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Abstract: This paper presents an exploration into parameter sensitivity anal-
ysis in mathematical modeling using ordinary differential equations (ODEs).
Taking the first steps in understanding local sensitivity analysis through the
direct differential method and global sensitivity analysis using metrics like
Pearson, Spearman, PRCC, and Sobol’, we provide readers with a basic under-
standing of parameter sensitivity analysis for mathematical modeling using
ODEs. As an illustrative application, the system of differential equations
modeling population dynamics of several fish species with harvest consid-
erations is utilized. The results of employing local and global sensitivity
analysis are compared, shedding light on the strengths and limitations of
each approach. The paper serves as a starting point for readers interested in
exploring parameter sensitivity in their mathematical models.

1 Introduction

Mathematical modeling serves as a powerful tool for understanding and predicting the
behavior of complex systems. Ordinary differential equations (ODEs) are widely employed
to describe dynamic systems across various disciplines, ranging from physics, engineering,
biology and ecology to sociology and economics ([1], [2], [3], [4]). The development of
dynamic models requires accurate information on both the initial conditions and the
system’s parameter values. However, in many instances, the parameters characterizing
the system are accompanied by uncertainty. This uncertainty arises due to limited data
availability or challenges associated with experimental measurements of these parameters,
which can be difficult or even infeasible. Furthermore, certain parameter values may
exhibit large variations across different experimental or environmental conditions. As
a result, our confidence in the model predictions is limited due to uncertainties and
variations of model parameters.

CODEE Journal http://www.codee.org/
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Sensitivity analysis of model parameters plays a crucial role in the development of
mathematical models, as it enables us to understand how fluctuations in the model outputs
can be attributed to variations in the model inputs [5], [6]. This insight guides further
research to reduce output variability. Sensitivity analysis also streamlines model reduction
by identifying and removing parameters that have minimal impact on the model outputs.
Furthermore, sensitivity analysis identifies parameters strongly correlated with the output
capturing information on directional impact of input changes. This correlation information
deepens our understanding of the driving factors of the model behavior. Sensitivity
analysis is also important in identifying parameters that significantly contribute to output
uncertainty, sometimes with asymmetric effects. For example, researches may confidently
establish a precise lower bound on a specific output, while the upper bound remains more
uncertain. Sensitivity analysis provides insights into the consequences that arise from
altering specific input parameters, allowing for informed decision-making and scenario
analysis. According to [7], sensitivity analysis is becoming an essential discipline for
systems modeling and policy support, and it is now considered a requirement for good
modeling practice.

In addition to its pivotal role in mathematical modeling, sensitivity analysis also serves
as a powerful educational tool. It actively engages students in model exploration and
hypothesis testing, enhancing their problem-solving skills by teaching them to identify
crucial variables and make evidence-based decisions. This approach provides students
with a practical context for applying mathematical concepts learned in calculus, differential
equations, and statistics classes. Furthermore, it fosters interdisciplinary connections and
encourages the application of mathematics to address real-world problems, equipping
students with valuable skills for future career opportunities.

This paper aims to serve as an introductory guide for readers interested in exploring
parameter sensitivity in mathematical modeling with ordinary differential equations
(ODEs). While our intention is not to go into depth of the theoretical aspects or provide
a comprehensive overview of available methods of sensitivity analysis, we will outline
the key principles of both local and global sensitivity analysis approaches and introduce
several well-established techniques to our readers. Our goal is to equip readers with the
necessary tools to begin their own parameter sensitivity investigations. For those seeking
a more in-depth understanding we suggest referring to such resources as [5], [6], [7].

To illustrate the methods of sensitivity analysis, we selected the Lotka-Volterra model
as a representative example. We chose this model for its simplicity and its description
through a system of 2 X 2 nonlinear differential equations. Also we were motivated by the
work of Panayotova et al. [4], who applied the local sensitivity method to a similar system.
In our study, we build upon their research by incorporating global sensitivity analysis
methods and conducting a comparative analysis of the outcomes. Below, we present
an application of parameter sensitivity analysis by examining a nonlinear system of
differential equations that captures the population dynamics of two fish species, including
the effects of harvesting. The model and parameter values utilized are adopted from the
study by Panayotova et al. [4].

Let us consider the model describing the population dynamics of the prey, Atlantic
menhaden, x = x(t) and a the predator, striped bass, y = y(¢). In the system below, it is
assumed that both the prey and the predator are harvested based on the catch per effort



hypothesis.

% =x(r —ax — by) — q1E1x
{ (1)
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In (1.1), r is the intrinsic growth rate of the prey, e is the death rate of the predator in
absence of prey, a and c are self-limitation parameters for the prey and the predator
respectfully, b is the predator effect of y on x, and d is the effect of prey consumption of x
on y.

Parameter r a b e c d
Value 0.513 | 0.026 | 1.765 | 1.213 | 0.520 | 9.999

Table 1: Table of the model’s parameter values obtained from data fitting (see [4])

The values of parameters r, a, b, e, ¢, d are given in Table 1. Parameters E; and E; are
the harvesting efforts of the Atlantic menhaden and stripped bass respectively. Parameters
¢1 and g, represent the catchability coefficients of each species. The range of catchability
parameters is [0, 1] with lower values used when the fish is relatively easy to catch, and
higher values when the fish is more rare or difficult to catch. In computations, we assume
g1 = 0.3 and g, = 0.9. Parameters for the harvesting efforts were chosen to be E; = 0.1
and E; = 0.1. Chosing the initial conditions x(0) = 0.16 and y(0) = 0.31 billions, we get
time-dependence of of quantities x and y presented in Figure 1.
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Figure 1: Population dynamics (in billions) up to 2050.

In the subsequent sections, we discuss the local and global sensitivity analysis methods
and provide a comparative analysis of the results obtained from the fish population
dynamics model. The structure of the paper is as follows: In Section 2, we provide an
overview of the direct differential method. This local sensitivity analysis method examines



individual parameters while holding all others constant, offering insights into parameter
ranking and sensitivity indices. In Section 3, we explore global sensitivity analysis metrics
including the Pearson correlation coefficient [8], Spearman correlation coefficient [9],
Partial Rank Correlation Coefficient (PRCC) [10], and Sobol indices [11]. These methods
enable the evaluation of the overall sensitivity of model outputs to multiple parameters
simultaneously [6]. By comparing the outcomes of local and global sensitivity analyses,
we can identify the respective strengths and limitations of each approach and gain deeper
insights into how the model responds to parameter variations. Finally, we summarize the
obtained results and provide readers with recommendations on using sensitivity analysis
in their modeling endeavors. To assist instructors in incorporating parameter sensitivity
analysis into their teaching, suggested tasks were included in the Appendix.

