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Wandering About:
Analogy, Ambiguity and Humanistic Mathematics

W. M. Priestley

University of the South, Sewanee TN 37383
wpriestl@sewanee.edu

Synopsis

This article concerns the relationship between mathematics and language, em-
phasizing the role of analogy both as an expression of a mathematical property
and as a source of productive ambiguity in mathematics. An historical discus-
sion is given of the interplay between the notions of logos, litotes, and limit
that has implications for our understanding and teaching of Dedekind cuts and,
more generally, for a humanistic notion of the role of mathematics within liberal
education.

Mathematics and language have interacted in many ways over the ages.
Examples range from the effect of prehistoric “counting tokens” upon written
symbols to today’s strong presence of mathematics in linguistics and cryp-
tography. We tend to overlook, however, the large role that ordinary rhetoric
plays in this connection.

Consider, for example, Mark Twain’s insight into the writer’s craft:

A good word is to the best word as a lightning bug is to the lightning. (T)

The statement (T) is, of course, an analogy, that is, an assertion of the
form “A is to B as C is to D.” By succinctly indicating enlightening but
unsuspected connections between pairs of things, the analogy has become
a major rhetorical tool in the humanities. One side of an analogy is often
more familiar to us, making the other side easier to comprehend. Is there
something “mathematical” going on here?

James Gregory [17, page 215] used an analogy to give us insight into the
vitality of 17th-century mathematics:
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116 Wandering About

The power of all previous methods has the same ratio to that of series

as the glimmer of dawn to the splendor of the noonday sun.
(G)

The appearance of the word ratio in Gregory’s analogy reminds us of an
almost forgotten connection between mathematics and the humanities: an
analogy is an assertion of the sameness of ratios—ratios being understood
perhaps in a very general sense.

Indeed, logos, the Greek word for the Latin ratio, is the main stem of
analogia, from which our word analogy comes. Here the prefix ana- means
“up” in a generalized sense, as used also in analysis (“loosening up”). Like
analysis, a word whose meaning was extended from geometry to philosophy
in ancient times, analogia originally applied to mathematical assertions and
later to rhetorical analogies.

Today the form of an analogy is often indicated in symbols by writing

A : B :: C : D,

where the four dots in the middle may remind us of the assertion of a “square”
balance between the ratio A : B and the corresponding ratio C : D. Com-
pletion of an analogy (giving three of its members and asking for the fourth)
is sometimes featured in questions on intelligence tests. Putting the question
in a multiple-choice setting lessens worry about existence and uniqueness of
the answer.

An open-ended variant of this is to take two “extremes” and ask whether
there exists a “mean” between them. For example, does there exist an entity
X serving as intermediary between the sciences and the humanities in the
sense that

SCIENCES : X :: X : HUMANITIES? (P)

Beginning in the fourth century BCE the ancient Greeks exploited re-
lations among the ideas behind logos, litotes, and limit that allowed them
to initiate mathematical analysis without developing our numerical epsilon-
delta approach. Recalling these efforts brings mathematics closer to the hu-
manities, suggests possibilities for new approaches to teaching, and—as we
move toward modern times—sheds new light on the old topic of Dedekind
cuts and on the place of mathematics within the liberal arts today. Perhaps
a solution to proposition (P) will suggest itself along the way.
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Figure 1: Plato and Aristotle “wandering about” in Raphael’s School of
Athens. See [15]. Bronze sculpture, 18” tall, by Jeanie Stephenson, in-
stalled October, 2012, in Courtyard of Woods Laboratories, the University
of the South, Sewanee TN. Photograph by Mary Priestley, reproduced by
permission.

1. Logos

In Greek mathematics, logos (plural, logoi) means ratio—“the size of one
thing relative to another” according to Euclid V—but the word is more
familiar outside mathematics. “In the beginning was the logos,” the phrase
from the New Testament that opens the fourth gospel, contains perhaps its
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most famous usage, written at a time when the word already signified a
wealth of related notions.

Alternative English translations of logos include word, language, speech,
and reason. In the fourth century BCE it was seen as a unifying principle—
along with notions of harmony, rhythm, etc.—permeating the enkuklios paideia,
as the Greeks referred to the distinctive education that they developed [21].
Logos still plays a unifying role in liberal education, as suggested by such En-
glish derivatives as logic and analogy, and by the host of modern academic
words, such as ecology, possessing the suffix -logy.

