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Abstract

Coupled oscillators, such as groups of fireflies or clusters of neurons, are
found throughout nature and are frequently modeled in the applied math-
ematics literature. Earlier work by Kuramoto, Strogatz, and others has led
to a deep understanding of the emergent behavior of systems of such os-
cillators using traditional dynamical systems methods. In this project we
outline the application of techniques from topological data analysis to un-
derstanding the dynamics of systems of coupled oscillators. This includes
the examination of partitions, partial synchronization, and attractors. By
looking for clustering in a data space consisting of the phase change of
oscillators over a set of time delays we hope to reconstruct attractors and
identify members of these clusters.
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Chapter 1

Introduction

1.1 Coupled Oscillators

Oscillators, specifically coupled oscillators, are found throughout nature
and an active area of research in the applied mathematics community. Ex-
amples of these oscillators include clustered groups of firing neurons and
croaking frogs. When we say that a group of oscillators are coupled, we
mean that each member’s behavior influences that of the others in the sys-
tem. In a biological context, we would say that fireflies exhibit this be-
havior. This is because a firefly’s flashing causes other fireflies to light
up in response, which leads to situation like that displayed in Figure 1.1.
Numerous models have been developed to explain the behavior of sys-
tems of coupled oscillators. The most famous of these is that of Yoshiki
Kuramoto, who developed the following system in 1975 (see (Kuramoto,
1975), (Strogatz, 2000), and (Acebrón et al., 2005)):

θ̇i = ωi +
1
N

N

∑
j=1

Kij sin(θj − θi) (1.1)

which is most commonly seen in the simplified form where Kij = K:

θ̇i = ωi +
K
N

N

∑
j=1

sin(θj − θi) (1.2)

The key components of this model include the coupling constant matrix
with entries Kij, the natural frequency of the ith oscillator ωi, and the cou-
pling function sin(ψ). The coupling constant matrix with entries Kij is an
N-dimensional matrix which encodes the coupling strength Kij of the jth
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Figure 1.1 A nighttime photograph of fireflies flashing in synchrony. (Taken
from smithsonianmag.com)

oscillator on the ith oscillator. In the symmetric case, the coupling constant
K measures the strength of the influence of oscillators on one another: the
larger K is, the stronger the coupling force between them. Here ωi is an
intrinsic property of each oscillator, like the tempo at which a metronome
is set. The coupling function sin(ψ) represents the nature of the coupling
between oscillators, and is the source of the synchronization observed in
simulations of the model. Notice that when θj > θi, or ψ > 0, the coupling
force exerted on oscillators i is positive. When ψ < 0, the coupling force is
negative. This tends to make oscillators either ‘catch up’ to or ‘wait up’ for
other oscillators, thereby leading to synchronization. (Acebrón et al., 2005)

For the purpose of extracting more exotic behavior from the Kuramoto
model one can alter it. A common manner in which this is done involves
changing the network structure of the oscillators. In the original model,
Kuramoto assumed an all-to-all network structure, where every oscillator
is coupled to every other oscillator. We can rewrite the model, accounting
for the possibility of various network structures, such as those displayed
in Figure 1.2 (see (Collins and Stewart, 1994) and (Easley and Kleinberg,
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Star Ring Small World
Figure 1.2 A sample of different network structures

2010)):

θ̇i = ωi +
K
N

N

∑
j=1

∆ij sin(θj − θi)

where ∆ij is an adjacency matrix which encodes the structure of the net-
work. In the case of a ring network (see Figure 1.2), the matrix ∆ may look
like this: 

1 1 0 . . . 1
1 1 1 . . . 0
0 1 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 1


where in this case we have implemented the ‘nearest neighbor’ structure
seen in Figure 1.2. That is, on the ring, two members are coupled only if
they are immediately next to one another. In other networks, such as star
or small-world, this adjacency matrix looks more complicated.

Perhaps the most relevant variation of the original Kuramoto model for
our research is the partitioning of a network. A partition of a network is a
set of sub-networks which are disjoint and whose union contains the orig-
inal network. In terms of an adjacency matrix, this can be visualized as
a block diagonal matrix whose blocks are all-ones matrices. These would
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look like 
[1]1 0 0 . . . 0

0 [1]2 0 . . . 0
0 0 [1]3 . . . 0
...

...
...

. . .
...

0 0 0 . . . [1]m


where each [1] is a square matrix with all one entries. It is important to
note that each [1] may be of any size less than or equal to the total number
of oscillators in the system.

On top of varying the network structure in the Kuramoto model there
are other variations including continuum, non-local coupling, and pulse-
coupled models. The continuum model for Kuramoto oscillators prescribes
a density in the place of a system of equations which model individual
oscillators. The density of the oscillators in this variation of the original
model obeys the Fokker-Planck equation. In a thorough review paper on
the Kuramoto model, Stephen Strogatz outlines numerous characteristics
of the model, including the steady-state of the model when white noise is
added, as will be in Section 2.2. (Strogatz, 2000) A key result from the paper
with respect to the stochastic Kuramoto model is that in limit as N → ∞,
the density function of the oscillators ρ(θ, t; ω) satisfies the Fokker-Planck
equation, which is defined as:

dρ

dt
= D

D2ρ

dθ2 −
d
dθ

(ρv)

where

v(θ, t; ω) = ω + Kr sin(ψ− θ)

and reiψ is the order parameter, defined as 1
N

N
∑

j=1
eiθj

This fact is extremely important when discussing the properties of clusters
of oscillators and distributions of the phases of the oscillators within such
clusters. (see (Strogatz and Mirollo, 1988), (Strogatz, 2000), (Balmforth and
Sassi, 2000) and (Acebrón et al., 2005)). Furthermore, the relationship be-
tween the phase behavior of Kuramoto oscillators and Ornstein-Uhlenbeck
processes is elucidated by this connection between Fokker-Planck and the
phase density function ρ. This is discussed in detail in Section 2.4.
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Non-local coupling models incorporate a spatial variable, usually labeled x,
which is used to construct a coupling function, usually denoted G(xi, xj),
where xi and xj are the spatial positions of the ith and jth oscillators. Ex-
amples of coupling function include exponential decay models, such as
e−|xi−xj|, where the strength of coupling decreases as spatial distance be-
tween oscillators increases. (Kuramoto and Battogtokh, 2002) We will refer
to these models in Section 3.5.