2 Local sensitivity analysis

Below we introduce the direct differential method, one of the local methods of parameter
sensitivity analysis. This method is referred to as "local" because it examines how small
changes in parameter can affect the model’s behavior in the immediate vicinity of a
particular parameter value.

First, we revisit equation (1.1) and express it in vector form

i—f =F(Z;p), p=I[r;a;b;e;c;d;E;E,], (2.1)
where Z = [x(t);y(t)] is two-component vector solutions of the system (1.1), and all
parameters are represented as components of a vector p. In the work by Panayotova et
al. ([4]), parameters q; and g, were allowed to vary. For simplicity, we considered ¢;
and g, to be constants and ignored their variability given our limited control over their
values. In contrast, parameters E; and E; offers us the flexibility to manipulate and control
harvesting. It worth noticing that if significant uncertainty were to arise regarding the
values of parameters ¢q; and q,, we would parametrize to account for relative catchability.
Consequently, our model is defined by a total of eight parameters: p = [r; a; b; e; c; d; Eq; Ez].
We define sensitivity vector s; for parameter p; as s; = [s1;52;] = [a%; a%]’ where
j=1,2,..,8. Each of its components describes how a variation in p; affects either x or y.
These sensitivity vectors form the matrix of sensitivity measures

ox dx dx dx Ix 9x Ix  Ox
or da ob oJde odc od OE, OE,

S= . (2.2)
9 9y 9y 9y 9y 9y 9y Iy
or 9da ob 9de odc od OE, OIE,

If the exact solutions for x and y would be known, we could find each of the components of
the matrix S explicitly, and it would answer our questions regarding parameter sensitivity.
Since it is not the case, we consider the time evolution of each of the sensitivity measures
dSi’j d aZl d le 8Fl ox aFl 8y 8Fl . .
) )= = 2 2 T =12 =1,2,..8.
dt dt 8pJ 8p] dt ox 8p] 8y ap] 8pj
Written in matrix form, the equation above will look like

4



ds
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where ] is the Jacobian defined by formula

%_1;1 ‘;—Fl r —2ax — by — q1E4 —bx
J=| 6 of |= d —e—2cy +dx — qzE; |’ (-4)
or, a_y y e cy +dx Q2 2

and f is the matrix formed by taking the derivatives of the right-hand sides of the equations
in the system (1.1) with respect to the parameters:

(2.5)

f:[x —x? —xy 0 0 0 —-qg1x O ]

0 0 0 -y -y> xy O —q2y
System of differential equations (2.3) defines how the sensitivity measures change in time.

Now we can formulate the initial value problem consisting of differential equations
(2.1) and (2.3) together with their initial conditions

dZ
i F(Z;p),
as _ S+, (2.6)

Z(0) = Zo, S(0) = So.

It worth mentioning here that if no parameters appear in the initial condition of the state
equations, then Sy = 0 ([5]). Now we have a direct method for calculating sensitivity
measures. For example, the initial value problem that investigates the rate of change of x
and y with respect to parameter b has the following form

dx
dd_t = x(r —ax — by) — q1E1x
d_}t/ = y(—e —cy+ dx) - quzy
ds
3 d_? = (r — 2ax — by — q1E1)s13 — bxsz — xy @7)
d
% = dysi3 — (e + 2cy — dx + q2E2)s23

x(0) =x0, y(0) =yo
$13(0) = 523(0) = 0.

Notice that the first two differential equations are our original differential equations (1.1)
while the next two equations come from (2.3) using the Jacobian and the third column of
the matrix f since b is the third of our eight parameters. Similar to (2.7) we can formulate
initial value problems defining the rate of change of dependent variables with respect
to any other parameter. To account for the different units of measurement and varying

magnitudes of parameters, we introduce the dimensionless relative sensitivity S;;, which
9Zi Pj axb
apj Zi ob x
time-dependent nature of sensitivity measures, we define the sensitivity index |[S;;||2 as

the magnitude of the corresponding norm for each relative sensitivity:

is defined as S;; = . For instance, we have S;3 = and Sy3 = %g. To capture the
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& ( ox; pi \°
[15ill2 = kZ (%uk)xi (tk)) . (238)
2
For example, ||S13]|2 = g—’g% = \/lejzl (%(tk))ﬁ) , etc.
Computed values of relative sensitivities S;; = %‘% (i=1,2;j=1,..,,8) and their as-

sociated sensitivity indices ||S;;||; are presented in Table 2. Computations were performed
over a time period spanning from 2000 to 2080, with a duration of t; = 80 years. Relative
sensitivities provided in columns 2 and 4 of Table 2, exhibit very good agreement with
similar results reported by Panayotova et al. [4]. Minor discrepancies can be attributed to
the differences in the time range considered, with Panayotova et al. focusing on the years
from 2050 to 2100, and it is noteworthy that we have provided the values for the relative
sensitivities themselves, while Panayotova et al. presented their absolute values.

Table 2: Relative sensitivities & relative sensitivity indices

Parameter p 8_x1_) (tr = 80 years) Ha_xj_)H @E (tr = 80 years) H@I—)H
ap x dpxllz | dpy dp yli2

r 0.1176 3.0598 1.0647 18.1783

a -0.0008 0.0202 - 0.0077 0.1323

b -0.1000 2.9838 -1.00438 16.2097

e 0.8502 15.4344 - 0.0136 6.6165

c 0.0999 1.8899 -0.0014 1.1786

d -1.0019 17.6650 0.0055 6.4200

E; -0.0069 0.1789 -0.0623 1.0618

E, 0.0631 1.1466 -0.0010 0.4910

Analyzing the results shown in Table 2, it becomes evident that the predator (striped
bass) exhibits the highest sensitivity to variations in the intrinsic growth rate of the prey
(the Atlantic menhaden) denoted as r, as well as changes in the predation rate b. On the
other hand, the prey demonstrates greater sensitivity to alterations in the effect of its
consumption on the predator d and variations in the death rate of the predator e.

The direct differential method offers a computationally efficient approach to sensitivity
analysis. It assesses local sensitivities, allowing researchers to gain detailed insights into
how small parameter perturbations impact model outputs. The method is adaptable to
different types of models and can be tailored to specific research questions or model
characteristics. The local nature of the analysis allows for a more intuitive understanding
of parameter sensitivities and their implications for model behavior.

