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Abstract

Richard Ehrenborg conjectured that in a bipartite graph G with parts X
and Y, the number of spanning trees is at most

∏
v∈V(G) deg(v) divided by

|X | · |Y |. We make two main contributions. First, using techniques from
spectral graph theory, we show that the conjecture holds for sufficiently
dense graphs containing a cut vertex of degree 2. Second, using electrical
network analysis, we show that the conjecture holds under the operation of
removing an edge whose endpoints have sufficiently large degrees.

Our other results are combinatorial proofs that the conjecture holds
for graphs having |X | ≤ 2, for even cycles, and under the operation of
connecting two graphs by a new edge.

We also make two new conjectures based on empirical data, each of
which is stronger than Ehrenborg’s conjecture.
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Chapter 1

Introduction

1.1 Motivation

We begin by motivating the notions of a spanning tree and a bipartite graph.
A graph consists of vertices and edges, with each edge connecting two
vertices. Graphs abstract real-world situations in which any two objects are
either related or unrelated. For example, in the case of a social network, the
objects are friends and the relation is mutual friendship.

Consider the following procedure: starting from a connected graph G,
remove edges one at a time until no more edges can be removed without
disconnecting the graph. The subgraphs of G that can be obtained from
this procedure are known as spanning trees in G. In general, G will contain
multiple spanning trees, obtained from G by removing different sets of
edges. We denote by τ(G) the number of spanning trees in G.

To see an application of spanning trees, let G1 be the graph in which
vertices represent airports and every two vertices are connected by an edge.
An airline wants passengers to be able to get from any airport to any other
airport by taking a series of flights. To satisfy this constraint, the minimal
sets of routes the airline can fly are exactly the spanning trees in G1. This
suggests that τ(G) tells us something about how connected G is. Indeed,
τ(G) has been used as a measure of network reliability (Aggarwal and Rai,
1981).

We say a graph G is bipartite if its vertices can be divided into X and Y
such that every edge of G connects a vertex in X to a vertex in Y. Bipartite
graphs naturally model situations in which there are two classes of objects
and only objects from different classes can be related. For example, to
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abstract ice cream flavor preferences of a group of people, we can define a
bipartite graph G2 in which some vertices represent people and the other
vertices represent flavors. A person vertex and a flavor vertex are connected
by an edge in G2 exactly when that person enjoys ice cream of that flavor,
and there are no other edges in G2.

Our main goal in this thesis report is to explore a conjectured upper
bound on the number of spanning trees τ(G) in a bipartite graph G. Though
this bound is primarily of theoretical interest, it finds application in the de-
sign of experiments, where maximizing τ(G) in a bipartite graph is related
to finding an optimum design (Cheng, 1981).

1.2 Ehrenborg’s conjecture

Ehrenborg and van Willigenburg (2004) define a class of bipartite graphs
called Ferrers graphs, and they prove that for a Ferrers graph G with parts X
and Y,

τ(G) � 1
|X | · |Y |

∏
v∈V(G)

dv , (1.1)

where dv denotes the degree of vertex v.
This report explores a conjecture due to Richard Ehrenborg (personal

communication) that the right-hand side of Equation 1.1 gives an upper
bound on τ(G) for every bipartite graph.

Conjecture 1.1. Let G be a bipartite graph with parts X and Y. Then

τ(G) ≤ 1
|X | · |Y |

∏
v∈V(G)

dv .

To our knowledge, the only previous work directly addressing Conjec-
ture 1.1 is the preprint of Garrett and Klee (2014). We review their main
results here. They show that Conjecture 1.1 is equivalent to the nonnega-
tivity of a certain multivariate polynomial whose complexity depends only
on the size of |X |. Using this polynomial, they computationally verified the
conjecture for |X | ≤ 5, which implies the following result.

Theorem 1.2. Conjecture 1.1 holds for bipartite graphs with at most 11 vertices.

Moreover, Garrett and Klee (2014) show that Conjecture 1.1 holds under
the operation of adding a new vertex and connecting the new vertex to an
existing vertex by a new edge.
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Proposition 1.3. Let G be a connected bipartite graph for which Conjecture 1.1
holds. Let v ∈ V(G) and u < V(G), and define the graphH byV(H) � V(G)∪{u}
and E(H) � E(G) ∪ {uv}. Then the conjecture holds for H also.