Although a numerical ratio such as 154 : 49 would be identified today
with the fraction 22/7, we should remember that the Greeks possessed no
algebra of common fractions [20]. They would have had little inclination
to add one ratio to another, although they saw clearly—see inequality (E4)
below, for example—when one ratio might be said to be less than another.
Indeed, as documented in [20] and described for the general reader in [9],
our modern quantitative sense took a great many centuries to develop. The
strength of this sense, however, may be seen in our quick identification of the
rational number 22/7 with its large equivalence class, including such fractions
as 154/49.

Archytas, a late Pythagorean and a friend of Plato (427–347 BCE), is
traditionally credited with a striking analogy asserting the sameness of two
logoi whose four members constitute a large part of the liberal education
developed by the Greeks:

ARITHMETIC : MUSIC :: GEOMETRY : ASTRONOMY. (A)

The quadrivium, as this fourfold collection of disciplines was much later
named by Boethius (480–524), would eventually become an integral part
of the classical liberal arts of medieval European universities. Archytas’s
analogy is usually understood by reflecting that arithmetic is about num-
bers “at rest” and geometry is about magnitudes “at rest”; whereas music
and astronomy study the same things, respectively, but “in motion.” That
is, the science of music concerns itself with the numbers underlying pitches
produced by the vibrations of the strings of a lyre, while astronomy studies
magnitudes revolving in the great celestial sphere.

The use of the compact form (A) to represent Archytas’s analogy would
not have appeared in ancient times when the Greeks wrote everything out
“rhetorically,” rarely using abbreviations beyond allowing letters to stand for
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numbers or for the vertices of a geometric figure. In contrast, a college in-
structor today might breezily remark that if a plane cuts a cone parallel to
one of the cone’s generators, a Cartesian coordinate system can be easily
imposed upon the plane so that the curve of intersection has an equation
cy = x2 for a certain constant c. Apollonius (260?–200? BCE), however, in
making essentially this observation long ago, required a great many words
to express virtually the same idea, calling attention to the equality of ar-
eas of a certain square (of size x) and a certain rectangle (with sides c and
y). Apollonius went on to note that the analogue of this equality of square
and rectangle becomes an inequality in the case of the other types of conic
sections. Accordingly, he gave them the names that became our familiar
parabola, hyperbola, and ellipse, depending upon (as we would say today)
whether the symbol =, >, or < applies. The connections between the three
types of conic sections, these three modern symbols, and the familiar rhetor-
ical terms parable, hyperbole, and ellipsis are noteworthy, both for seeing ties
between mathematics and rhetoric and for apprehending how symbols can
sometimes reveal analogies with surprising succinctness. See [18] for a more
complete discussion of Apollonius’s ideas.

While their mathematics became more involved, the Greeks remained
reticent to use symbolism to break the ties joining mathematics and rhetoric.
This is often seen as a hindrance. It is worth emphasizing that it took a
very long time for abbreviative notations and their consequent large-scale
algebraic manipulations to manifest themselves. They have proved to be
so efficient, however, that we have all but forgotten about past struggles in
mathematics between symbolists and rhetoricians; see [7, pages 426–431].
The square of four dots in (A), for example, although it may remind us of
ancient times when the Pythagoreans identified the figurate number Four
with Justice, was accepted as an abbreviation for equality in proportions
only in the 17th century.

The analogy (A) would be taken by the ancient Greeks to exemplify much
the same kind of information as is conveyed by the ancient law of the lever

W : w :: d : D, (E1)

where W and w are weights whose centers of gravity are located distances D
and d from the lever’s fulcrum, respectively. Condition (E1) of course, reflects
the assertion that a lever balances when the ratio of the weights upon it are
in inverse proportion to the ratio of their distances from the fulcrum.
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The famous “three-halves power” planetary law of Johannes Kepler (1571–
1630) might be expressed by writing

T 2 : t2 :: R3 : r3, (E2)

where T and t are the periods of time taken for a full revolution about the
sun of planets whose mean distances from the sun are R and r, respectively.