At the same time, it is important to note that the direct differential method has
limitations. For instance, it assumes that the model is differentiable and continuous, which
holds true for our system but may not apply for more complicated models. Additionally,
being a method of local sensitivity analysis, it primarily focuses on understanding how
the model’s behavior changes near a specific parameter configuration. Consequently,



it may not reveal how the model behaves under different combinations of parameters.
Local analysis may overlook phenomena like parameter interactions and other effects that
occur when multiple parameters vary simultaneously. To achieve a more comprehensive
understanding of how variations in multiple input parameters affect the model’s output,
we will proceed with global sensitivity analysis. As we will explore in the next section,
global sensitivity analysis assesses the model’s response to variations in all parameters
across their entire range. Through systematic perturbations of multiple parameters, we
gain insights into behavior of models exhibiting nonlinear relationships and intricate
parameter dependencies.

3 Basic ideas of Global sensitivity analysis

This section introduces several methods of global sensitivity analysis and demonstrates
their practical application through a specific case study discussed in Section 2.

Let us denote the quantity of interest (Qol) as z and consider a model with m parameters
D1, P2, -+ Pm- In our case study, the Qol can be either abundance of the prey x or abundance
of the predator y. Referring to equation 2.1, the number of parameters in our example is
m = 8.

Global sensitivity analysis involves several typical steps:

1. Define the parameter ranges and distributions. This step initiates global sensitivity
analysis by defining parameter ranges based on existing knowledge or experimental
data. Selecting an appropriate probability distribution for each parameter is also
important. A uniform distribution is common in the absence of prior data, while a
normal distribution is suitable for capturing bell-shaped distributions, symmetric
behavior, or known constrains on parameter values.

2. Generate a sample space of parameter sets. In the next step, we create a sample
space of parameter sets. When dealing with large models, traditional analytic tech-
niques, such as linear stability analysis, often prove impractical due to complexity of
interactions and nonlinear relationships among parameters. While linearization and
other approximations can shed light on individual parameter effects, understanding
their collective impact often demands a probabilistic approach. Random sampling
is preferable to systematic parameter variation since it eliminates potential bias
influenced by modeler’s prior expectations and ensures equal exploration of all para-
metric regions. Selecting the sample size depends on factors like model complexity,
desired accuracy, and computational resources, aiming for a balance between model
intricacy and computational efficiency. Two common techniques for generating ran-
dom parameter sets include Monte Carlo sampling and Latin hypercube sampling
(LHS) [5]. In Monte Carlo sampling, we randomly assign values to our model’s
parameters based on their probability distributions. We do this repeatedly to create a
collection of different parameter sets. This random exploration helps us understand
how our model behaves under various conditions. LHS, introduced by McKay et al.
[15] , is a Monte Carlo-based sampling method that divides the parameter ranges
into equal intervals, ensuring that each interval contributes a sample. The procedure



for LHS sampling, which selects n different values for each of the m parameters
P1, P2, ., Pm, can be summarized as follows: First, the range [p™", p/*] of each
parameter p; (where i = 1,2, ..., m) is divided into n equal intervals. Then, a value
is randomly selected from each interval based on the probability density within
the interval. The n values obtained for p; are randomly paired with n values of p,.
These n pairs are combined randomly with the m values of ps to form n triplets, and
so on, until an (n X m) matrix P is obtained. The matrix P consists of n rows for the
number of samples and m columns for the number of parameters. The advantage
of LHS is its efficiency. Unlike standard Monte Carlo sampling, which may lead to
over-sampling in some regions and under-sampling in others, LHS ensures more
even and efficient exploration of the parameter space. This approach results in a
better understanding of the model’s behavior with fewer samples, saving time and
computational resources. LHS implementation is supported by functions available
in different programming languages. For instance, in MATLAB, the [hsdesign and
Ihsnorm functions can be utilized for uniform and normal LHS sampling respectively
(https://www.mathworks.com/help/stats/lhsdesign.html).

3. Simulate the mathematical model for each parameter set to collect the corre-
sponding output data. In this step, n model solutions will be simulated for each
combination of parameter values, i.e., each row of the matrix P.

4. Apply global sensitivity analysis method. Collected data will be used to apply
global sensitivity analysis method and quantify the sensitivity of the model outputs
to variations in the parameters. The selection of a method is guided by considerations
such as the type of input and output variables, the assumed relationships among
variables and data availability.

5. Interpret the results of global sensitivity analysis to identify significant parameters
and understand their impacts on the model outputs.

Below, we provide several examples that demonstrate practical application of global
sensitivity analysis methods and rank system parameters based on the obtained results.

3.1 Pearson correlation coefficients

Before proceeding further, let us establish some statistical definitions that will be useful in
the context of global sensitivity analysis. These definitions include variance, covariance,
and standard deviation. Let p be a random variable representing a quantity that can take
on n values py, p2, ..., pn, governed by a probability density function. The mean of p is
denoted as p.

The variance of a random variable quantifies the measure of the spread of the values
of the random variable around the mean. In statistical analysis, there exists a distinction
between biased and unbiased variance estimation. Biased variance is computed using
the formula Var,(p) = 3 t(py— p)?, where n signifies the number of elements in the
sample. However, when working with data samples, it is preferable to use the unbiased
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variance defined as Var(p) = -= 2ia(pj— p)2. The preference arises from the need to
avoid the possibility of underestimation (see [13], [14] for more details).

The covariance between two random variables p and z measures the degree to which
the variables vary together. Mathematically, biased covariance is defined as Cou (p, z) =
% i21(pj — P)(2zj — 2), where p; and z; represent the individual observations of variables
p and z respectively, and p and z are their respective means. However, when working
with samples of data, the use of unbiased covariance, defined as Cov(p, z) = ﬁ 2ia(pj-
p)(zj — z), is advisable to avoid potential underestimation.

The standard deviation of a random variable p, denoted as o), is the square root of its
variance: o, = y/Var(p).

In the context of global sensitivity analysis, Pearson’s coefficients, commonly referred
to as Pearson correlation coefficients, allow us to assess the strength and direction of the
relationship between model inputs and outputs [5]. Mathematically, Pearson’s coefficient
p is defined as the covariance between two variables p and z divided by the product of

Cou(p,z)

their standard deviations: p = . The coeflicient p takes values between -1 and +1,

where -1 indicates a perfect negative linear relationship, +1 indicates a perfect positive
linear relationship, and o suggests no linear relationship between the variables. A positive
value of p indicates that as one variable increases, the other tends to increase, while a
negative value indicates an inverse relationship.