A final extension of the Kuramoto model includes the incorporation of time
delays. Similar to spatial coupling functions, time delays are added to the
model to better mimic the behavior of coupled oscillatory systems in nature
- for example, oscillators whose coupling relies on sound stimulus, and is
therefore dependent on the phase of surrounding oscillators at a previous
time. (Yeung and Strogatz, 1999) This variation of the Kuramoto model
may be of interest after we have thoroughly examined the original model.

1.2 Topological Data Analysis

At a high level, topological data analysis can be described as the study of
the shape of data. In the context of coupled oscillators, it allows us to detect
emergent behaviors such as clustering and synchronization. This is done
by examining data from the phase-space of the system and approximating
its structure with a topological object.

The foundational concepts which make topological data analysis possible
lie within the field of algebraic topology. By constructing simplicial com-
plexes and deriving their related homology, we can determine the topolog-
ical invariants of the objects which we use to represent a set of data such as
Betti numbers. Betti numbers are numbers which represent the number of
connected components, topological circles, trapped volumes, etc. in a topo-
logical object. They are extremely useful in distinguishing different objects,
as every topological object is uniquely identifiable by a sequence of Betti
numbers.

We first consider a set of data points to be a sampling of a large space.
(Topaz et al., 2015) We then connect points within this space if they are
close, where closeness is defined in terms of a proximity parameter, usually
denoted ε, giving us a simplicial complex. By varying ε, we can observe
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Figure 1.3 The construction of a simplicial complex in 2-space.

which characteristics of the space persist for the largest range of values.
This gives us clues into the shape of the space from which our data is sam-
pled. A visualization of this process is shown in Figure 1.3. Note that a
simplicial complex is composed of points, lines, triangles, tetrahedra, and
so forth. It is important to note that this definition of a simplicial complex
is known as a Vietoris-Rips complex.

The formal definition of a simplicial complex is a set consisting of a finite
collection of k-simplices, where a 0-simplex is a vertex, a 1-simplex is an
edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, etc. A simplex,
which we denote S, satisfies two properties: for every set σ in S, every non-
empty subset τ ⊆ σ is in S, and two k-simplices are either disjoint or have
a non-empty intersection in a lower dimensional simplex. (Edelsbrunner
et al., 2002) The importance of simplicial complexes is that they allow us to
take point-cloud data, convert it into a topological object, and then use the
concept of Homology to identifies characteristics of the data such as loops,
components, and volumes. (Edelsbrunner et al., 2002) (Stolz, 2014)

In Figure 1.3, we have a visualization of a specific type of simplicial com-
plex, the Vietoris-Rips complex. In this complex, for some ε > 0, we have
built a simplicial complex Sε using the following rule: k +1 data points
form a k-simplex if they all have pairwise distance less than ε. (Topaz et al.,
2015). Note that in homology, it is necessary to ascribe an orientation on the
vertices of each k-simplex. That is, a k-simplex [v1, v2, ..., vk+1] is equal to
−σ([v1, v2, ..., vk+1]) if σ is an odd permutation.

As the Vietoris-Rips method checks all pairwise distances between data
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points, it can be thought of as the maximal simplicial complex. (Topaz et al.,
2015) One alternative construction of these complexes is called a witness
complex. In a witness complex, one selects a subset of the points from the
given point-cloud data called landmark points which are typically located in
the densest regions of the Euclidean data. From there, edges are added to
the complex based on their distance from landmark points, where we de-
sire to draw edges between the two closest points to each landmark point.
For a more thorough explanation, see De Silva and Carlsson (2004).

We said at the beginning of this section that the foundational ideas of topo-
logical data analysis lie in the discipline of algebraic topology. Thus far we
have discussed the construction of topological spaces in the form of sim-
plicial complexes, but have yet to give them algebraic structure. To do this,
we construct an abstract vector space Ck with a basis comprised of the k-
simplicies in Sε. The elements in Ck are called k-chains. (Edelsbrunner et al.,
2002)

We then proceed to define the boundary of a k-simplex. The boundary of a
k-simplex is defined as the union of all of its (k-1)-subsimplices. For k ≥ 1,
the boundary map δk : Ck → Ck−1 is a linear transformation on a k-simplex
[v0, v1, ..., vk] given by the formula

δk([v0, v1, ..., vk]) =
k

∑
i=0

(−1)i[v0, ..., vi−1, vi+1, ..., vk]

where we have obtained a (k-1)-simplex from [v0, v1, ..., vk] by removing vi.

Boundary operators take the vector space Ck and turn it into a chain complex:

. . . Ck+1 → Ck → Ck−1 → · · · → C1 → C0 → 0

The following two subspaces of Ck are crucial to the material discussed in
this paper:

k-cycles
Zk := ker(δk : Ck → Ck−1)

and k-boundaries
Bk := im(δk+1 : Ck+1 → Ck)

Thinking of these subspaces, we can now defined what it means for two
cycles in Zk to be homologous. Two cycles z1, z2 are said to be homologous
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(z1 ∼ z2) if their difference is contained in Bk. The equivalence relation ∼
gives us a quotient space, which we call the kth homology of a simplicial
complex, defined as

Hk := {[z]|z ∈ Zk} (1.3)

Where we can also write Hk = Zk/Bk. We then define the kth Betti number,
bk, as the dimension of the kth homology, that is:

bk = dim(Hk) = dim(Zk)− dim(Bk) (1.4)

or equivalently in linear algebraic terms:

bk = [nk − rank(δk)− rank(δk+1)] (1.5)

where bk is equal to the number of independent holes of dimension k. For
a quick example, if we were to calculate the values of the bk’s for a topolog-
ical figure-eight, we would find that b0 = 1, b1 = 2, and bk = 0 for all k ≥ 2.
This is because a figure eight is made up of one connected component, two
circles, and cannot trap volumes of dimension higher than one.

