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Abstract

We examine the problem of counting interval graphs. We answer the ques-
tion posed by Hanlon, of whether the generating function of in, the number
of interval graphs on n vertices, has a positive radius of convergence. We
have found that it is zero. We have also found that the exponential generat-
ing function of in has a radius of convergence greater than or equal to one
half. We have obtained a lower bound and an upper bound on in. We also
study the application of interval graphs to the dynamic storage allocation
problem. Dynamic storage allocation has been shown to be NP-complete
by Stockmeyer. Coloring interval graphs on-line has applications to dy-
namic storage allocation. The most colors used by Kierstead’s algorithm is
3ω − 2, where ω is the size of the largest clique in the graph. We determine
a lower bound on the colors used. One such lower bound is 2ω − 1.
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Chapter 1

Introduction

1.1 Definition

An undirected graph G is an interval graph if there is a one-to-one corre-
spondence between the vertices of G and a set of intervals of real numbers
such that the intervals corresponding to x and y overlap if and only if x ∼ y.

Hajos (1957) defined interval graphs as a study of intersection graphs.
Benzer (1959) independently defined interval graphs.

Interval graphs are precisely the graphs that have no induced cycle of
size larger than 3 and that have no asteroidal induced subgraph. (Lekkerk-
erker and Boland, 1962)
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Figure 1.1 Interval graph with n = 6
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1.2 Two problems

In the field of graph theory the question of counting interval graphs is an
interesting combinatorial topic. Hanlon describes the generating function
of in, the number of interval graphs on n vertices, as an implicit function
(Hanlon, 1982). Hanlon posed the question of whether the generating func-
tion

I(x) = ∑
n≥1

inxn

of the interval graphs has a positive radius of convergence; that is, whether
in ≤ Cn for some constant C. We shall show that the radius of convergence
is zero.

We also study the application of interval graphs to the dynamic storage
allocation problem. Dynamic storage allocation has been shown to be NP-
complete by Stockmeyer. Coloring interval graphs on-line has applications
to dynamic storage allocation. Kierstead (1991) presented a polynomial-
time algorithm for on-line coloring of interval graphs. The most colors used
by Kierstead’s algorithm is 3ω − 2, where ω is the size of the largest clique
in the graph. We shall show that in some cases Kierstead’s algorithm uses
at least 2ω − 1 colors.





Chapter 2

Counting Interval Graphs

2.1 Background

Define the generating function

I(x) = ∑
n≥1

inxn.

Its first 11 coefficients are

n 1 2 3 4 5 6 7 8 9 10 11
in 1 2 4 10 92 369 1,807 10, 344 67, 659 491,347 3, 894,446

(Hanlon, 1982)

2.2 Results

Theorem 1. in ≤ (2n − 1)!!

Proof. Let the endpoints of the interval representation of a graph be the in-
tegers 1, 2 . . . , 2n. Because intervals cannot share the same endpoints,there
are 2n− 1, then 2n− 3, then 2n− 5, and so on, choices for the next interval’s
endpoints. Thus in satisfies in ≤ (2n − 1)!! where (2n − 1)!! denotes the
product (2n − 1)(2n − 3)(2n − 5) . . . (3)(1).
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Theorem 2. in ≥ ( n
3 )!
3n for n = 3m, where m ≥ 1 is an integer.

Proof. To obtain the lower bound, we counted colored graphs of the follow-
ing type. For every value of m, we can construct the graph that is associated
with a permutation of [1, 2, . . . m], and that has n = 3m intervals total. Let
n = 3m , where m ≥ 1. Let π be a permutation of [1, 2, . . . m]For each
0 ≤ i ≤ m, consider the intervals

ri = (3i − 1, 3i),

bi = (2n − 3i + 1, 2n − 3i + 2),

and

wi = (3i − 2, 2n + 3 − 3π(i))

Construct a graph Gπ from the wi, ri, and bi for i ≤ m, and color the wi
white, the ri red, and the bi blue. Then there are m! colored graphs, one
for each permutation. There are m red indicator intervals on the left which
correspond to the things being permuted, and m blue indicator intervals
on the right which are the permutations. There are m white intervals which
all overlap with different numbers of blue intervals. We can determine
the permutation π from the graph Gπ. Call the number of red adjacent
intervals the red degree. Call the number of blue adjacent intervals the blue
degree. Then π(i) is the blue degree of the white interval of red degree i.
There are at most 3n colorings, so the in satisfies

( n
3 )!
3n ≤ in

The number of interval graphs on n vertices satisfies ( n
3 )!
3n ≤ in ≤ (2n −

1)!! This means that the number of interval graphs grows faster than any
power of en for n large enough. Thus, we have shown that the radius of
convergence is zero. Define the exponential generating function

J(x) = ∑
n≥1

inxn

n!
.

