells are viable up to 62 hours after
infection. Parameter 𝜇𝑏 is hence estimated such that 𝜇𝑏 = 0.24 𝑑𝑎𝑦−1 using 2.58 days as
the half-life for the actively infected cells.

To estimate the parameter 𝜇𝑉 , it is assumed that the free virus in the body lost half
of its infectivity in 4 to 6 hours such that 𝜇𝑉 = 2.4 𝑑𝑎𝑦−1. For the parameter 𝑘2, which
represents the rate at which latently infected T-cells transform into actively infected
T-cells, it is assumed that this parameter would be much smaller than the growth rate 𝑟 ;
hence, 𝑘2 = 0.1𝑟 = 0.003 𝑑𝑎𝑦−1 as the “conversion process may not be 100 % efficient” [12].

The parameter 𝑁 represents the number of infectious viral particles released by an
actively infected T-cell over its lifespan. This number depends on many factors and some
observational studies estimated 𝑁 between 1,000 and 3,000 [17]. For the purpose of
modeling, 𝑁 is varied in the low range between 1000 and 1500 as this model is applicable
to HIV strains that do not produce immune response and such strains are believed to be
low viral producers [18].

Stability analysis of the system (A), which is left as Student exploration 3, reveals that
this system has two equilibrium states - one uninfected steady state and one infected
steady state. It also finds that 𝑁 must be larger than a certain critical threshold number
𝑁𝑐𝑟𝑖𝑡 for the HIV infection to develop into AIDS. If 𝑁 ≤ 𝑁𝑐𝑟𝑖𝑡 , the virus decays and the
system would return to an uninfected state. If 𝑁 = 𝑁𝑐𝑟𝑖𝑡 , the virus remains constant
at a practically undetectable level of 10−5 𝑚𝑚−3. Finally, if 𝑁 ≥ 𝑁𝑐𝑟𝑖𝑡 , the free viral
particle concentration grows. This analysis indicates that 𝑁𝑐𝑟𝑖𝑡 is a bifurcation parameter
that shows how viral replication affects the course of the infection; if infected T-cells
die without producing enough virus, then there would not be enough virus with each
generation that could sustain the HIV infection. It could be shown that when 𝑁 ≤ 𝑁𝑐𝑟𝑖𝑡 ,
then the uninfected steady state equilibrium is asymptotically stable; when 𝑁 ≥ 𝑁𝑐𝑟𝑖𝑡 ,
then the endemically infected steady state equilibrium becomes stable. This proof is left
as a Student exploration 4.

Student Exploration 3: Stability analysis of system (A): Finding system’s equilibrium
solutions.

Find the two equilibrium values 𝐸1, 𝐸2 of the system (A).
Show that it has one uninfected steady state: 𝐸1 = (𝑇 ∗,𝑇 ∗

1 ,𝑇
∗
2 ,𝑉

∗), where

𝑇 ∗ =
𝑇𝑚𝑎𝑥

2𝑟

(
𝑟 − 𝜇𝑇 +

√︂
(𝑟 − 𝜇𝑡 )2 +

4𝑠𝑟
𝑇𝑚𝑎𝑥

)
,𝑇 ∗

1 = 𝑇 ∗
2 = 𝑉 ∗ = 0

and one infected steady state: 𝐸2 = (𝑇,𝑇 1,𝑇 2,𝑉 ), where

𝑇 =
𝜇𝑉

𝛼
, 𝛼 =

(
𝑁𝑘2

𝜇𝑇 + 𝑘2
− 1

)
𝑘1; 𝑇 1 =

𝜇𝑉𝑉

𝑁𝑘2 − 𝑘3
; 𝑇 2 =

𝑘2𝜇𝑉𝑉

𝜇𝑏 (𝑁𝑘2 − 𝑘3)
, 𝑘3 = 𝑘2 + 𝜇𝑇

𝑉 =
𝑠𝛼2 + (𝑟 − 𝜇𝑇 )𝛼𝜇𝑉 − 𝛾𝜇2

𝑉

𝑘1𝜇𝑉 (𝛼 + 𝛽𝜇𝑉 )
, 𝛽 =

𝛾

𝑘3

(
1 + 𝑘2

𝜇𝑏

)
, 𝛾 =

𝑟

𝑇𝑚𝑎𝑥

.
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Student Exploration 4: Stability analysis of system (A): Finding the critical threshold
number and bifurcation parameter 𝑁𝑐𝑟𝑖𝑡 .