In The Measurement of a Circle Archimedes (287–212 BCE) proved that

A : r2 :: C : D, (E3)

where A stands for the area of a circle with radius r, r2 stands for the square
whose side is r, and C stands for the circumference of a circle with diameter
D. Here on the left-hand side is the ratio of the area of a circle to the area
of a square, while on the right-hand side is the ratio of the length of the
circumference of a circle to the length of its diameter. The analogy (E3)
thus asserts that the ratio of two “two-dimensional” magnitudes is the same
as the ratio of two “one-dimensional” magnitudes.

Note that in fact all six of the ratios involved in (E1), (E2), and (E3)
are ratios of “like” magnitudes in the same way. This observation assumes
some importance in discussing similarities and differences between rhetoric
and mathematics.

2. Rhetorical analogy and mathematical proportion1

The long history of liberal education has seen several ups and downs in
the relationship between mathematics and rhetoric. Even in earliest times
the holistic nature of the ancient Greek enkuklios paideia began to fracture
under allied, but competing, interests. Plato emphasized the philosophical
side of education, dominated by the quadrivium, while Isocrates was touting
rhetoric, especially its power of oral persuasion. “The right word is a sure
sign of good thinking,” said Isocrates, anticipating somewhat the sentiment
of our analogy (T).

1While the connection between rhetorical analogies and mathematical proportions
seems little noticed today, it was clearly pointed out in 1929 in the fourth chapter, “Pro-
portions,” of Scott Buchanan’s Poetry and Mathematics [5], where analogies (E1) and (E2)
are also discussed.
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The victor, generally speaking, was Isocrates [21, page 194], and this vic-
tory was solidified during the long period of Roman domination that followed.
Between ratio and oratio there seemed to be little contest:

With the Greeks geometry was regarded with the utmost re-
spect, and consequently none were held in greater honor than
mathematicians, but we Romans have restricted this art to the
practical purposes of measuring and reckoning.

But on the other hand we speedily welcomed the orator. . .

—Cicero, Tusculan Disputations

It was the Romans who gave us the beautiful Latin phrase artes liberales,
but under their domination mathematics became increasingly valued for its
practical utility rather than its liberating qualities. Cicero (106–43 BCE)
used the Latin humanitas to translate the Greek paideia, which signified
both education and culture [21, page 99].

The ages since have seen more fluctuations in the relative importance
attached to the varying disciplines constituting the liberal arts. Suffice it to
say that today the humanities and the modern sciences have grown far apart,
with mathematics stretched ever more tenuously in between. Of course, there
are good reasons for distinguishing between the two. Whereas (E1), (E2),
and (E3) can each be reinterpreted in modern terms as asserting the equality
of two real numbers, the statements (T), (G), and (A) cannot. If we try to
reduce analogy (A) in this way, for example, we should ask exactly what sort
of entity is the ratio

ARITHMETIC : MUSIC (R1)

and in precisely what sense is it the same as

GEOMETRY : ASTRONOMY ? (R2)

Applying such a reductionist approach to (A), however, misses its rhetorical
point. We understand the analogy as a whole without feeling any need to
give a fixed and exact meaning to its constituent entities (R1) and (R2). In
fact, we might playfully rephrase, and re-interpret, the substance of (A) by
saying that, just as music is a trick that arithmetic plays upon the ear, so
astronomy is a trick that geometry plays upon the eye. Plato takes this point
of view in his Republic [530d]. The best rhetorical analogies invite multiple
harmonic interpretations, resisting reduction to a single level.



122 Wandering About

On the other hand, when discussing statement (E3), we might follow
Archimedes in attempting to give a common numerical meaning to the geo-
metric ratios A : r2 and C : D. He approximated the numerical value of C
: D to high accuracy by inscribing and circumscribing a circle with regular
polygons of 6, 12, 24, 48, and 96 sides, finally concluding that

223 : 71 < C : D < 22 : 7. (E4)

Thus, Archimedes proved that 22 : 7 is roughly equal to the ratio of the
circle to its diameter. Or, as we put it today, π is approximately 3.14. As is
well-known, the use of the symbol π as an abbreviation for the ratio of the
circle to its diameter is only about 300 years old.2 Archimedes’s result (E3)
is now generally interpreted to mean that π can be defined as the common
numerical value of the two geometric ratios in (E3), from which our familiar
formulas A = πr2 and C = πD follow.