In our case study, we are interested in the correlation between the quantity of interest
z and each of the m parameters pq, ps, ..., pm- So, we define the Pearson correlation
coeflicients as

2z (pij = pi)(zj — 2)
N Py = P B (2 = 27

In formula (3.1) p; and Z represent the mean of p; and z respectively. The value of p,, . can
change between -1 and 1.

i=12,..m (3.1)

ppi,z =

Below, we will compute and compare Pearson correlation coefficients for each parame-
ter in system (1.1) to rank their importance and understand their influence on the system’s
behavior. Various software packages offer the functionality to compute Pearson correlation
coefficients. For instance, MATLAB provides a function called corrcoef that can be used for
this purpose (https://www.mathworks.com/help/matlab/ref/corrcoef.html).
The p-value associated with each correlation coefficient indicates whether the observed
correlation is statistically significant. A low p-value, typically below o0.05, indicates a
strong correlation and provides evidence to reject the null hypothesis of no correlation
between the variables. For a more in-depth understanding of hypothesis testing and
p-values, interested readers are encouraged to explore relevant statistical textbooks, such
as [13] or [14] .

As mentioned earlier, one should start with generating a sample space of parameter
sets. For our analysis, we employ Latin hypercube sampling, which ensures that each
parameter p;(i = 1,2,...,8) is sampled within an interval of +5% of its nominal value
provided in Table 1. This interval is defined as [0.95p;, 1.05p;]. Since we lack information
about the probability distribution of the parameters, we opt for uniform sampling. We
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conducted sensitivity analyses with sample sizes of n = 50 and n = 150 for this simple
model. The results did not show noticeable variation across these different sample sizes.

Let us assume that the quantity of interest (Qol) is the predicted population of the
Atlantic menhaden x in 2050 (tf = 50years) and compare the Pearson correlation coeffi-
cients for parameters r, a, b, e, ¢, d, E1, E,. Notice that catchabilities g; and g, we assume
to be fixed.

Analyzing the results presented in Figure 2, we find that the most crucial parameters
for the Atlantic menhaden are e and d. These findings are supported by small p-values
associated with correlation coefficients which indicate statistical significance. Specifically,
the abundance of the prey, the Atlantic menhaden, and the death rate e of its predator
exhibit a positive correlation. Additionally, there exists a negative correlation between
the abundance of the prey and parameter d, which is responsible for the effect of the prey
consumption on the predator. The effect of variations of all other parameters does not
seem to be very noticeable.

Do the results shown in Figure 2 imply that the other parameters are less significant?
It is likely, but we should approach this with caution and consider the limitations of the
Pearson correlation coefficient method.

While Pearson’s coefficients provide insightful information, it is crucial to recognize
their limitations when applied to global sensitivity analysis. It is important to note that
Pearson’s coefficients only capture linear relationships and may not accurately represent
non-linear dependencies between input parameters and the quantity of interest (Qol).
To address this limitation, examining scatterplots of each parameter against the Qol can
provide additional valuable information.

A scatter plot is a graphical representation that allows us to visually observe patterns,
trends, and potential non-linear associations between two variables by plotting their
data points in a coordinate system.The horizontal axis represents the values of the input
parameter p;(i = 1,2,...,m = 8), and the vertical axis represents the corresponding values

of the Qol.
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Figure 2: Pearson’s sensitivity coefficients for the Atlantic menhaden (n=150 samples).
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Figure 3 exhibits scatterplots for parameters e, d, r, E;, and E,, revealing a noticeable
correlation between the Qol and parameters e and d. At the same time, the remaining
parameters exhibit significant variations with no clear correlation pattern. The scatterplots
for parameters a, b, and ¢ were not included, as they would also demonstrate substantial
variations without any clear pattern.
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Figure 3: Scatterplots for parameters e, d, r, E; and E; against the Qol which is the value
of x in 2050.

Now let us change the quantity of interest. This time it will be the predicted population
of striped bass y in 2050. We again compute and compare the Pearson’s sensitivity
coeflicients for parameters r, a, b, e, c, d, E1, E; keeping catchabilities g; and g, unchanged.
From the results presented in Figure 4, it follows that the most important parameters for
striped bass are r and b. These conclusions are further supported by the computation of p-
values associated with correlation coefficients, which attest to their statistical significance
(p-values are less than 0.05). One can see that the abundance of the predator, striped bass,
and the growth rate e of its prey are positively correlated, and there exists a negative
correlation between the abundance of the predator and parameter b responsible for the
effect of the predator on the prey. The effect of variations of other parameters seems to
be less pronounced but we still want to examine the corresponding scatterplots before
making judgements.

Figure 5 displays scatterplots for parameters r, b, d, Eq, and E,, against the QoI which
is now the value of y at ty = 50 years. It reveals a clear correlation between the Qol
and parameters r and b. At the same time, the remaining parameters exhibit significant
variations with no clear correlation pattern. The scatterplots for parameters a, ¢, and e were
not included, as they would also demonstrate substantial variations without noticeable
pattern.

Interpreting Pearson’s correlation becomes challenging in the presence of nonlinear
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Figure 4: Pearson’s sensitivity coefficients for striped bass (n=50 samples).

relationships between the parameter and the Qol due to its linear-regressive nature.
In such cases, the slope lacks meaningful interpretation. To overcome this limitation,
a rank transform can be employed by replacing actual values with ordinal rankings.
This transformation allows for the observation of linear relationships as long as the
relationships remain monotonic. In the following section we will discuss Spearman
correlation that addresses the need for an alternative correlation measure in the context
of rank-transformed data.

3.2 Spearman correlation

Interpreting Pearson correlation coefficients becomes challenging with non-linear parameter-
model relationships. To address this, rank transformation is used to reduce the effects
of nonlinearity. This method works well when the dependence between parameters and
model outcomes is monotonic.

Let us explore the idea of rank transformation. Rank transformation is a technique
used to convert the actual values of a dataset into their corresponding ranks. Let’s say
we have a dataset with numerical values. The rank transformation involves ordering the
values from smallest to largest and assigning each value its ordinal rank. The smallest
value receives a rank of 1, the second smallest value receives a rank of 2, and so on. If
there are ties in the data (i.e., multiple values with the same magnitude), the average
rank is assigned to those tied values. For example, if we had a dataset {10, 5, 8, 8, 3}, after
applying the rank transformation, he first value, 3, receives a rank of 1, the second value,
5, receives a rank of 2, the third value, 8, and the fourth value, 8, both receive an average
rank of (3+4)/2 = 3.5, and the largest value, 10, receives a rank of 5.