Using the Jacobian of the system (A), study the stability of the two equilibria 𝐸1
and 𝐸2. Show that the uninfected equilibrium 𝐸1 will be asymptotically stable for

𝑁 < 𝑁𝑐𝑟𝑖𝑡 , where 𝑁𝑐𝑟𝑖𝑡 =
𝑘3(𝑘1𝑇0 + 𝜇𝑉 )

𝑘1𝑘2𝑇0
.

Student Exploration 5: Numerical simulations of the long term HIV-immune system
dynamics

Recreate Figure 2 of the dynamics of healthy, latently, and actively infected T-cells
and the free virus by numerically solving system (A) using values from Table 1. The
bursting parameter 𝑁 is varies at three different values: 1000, 1200, and 1400.

Figure 2: Immune system dynamics simulations under HIV infection using model (A)
for different values of the parameter N: N=1000 in blue, N=1200 in green, and N=1400
in black. Panels represent (a) uninfected T-cells, (b) latently infected T-cells, (c) actively
infected T-cells, and (d) free viral particles.

Next, numerical simulations of the healthy, latently, and actively infected T-cells and
the free virus using (A) are illustrated in Figure 2. All graphs and numerical simulations are
created using MATLAB, the numeric computing environment developed by MathWorks.
From Figure 2, observe that the healthy T-cells decrease significantly in a HIV-infected
person after about 600-700 days (or about 2 years) and eventually reach a value between
500 and 600 cells per𝑚𝑚3 when the lysing (bursting) parameter 𝑁 = 1400. This means
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that this model does not reproduce the AIDS state, which is when the number of uninfected
T-cells in a HIV infected individual falls under 200 cells per𝑚𝑚3. In the next section, the
model is modified so that it simulates AIDS dynamics.

Variables Description Initial or default values
𝑇 (𝑡) T-cells of the healthy immune system 500-1500𝑚𝑚−3

𝑇1(𝑡) latently infected T-cells 0
𝑇2(𝑡) actively infected T-cells 0
𝑉 (𝑡) free HIV virus 10−3 𝑚𝑚−3

Parameters
𝑠 supply rate of T-cells from the thymus 10 𝑑𝑎𝑦−1𝑚𝑚−3

𝑟 growth rate parameter of T-cells 0.03 𝑑𝑎𝑦−1
𝜇𝑇 death rate parameter of T-cells 0.02 𝑑𝑎𝑦−1
𝑘1 infection rate parameter of the virus 2.4 ×10−5𝑚𝑚3𝑑𝑎𝑦−1

𝑘2 rate of transforming from 𝑇1 to 𝑇2 3 ×10−3𝑑𝑎𝑦−1
𝜇𝑏 death rate parameter of infected T-cells 0.24 𝑑𝑎𝑦−1
𝜇𝑣 viral clearance rate parameter 2.4 𝑑𝑎𝑦−1
𝑁 bursting number parameter varies (50 - 1500)

Table 1: The functions and parameters in the model (A) and their initial or default values.

4 Modified mathematical model that simulates the AIDS
dynamics

In the equation for the rate of change of the virus in system (A), the term 𝑁𝜇𝑏𝑇2 is replaced

with a nonlinear growth term
𝑁𝜇𝑏𝑡

2

𝑏2 + 𝑡
𝑇2. The idea for this nonlinear growth term comes

from a similar term
𝛽𝐵2

𝛼2 + 𝐵2 used in [19], where it determines the scale of budworm
densities at which saturation of predators will take place. While in [19] the budworm
density 𝐵 term is squared in both the numerator and denominator, 𝑡 (time) is squared only
in the numerator of model (B) to mimic the exponential growth of the virus.

𝑑𝑇

𝑑𝑡
= 𝑠 + 𝑟𝑇

(
1 − 𝑇 +𝑇1 +𝑇2

𝑇𝑚𝑎𝑥

)
− 𝜇𝑇𝑇 − 𝑘1𝑉𝑇

𝑑𝑇1

𝑑𝑡
= 𝑘1𝑉𝑇 − 𝜇𝑇𝑇1 − 𝑘2𝑇1

𝑑𝑇2

𝑑𝑡
= 𝑘2𝑇1 − 𝜇𝑏𝑇2

𝑑𝑉

𝑑𝑡
=

𝑁𝜇𝑏𝑡
2

𝑏2 + 𝑡
𝑇2 − 𝑘1𝑉𝑇 − 𝜇𝑉𝑉 .