In bracketing the size of π by inequality (E4), Archimedes hints at an
idea that would require some two millennia to come to fruition with Richard
Dedekind (1831–1916), as we shall see in Section 4. Archimedes’s efficient
algorithm that produces inequality (E4) can in principle be continued forever,
bracketing π ever more closely. Wherever we stop in this algorithm, however,
we do not, of course, find the exact numerical value of π. Instead we find out
more surely what π is not. This leads us to litotes.

3. Litotes

Rhetoricians borrowed the term analogy from mathematics, and math-
ematicians might now consider returning the compliment. Litotes, an old
Greek word meaning “plainness,” refers in modern rhetoric to something like
double negation.3 Explicitly, litotes refers to the expression of an affirmative
by the negation of its opposite. The term was not unfamiliar to high-school
English classes years ago, where it may have been pronounced with a strong
accent upon the second of its three syllables. Modern dictionaries still give
it three syllables, but seem to prefer to put the accent upon the first.

Whether we are familiar with the term or not, each of us uses litotes from
time to time. Occasionally litotes occurs almost unnoticed in a word where
the prefix a- means “not,” as in atom, which literally refers to something that

2A good reference for the history of the symbol π can be found in [4, page 442].
3As in many cases, the relevant Wikipedia article is a good first reference: http:

//en.wikipedia.org/wiki/Litotes, accessed January 30, 2013.

http://en.wikipedia.org/wiki/Litotes
http://en.wikipedia.org/wiki/Litotes
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is “not divisible.” Or when the prefix in- means “not,” as in infinite. More
commonly, however, its use in speech leads to a more modest expression of
what is much the same thing, for example, by saying “not unfamiliar” rather
than “familiar.”

The reason that we introduce the word here is that, as we shall see, the
Greeks were often able to use the notion of litotes to substitute for our notion
of a limit. It is true that the Greek peras can be translated as limit, but in a
geometrical, not numerical, sense. If we take its opposite, apeiron, to mean
indeterminacy, we see that the ancient Greeks had more or less our idea.

How did the Greeks do this? Litotes arises naturally in the discussion of
terms whose opposites are more quickly apprehended. Maturity and good
manners, for example, are barely noticeable, but their absence is conspicuous.
It is easier to recognize, and hence define, their absence rather than their
presence. Thus we may find ourselves listing a series of don’ts for immature
readers and/or writers of mathematics, rather than attempting the harder
and perhaps unrewarding task of explaining positively what mathematical
maturity means. The same considerations apply to codes of conduct. It is
no wonder that most of the Ten Commandments are statements about what
should not be done. And a college honor code today might explain little
about honor, but simply assert that one should not lie, cheat, or steal.

Such considerations apply to mathematics itself perhaps more than we
notice. Litotes reveals itself, of course, in indirect proofs first seen in an-
cient times where, to affirm a proposition p, we show that “not-p” leads to
absurdity. What we are really doing is proving “not-not p.” Constructivists
today would vigorously challenge the main premise of litotes when used in
this context—that “not-not p” is the same as p.

A more subtle use in Greek mathematics of litotes has to do with the no-
tion of equality of geometric magnitudes, where “equality” means “not being
unequal,” and properties following from inequality are stressed. Archimedes
postulated in effect, what may be implicit in Euclid, that if two magnitudes
are unequal, then some integral multiple of their difference exceeds either.
In discussing areas, volumes, and tangents, the ancient Greeks were able to
avoid speaking of limits by using the idea behind litotes. Archimedes proved
(E3) by showing first that the area A of a circle is equal to the area B of
a triangle whose base is the circumference of the circle and whose height is
the radius. To prove A = B he gave two brief arguments, showing that a
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contradiction follows from each of the two possibilities A > B and A < B.4

Archimedes’s name was indelibly stamped [31] upon the condition he
postulated during the late 19th-century arithmetization of analysis, about
which we shall say more below. Suitably rephrased in modern terms, this
condition is now well known as the Archimedean property ; see [1, page 19],
for example. A more sophisticated example of the use of litotes during this
modern period is seen in the statement of the important Baire category
theorem, where second category means not first category. Stripped of Baire’s
“category” terminology, a common version of the theorem states that a (non-
empty) complete metric space is not the countable union of nowhere-dense
sets.

For us, a particularly important use of litotes may be seen in the following
definition of the Riemann integral. We first define the straightforward no-
tions of lower and upper sums of a bounded, real-valued function f on [a, b]

and then declare that
∫ b

a
f(x)dx is the number—if there is only one such

real number—that lies between every lower and upper sum. Rather than
defining the integral directly, as we might do by first formulating a techni-
cal, numerical definition of the limit of a sequence of approximating sums,
we simply call attention to all real numbers that are too large and all that
are too small. The integral is the transition point between these two sets of
“wrong answers.”