If the input/output relationships are monotonic, then rank transformations of the input
and output values (i.e. replacing the values with their ranks) results in linear relationships
and the rank coeflicient indicates the degree of monotonicity between the input and output
values. Thus, the Spearman correlation coefficient quantifies the strength and direction of
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Figure 5: Scatterplots for parameters r, b, d, E; and E, against the Qol which is the value
of y in 2050.

the monotonic relationship between the parameter values and the corresponding model
outputs or quality-of-interest (QoI) measures. Unlike Pearson’s correlation, which assumes
linearity, the Spearman correlation is based on the ranks of the data rather than the actual
values. It assesses the extent to which the variables tend to change together in a consistent,
monotonic manner, regardless of the specific functional form of the relationship. Positive
Spearman correlation indicates that higher parameter values tend to be associated with
higher Qol values, while negative Spearman correlation indicates an inverse relationship.

Spearman’s rank correlation coefficient can be calculated using the equation similar
to equation (3.1) with the exception of operating on the rank transformed data. Several
software packages offer the functionality to compute Spearman correlation coefficients.
For example, MATLAB’s corr command can compute the Spearman correlation coeffi-
cient by specifying the option type, Spearman (https://www.mathworks.com/help/
stats/corr.html). Spearman correlation coefficients, similar to Pearson coefficients are
associated with p-values. Low p-values (usually below 0.05) signify a strong correlation
and offers evidence to reject the null hypothesis of no correlation between the variables.

In the context of our case study, let’s consider the task of determining the parameters
that have the greatest impact on the quantity of interest (Qol), which is defined as the
population of the striped bass y at time t; = 50 years. We have a total of eight parameters
to rank, resulting in an 8-dimensional sample space. To sample these parameters, we
employ a Latin hypercube centered at the nominal parameter values provided in Table 1,
sampling each parameter p;(i = 1, 2, ..., 8) within the interval [0.95p;, 1.05p;].

Given the unknown probability distribution of the parameters, we explore both uni-
form and normal sampling approaches and compare their results for potential differences.
We conducted calculations using sample sizes of n = 150 and n = 4000, with a larger
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sample size used for the case of normal parameter distribution. The results for the uni-
form probability density function are depicted in Figure 6(a) and Figure 7(a), while the
corresponding results for the normal probability density function are shown in Figure 6(b)
and 7(b). Notably, both sets of results exhibit good qualitative agreement, indicating that
the most important parameters remain consistent regardless of the chosen probability
density function.

In Figure 6 we provide the comparison of Pearson and Spearman correlation for the
case of the uniform and normal distribution of the parameters. The results show qualitative
agreement between the two methods. It is consistently observed that parameters e and
d have the highest impact on prey abundance, whereas parameters r and b exhibit the
greatest influence on predator abundance. Although the correlation coefficients may vary,
the signs remain consistent, with negative correlations indicating an inverse relationship
between the quantity of interest (Qol) and a parameter, and positive correlations indicating
a positive relationship.

[ Pearson
Il Spearman
0.5
' - I
0. . . . . . L -0.5 L L . L L L . .
b ¢ ¢ d BB r a b e c i B B
(a) Uniform distribution of the parameters (b) Normal parameters’ distribution

Figure 6: Comparison of Pearson and Spearman correlation (the Qol is the value of y in
2050).

Figure 7 illustrates the computation and comparison of Pearson and Spearman corre-
lation coefficients, with the Qol being the population of the Atlantic menhaden x at time
tr = 50 years. The results demonstrate qualitative similarity between the two methods.

Notice that while the quantitative values of the correlation coefficients may vary
between the uniform and normal distributions of the parameters, we consistently observe
that parameters e and d remain the most influential for prey abundance, while parameters
r and b are the most influential for predator abundance. Importantly, the signs of the
correlation coefficients remain consistent, with negative correlations continuing to indi-
cate an inverse relationship between the Qol and a parameter and positive correlations
indicating a positive relationship, especially for the more influential parameters.

It is important to emphasize that monotonicity plays a significant role in interpreting
correlation coeflicients. For rank transformation to yield a linear-like relationship, the
original data should exhibit monotonicity.
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Figure 7: Comparison of Pearson and Spearman correlation (the Qol is the value of x in
2050).

3.3 Partial Rank Correlation Coefficient (PRCC)

While, Pearson’s correlation coeflicient captures linear or near-linear relationships be-
tween a parameter and the Qol, Spearman’s correlation coefficient incorporates rank
transformation to handle nonlinearity in monotonous parameter-Qol relationships, but
it also considers the variability in the Qol influenced by other parameters. To address
this limitation, Kendall ([16]) introduced partial correlation coefficients, which effectively
discount the influences of other parameters and focus solely on the relationship between
a single parameter and the Qol. Note that MATLAB has a function called partialcorr
that can be used to compute partial correlation coefficients (https://www.mathworks.
com/help/stats/partialcorr.html).

Here we introduce the Partial Rank Correlation Coefficient (PRCC) as a robust sensi-
tivity analysis method that combines ranked correlation and partial correlation.

Let us consider parameters py, ps, . . ., pn as input and z, the Qol, as the output of our
mathematical model. For example, given parameters p; and p, as input and the question
of interest z as the output, a partial rank correlation coefficient PRCC,, is a measure of the
correlation between p; and z, while eliminating indirect correlations due to relationships
that may exist between p; and p, or p, and z.

The PRCC,, is defined as

Ppiz = Ppip2Ppe,
PRCC,, = Lk s (3.2)

(1= pp,p) (L= p3, )

In general, to discount all the interaction we subtract the sum of all covariances between
p1 and pj, j # 1. Notice that the parameters in formula (3.2) were rank-transformed.

The PRCC method is widely adopted in sensitivity analysis due to its ease of implemen-
tation and robustness in capturing the individual contributions of parameters to the model
outcomes. One of its advantages is an interpretation of the sign of the correlation even in
nonlinear models. Similar to the Pearson and Spearman methods, PRCC values close to 1
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indicate that a small increase in a parameter leads to a relatively larger increase in the Qol.
Similarly, PRCC values close to -1 indicate that a small increase in the parameter leads to
a relatively larger decrease in the Qol. The significance of PRCC values can be assessed
through hypothesis testing and the calculation of associated p-values. A low p-value
(typically below 0.05) indicates that the observed correlation is statistically significant,
providing evidence to reject the null hypothesis of no correlation between the variables.