(B)

Here, the parameter b is introduced and represents the scale of virus in the bloodstream
at which saturation of virus takes place. The upper limit for viral load saturation in the
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bloodstream is incredibly difficult to calculate and varies depending on the patient. As
clinical guidelines indicate that viral load above 100,000 copies is generally considered
‘high,’ the parameter𝑏 is estimated to saturate when𝑏2 ≥ 100, 000𝑚𝑚−3, and𝑏 = 316𝑚𝑚−3

in this study [13]. In the modified model (B), as 𝑏 is the absolute clinical minimum, AIDS
occurs in approximately 2 years; however, for real patients, viral load saturation can be
dramatically higher depending on the individual and AIDS would occur over a longer
timescale. This relationship can be seen in Figure 3.
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Figure 3: AIDS dynamics simulations using model (B) with the nonlinear growth term for
different values of viral load produced by actively infected T-cells over their lifetimes N:
N=1000 in blue, N=1200 in green, and N=1400 in black. Panels represent (a) uninfected
T-cells, (b) latently infected T-cells, (c) actively infected T-cells, and (d) free viral particles.

The nonlinear growth term enables a switch from slow to rapid replication of the
virus and thereby accounts for the very fast viral growth characteristic of HIV during
the AIDS stage. This term also implicitly models mutations in HIV, as the more HIV
virus is produced, the more likely it is that there are new forms of the virus that can
more effectively infect T-cells and escape detection and death by the immune system,
thereby propagating a faster spread of the infection. Furthermore, the addition of this
term addresses another deficiency in the model (A) where the number of free virus is
relatively low at about an order of 103 in comparison to viral load tests in actual patients
which is > 104. As evident in Figure 3, the scale of the free virus in the bloodstream better
approaches clinical values and is at a scale of 104.

Furthermore, the new model (B) is quite stable when the parameter N is varied. This
contrasts the original model (A) which, as Figure 2 shows, is quite sensitive when N is
varied. The new model’s behavior is more realistic and in line with HIV dynamics as the
parameter N may vary. As HIV is a chronic disease, it cannot be cured even when there is
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an immune response actively trying to clear the virus from the patient’s system [4]. In
the next section, this new model is used to simulate the effect of some HIV treatments.

5 Simulating the effect of HIV/AIDS treatment

One antiretroviral medication that is frequently used to inhibit HIV infection of the cell
is ZDV. ZDV is a reverse transcriptase inhibitor that prevents the RNA genome of HIV
from being converted into DNA [11]. ZDV targets the process of viral genome integration
into the cell, which occurs early in the viral replication cycle of HIV. Medications that
inhibit early parts of the pathway before integration of HIV’s genome to the host cell’s
DNA can “block” the pathway for infection. To simulate such treatment using the derived
model, it is assumed that this medication can inhibit the transition from a healthy T-cell
to a latently infected T-cell. Hence, the term 𝑘1𝑉𝑇 in the model B changes to 𝑘1𝑉𝑇𝑅. The
new model C is given below:

𝑑𝑇

𝑑𝑡
= 𝑠 + 𝑟𝑇

(
1 − 𝑇 +𝑇1 +𝑇2

𝑇𝑚𝑎𝑥

)
− 𝜇𝑇𝑇 − 𝑘1𝑉𝑇𝑅

𝑑𝑇1

𝑑𝑡
= 𝑘1𝑉𝑇𝑅 − 𝜇𝑇𝑇1 − 𝑘2𝑇1

𝑑𝑇2

𝑑𝑡
= 𝑘2𝑇1 − 𝜇𝑏𝑇2

𝑑𝑉

𝑑𝑡
=

𝑁𝜇𝑏𝑡
2

𝑏2 + 𝑡
𝑇2 − 𝑘1𝑉𝑇 − 𝜇𝑉𝑉 .

(C)

As the treatment serves to reduce viral infectivity, it is included in the system (C)
by modifying the term 𝑘1𝑉𝑇 . The treatment depends on time because the medication is
applied for a certain number of days and also depends on the frequency of medication
application. In the long term, the residual concentration of the medication in the blood-
stream will stabilize at a certain level that can be calculated and is denoted by 𝑅. The
derivation of the formula representing the long term residual level of the medication is
given in Giordano et al. [20] and is left as Student Exploration 6. To simulate the treatment

with ZDV, the residual 𝑅 =
𝐶0

𝑒𝑘𝑝 − 1
is used. The parameter 𝑝 represents how frequently

the medication must be taken, which in this case is assumed 𝑝 = 1 day. The daily dose of
the drug is𝐶0 = 600 for ZDV [21]. Finally, 𝑘 is the elimination constant of the drug that is
defined based on the half-life of the medication used, which for ZDV is 𝑘 = 16.64 (based
on the fact that the half-life for the ZDV is one hour).