Here the use of litotes obviates the need for a definition of limit. When it
can be used in this manner, litotes allows us to avoid limits—at least “one-
dimensional” limits—by specifying the desired limit as the complement of all

4Since this article concerns analogies, we should ask whether there is a three-
dimensional analogue of the planar equality A = B. In The Method [16, pages 20–21
of Supplement], Archimedes states

. . . judging from the fact that any circle is equal to a triangle with base
equal to the circumference and height equal to the radius of the circle, I
apprehended that, in like manner, any sphere is equal to a cone with base
equal to the surface of the sphere and height equal to the radius.

Archimedes emphasizes the importance in mathematics of both heuristics (here illustrated
in a discovery by analogy) and rigorous proof. A rigorous proof, of course, is essential, lest
a heuristic analogy lead us astray. Archimedes’s careful proof that the surface of a sphere
is four times its greatest circle is given in his paper On the Sphere and Cylinder. For
accounts of the re-discovery and modern analysis of the Archimedes palimpsest containing
The Method, see [23] and [24].
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numbers that are too large and all those that are too small.5 The idea is
close to Sherlock Holmes’s principle in detection: When you have eliminated
the impossible, whatever remains, however improbable, must be the truth.

4. Litotes again: Eudoxus’ condition and Dedekind cuts

Since Dedekind and Riemann were great friends, one cannot help wonder-
ing whether Dedekind’s 1872 monograph on cuts might have been spurred in
part by the definition of the integral just mentioned. Defining the Riemann
integral to be a transition point, or “cut,” implicitly relies upon the existence
of such cuts and calls attention to the importance of the completeness, or
connectedness, of the real numbers.

What do we mean by connectedness? Here litotes arises again in a natural
way, for the definition of a disconnected topological space, like the set of
rationals with the usual metric, is straightforward: it is the union of two
non-empty, disjoint open sets. To say that a topological space is connected
means that the space is not disconnected.

These modern issues, remarkably, are related to ancient mathematics.
Euclid V, which deals with the theory of proportion, states first that two
geometric magnitudes possess a ratio when some (positive, integral) number
of copies of each exceeds the other. This statement banishes the notion
of a fixed infinitesimal from the theory and formalizes what is meant by
saying that the two magnitudes must be of “the same kind” in order to
speak of their ratio. But what should be meant by “sameness” of ratios in
light of the fact, discovered about 430 BCE, that not all ratios of geometric
magnitudes are ratios of integers? The brilliant response to this question is
the condition given in Euclid V that is traditionally ascribed to Eudoxus
(395?–342? BCE):

Magnitudes are said to be in the same ratio, the first to the second
and the third to the fourth, when, if any equimultiples whatever
be taken of the first and third, and any equimultiples whatever
of the second and fourth, the former equimultiples alike exceed,
are alike equal to, or alike fall short of, the latter equimultiples
respectively taken in corresponding order [12, page 99].

5Surprisingly, one can use this trick of elimination (litotes) to give a “limit-less” defini-
tion of the derivative in elementary calculus as well. See [22].
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With the help of litotes this definition can be interpreted more briefly in
modern terms. To say that A : B : : C : D means that there is no ratio of
natural numbers lying between the ratio A : B and the ratio C : D.

In the setting of 19th-century set theory, and with emphasis upon modern
analysis rather than the venerable geometry of old, Dedekind turned this
condition on its head and defined a real number to be a cut (Schnitt) in
the rationals. By a cut is meant a partition of the rational numbers into
two (non-empty) segments. If we stipulate that the lower segment does not
contain a greatest rational, we have a one-to-one correspondence between
the Dedekind cuts and the system R of real numbers that we wish to define.
A final refinement, identifying the real number with its lower segment of
rationals, is often made so that the ordering of R corresponds simply to set
inclusion.6

Thus the foundations of mathematics have been moved from a geometric
framework of points, lines, etc. to an arithmetical construct where numer-
ically defined real numbers have taken the place of geometric points. This
is one of the accomplishments of the late 19th-century movement that Felix
Klein later called the arithmetization of analysis. In practice, of course, we
still find ourselves speaking of the “points” in R.