Now that we have the methodology for quantifying the topological char-
acteristics of a space in bk, we can discuss persistence. Up until now in our
discussion we have thought of a k-simplex as a simplex constructed using
a fixed proximity parameter. What we do now is take the parameter ε and
vary it in increasing fashion. That is, for ε1 ≤ ε2 ≤ · · · ≤ εM we generate
a sequential inclusion of complexes called a filtration. (Edelsbrunner et al.,
2002)

Sε1 ⊆ Sε2 ⊆ · · · ⊆ SεM (1.6)

Tracking the features which persist over many values of ε then allows us to
estimate the ‘shape’ of the data we are studying. A visually intuitive way
in which this can be displayed is through the construction of a topological
barcode.

A barcode encodes the topological features of a simplicial complex in rela-
tion to the proximity parameter which was used to construct it. The value
of bk for some k is represented by the number of horizontal bars intersect-
ing a vertical line at some ε, which is placed on the x-axis.

A limitation of a barcode is that when working with time-dependent data,
we are restricted to thinking of the data at a fixed time. In order to ana-
lyze emergent behavior of a dynamical system in terms of topological data
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’

Figure 1.4 The color coded contour plot shown display the value of b0 for a
given pair (ε, t).

analysis, we must think of bk as a function of time, not just ε. We then dis-
play this multivariable function using a contour plot, referred to by Topaz
et al as a Contour Realization Of Computed k-dimensional hole Evolution
in the Rips complex (CROCKER) plot. (Topaz et al., 2015) By examining a
CROCKER plot for bk, we can determine its value for some (ε, t). An exam-
ple of a CROCKER plot is shown in Figure 1.4

Using topological data analysis, we can take data in Euclidean space and
infer characteristics about its shape. We do this by defining a distance mea-
sure on the space and connecting points deemed ‘close’ enough to one an-
other. After this is done, we can use ideas from homology to determine
the Betti numbers of a topological object which approximates the data to
transform the problem from a topological one to an algebraic one. Once we
can calculate Betti numbers, we can calculate them for various values of ε,
which defines ‘closeness’ in these problems. After doing this, we can graph
the Betti numbers of a plot against either ε or both ε and time. (Topaz et al.,
2015)

Applications of topological data analysis to dynamical systems can be found
across applied mathematics publications. Of the papers addressing the
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subject, the most relevant is “Exploring the Topology of Dynamical Recon-
structions" by Garland, Bradley, and Meiss. (Garland et al., 2015) In this
paper, the authors outline a method for reconstructing the dynamics of the
classic Lorenz system. They successfully reconstruct the attractor of the
system without requiring diffeomorphism and take advantage of the parsi-
mony of the witness construction method. In this thesis, we use time delays
within the context of topological data analysis to examine the attractor of
the system governed by the Kuramoto equations, as well as others based
on pulse-coupling. Moreover, the paper by Garland et. al provides inspira-
tion for using time delays to study the topology of coupled oscillators.

In “Topological Data Analysis of Biological Aggregation Models", Topaz
et. al use the methods outlined in this paper to study the shapes which
emerge from biological models such as the d’Orsogna model for swarms.
In their paper the authors are able to use the topology of position-velocity
data from swarms to distinguish between single and double mills - patterns
typical found in schools of fish. (Topaz et al., 2015)



Chapter 2

Synchronization in Kuramoto
Oscillators

2.1 The Kuramoto Model

Of all of the emergent behaviors observed in the Kuramoto Model, the
most well-known is that of synchronization. (see (Balmforth and Sassi,
2000), (Strogatz, 2000), (Acebrón et al., 2005), (Chopra and Spong, 2005),
and (Cumin and Unsworth, 2007)) In effect, synchronization describes the
steady-state of the system in which all oscillators have the same phase ve-
locity. This long-term velocity is equal to the average of the natural fre-
quencies:

lim
t→∞

θ̇(t) =
1
N

N

∑
i=0

ωi = ω

In the original model, Kuramoto assumed that ω = 0. This would tell us
that, in the limit, oscillators tend to stop moving. It is important to note
that this holds for this model when all-to-all coupling governs the system.
In other cases, such as when coupling is local or sections of the network
topology are disjoint, this changes. Of the analytic results of the Kuramoto
model present in the literature, one of the most relevant to this paper is the
notion of a critical coupling constant, usually denoted Kcrit. From “On the
critical coupling for Kuramoto oscillators” we have that this value is suffi-
ciently large when it is greater N(ωmax−ωmin)

2(N−1) where N is the number of oscil-
lators in the system. (Dörfler and Bullo, 2011) If the system is partitioned
into separate components, then this critical value of K also depends on the
number of such components. In this paper, we use the threshold value of
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Figure 2.1 A plot of the phases of the oscillators governed by the Kuramoto
model (note the invariance under addition of 2π).

2M
ωmax−ωmin

, where M is the number of components in the given partition of
the network. This value of K is sufficiently large to lead to synchronization,
and is the value we refer to as Kcrit in this thesis.

If the exact value of the critical coupling constant is sought, it can be solved
implicitly using the following set of equations (Dörfler and Bullo, 2011):

Kcrit = nu∗/
N

∑
i=1

1√
1− (Ωi

u∗ )
2

where Ωi = ωi− 1
N ∑N

j=1 ωj and u∗ ∈ [‖Ω‖∞, 2‖Ω‖∞] is the unique solution
to

2
N

∑
i=1

√
1− (

Ωi

u∗
)2 =

N

∑
i=1

1√
1− (Ωi

u∗ )
2

It is important to reflect on the definition of synchronization and note that
it does not imply that the phases of the oscillators are all the same as t→ ∞.
This situation, referred to as global synchronization (Acebrón et al., 2005),
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Figure 2.2 A plot of the phases of the oscillators governed by the Kuramoto
model with K = 2Kcrit

Figure 2.3 A plot of the phases of the oscillators governed by the Kuramoto
model with K = 20Kcrit.
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Figure 2.4 A plot of the phases of the oscillators governed by the Kuramoto
model with K = 200Kcrit.

occurs only when K → ∞ or when all of the oscillators have the same nat-
ural frequency. When we refer to synchronization in this paper, we are
referring to the case in which the phase velocities of oscillators converge.