Student Exploration 6: Calculating the drug accumulation with repeated doses.
Calculate the residual value for the concentration of a drug when it is applied with

a period 𝑝 , has a half-life 𝑘 , and a dose 𝐶0. Show that the residual value of the drug’s

concentration in the blood on the long term will be given by 𝑅 =
𝐶0

𝑒𝑘𝑝 − 1
.

Both Figure 4 and Figure 5 explore the dynamics of the model (C) with ZDV treatment
over different time durations. Figure 4 illustrates the recovery of the immune system
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Figure 4: Simulation of a continuous ZDV treatment applied after day 1000, once the
AIDS stage is reached, with N = 1000. Panels represent (a) uninfected T-cells, (b) latently
infected T-cells, (c) actively infected T-cells, and (d) free viral particles.
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Figure 5: Simulation of a short 300 days ZDV treatment applied after day 1000, once the
AIDS stage is reached, with N = 1000. Panels represent (a) uninfected T-cells, (b) latently
infected T-cells, (c) actively infected T-cells, and (d) free viral particles.

throughout continuous application of the medication as the viral load decreases and the
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T-cells increase up to healthy levels. In Figure 5, the medication was applied for 300
days starting at day 1000 once the AIDS level for healthy T-cells is reached. The graph
illustrates the immune system’s recovery from AIDS conditions when ZDV medication is
applied for 300 days, but then it returns to AIDS state once the medication is stopped.

After the HIV viral genome is integrated into the host T-cell, then a second type of
HIV medications can target the HIV viral replication process and reduce the viral load
produced because of the infection. One such medication is the dCA inhibitor [9]. To
simulate its inhibiting effect on viral replication, an assumption is made that less amounts
of virus 𝑁 will be produced by a single actively infected T-cell when dCA is applied. Thus,
to model the long-term effects of dCA application, the magnitude of the parameter 𝑁 was
varied from 𝑁 = 1000 to 𝑁 = 500, 𝑁 = 200, 𝑁 = 100, and 𝑁 = 50, to simulate 50%, 80%,
90%, and 95% inhibition respectively, and the results are given in Figure 6.

Figure 6: Immune system dynamics over 2000 days when the dCA inhibitor is applied
after day 1000. Bursting parameter is initially set at 𝑁 = 1000. 50% inhibition (𝑁 = 500)
is given in red; 80% inhibition (𝑁 = 200) is given in black; 90% inhibition (𝑁 = 100) in
green; and 95% inhibition (𝑁 = 50) in blue. Panels represent (a) uninfected T-cells, (b)
latently infected T-cells, (c) actively infected T-cells, and (d) free viral particles.

Figure 6 illustrates that even when the virus’s production is inhibited through the
application of dCA drug, an increase in the uninfected T-cells up to a healthy level can
only be observed when there is 95% inhibition (or 𝑁 = 50). As this model does not
include immune responses as a mechanism for clearing the virus, it is reasonable that
the uninfected T-cell population recovers after a certain time before it starts to decline
again because the immune system cannot fight the virus. However, as there is much less
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virus being produced due to the dCA application throughout the course of infection, the
rate of uninfected T-cell decline is much slower in comparison to the original dynamics
establishing AIDS in the system as seen in Figure 3.

Figure 7: Immune system dynamics over 2000 days when combined treatment with ZDV
and dCA is applied after day 1000. ZDV is applied for 300 days, while dCA inhibitor is
applied continuously. Bursting parameter is initially set at 𝑁 = 1000. Application of dCA
with 50% inhibition (𝑁 = 500) is given in red; 80% inhibition (𝑁 = 200) is given in black;
90% inhibition (𝑁 = 100) in green; and 95% inhibition (𝑁 = 50) in blue. Panels represent
(a) uninfected T-cells, (b) latently infected T-cells, (c) actively infected T-cells, and (d) free
viral particles.

Figure 7 depicts the long term effects of the combined treatment with ZDV and dCA
drugs applied after 1000 days once the AIDS stage of the HIV infection is established.
ZDV is applied for 300 days and is afterwards stopped. Observe that the uninfected T-cell
population recovers with the “cocktail” of combined antiretroviral drugs. Even more, the
viral rebound is much slower when the treatment is terminated due to the continuous
inhibition effects of dCA. When 50 ≤ 𝑁 ≤ 200, as in Figure 7 (green and blue lines),
the production of healthy T-cells increases to a healthy concentration and the viral load
decreases dramatically. This indicates that with the novel dCA medication, there is an
increased delay in the recovery time of the virus in comparison to traditional antiretroviral
therapy as illustrated in Figure 5. Hence, this conclusion reinforces the hypothesis that a
cocktail of antiretroviral drugs is most effective when treating HIV as both stages of HIV
replication can be suppressed in the cell.
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6 Discussion and Conclusion

Starting from the immune system population dynamics of a healthy individual, a math-
ematical model of the complex interactions between the immune system and HIV is
derived. The model replicates the clinical levels of both the uninfected T-cells and the free
viral particles in the bloodstream, making the model’s behavior realistic and in line with
HIV dynamics as a chronic disease that cannot be cured even when there is an immune
response actively trying to clear the virus from the patient’s system [4].