Because any tree can be built up from a single vertex by iteratively
adding leaf vertices, we have the following corollary.

Corollary 1.4. Conjecture 1.1 holds for trees.

1.3 Summary of contributions

Spectral graph theory is a branch of mathematics that associates matrices to
a graph and studies how the spectra of these matrices relate to the graph’s
properties. For example, from the spectrumof a graphG’s Laplacianmatrix,
Mohar (1997) derives bounds for the weight of an edge cut in G and the rate
of convergence of a random walk on G.

While our main goal in this report is to explore Conjecture 1.1, we
intend Chapter 3 as an expository introduction to spectral graph theory.
The chapter requires only elementary graph theory and linear algebra. By
providing details often missing from more advanced treatments such as
those in Brouwer and Haemers (2012) and Chung (1997), the chapter serves
as a brief undergraduate-level introduction to spectral graph theory.

The rest of this report is structured as follows. Chapter 2 defines nota-
tion and reviews some facts from graph theory and linear algebra. Chapter
3 introduces the fundamentals of spectral graph theory. In Chapter 4, after
reviewing the theory of electrical networks, we follow the proof of Ehren-
borg and van Willigenburg (2004) that the conjecture holds with equality
for Ferrers graphs.

We present original results about Conjecture 1.1 in Chapter 5. Specifi-
cally, we contribute proofs that the conjecture holds:

• for graphs having |X | ≤ 2,

• for even cycles,

• under the operation of connecting two graphs by a new edge,

• for sufficiently dense graphs containing a cut vertex of degree 2, and

• under the operation of removing an edge whose endpoints have suf-
ficiently large degrees.
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In Chapter 6, wemake two new conjectures based on empirical data, among
other suggestions for future work. Proving either conjecture of ours would
establish Conjecture 1.1 as a consequence.



Chapter 2

Preliminaries

In this chapter, we define our notation and review some facts from ele-
mentary graph theory and linear algebra. These facts will be useful when
spectral graph theory is introduced in the next chapter.

2.1 Graph theory

Let G be a graph. We denote its vertex set by V(G) and its edge set by E(G).
A graph G is finite if V(G) and E(G) are finite sets. A graph G is simple if it is
undirected, each edge connects two distinct vertices, and every two vertices
are connected by at most one edge. Henceforth, when we say graph, we
mean a finite simple graph.

From the above definition of a graph, we may obtain the definition
of a multigraph by removing the requirement that every two vertices are
connected by at most one edge. Thus, a multigraph can contain parallel
edges (but, like graphs, cannot contain loops).

Let G be a graph on n vertices. We write V(G) � {1, 2, . . . , n} for
convenience, so that each vertex is a positive integer. If vertices x and y are
adjacent in G, we can denote that by x ∼ y; if they are not adjacent in G, we
can denote that by x / y.

The complete graph on n vertices, denoted Kn , is the graph inwhich every
two distinct vertices are adjacent.

A graph G is bipartite if V(G) can be partitioned into sets X and Y such
that every edge of G connects a vertex in X to a vertex in Y. If this is the
case, then X and Y are called the parts of G.

Let G be a bipartite graphwith parts X and Y. Then G is complete bipartite
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if x ∼ y for all x ∈ X and y ∈ Y. If this is the case, we may refer to G as Kp ,q
or Kq ,p , where p � |X | and q � |Y |.

A multigraph T is a tree if it is connected and contains no cycles.
Let G be a multigraph. We say a subgraph H of G spans G if H contains

every vertex of G. A subgraph T of G is a spanning tree in G if T is a tree
that spans G. We denote by τ(G) the number of spanning trees in G.

Let G be a graph. The complement of G, denoted Gc , is the graph sat-
isfying: (i) V(Gc) � V(G) and (ii) for all distinct u , v ∈ V(Gc), we have
uv ∈ E(Gc) if and only if uv < E(G).