In Figure 8 we present the results obtained using the PRCC method for our case study.
We conducted the analysis in an 8-dimensional sample space using a Latin hypercube
centered at the nominal parameter values provided in Table 1. Each parameter p;(i =
1,2,...,8) was sampled normally within the interval [0.95p;, 1.05p;]. To determine the
optimal number of samples, we explored sample sizes n ranging from 10? to 10°.

The PRCC values were calculated for each of the eight input parameters with respect
to two outcome variables: (a) the predicted abundance of striped bass and (b) the predicted
abundance of Atlantic menhaden in 2050 (tf = 50 years). By employing the PRCC method,
we effectively identified the key parameters that significantly influenced the abundances
of both striped bass and Atlantic menhaden. In the case of striped bass abundance, we
observed a robust positive correlation with parameter r, signifying its positive influence
on the Qol, while parameter b exhibited a clear negative correlation, implying its adverse
impact. Notably, parameter E; showed a p-value less than o.05, and its PRCC-value was
approximately -o0.4, indicating a moderate yet statistically significant negative correlation
between the harvesting effort of Atlantic menhaden and the abundance of striped bass.
When considering the Qol as the abundance of Atlantic menhaden, we observed a distinct
positive correlation with parameter e and a prominent negative correlation with parameter
d. Parameters r, ¢, and E; demonstrated moderate yet statistically significant positive
correlations with the abundance of Atlantic menhaden. Comparing these PRCC results
with the findings presented in Figures 2, 4, 6, and 7, we noted a strong qualitative agreement
regarding the parameters that had a substantial and highly statistically significant impact
on the Qol. This reaffirms the consistency of our sensitivity analysis.

I PRCC (Striped bass)

‘-PRCC (Atlantic menhaden) ‘

-1 . . . . . . . . 0.8 I I I
r a b e c d Ey Ey T a b e c d Ey E,

(a) Striped bass (b) The Atlantic menhaden

Figure 8: PRCC for striped bass the Atlantic menhaden (¢ = 50 years).

To examine sensitivity over time, we conduct a series of sensitivity analyses at specific
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time points, ranking the parameters for various values of t;. This allows us to explore
how the system’s evolution towards the steady state is influenced by the parameters. By
performing sensitivity analysis at discrete times (t1, t, ..., tx) and observing the changes
in partial rank correlation coefficients over time, we can gain insights into the dominant
processes and their time-scale. For example, rapidly changing sensitivities at the initial
stages of the process may require closely spaced observations to capture crucial informa-
tion. Identifying the most sensitive parameters offers efficient control strategies when
aiming to manipulate system behavior. If the sensitivity rankings change over time, it can
even indicate the need for time-dependent adjustments in control strategies.

Figures 9 and 10 depict the temporal changes in PRCC values for the abundance of
striped bass and the Atlantic menhaden, respectively, serving as the Qol. One can see that
the sensitivity rankings at the initial stages of the process differ from those observed over
a sufficiently extended period. For example, initially, parameters d, e, and E; demonstrate
comparable importance to parameters r and b for the abundance of striped bass, but their
sensitivities diminish significantly over time. Similarly, during the initial stage of the
process for the abundance of the Atlantic menhaden, parameters r and b were important,
but their sensitivity ranking diminished significantly compared to parameters e and d as
time progressed.

PRCC (Striped bass)

-1 1 1 1 !
0 10 20 30 40 50

time, years

Figure 9: PRCC values in time for the case when the Qol is the value of y.

PRCC is a widely used straightforward ranking method that offers robustness and ease
of implementation. However, it is important to note that the effectiveness of its correlation
coeflicients relies on the presence of monotonic relationships between parameters and
the Qol, ensuring a linear relationship through rank transformation. This can require
visual inspection of scatterplots and sometimes reduction of the parameter space. Also, it
is a good practice to vary the number of samples in order to decide how many is enough.
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Figure 10: PRCC values in time for the case when the Qol is the value of x.

3.4 Method of Sobol’

We will now explore the implementation of the sensitivity analysis method proposed
by L.M. Sobol’ in 1993 [11]. The method is based on the ANOVA (Analysis of Variance)
and it partitions the variance between the input parameters. There are at least two
distinguishing features of Sobol’. First, this method applies to nonlinear relationships
unlike the other methods we have discussed, which typically assume some degree of
linearity. Second, Sobol’ provides insights about the interactions between parameters. In
contrast, PRCC, which we previously discussed as the most robust sensitivity method,
disregards parameter interactions and focuses solely on the primary relationship between
the input parameter and the Qol. interactions between parameters and only considers the
primary relationship between the input parameter and the Qol.

The fundamental methodology of Sobol’ estimates differs from the approaches dis-
cussed above. Sobol’ sensitivity starts with the variance of an input/output relationship.
Relating the sensitivity to the variance is different from relating it to the correlation. A Qol
is considered correlated with a parameter if changes in the parameter result in changes in
the Qol. On the other hand, a parameter induces high variance in the Qol if changes in
the parameter cause larger variations relative to the mean of the Qol [17].

ANOVA, initially proposed by Fisher ([18]), is a widely used statistical method that
assesses variations in means among different groups. It partitions the total variation
into the variances within each group and the variances between groups, enabling the
identification of significant variations that affect the measurements under consideration.

Sobol’ ([11], [12]) generalized this concept and demonstrated that any general functional
relationship f(p1, pa, ..., pm) between the Qol and parameters can be decomposed into the
sum of specific orthogonal functions that allow deriving a different decomposition of the
total variance.