When oscillators synchronize under this definition, their phase velocities
and phases lie within respective distributions. That is to say, the angu-
lar velocities of each oscillator does not actually reach zero. Moreover, the
phases of these oscillators move in time with a banded structure, demon-
strated in Figure 2.1. We now discuss the distribution of these phases after
sufficient time has elapsed. Examining the plot in Figure 2.1, we see that
they seem to obey some sort of distribution, specifically the group of oscil-
lators centered approximately about 4.5. We let the spread of the phases of
the oscillators be denoted σθ .

Because phase locking occurs when K → ∞, we should expect that the
spread of the distribution is related to K in an inverse fashion. That is,
σθ ∝ 1

Kα . We can see this visually when we let K = 2Kcrit, K = 20Kcrit, and
K = 200Kcrit successively in Figures 2.2, 2.3, and 2.4.
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Figure 2.5 A plot of the phases of the oscillators governed by the Kuramoto
model with noise added as described.

Evidently, increasing the value of K leads to a decrease in the spread of the
distribution of phases after a few characteristic times have elapsed, where
we define a characteristic time to be equal to 2π

ω+1 .

2.2 Introducing Noise to Kuramoto

The Kuramoto model is extremely elegant and therefore ideal for tradi-
tional analysis. However, there have been over 1000 papers written on it in
which stochasticity is incorporated. For these variations of the model, typi-
cal dynamical systems methods break down. A standard way to introduce
noise to this model is to simply rewrite it as

θ̇i = ωi +
K
N

N

∑
j=0

sin(θj − θi) + ξi(t)

where ξ(t) is an independent, gaussian white noise process with the prop-
erties < ξ >= 0 and < ξ2 >= 1. In “Stochastic Runge-Kutta algorithms I.
White Noise", Honeycutt presents a second order numerical scheme which
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Figure 2.6 The dependence of the spread of steady-state phases on the vari-
ance of white noise D, plotted on top of the function 11

√
t.

can be used to simulate the Kuramoto model with noise added. (Honey-
cutt, 1992) Implementing the stochastic Kuramoto model, we use a varia-
tion of the Runge Kutta order 2 method:

x(T + ∆t) = x(T) +
1
2

∆t(F1 + F2) + ψ
√

2D∆t

F1 = f (x0)

F2 = f (x0 + ∆tF1 + ψ
√

2D∆t)

where ψ is a random variable with variance 1 and mean 0. The error for
this method is O(∆t2) locally, and therefore first-order globally.

Implementing this scheme, we obtain a plot of phases against time for 32
oscillators, D = 0.1, and K = 4Kcrit, shown in Figure 2.5.

We see that even adding noise where D = 0.1 makes the phases of the os-
cillators far less coherent. This becomes much more significant when there
are many partitions of the network in question. In fact, the spread of the
phases over time is also proportional to the square root of the spread of the
noise, which is shown in Figure 2.6.
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Figure 2.7 A plot of the phases of the oscillators governed by equation 2.2.

Taking a more traditional analytic approach to the stochastic Kuramoto
model, Bag et. al describe the influence of noise on the order parameter
of synchronization, as well as how it impacts the critical coupling thresh-
old for the system. (Bag et al., 2007) They find that the characteristics of
the noise added to the model have a substantial impact on the coupling
strength require to drive the Kuramoto system to synchronization, and de-
termine the relationship between D and both the critical value of the cou-
pling constant and the infinite time limit value of the order parameter.

2.3 Linearization about the Fixed Point

The most famous behavior exhibited by coupled oscillators governed by
the Kuramoto model is synchronization. When oscillators with identical
natural frequencies synchronize, we have that their phases are all approx-
imately the same. We also note that the angular velocity of these synchro-
nized oscillators is equal to ω̄, the natural frequency of all of the oscillators.
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We first observe the Kuramoto model in its original form:

θ̇i = ωi +
K
N

N

∑
j=1

sin(θj − θi)

We then make the simplifying assumption that every oscillator has the
same natural frequency Ω. We then may simply use a change of variables
θi = θi − Ωt to eliminate the frequency Ω. We can now rewrite the Ku-
ramoto model as

θ̇i =
K
N

N

∑
j=1

sin(θj − θi)

When we are looking at a synchronized system, we note that for the phase
of each oscillator that θi ≈ θj. Thus we may once again simplify this model
using a taylor approximation at the fixed point to be:

θ̇i =
K
N

N

∑
j=1

(θj − θi) (2.1)

We then rearrange the terms in the sum and divide through by K to obtain:

θ̇i

K
= −θi +

1
N

N

∑
j=1

θj

Rewriting this in matrix form, we obtain

N~̇θi

K
=


1− N 1 1 . . . 1

1 1− N 1 . . . 1
...

...
. . . . . .

...
1 1 . . . . . . 1− N




θ1
θ2
...

θN


where every diagonal entry in the operator matrix is 1−N and every other
entry is 1. We can now rewrite this as a vector equation

N~̇θ

K
= (P− NI)~θ

where P is the circulant matrix whose entries are all 1, I is just the identity
matrix, and ~θ encodes the phase of every oscillator. We now assume that
the solution is of the form

~θ = ~Veλt
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which yields the equation

N
K
~Vλeλt = (P− NI)~Veλt

which we simplify to obtain

λN~V
K

= P~V − N~V

which we then rearrange to obtain the eigenvalue equation

(
λN
K

+ N)~V = P~V

We then let Λ = λN
K + N, then

Λ~V = P~V

We see that P, being a matrix whose entries are all equal to one, is rank one.
Moreover, P has one non-zero eigenvalue Λ1 = N, which corresponds to
the eigenvector

~v1 =


1
1
...
1


whose entries are all equivalent. The other N− 1 eigenvalues of the matrix
P, Λk where k = 2...N are all zero, and correspond to the vectors ~vi where

~vi =


θ1
θ2
...