The connection between Dedekind cuts and the condition of Eudoxus
has long been known. See for instance [32, pages 38–40]. In his later years
Eudoxus belonged to Plato’s Academy, and Plato clearly appreciated aspects
of this connection dependent upon the notion underlying litotes.7

The ancient Greek geometers presumably thought they were discover-
ing relationships between formerly existing magnitudes. Certainly this is the
view of Platonism. The arithmetization of analysis, however, tends to empha-
size the creation8 of numerically-defined entities, beginning with the myriad

6The beauty of Dedekind’s scheme is that completeness of the set R thus defined is
established with remarkable ease: Given a non-empty bounded set S in R, take the union
of all the lower segments corresponding to members of S. The supremum of S is in hand.
On the other hand, the expected algebraic properties of R are tedious to verify, but follow
easily from the similar well-known algebraic properties of the rationals. See Section 8.4
of [1], for example. In the end we have a complete ordered field R, constructed by adding
notions of set theory to the well-known arithmetic of integers.

7See [28] where this is explained in more detail.
8In light of the tendency to believe that in mathematics one is forced to choose between

creation and discovery, it is worth noting that this is a false choice. We might take an
intermediate position suggested by Kronecker’s well-known quotation implying that the
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of Dedekind’s real numbers that had formerly been—numerically speaking—
nothing at all, only “holes” in the rationals. Dedekind himself felt that he
had created something new when he had the imagination to define an irra-
tional number in terms of what it is not. One recalls the familiar lines from
Midsummer-Night’s Dream:

. . . as imagination bodies forth
The forms of things unknown, the poet’s pen

Turns them to shapes and gives to airy nothing
A local habitation and a name.

Dedekind’s reification of the notion of a cut may thus be viewed as a poetic
act and, in fact, Dedekind is called “the West’s first modernist” in [11].

Discussions of mathematics and language often find themselves involved
with discussions of poetry.9 In this article we shall be content with indi-
cating in our final two sections why a humanistic approach to mathematics
sometimes leads to such an involvement.

5. Limit: A heuristic analogy

To have something concrete to deal with, let us first look at an example
of the use of an analogy in teaching elementary calculus. The heuristic use
of an analogy derives from the fact that one side of it is often more familiar
than the other, giving students a new way to appreciate the less-familiar side.

Almost everyone who has taught elementary calculus has been frustrated
by the fact that not every student finds the concept of a limit to be congenial,
and that repeating a discussion of Cauchy’s epsilons and deltas may only
increase anxiety. The student’s difficulty is that he simply does not “get the
idea” of a limit, which is indeed a subtle notion.

First note, however, that misapprehension may be due to the fact that the
notion of a function has not been fully absorbed. A function from the reals
to the reals can be understood at least three ways: statically, kinematically,
and geometrically. That is, as a pair of columns of numbers, as a rule of

natural numbers are discovered, while “alles anderes” is created by human beings. See [13]
for many other views. The issue of creation versus discovery can be avoided by simply
speaking of the discipline as being “developed.”

9The literature on mathematics and poetry is large, but one might see [5], [25], and
[34] as examples of different approaches over the years. Emily Grosholz has stated she has
long been contemplating a book that will show how poetry stands in the same relation to
the humanities as mathematics stands to the sciences.
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correspondence suggesting motion, and as a curve in the plane—giving us
three ways to illustrate remarks about functions. Nevertheless, some students
will still misinterpret what is meant by the limit of a function at a point in
or near its domain.

The fact that limit, with its attendant notion of continuity, is often dif-
ficult for students to comprehend is analogous to the fact that the notion
of mathematical maturity is also often difficult. Litotes is involved again
here: like maturity, the absence of continuity is much more noticeable than
its presence.

Continuity in mathematics, however, is not unrelated to continuity in
ordinary experience. Students may already have an intuitive feeling for con-
tinuity in everyday life—when what we actually do is what we intended to
do. Or, in the external world, when what actually happens is what seemed to
be on the verge of happening. Is there a simple heuristic device that will help
the student naturally distinguish the two notions of tendency and actuality?

The idea of a limit of a function at a point is no harder to comprehend
than the purpose of a human being at an instant in time. Consider this
analogy, abbreviated as

LIMIT : POINT : : PURPOSE : INSTANT.