Let G be a multigraph containing the edge e � uv. We can delete e
from G; we denote the resulting multigraph by G\e. We define a new
multigraph, denoted G/e, which is obtained from G by contracting e. The
vertex set V(G/e) is obtained from V(G) by replacing u and v with a new
vertex w. The edge set E(G/e) is obtained from E(G) by deleting e, and then
replacing each edge of the form ux or vx with a new edge wx. Note that
G/e might not be a graph even if G is a graph.

We can count spanning trees using the following recurrence.

Proposition 2.1. Let G be a multigraph containing the edge e � uv. Then

τ(G) � τ(G\e) + τ(G/e).

Proof. Let T be a spanning tree in G. Exactly one of the following holds:

• T does not contain the edge e. Then deleting e doesn’t change T or
V(G), so T is a spanning tree in G\e. Since T already contains a uv-
path that does not use e � uv, contracting e creates a cycle in T, so T
is not a tree in G/e.

• T contains the edge e. Then T is a spanning tree in G/e, but deleting
e disconnects T, so T is not a tree in G\e.

This defines a function f that maps each spanning tree in G to a spanning
tree in either G\e or G/e (but not both). It is easy to see that f is bĳective,
from which the result follows. �

Let G be a graph containing the vertex v. We denote by N(v) the set of
vertices in V(G) adjacent to v.

Let G be a multigraph containing the vertex v. The degree of v, denoted
dv , is the number of edges in G incident to v. We may instead write dv(G)
when we wish to specify the graph. The vertex v is isolated if dv � 0.
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Let G be a graph and V0 ⊆ V(G). The volume of V0, denoted vol V0, is
the sum

∑
v∈V0 dv . The volume of V(G) can also be denoted vol G.

Let G and H be graphs with disjoint vertex sets. The union of G and H,
denoted G ∪ H, is defined by V(G ∪ H) � V(G) ∪ V(H) and E(G ∪ H) �
E(G) ∪ E(H).

Let G be a graph. A matching in G is a subset of E(G) in which no two
edges are incident to the same vertex.

2.2 Linear algebra

Let M be a matrix. We denote by M(i , j) the (i , j)-th entry of M. We denote
by M[i , j] the matrix obtained from M by deleting row i and column j.
The transpose of M is denoted by M>, and the conjugate transpose of M is
denoted by M∗.

Wedenote bydiag(x1 , . . . , xn) the n×n diagonalmatrix M withdiagonal
entries mii � xi . We denote by In the n × n identity matrix; we will write I
for In when n is clear from context.

Now let M be an n × n matrix. We denote by MS the matrix obtained
from M by deleting the rows and columns indexed by S ⊆ {1, . . . , n}. For
example, we have M{i} � M[i , i].

The determinant of M, denoted det M, can be defined as

det M �

∑
σ∈Sn

sgn(σ)
n∏

i�1
M

�
i , σ(i)�,

where Sn denotes the symmetric group of order n and sgn(σ) denotes the
sign of the permutation σ.

The characteristic polynomial of M, denoted pM , is the polynomial defined
by

pM(λ) � det(λI −M).
We have pM(λ) � ∏n

i�1(λ − λi), where the λi’s are the eigenvalues of M.
The (i , j)-cofactor of M, denoted ci j(M), is defined as

ci j(M) � (−1)i+ j det M[i , j].
The cofactors of M are involved in cofactor expansion, a procedure to compute
the determinant of M. Cofactor expansion relies on the fact that

det M �

n∑
j�1

M(p , j) · cp j(M) �
n∑

i�1
M(i , q) · ciq(M)
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for all 1 ≤ p , q ≤ n.
Using cofactor expansion, we show that the derivative of pM(λ) can be

expressed in terms of the characteristic polynomials of certain submatrices
of M.
Lemma 2.2. Let M be an n × n real matrix. Then

p′M(λ) �
∑

i

pM{i} (λ).