θN


where

N
∑

i=1
θi = 0. Note that this set of vectors indeed forms a basis for a

vector space of N− 1 dimensions, as we are given N− 1 degrees of freedom
in choosing θi. We now solve for the eigenvalues λk and see that λ1 = 0
and λk = −K when k > 1. λ1 corresponds to a null vector related to the
symmetry mode of the Kuramoto model, while the other λk correspond
to the exponential decay observed in N − 1 dimensions. Thus in N − 1
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dimensions of the eigenspace of the linearization of the Kuramoto model
about its fixed point exponential decay behavior, indicating the stability of
the fixed point in these dimensions. When we add white noise to the model
as follows

θ̇i = ω +
K
N

N

∑
j=1

sin(θj − θi) + ξi(t)

we expect that the distribution of phases after sufficient time has elapsed
for synchronization to occur is that predicted by Ornstein-Uhlenbeck in the
N − 1 dimensional eigenspace corresponding to the non-zero eigenvalues
of the linearization about the fixed, synchronized point of this system (dis-
cussed in the next section). What happens when the ω’s of each oscillator
are allowed to take on a distribution as opposed to being identical is dis-
cussed in Section 2.5.

2.4 Synchronization and Ornstein-Uhlenbeck

An Ornstein-Uhlenbeck process {xt} is defined by the stochastic differen-
tial equation

dxt = θ(µ− xt)dt + σdWt

where xt is a random variable, Wt is the Wiener process, and θ ≥ 0 and
σ ≥ 0. The PDF of an Orstein-Uhlenbeck process f (x, t) follows the Fokker-
Planck equation, which is defined as

d f
dt

= θ
d

dx
[(x− µ) f ] +

σ2

2
d2 f
dx2

Where in the Kuramoto model f = ρ, σ2

2 = D, µ = ρ̄, x = θ and θ = K. A
key feature of this type of process is its steady-state distribution in the limit
as time goes to infinity:

fs(θ) =

√
K

2πD
e
−K(θ−ρ̄)2

2D

The relevance of Ornstein-Uhlenbeck to the Kuramoto model with noise
incorporated lies in the steady-state phase distribution of Kuramoto oscil-
lators. Given zero initial conditions and identical oscillators, the cumula-
tive distribution function of the phases of Kuramoto oscillators after syn-
chronization with standard normal white noise is an error function, which
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corresponds to the probability density function given by fs(θ).

We can work backwards from the Fokker-Planck equation to obtain an
equation which describes the Ornstein-Uhlenbeck process. We first start
with the original equation

dρ

dt
+

d
dθ

(ρv) = D
d2ρ

dθ2

We first note that the function v(θ, t; ω) is equal to dθ
dt , which, in the contin-

uous setting, is given by:

v(θ, t) =
dθ

dt
= ω̄ + K

∫
Ω

ρ(θ′) sin(θ′ − θ)dθ′

where ρ is the phase density and Ω is the domain of θ’. When we assume
that θ′ ≈ θ, we can linearize just as we did in Section 2.3 and obtain:

v(θ, t) = ω̄ + K
∫
Ω

ρ(θ′)(θ′ − θ)dθ′

which simplifies to

v(θ, t) = ω̄ + K(ρ̄− θ)

substituting this back into the Fokker-Planck equation we obtain

dρ

dt
+

d
dθ

(ρ(ω̄ + K(ρ̄− θ))) = D
d2ρ

dθ2

we then let ω̄ = 0 without loss of generality:

dρ

dt
+ K

d
dθ

(ρ(ρ̄− θ)) = D
d2ρ

dθ2

which, when we consider ρ to be the probability density function of a ran-
dom variable ψ, corresponds to the stochastic differential equation for an
Ornstein-Uhlenbeck process:

dψt = K[(ρ̄− ψt)]dt + DdWt

Thus when we linearize about the fixed point of the Kuramoto model, we
see in fact that the phase distribution of the oscillators behaves as predicted
by Ornstein-Uhlenbeck, and more specifically that the width of the distri-
bution can be predicted by considering the parameters D and K.
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Figure 2.8 A plot of the CDF of the phases of the oscillators governed by equa-
tion 2.2.

2.5 A Hierarchy of Models

2.5.1 The Equations

To understand how the stochastic Kuramoto model defined by

θ̇i = ωi +
K
N

N

∑
j=1

sin(θj − θi) + ξi(t)

has a phase distribution corresponding to that of an Ornstein-Uhlenbeck
process, we first establish a hierarchy of models which can allow us to un-
derstand the parameter space of the Kuramoto model and its relationship
with this steady state distribution. The three models, placed in order of
increasing complexity, are

θ̇i = −θi + ξi(t) (2.2)

which is a standard model whose steady state corresponds directly to Ornstein-
Uhlenbeck,

θ̇i = ω̄ +
K
N

N

∑
j=1

sin(θj − θi) + ξi(t) (2.3)
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Figure 2.9 A plot of the phases of the oscillators governed by equation 2.3.

where every oscillator has an identical natural frequency, and

θ̇i = ωi +
K
N

N

∑
j=1

sin(θj − θi) + ξi(t) (2.4)

We note the similarity between the exponential decay model (2.2) and the
linearization of Kuramoto about its synchronized fixed point, as near that
point the Kuramoto model is approximately a set of N equations which
correspond to exponential decay, as verified by the eigenvalues derived in
Section 2.3. Thus model 2.3 should have a steady-state distribution whose
CDF is a error function, which would match the result predicted by the
theory of Ornstein-Uhlenbeck. In model 2.4, we observe unique behavior
which is discussed at the end of this section.

2.5.2 Numerics

In the first model (equation 2.2), we observe a combination of exponential
decay in θi for each oscillator, as well as the presence of white noise. A plot
of phase v. time is shown in Figure 2.7. And the steady state distribution,
an error function, is shown in Figure 2.8. The behavior of the phases in
time is that of exponential decay to a steady state distribution, whose CDF
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Figure 2.10 A plot of the phase distribution of the oscillators governed by equa-
tion 2.3.

is precisely that predicted by Ornstein-Uhlenbeck (the integral of a Gaus-
sian).