The basis of the Sobol’ method is to decompose the function f(ps, pa, ..., pm) into
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summands in increasing dimensionality, namely

Fprpoapm) = fot Y P+ D Fi(pop) + o fim(P1s o ) (3.3)
i=1

1<i<j<m

If the input parameters are mutually independent, then there exist a unique decomposition
(3.3) such that all the summands are mutually orthogonal i.e. if (iy, ..., is) # (j1, ..., jg), then

/mumﬁl ,,,,, is (Piys s Pis) i1y (L5 -+ Pj,)AP = 0 (3-4)

From equations (3.3) and (3.4) we can find a relationship between the total variance
(Var) and variance due to parameters

m
Var = Z Vit Z Vij + Z Viji+ .+ V123 . m (3.5)
i=1

i<j i<j<l

2
1150250005

where V;, ;, i = f[o’l]m
nations (pi,, ..., pi,)-

It is more useful to compare the partial variances to the total variance dividing equation
(3.5) by Var and rewriting it as

., dpiy ...dp;, is the variance due to specific parameter combi-

Vi i< Vij icj<tViil Via.m
+ +..+ +
Var Var Var Var

(3.6)

The first-order Sobol’ sensitivity index, often denoted as S;, quantifies the contribution of
the individual input parameter p; to the total variance of the model output:

Vi

Si = .
Var

(3.7)
S; quantifies the portion of the total output variance that can be directly attributed to
variations in parameter p;, regardless of its interactions with other parameters.

The higher-order Sobol’ sensitivity indices S;, . ; = Vl‘}zarls V,(s > 1) extend the
analysis beyond the individual input parameters to capture the interactions between
multiple parameters. These indexes provide insights into the combined effects of parameter
interactions on the output variance.

The total Sobol’ sensitivity index, often denoted as St,, represents the total contribution
of parameter p; to the output variance, considering both its individual effect and its
interactions with other parameters. It quantifies the proportion of the total output variance
that can be attributed to the variations in parameter p;. The total Sobol’ index is defined

as

m
Vi 2z Vi Zizjet Vijl |V,
ST,» _ i=1 Vi " #Fj ' + o+ [ESESRE N + 1,2,...m (3.8)
Var Var Var Var
Below, we present the computed results for the total Sobol” indices, which we use to
determine rankings of the parameter sensitivities in our case study model. Using the Monte
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Carlo method, we generated n = 5000 samples from the parameter space and evaluated
the model for each sample to obtain the corresponding output. The sensitivity indices
were then calculated by decomposing the variance of the model outputs, considering both
the main effects and interactions of the parameters.

For those interested in computing Sobol’ indices, freely available software packages
such as the SAFE toolbox for MATLAB ([19]) and SALib for Python (https://salib.
readthedocs.io/en/latest/) offer convenient options.

In Figure 11 we present the ranking of Sobol’ total sensitivity indices for stripped bass
and the Atlantic menhaden. It makes sense to compare the results presented in Figure
11 with those presented in Figure 8. Notice that the total Sobol’ indices (S, ) displayed
in Figure 11 are calculated using the formula (3.8), and they can only take non-negative
values. These indices indicate the importance of each parameter p; but do not provide
information on whether the variation will result in an increase or decrease in the Qol.

Considering these factors, we observe qualitative agreement between Figures 8 and 11.
Consistently, parameters r and b exhibit the highest influence on the abundance of the
predator, while parameters e and d have the most pronounced effect on the abundance of
the prey.

One can observe some disparity in the rankings of the subsequent parameters between
Figures 8 and 11 . We attribute this to the limitations of the PRCC method related to
possible non-linearity and non-monotonicity in the relationship between the QoI and
some of the parameters (see scatterplots in Figures 3 and 5).

1 ‘ 1
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IS °
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9 0.4 D04t
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e 8
0.2 0.2
0 0

r a b e c d E, E
(a) Striped bass (b) The Atlantic menhaden

Figure 11: Sobol’ sensitivity ranking for striped bass the Atlantic menhaden (tf = 50 years).

To examine time dependencies of parameter sensitivities, we conducted a series of
sensitivity analyses at specific time points spanning from 2000 to 2080 (0 < t <ty = 80
years). By performing sensitivity analysis at discrete time intervals, we gain insights
into the varying significance of different parameters throughout the process and better
understand their influence on the system’s evolution towards a steady state. Figure 12
presents the time-varying Sobol’ total sensitivity indices over an interval of 0-8o years.

In order to further investigate the time dependencies of parameter sensitivities, we
compare the results obtained using the Sobol’ and PRCC methods. This comparison allows

20


https://salib.readthedocs.io/en/latest/
https://salib.readthedocs.io/en/latest/

o
~
o
~

— —

—— ——q

e
>
e
>

—— ——c

=

o
T

o

——FE ||
——F,

——F

——,

=

~
T

3

e
o

\
/
ST

N
total Sobol index (the Atlantic menhaden)
°

I
[©

total Sobol index (Striped bass)
=
[V

=]
=
=]
—

0

o

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
time, years time, years

(a) The Qol is the value of y (Striped bass)  (b) The Qol is the value of x (the Atlantic menhaden)

Figure 12: Sobol’ total sensitivity indices changing in time.

us to assess the significance of parameters for the predator (striped bass) as illustrated
in Figure 9 (PRCC) and Figure 12(a) (Sobol). Similarly, we compare the results obtained
for the prey (the Atlantic menhaden) as presented in Figure 10 (PRCC) and Figure 12(b)
(Sobol). When comparing, we want to remember that the total Sobol’ indices calculated
using the formula (3.8) can only take non-negative values.

Both Figure 9 and Figure 12(a) illustrate the high sensitivity of striped bass to variations
in the intrinsic growth rate of Atlantic menhaden r and the impact of striped bass on
Atlantic menhaden b. The comparison between Figure 10 and Figure 12(b) highlights
the significant roles played by the death rate of striped bass e and the effect of Atlantic
menhaden on striped bass d in determining the abundance of Atlantic menhaden. The
findings align with the outcomes of the local sensitivity analysis conducted by Panayotova
et al. [4]. When it comes to the next important parameters, parameters e and d for striped
bass, and parameters r and b for the Atlantic menhaden may deserve consideration. While
parameters d and e initially demonstrate importance for striped bass, their significance
diminishes over time as indicated by the declining PRCC and Sobol’ total sensitivity
indices. Similarly, parameters r and b for the Atlantic menhaden exhibit importance but
primarily during the early stages of the process.

The Sobol’ method is recognized as one of the most commonly used approaches for
parameter sensitivity analysis. Along with PRCC has found widespread acceptance in
the field. Its advantage is that it does not assume a monotonic relationship between the
quantity of interest (Qol) and the parameters. However, it may require a larger number
of samples to achieve convergence compared to other methods. Additionally, while the
assumption of parameter independence holds true in most cases, we should notice that
Sobol’ estimates may be less reliable when working with interdependent parameters.
When parameters are highly correlated or interdependent, Sobol’ indices may incorrectly
attribute sensitivity to one parameter instead of recognizing its combined effect with
others, preventing effective discrimination between parameters. Exploratory analysis of
available data needs to be done to assess parameter interdependencies, identify Sobol’s
limitations, and guide result interpretation. Techniques like principal component analysis
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(PCA) can mitigate the impact of correlated parameters [20].