Our upper bound shows that J(x) has radius of convergence at least 1
2 .

It is an open question whether this radius of convergence is infinite.
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Figure 2.1 Permutation interval graph for n = 12





Chapter 3

Coloring Interval Graphs

3.1 Background

We have made some explorations of coloring interval graphs on-line.
In particular, we have found a worst case scenario for the minimum

number of colors used by Kierstead’s algorithm for on-line coloring.
As a review, the following definitions will be useful. A graph coloring is

a way of attaching colors to the vertices of a graph such that no two adjacent
vertices share a color. An on-line algorithm is one which does not know its
input in advance–an example is a greedy algorithm. The chromatic number
χ of a graph is the smallest number of colors needed to color a graph. Be-
cause it is used to find the minimum number of colors, vertex coloring has
use in network-related problems and resource allocation problems. A per-
fect graph is a graph for which for every induced subgraph χ = ω where
ω is the size of the largest clique.

An example of a perfect graph is a bipartite graph on 2n vertices. The
clique number will be 2. The chromatic number will be 2. The strong per-
fect graph theorem states that a graph is perfect if and only if neither it nor
its complement has an induced cycle of size 2n + 1 where n ≥ 2. (Chud-
novsky et al., 2006)

Next, we will cover an application of on-line graph coloring in com-
puter science, dynamic storage allocation. On a machine, it is often impor-
tant to store hundreds of thousands of variables in linear programming, in
applications to physics and chemistry, for example. This idea is important
in Dynamic Storage Allocation. Stockmeyer formulated dynamic storage
allocation and showed that it is NP-complete (Garey and Johnson, 1979).

The question then arises, are there ways to approximate the minimum
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storage space in Dynamic Storage Allocation? To answer this question we
consider on-line coloring of interval graphs.

It can be shown that interval graphs are perfect, by greedy coloring
according to order of left end-points.

We have been studying an algorithm by Kierstead. This algorithm is for
coloring interval graphs on-line, though the process can possibly label ver-
tices that are adjacent with the same label (Kierstead, 1991). The algorithm
by Kierstead uses at most 3ω − 2 colors (Kierstead, 1991). In the algorithm
by Kierstead, the method used is to conduct a preliminary and a final ex-
amination of all of the vertices. Each vertex is examined for overlaps with
previous vertices. This algorithm will not yield the clique number in gen-
eral.

One may wonder, what on-line colorings are produced for various graphs?
We consider some examples.

0

1

2

3

Figure 3.1 Interval graph labeled from left to right

The graph is labeled from left to right and uses Kierstead’s algorithm
with 2 colors.
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0

1

3

2

Figure 3.2 Interval graph labeled from outside to inside

The graph is labeled from outside to inside. The graph uses 3 colors.
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ω + 1

. . .

2ω

ω

. . .

1

Figure 3.3 Interval graph labeled outside to inside

This graph is labeled with the ωth and 2ωth lines overlapping. Kier-
stead’s algorithm uses ω + 1 colors. Note that the number of colors used is
larger than the clique size, ω.
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3.2 Results

There is a way of enumerating a graph of clique size ω that uses 2ω − 1
colors.

The staircases get progressively smaller until they reach 4 lines, so the
total number of colors that Kierstead’s algorithm uses is 2ω − 1.

ω + 1

. . .

2ω

ω

. . .

1

n − 1

n

n − 2

n − 3

Figure 3.4 Interval graph labeled outside to inside
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Future Work

First, it is an open question whether ( n
3 )! can be improved to ( n

2 )! or (n)!
Second, we found that the exponential generating function

J(x) = ∑
n≥1

inxn

n!

has radius of convergence ≥ 1
2 . It is an open question whether this

radius of convergence is infinite.
It is an open question whether the bound can be improved from 2ω − 1

to 3ω − 2.
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