We now examine the second model, in which each oscillators has an iden-
tical natural frequency (equation 2.3). As we showed in Section 2.3, in
N − 1 dimensions, this model ought to behave as predicted by Ornstein-
Uhlenbeck. That is, its steady state phase distribution should have a CDF
which is an error function. We first examine a plot of the phases of oscil-
lators against time for this model, shown in Figure 2.9. We again observe
synchronization, where the phases of the oscillators approach a distribu-
tion, whose CDF is shown in Figure 2.10. We again see that the steady state
behavior matches that predicted by Ornstein-Uhlenbeck. Instead of having
a system of coupled oscillators which are identical, we instead have one
in which each oscillator has a unique natural frequency. In this case, we
observe that although the oscillators do in fact synchronize, each oscillator
behaves differently as an individual in this case.

Because the natural frequencies are not identical, the phases reach a state in
which the distance between them remains constant. It is important to note
that this implies that the phases do not all have to be the same. Because
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Figure 2.11 A plot of the phases of the oscillators governed by equation 2.4.

of this, we observe different qualitative behavior in plots of the phases of
theses oscillators vs. time (Figure 2.11)

In Figure 2.11, we see colored stripes in the plot of phase vs. time for the
oscillators in the simulation. This corresponds directly to the behavior just
described; each oscillator moves randomly about a fixed value of θ, which
leads to the formation of these bands.

It is also important to note that the width of the phase distribution does
not change in time. We can see this visually by looking at a phase vs. time
plot with the mean phase subtracted out at each time step (see Figure 2.12).

We have that the spread of the distribution is independent of time which
reflects the stationarity of the distribution described in Section 2.4. Note
that when we call the phase distribution of oscillators stationary, we mean
that its mean and variance do not change over time. We also see that the
variance of each of these distributions is constant in time.

In this section, we thoroughly examined the Kuramoto model and its ten-
dency to exhibit synchronous behavior. We then introduced white noise
to the model, taking note of the impact of this noise on the emergent be-
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Figure 2.12 A stationary plot of the phases of the oscillators governed by equa-
tion 2.4.

havior of the system. We then linearized the model about its fixed point
and showed how the stochastic Kuramoto model’s steady-state phase dis-
tribution is that of an Ornstein-Uhlenbeck process. Finally, we addressed
the most complex version of the stochastic Kuramoto model in this paper:
the case in which the natural frequencies of the oscillators are taken from
a distribution. In that case, we observed a distinct striped pattern in the
phase v. time plot of the oscillators. In the next chapter we discuss how
computational topological methods can shed light on the behavior of the
Kuramoto model.



Chapter 3

Clusters and Topological
Signatures

3.1 Betti Zero

Under the usual all-to-all coupling structure Kuramoto oscillators tend to
synchronize into one cluster of oscillators. When we alter this and im-
pose a subsystem structure on the model, the oscillators break into multiple
clusters which behave as a standard Kuramoto system individually. That
is, each cluster exhibits phase-locked behavior and moves with some fre-
quency ω̄j, the average natural frequency of every oscillator in the jthcluster.

In order to conduct topological data analysis on phase data from the Ku-
ramoto model, we must first convert the phase data into point-cloud data.
We first take the input data, which is a time series of phase values for each
oscillators, and then turn it into points in Euclidean space (which may also
be a time series).

For example, If we are to simulate the behavior of 40 oscillators over ten
characteristic times τ, where our time steps are a twentieth of a character-
istic time, we would have a phase vector whose dimensions are 40× 2001.
At each time-step, we have a column vector of length 40, which we label
~θn(t) where n is the time-step.

Once we have the set of vectors~θn(t), we must first determine how to con-
vert this information into point cloud data. We will utilize the following
coordinate system, which lies on the n-torus:
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cos(θ(t− τ))
sin(θ(t− τ))

...
cos(θ(t− nτ))
sin(θ(t− nτ))



At first glance, the choice of sine and cosine as observation f unctions seems
odd. However, what using these two functions allows us to do is to map
the data onto a familiarly space, namely the n-torus, which is the direct
product of S1 with itself n times.

We have incorporated time delays as a proxy for angular velocity, partly in-
spired by Takens’ Embedding Theorem, which states that for a dynamical sys-
tem with strange attractor A of box-counting dimension dA, the attractor A
can be embedded in Euclidean space with dimension k where k > 2dA. (?)
In most cases, we will use the sine and cosine of phase differences, though
we will incorporate more in cases in which noise or small variances in nat-
ural frequency complicate the process of splitting data points into clusters.

We also note that an attractor of a dynamical system is a set of values to
which the systems tends, and that the box-counting dimension is just a way
of determining the fractal dimension of a set in Euclidean space. Takens’s
theorem therefore gives us a sufficient condition for embedding the attrac-
tor of the Kuramoto model, which is necessarily a fixed point or a limit
cycle. (Giacomin et al., 2012) Note that the case in which the oscillators
reach a fixed point corresponds to the case in which the mean natural fre-
quency is zero, whereas the limit cycle case emerges when ω̄ = 0.

Once we have time series point-cloud data selected from the options pro-
vided previously in this section, we are left with the decision to examine
the data at individual time-steps, which lends itself to realizations such as
topological barcodes, or to look at every timestep and use a CROCKER
plot to realize the Betti numbers for the data over many time-steps. (Topaz
et al., 2015) This is done using implementations from the Javaplex library.
(Adams and Tausz, 2014) For the intents and purposes of this paper, we
will rely on topological barcodes.



From One Cluster to Many 29

Figure 3.1 A plot of phases v. time for Kuramoto oscillators with one cluster
built into the network structure (also known as all-to-all coupling).