The model is used to study the effects of various treatments on viral suppression and
compare their long-term effects on the immune system’s dynamics. The effects of two
“classes” of medications for HIV treatment are compared in an effort to better understand
the biological processes behind HIV infection. The first type of antiretroviral medications
is represented by the ZDV drug and affects early stages of the HIV infection pathway
prior to the integration of the viral genome to the host T-cell’s DNA. The second type
targets the HIV viral replication process and reduces the viral load produced because of
the infection, represented by dCA drug.

Numerical simulations showed that the first class of medications are much more
effective than the second class. When the model was used to simulate the HIV viral
population under combined ZDV and dCA application, it was found that the HIV virus
rebounds to a level that can be controlled by the uninfected T-cells if the dCA drug inhibits
at least 50 % of actively infected cells. In addition, when comparing Figures 4, 6, and 7,
the time for the viral rebound when the combined treatment of dCA and ZDV is stopped
is extended in comparison to ZDV or dCA treatments alone. This indicates that with
the application of the dCA medication, there is an increased delay in the recovery time
of the viral load in comparison to traditional antiretroviral therapy (application of ZDV
only). Therefore, this supports a hypothesis that a cocktail of antiretroviral drugs is most
effective when treating HIV because both stages of HIV infection and replication can be
suppressed in the cell.

These results are in compliance with the laboratory study of Kessing et al. [9], where
they observed that the viral rebound was delayed up to 19 days after the combined
treatment of ART and dCA was interrupted in their mouse-model. When human T-cells,
isolated from infected individuals, were used to test the novel dCA and ART treatment in
vitro, the addition of dCA to ART promoted rapid HIV suppression. They also observed
that the viral rebound when the treatment is interrupted is about twice as slow compared
to the traditional ART treatment; similar effects were also obtained with the mathematical
model.

Next, if the novel drug inhibits at least 50% of actively infected T-cells, Figure 7 shows
that the virus rebounds to a low level. Even more, when the inhibition is at least 80%, the
uninfected T-cells recover to healthy levels. Similar behavior was observed in a laboratory
study by Mousseau et. al. [22], where they applied the dCA inhibitor in human cells
during an in vitro study. dCA inhibits the viral production of in vitro human cells at about
80% to 100% in most of the studied subjects. Only for one subject was the viral inhibition
at 55%. For this reason, a variety of estimates of dCA inhibition on viral rebound were
studied with the model, including the more conservative assumption of 50% inhibition.

The results of this study improve the knowledge of the underlying dynamics between
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HIV infection and the human immune system. The developed mathematical model gives
a comprehensive theoretical outlook on the effects of the novel dCA medication on the
HIV infected human immune system dynamics before running expensive and exhaustive
human trials. The model also can be used in development of new pharmacological
strategies for treatment of the disease.

In mathematical modeling, it is also critical to understand applicability and discuss
limitations of the constructed model. Even though the modification of the non-linear term
used in this study may account for viral mutations over time, one limitation of the model
is that it does not explicitly include mutations; the predictions of the immune system
being able to control the virus at the steady state may not be true in a real case scenario.
However, the predictions of the effects of the novel dCA medication on the virus will not
necessarily be affected by viral mutations, as dCA targets the virus before the virus can
infect the cell and mutate. Therefore, the predictions of the model about the effects of the
novel dCA drug treatment on the viral rebound are valid even under the assumption of
no mutations.

One direction for future improvement of this model is to account for the mutations
of the HIV virus over time by introducing more variables for the virus 𝑉𝑖, 𝑖 = 1, 2, . . .𝑛 in
the system of differential equations. However, this will significantly effect the theoretical
tractability of this model. To further improve the biological accuracy of the model, an
external source term could be included. Finally, a mechanism for the immune system to
fight back against HIV infection would enable the discussion of the role of medications in
the system to become more nuanced and would improve the modeling of the dynamics of
HIV and the medications.
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