We conclude our exploration with Figure 13, which presents a comparison of solutions
obtained using nominal and varied parameter values for both striped bass and the Atlantic
menhaden over a time period spanning from 2000 to 2080 (0 < t < 80 years). These
results align with the findings of the discussed sensitivity analysis methods and show
reasonable agreement with the graphs by Panayotova et al. [4], depicting the rate of
change of each species’ population over time with respect to the system parameters.
Notably, we observe that harvesting the prey has a more negative impact on the predator,
while harvesting the predator has a relatively minor effect on its own steady-state but
leads to a modest increase in the prey population’s steady-state. This finding is consistent
with the results reported by Panayotova et al. [4] and supports our previous observation
that the abundance of the predator is primarily determined by the availability of prey.
Furthermore, the abundance of the prey is significantly influenced by the effect of its
consumption on the predator and the decline in the predator’s population due to death or
harvest.
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Figure 13: Comparison between the solutions using the nominal and varied parameter
values (ty = 80 years).

Conclusion

By providing an exploration of parameter sensitivity analysis in mathematical modeling,
this paper has the potential to serve as a resource for both professors teaching differential
equations or mathematical modeling and students interested in incorporating parameter
sensitivity analysis into their modeling endeavors.

Through the application of local sensitivity analysis using the direct differential method
and global sensitivity analysis using metrics such as Pearson, Spearman, PRCC, and Sobol,
we have provided readers with a basics of parameter sensitivity analysis in ODE-based
models. In our illustrative application, we have examined the population dynamics of
two fish species with harvest considerations, uncovering important insights about the
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dependence of predator abundance on available prey and the significant influence of prey
consumption on predator abundance.

By comparing the results obtained from local and global sensitivity analyses, we have
highlighted the strengths and limitations of each approach.

Local sensitivity analysis is advantageous in its simplicity and interpretability, mak-
ing it well-suited for preliminary investigations and quick assessments of parameter
importance. It can help identify key parameters for further exploration and guide model
refinement. However, it has limitations in capturing the combined effects of multiple
parameters and the potential interactions among them. Local analysis may overlook im-
portant system dynamics and fail to capture the overall sensitivity landscape accurately.

In contrast, global sensitivity analysis offers a more comprehensive understanding of
the model by quantifying the contributions of all parameters simultaneously. It captures
non-linear relationships and interactions, enabling the identification of synergistic or
antagonistic effects among parameters. Global sensitivity analysis is particularly useful
for complex models where parameter interactions play a significant role.

However, global sensitivity analysis methods require more computational resources
and can be computationally demanding, especially for high-dimensional models. Ad-
ditionally, the interpretation of global sensitivity measures can be challenging, as they
involve statistical correlations and complex mathematical calculations.

The choice between local and global parameter sensitivity analysis depends on the
specific goals and characteristics of the modeling. Local analysis is suitable for initial
investigations, identifying critical parameters, and gaining a basic understanding of the
system. Global analysis provides a more comprehensive view, capturing interactions
and non-linear effects, but at the cost of increased computational complexity. The two
approaches can be complementary. A general suggestion would be to start with local
sensitivity analysis to identify influential parameters and gain initial insights into the
system’s behavior. If the model exhibits complex dynamics or parameter interactions are
suspected, conducting global sensitivity analysis can provide a deeper understanding of
the system’s sensitivity.

The choice of sensitivity indices is critical, as they vary in suitability for different
models and research objectives. Researchers should align their index selection with their
analysis goals. Furthermore, it is worth noting that the field of sensitivity analysis has
evolved to incorporate statistical methods, such as hypothesis testing and confidence
intervals, which enable us to draw more robust inferences from sensitivity results [7].
These methods help determine whether sensitivity indices are statistically significant and
provide probabilistic bounds on their values.

Parameter sensitivity analysis enriches pedagogy by actively engaging students in
real-world problem-solving, fostering critical thinking, and bridging interdisciplinary
connections. It equips learners with data analysis skills, enhances the application of
mathematical concepts, and prepares them for data-driven careers.

By examining the interplay between model parameters and system dynamics, re-
searchers can refine their models, validate their assumptions, and make more informed
predictions.
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Appendix: Sensitivity Analysis Tasks for Instructors and Stu-
dents

In this appendix, we provide some tasks that instructors can adapt and use in their
classrooms to help students gain hands-on experience with parameter sensitivity analysis
in ODE-based models.

Task 1: Local Sensitivity Analysis
Objective: Understand the concept of local sensitivity analysis and its applications.
1. Provide students with an ODE-based model.

2. Ask students to identify dependent variables, independent variables and parameters
of the model.

3. Instruct students to perform local sensitivity analysis using the direct differential
method.

4. Ask them to calculate sensitivity indices for each parameter and rank them in terms
of their influence on the model’s output.

5. Encourage students to interpret the results and discuss how changes in each param-
eter affect the model’s behavior.

Task 2: Global Sensitivity Analysis

Objective: Explore global sensitivity analysis methods and use scatterplots to select
suitable methods.

1. Present an ODE-based model with multiple parameters.

2. Instruct students to identify model’s parameters and the Quantity of Interest (QolI),
representing the aspect they want to investigate (e.g., fish abundance).

3. Guide students in choosing appropriate parameter ranges and distributions.

4. Explore the generation of a sample space, emphasizing the importance of the number
of samples and their distribution.

5. Ask students to create scatterplots by varying one parameter at a time while keeping
others constant, plotting the Qol on the y-axis against the parameter on the x-axis.

6. Encourage visual analysis of scatterplots to identify parameter-Qol patterns.

7. Based on scatterplot observations, guide students in selecting an appropriate global
sensitivity analysis method (e.g., Pearson correlation coefficient, Spearman correla-
tion coeflicient, or Sobol indices) that aligns with the observed patterns.
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8. Have students perform the selected global sensitivity analysis and interpret results
within the Qol context.

9. Facilitate a discussion where students compare their selected method’s outcomes
with initial scatterplot observations, reflecting on method advantages.

10. Discuss how the chosen method reveals parameter interactions, quantifying their
impact on the Qol, aiding model behavior understanding,.

Note: Students with prior exposure to statistics can also be assigned the task of
conducting hypothesis testing to assess the statistical significance of observed results (e.g.,
by calculating p-values).
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