3.2 From One Cluster to Many

This section will first be a brief review of the previous chapter, in the context
of clustering. The simplest case is that in which Kuramoto oscillators form
one cluster. An example of system in which there is only one cluster is
given in Figure 3.1. When we discuss clustering in the context of 1 cluster,
we are simply describing the synchronization of oscillators governed by
the standard Kuramoto model (Kuramoto, 1975). In order to ensure that
the application of persistent homology indeed yields a B0 value of 1, we
consider a simplified representation of Kuramoto oscillators subject noise
and split into two clusters, evolving over time, where f1(t) describes the
evolution of cluster 1, and f2(t) describes that of cluster 2. Why we chose
to consider the two cluster case will soon become evident. First, the phase
evolution of the simulation which we will estimate using linear functions
of the form at + b is shown in Figure 3.2.

f1(t) = αt + α0 (3.1)
f2(t) = βt + β0 (3.2)
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Figure 3.2 A plot of phases v. time for Kuramoto oscillators with two clusters
built into the network structure.

We now assume that we have generated a numerical simulation described
by these two equations. Taking the simulation data, we convert it into our
point-cloud format, which requires us to sample f1 and f2 at two times, t1
and t2. Letting t2 - t1 = τ, we calculate f1(t − τ) and f2(t − τ), and then
vectorize these values as follows:[

cos( f1(t− τ))
sin( f1(t− τ))

]
(3.3)

[
cos( f2(t− τ))
sin( f2(t− τ))

]
(3.4)

We are now interested in determining the Euclidean distance between these
two points, which is a rough estimation of the distance between two points,
each members of a different cluster. Using the standard euclidean 2-norm,
we find the distance between these two points to be;√

(cos( f1(t− τ))− cos( f2(t− τ)))2 + (sin( f1(t− τ))− sin( f2(t− τ)))2

(3.5)
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which simplifies to

g(τ) =
√
(cos(ατ)− cos(βτ))2 + (sin(ατ)− sin(βτ))2 (3.6)

where we have used the fact that f1 and f2 have constant derivatives. We
simplify the function g(τ) one more time:

g(τ) =
√

2− 2 cos[(α− β)τ] (3.7)

We now seek to maximize the value of this function, as the maximum of
g(τ) occurs at the τ value which maximizes the distance between two clus-
ters in our euclidean data space. This in turn gives us the best chance of
detect the correct number of clusters. We find that the maxima of this func-
tion occur at all τ where

τ =
(2n + 1)π

α− β
n ∈ Z (3.8)

In fact, it can be shown that this τ value is a maximizer of the distance
between two clusters when we use any number of time lags to construct
data of the form:


cos(θ(t− τ))
sin(θ(t− τ))

...
cos(θ(t− nτ))
sin(θ(t− nτ))



We also note that at α = β, this quantity is undefined. This case corre-
sponds to the one cluster case, in which all oscillators have synchronized
and move together at some angular velocity ω̄ as described by the Ku-
ramoto model. This is to say, if all oscillators are truly in one cluster, and
for sufficiently large ε, that no value of τ will allow us to detect two clusters
of data points. For the two cluster case, we simply choose τ according to
this formula.

It is usually the case that we wish to choose τ > 0, as well as the small-
est τ, that is when n = 0. This can also be explained qualitatively: for τ
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values too small, the noise in the model makes detecting clusters substan-
tially more difficult. On the other hand, when τ is too large, we observe
phase-winding, which is not necessarily a problem given the periodicity of
our cloud-point data, but is nevertheless one more thing to worry about in
our analysis.

Typically we will use three time delays to embed the time-series data for
each oscillator in 6-space, that is, we will be using data of the form:



cos(θ(t− τ))
sin(θ(t− τ))

cos(θ(t− 2τ))
sin(θ(t− 2τ))
cos(θ(t− 3τ))
sin(θ(t− 3τ))



It is important to note a few properties of data of this form. The most rele-
vant is the manifold on which the data lives. If we evaluate the norm of a
point −→x in a set of data of this form, we find that

||−→x || =
√

3

We also know that any two points which lie in this data set can be no more
than 2

√
3 apart, as that maximum is achieved, for example, when the two

points are given by 

1
0
1
0
1
0

 ,



−1
0
−1
0
−1
0


Thus we have no need to consider a filtration value (proximity parameter
value) any larger than 2

√
3 when using this specific form of data.

Things get more complicated when we introduce network structures which
force the oscillators into more than two clusters. (see Figure 3.3) It becomes
much more difficult to determine an optimal τ value analytically, and we
therefore rely on computational techniques, which are outlined in the fol-
lowing section.
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Figure 3.3 A plot of phases v. time for Kuramoto oscillators with four clusters
built into the network structure.

3.3 Cluster Identification

Because we are interested in being able to detect any number of clusters, we
are forced to abandon analytic techniques like that outlined in the previous
section and optimize our time delay measurement τ using computation. In
order to do this, we outline an algorithm to help optimize time delay val-
ues, from which we proceed to use a union-find algorithm to identify the
members of each cluster (Agarwal et al., 2006):

Step 1: Estimate the noise amplitude in simulation data, denoted D
Step 2: Choose a proximity parameter value ε equal to 4D to ensure that os-
cillators which are synchronized are decidedly connected in our euclidean
data space
Step 3: Fix ε and vary τ
Step 4: Determine which values of τ return the correct B0 value
Step 5: Use union-find to identify cluster members for some subset of the
ideal values of τ
Step 6: Determine which oscillators remain in the same cluster across mul-
tiple values of τ
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Figure 3.4 A plot of B0 versus the value of τ chosen.

Figure 3.5 Output Data Denoting Clusters Generated for a fixed value of Tau

Step 7: Use this information to determine the number of clusters and their
members

We now describe these individual steps.

1. For the purpose of proof of concept, we use the fact that D is an input
parameter to carry out this step

2. This step follows quickly from the previous one.

3. For this step, we loop over all values of τ between 0 and 1.5T, or 1.5
characteristic times. Doing so generates data which we can plot as we
do in Figure 3.4.



Efficacy of Our Cluster Identification Method 35

Figure 3.6 Topological Barcode Plotted in terms of Tau

4. We now choose a selection of τ values τ0, τ1, τ2, ..., τN which return
the proper number of components. In the purely empirical case in
which we are unaware of the number of clusters already, we would
defer to choosing the maximum value attained by a function such as
that displayed in Figure 3.4.