At this stage the student is presumed to be befuddled by the notion of a limit,
but familiar with the ordinary distinction between one’s purpose and one’s
action at an instant. Then the student may see that there are several familiar
things that can happen on the right-hand side, and that these naturally
correspond to possibilities on the left. Most of us can think of instants
when our action did not reflect our purpose, or of times when we wandered
aimlessly with no purpose whatever. Sometimes, with or without a purpose,
we hesitate to act. Finally, there are the gratifying times when we have a
purpose and act accordingly, giving us a sense of continuity.

Considering the limit of a function at or near a point in its domain gives
rise to the same possibilities when we compare the action of the function
(what it actually does at the point) with its limit or “purpose” (what it
seemed on the threshold of doing at the point). When the limit exists and
agrees with the action we have continuity. An easy modification of this simple
heuristic device can help convey the idea behind a one-sided limit.10

10This analogy is discussed in more detail in [27, starting on page 15], an elementary
textbook intended to implement the program described in [26].
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6. Ambiguity, analogy, and the place of mathematics

It is time to consider whether X = MATHEMATICS is a possible
solution to our proposition (P), stated at the outset of this article. Not
everyone will agree on any solution, of course, but consideration of such a
possibility will surely involve our own conception of mathematics and of its
place in liberal education.

In 1928 Max Dehn [10] stated that mathematics stands between the hu-
manities and the natural sciences, “spheres that are unfortunately disjoint in
our country.” Dehn’s remark is an early foreshadowing of the two cultures,
a phrase made famous by C. P. Snow [30] to describe the large and growing
gap between the sciences and the humanities. We may be surprised when
reminded that during the Enlightenment the redoubtable Emilie du Châtelet
not only translated Newton’s Principia into French (published posthumously
in 1759), but also encouraged her consort, Voltaire, to join her in becoming at
home in both cultures [2]. Voltaire, the consummate man of letters, became
an admirer of Newton and was to remark that there was more imagination
in the head of Archimedes than in that of Homer. But of course, even in the
Enlightenment there were not many who aspired to be so well rounded as
this famous couple.

In fact, one might argue that the two cultures have been with us since the
inception of liberal education in ancient Greece, as indicated, for example,
by the dispute between Plato and Isocrates mentioned above. Yet it is worth
noting that in this period so long ago the sciences and the humanities each
respected and reinforced the other much more so than today. The critic
Edmund Wilson has pointed out a common goal in the endeavors of the
dramatist Sophocles and the geometer Euclid: Both are concerned with the
consequences of given initial conditions. In the case of Euclid we see how
the axioms force upon us the propositions that follow, while in a drama by
Sophocles we see how the interaction of initially given human impulses must
inevitably play out in the end. “The kinship, from this point of view, of the
purposes of science and art,” says Wilson, “appears very clearly in the case
of the Greeks” [33, page 269].

What has happened to this kinship that owed much to the service of
mathematics as an intermediary? Its decline is surely connected with the
fact that many people today tend to identify mathematics with the sciences,
or with quantitative literacy in education. They could only be puzzled by the
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suggestion that X = MATHEMATICS might be a solution to proposition
(P). Such a suggestion might be considered, it seems, only by taking account
of the humanistic side of mathematics.

For most of us, forgetting the long evolution of our modern views, the
ancient Greeks sometimes seem to have gone out of their way to couch math-
ematical ideas in geometric form. The condition of Eudoxus in Euclid V
becomes more perspicuous when we reinterpret it, as Dedekind did, in terms
of real numbers. A simpler example is given by the Pythagorean theorem,
which we associate with the algebraic equation a2 + b2 = c2 or with the
distance formula in the Cartesian plane. Euclid’s geometric proof of the the-
orem, however, says nothing about numbers. It shows how to decompose a
square on the hypotenuse into two rectangles, each respectively equal in area
to the squares built upon the legs of the given right triangle.

Ambiguity is at play here. A similar sort of ambiguity can be seen when
considering perhaps the most important notion in modern mathematics. As
Hermann Weyl writes [32, page 8], “Nobody can explain what a function
is, but . . . ” Weyl goes on to explain what really counts, but who can be
said to comprehend fully the idea of a function without being able to hold
in mind simultaneously a static, kinematic, and geometric concept? “By
x,” William Feller used to say, perhaps to irritate precisionists, “I mean the
function that takes precisely the value x at the point x.” Feller also made
the provocative remark that ambiguity is what makes mathematics possible,
but it seems unclear how seriously he meant this to be taken. Nevertheless,
the way that we get and value ideas in mathematics11, the way we learn and
teach the subject, and the way we hold it in mind, relies upon an (inborn?)
appreciation for a certain kind of productive ambiguity that is not the enemy
of clarity (cf. [14]).