Proof. Let ri(λ), a function of λ, denote the ith row of λI − M. It can be
shown that the determinant of λI−M is a multilinear function f of its rows,
that is,

pM(λ) � det(λI −M) � f (r1 , r2 , . . . , rn).
Multiplying a row by a scalar c also multiplies the determinant by c. This
fact, together with the multivariable chain rule, gives

p′M(λ) � f (r′1 , r2 , . . . , rn) + f (r1 , r′2 , . . . , rn) + · · · + f (r1 , r2 , . . . , r′n);
for more details see Hanche-Olsen (2012). Let Mi be the matrix whose rows
are r1 , . . . , r′i , . . . , rn , so that det Mi � f (r1 , . . . , r′i , . . . , rn) and

p′M(λ) �
∑

i

det Mi . (2.1)

Since d
dt (λI − L) � In , the row vector r′i has 1 in the ith position and 0 in

every other position. Using cofactor expansion along row i, we compute

det Mi � det
�
λI −M{i}�

� pM{i} (λ).
Substituting this into Equation 2.1 gives the result. �

The matrices we will associate to a disconnected graph are block di-
agonal, with each block corresponding to a component of the graph. The
spectrum of a block diagonal matrix is determined by the spectra of its
blocks.
Proposition 2.3. Let M be a block diagonal matrix with blocks M1 ,M2 , . . . ,Mk ,
so that

M �



M1
M2

. . .

Mk



.

Then the eigenvalues of M are the union (includingmultiplicities) of the eigenvalues
from each block Mi .
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2.2.1 Real symmetric matrices

The matrices we associate with a graph will always be real symmetric. We
present the following properties of real symmetric matrices. In fact, these
properties are enjoyed by the more general class of Hermitian matrices;
proofs can be found in Horn and Johnson (2013: Theorems 2.5.6 and 2.5.3).

Theorem 2.4. Let M be an n × n real symmetric matrix and let λ1 , . . . , λn be the
eigenvalues of M. Let Λ � diag(λ1 , . . . , λn). Then:

(i) λ1 , . . . , λn are real.

(ii) M � UΛU∗ for some n × n unitary matrix U.

(iii) M has n orthonormal eigenvectors.

Let M be a real symmetric matrix. Then M is diagonalizable by The-
orem 2.4, so the algebraic multiplicity of each eigenvalue of M equals its
geometricmultiplicity. Thus, we can refer to themultiplicity of an eigenvalue
of M without being ambiguous.

We can characterize each eigenvalue of a real symmetric matrix in terms
of the following function.

Definition. Let M be an n × n real symmetric matrix. The Rayleigh quotient
of M, denoted RM , is the function from Rn\{0} to R defined by

RM(f) � f>Mf
f>f

.

The following result is a version of the Courant–Fischer theorem (Horn
and Johnson, 2013: Theorem 4.2.6).

Theorem 2.5. Let M be an n × n real symmetric matrix, and let λ1 ≤ · · · ≤ λn
be the eigenvalues of M. For each 1 ≤ i ≤ n, let fi be an eigenvector corresponding
to λi . Define Uk as the span of {fi : 1 ≤ i < k}, and define Wk as the span of
{fi : k < i ≤ n}. Then

λk � min
f∈U⊥k \{0}

RM(f) (2.2)

and
λk � max

f∈W⊥
k \{0}

RM(f) (2.3)

for each 1 ≤ k ≤ n.
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Proof. Choose an orthonormal set e1 , . . . , en of eigenvectors of M such that
ei corresponds to λi and the span of {ei : 1 ≤ i ≤ k − 1} equals Uk . First, we
show that Equation 2.2 holds by showing that RM(ek) � λk and RM(f) ≥ λk
for all f ∈ U⊥k \{0}. We find

RM(ek) �
e>k λkek

e>k ek
� λk .

It remains to show that RM(f) ≥ λk for an arbitrary f ∈ U⊥k \{0}. Write
f �

∑n
i�k αiei . Using the fact that the ei’s are orthonormal, the numerator of

RM(f) is

f>Mf � *
,

n∑
i�k

αiei+
-

T
*.
,

n∑
j�k

α j Me j
+/
-

� *
,

n∑
i�k

αiei+
-

T
*.
,

n∑
j�k

α jλ je j
+/
-

�

n∑
i�k

n∑
j�k

αiα jλ je>i e j

�

n∑
i�k

α2
i λi ,

and the denominator of RM(f) is

f>f � *
,

n∑
i�k

αiei+
-

>
*.
,

n∑
j�k

α je j
+/
-
�

n∑
i�k

n∑
j�k

αiα je>i e j �

n∑
i�k

α2
i .

Thus

RM(f) �
∑n

i�k α
2
i λi∑n

i�k α
2
i

.