5. Running a union-find algorithm on the simplicial complexes gener-
ated by using τ0, τ1, τ2, ..., τN , we are given a list of clusters and their
respective members as output. An example of this output is shown
in Figure 3.5.

6. We now see which oscillators are members of the same cluster across
τ0, τ1, τ2, ..., τN , which gives us the number of clusters and their mem-
bers. A barcode depicting this data is shown in Figure 3.6.

3.4 Efficacy of Our Cluster Identification Method

In order to determine how well this approach works, we test the effective-
ness of the algorithm’s dependence on the noise amplitude. Running 100
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Figure 3.7 Dependence of Cluster Detection Accuracy on the Noise Amplitude
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Figure 3.8 Dependence of Cluster Detection Accuracy on the Variance of ω
and the Number of Oscillators

simulations for 100 values of D, the noise amplitude, between D = 0.01 and
D = 10, we obtain the results shown in Figure 3.7. We observe that using a
higher embedding dimension is generally better for higher levels of noise.
However, at low noise levels, a higher embedding dimension is not neces-
sarily better. This may be a result of transience in the solution, but is left to
be explained.

We observe that there is little effect on the efficacy of our cluster-detection
method when the variance of the distribution of the natural frequencies
of the oscillators is changed. This is shown graphically in Figure 3.8. We
also note that this algorithm’s efficacy is not dependent on the size of the
system, which is also demonstrated in Figure 3.8.
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3.5 Cluster Detection under Nonlocal Coupling

We can alter the Kuramoto model in ways other than by changing its net-
work structure. Recall the stochastic Kuramoto model

θ̇i = ωi +
K
N

N

∑
j=1

sin(θj − θi) + ξi(t)

in which the coupling strength K is constant. By introducing a spatial vari-
able x, which we assign to each oscillator, we can rewrite the system as

θ̇i = ωi +
1
N

N

∑
j=1

K(xi, xj) sin(θj − θi) + ξi(t)

We now must choose a function K(xi, xj) which makes physical sense. To
impose the principles of nonlocal coupling, we want a function which as-
signs high coupling values to oscillators which are close together in phys-
ical space and low values to those which are far apart. We also want the
function to be even and positive everywhere. Taking inspiration from Ku-
ramoto and Battogtokh, as well as others who have written on nonlocally
coupled oscillators, we choose the function

K(xi, xj) =
κ

2
e−|xi−xj|

(Kuramoto and Battogtokh, 2002) and end up with the system

θ̇i = ωi +
κ

2N

N

∑
j=1

e−|xi−xj| sin(θj − θi) + ξi(t)

for which we have example simulations shown in Figures 3.10 and 3.9.
Using the algorithm outlined in Section 3.3, we can detect the number of
clusters into which the oscillators break up. This case is distinct from those
explored in 3.4, as we retain the all-to-all coupling structure, so the clus-
tering in this case comes from spatial dependence, not connectivity of the
system itself. In Figure 3.9 we observe a strongly decoupled system of os-
cillators, with the topological barcode corresponding to the simulation data
from it is shown in Figure 3.9.

We see that in the uncoupled case the algorithm detects the proper num-
ber of clusters: almost every oscillator is moving at a unique frequency,
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Figure 3.9 Kuramoto Oscillators with Weak Spatial Coupling

Figure 3.10 Kuramoto Oscillators with Strong Spatial Coupling

which, by the nature of the point cloud in which we embed our phase data,
suggests that we ought to expend at B0 value which is approximately the
number of oscillators, in this case 32.

When we increase the value of κ enough, we observe synchronization
under the nonlocal coupling scheme, demonstrated in Figure 3.10. In this
case, the algorithm correctly identifies that the system is completely syn-
chronized, for a wide range of values of τ (shown in Figure 3.10.) An in-
teresting and expected finding during this test of our algorithm was that it
was better to choose lower embedding dimensions (roughly four or six),
which was quite efficient computationally, as opposed to having to use
higher dimensional data. This is most likely a consequence of the fact that
we chose to use low noise amplitude values in these simulations (0.1). At
much higher values of D, one should embed in higher dimensions.





Chapter 4

Conclusions and Future
Directions

In this thesis we began with an introduction to the Kuramoto model for
coupled oscillators. We then moved on to the concepts behind topological
data analysis, and how ideas like persistent and simplicial homology can
be applied to simulation data generated from the Kuramoto mode. We then
introduced noise to the Kuramoto model, and examined how this changed
the long-term behavior of the system. By linearizing about the system’s
stable fixed point, we were able to derive a result which matches the the-
ory of Ornstein and Uhlenbeck: the oscillators tend to become distributed
normally about an average phase value as t → ∞. We also identified the
N − 1 dimensional stable eigenspace which corresponds to synchrony and
the 1 dimensional eigenspace which corresponds to the symmetry mode of
the Kuramoto model.

After developing the proper theory to understand the connection between
the coupling constant K, the noise amplitude D, and the width of the steady-
state distribution of the stochastic Kuramoto model, we utilized the tools
outlined in section 1.2 to study simulation data generated from the model.
We embedded the time series data for each individual oscillator on the n-
torus by using indicator functions inspired by the work of Floris Takens.
From this, we fixed a value for the proximity parameter ε and generated
topological barcodes in τ, the time delay. By identifying optimal values of
both ε and τ using both analytical and empirical methods, we were able to
develop a clustering-detection algorithm which is over 97 percent accurate
for different ranges of noise, depending on the number of time lags used to
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construct the point cloud (see Figure 3.7).

Possible extensions of this research include the examination of other mod-
els for coupled oscillators, namely Van der Pol oscillators and pulse-coupled
oscillators. With these other models come different questions, such as,
what is synchronization in the context of pulse-coupling? Or, how can we
use the ideas of persistent homology, reconstruction of attractors through
time delays per Takens’s theorem, and embedding of phase data in high-
dimensional euclidean data to detect synchrony, cluster formation, and
other behavior typically seen in systems of coupled oscillators? There is
also the question of the consequences of imposing different network struc-
tures on systems of coupled oscillators. There has been some work done in
this area, but little to none involving methods from topological data analy-
sis.
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