For example, a nontrivial “if-and-only-if” statement can be thought of as
announcing an ambiguity in the sense that ostensibly different things can
somehow be seen to be the same. Whenever we speak of an equivalence class
by calling attention to a particular representative of it —“consider the ra-
tional number 22/7”—we are of course speaking ambiguously. And a similar
remark applies to isomorphisms, which can often be regarded as elaborate
analogies. A proof of the assertion that R is categorical in the sense that any

11 See, for example, the chapter “Romance in Reason” of [27], whose title is intended to
paraphrase the chapter’s thesis, that elements of Romanticism are clearly evident in the
development of 17th-century analysis (calculus) during the so-called Age of Reason.
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two complete ordered fields are isomorphic shows us a functional correspon-
dence making it clear that pairs of elements of the two fields are analogous on
several levels: with regard to their additive, multiplicative, and order prop-
erties.

How is it possible that mathematics, the most precise of subjects, carries
along with it aspects of ambiguity? The relation of the word to ambigere,
a Latin verb meaning “to wander about,” hints at the answer. Is ambiguity
not due—in part, at least—to the role of analogy, which is now commonly
seen as crucial to all thought? “Any history of thought,” writes Buchanan [5,
page 174], “might begin and end with the statement that man is an analogical
animal.”

Analogies give us a priceless source of new ideas, but they must often be
used with caution. We have noted how Archimedes says in his Method that
we should be bold to seek out ideas from analogies—or from mathematical
models, as we might call the fruits of his method today. At the same time
Archimedes reminds us that in mathematics a proof must usually follow, for
otherwise the analogy may mislead. Using the language of modern popular
culture, we might say that Archimedes’s remark has to do with our right
brain and our left brain. Most of us are naturally stronger on one side than
on the other, and the two-culture gap is exacerbated when our education
tends to promote this disparity.

Should not a good liberal education seek to shore up our weaker side so we
can better see these cooperating opposites? Perhaps the sculpture pictured
at the outset of this article (Figure 1) has a deeper truth to tell. If either
the seer or the sage depicted in that sculpture were eliminated, the unity of
Raphael’s composition would be destroyed. See Figure 2.

L. F. Richardson, writing in 1927, reminds us of this issue.

There are, so to speak, in the mathematical country, precipices
and pit-shafts down which it would be possible to fall; but that
need not deter us from walking about. Yet if we wish to explore
these steep descents, the pedestrian must be supplemented by the
acrobatics of the pure mathematician [29, page 42].

More recently, André Weil is quoted by Armand Borel [B2009] as follows:

Nothing is more fecund, all the mathematicians know it, than
those obscure analogies, the blurred reflections from one theory to
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Figure 2: “Cooperating Opposites” by Jeanie Stephenson. Reproduced by
permission.

another. . . nothing gives more pleasure to the researcher. One day
the illusion drifts away, the premonition changes to a certitude:
the twin theories reveal their common source before disappearing;
as the Gita teaches it, knowledge and indifference are reached at
the same time. The metaphysics has become mathematics, ready
to form the subject matter of a treatise, the cold beauty of which
cannot move us anymore.
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Fortunately for researchers, as the fogs clear away on some
point, they reappear on another. . .

In ancient times, as we have noted, the notion of an analogy was the
common property both of mathematics and of the humanities. On the one
hand it was capable of rendering precise propositions, while on the other it
could allude ambiguously to connections on more than one level. The search
for hidden analogies motivates us all.

7. Concluding notes and dedication

An anonymous referee suggested references [5] and [20] in response to
an earlier version of this article. The connection between litotes and simple
notions of a limit was noted in [28]. For discussions of analogy and ambiguity
relating to mathematics, see Chapter 4 of [8] and Section I of [6]. And see
[19] for the role of analogies in understanding nature.

This paper is dedicated to the memory of Edward McCrady (1906–1981),
whose variety of interests and love of language inspired many.
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