This is a weighted average of the eigenvalues λk , . . . , λn , where the weight
of λi is α2

i . Because these weights are nonnegative, it is easy to show that

RM(f) ≥ min
k≤i≤n

λi � λk ,

so Equation 2.2 holds.
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To prove Equation 2.3, we apply Equation 2.2 to the matrix −M. Write
the eigenvalues of −M as λ1(−M) ≤ · · · ≤ λn(−M). Because −M has
eigenvalues −λ1 , . . . ,−λn , we have λn+1−k(−M) � −λk , and furthermore fk
is an eigenvector corresponding to λn+1−k(−M). Now by Equation 2.2,

λn+1−k(−M) � min
f∈W⊥

k \{0}
R−M(f).

Equation 2.3 now follows from the computation

λk � −λn+1−k(−M) � max
f∈W⊥

k \{0}
−R−M(f) � max

f∈W⊥
k \{0}

RM(f),

where the last equality holds because R−M(f) � −RM(f). �

Note that U⊥1 � Rn � W⊥
n in the statement of the preceding theorem,

since U1 and Wn are each the zero subspace. Thus, we have the following
characterization of the smallest and largest eigenvalues.

Corollary 2.6. Let M be an n × n real symmetric matrix, and let λ1 ≤ · · · ≤ λn
be the eigenvalues of M. Then

λ1 � min
f∈Rn\{0}

RM(f)

and
λn � max

f∈Rn\{0}
RM(f).

For example, consider the real symmetric matrix

M �

[
1 3
3 1

]

with eigenvalues λ1 ≤ λ2. Writing f � (x , y), the Rayleigh quotient of M is
the function from R2\{0} to R defined by

RM(x , y) � x(x + 3y) + y(3x + y)
x2 + y2 .

As (x , y) ranges over R2\{0}, the quantity RM(x , y) is minimized at λ1 �

−2 when x � −y and maximized at λ2 � 4 when x � y, which verifies
Corollary 2.6 for this particular matrix M.
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2.2.2 Positive semidefinite matrices

If a real symmetric matrix M satisfies f>Mf ≥ 0 for all f ∈ Rn , we say it
is positive semidefinite. We show that every eigenvalue of such a matrix is
nonnegative.

Proposition 2.7. Let M be a positive semidefinite matrix. Then every eigenvalue
of M is nonnegative.

Proof. Let λ be an eigenvalue of M. Since M is real symmetric, we know λ
is real by Theorem 2.4. Let f ∈ Rn be an eigenvector of M corresponding to
λ. We compute

λ‖f‖2
� λf>f � f>λf � f>Mf ≥ 0.

Since f is nonzero, we have ‖f‖2 > 0 and so λ ≥ 0. �



Chapter 3

Spectral graph theory

In this chapter, we introduce spectral graph theory by defining twomatrices
commonly associated with a graph: the Laplacian and the normalized
Laplacian. We build up to a proof of Kirchhoff’s theorem (Theorem 3.18),
which counts spanning trees in terms of the Laplacian eigenvalues.

3.1 The Laplacian

Given a graph G on n vertices, we can represent all of the graph’s structure
in an n × n matrix whose rows and columns are indexed by the vertex set
V(G) � {1, . . . , n}.

Definition. Let G be a graph on n vertices. The adjacency matrix of G, denoted
A(G), is the n × n matrix whose (i , j)-th entry is 1 if vertices i and j are adjacent,
and 0 otherwise. We will write A for A(G) when G is clear from context.

2

1

43

Figure 3.1 The example graphH1.

For example, consider the graph H1 in Figure 3.1. Its adjacency matrix
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is the 4 × 4 matrix

A(G1) �



0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0



.

Wecan also record the vertex degrees ofG in an n×n matrix. Subtracting
the adjacency matrix from this gives a matrix which is immensely useful in
spectral graph theory.

Definition. Let G be a graph on n vertices. The degree matrix of G, denoted
D(G), is the n × n diagonal matrix whose (i , i)-th entry is the degree of vertex i.
The Laplacian of G, denoted L(G), is defined as L(G) � D(G) − A(G). We will
write D for D(G) and L for L(G) when G is clear from context.

For example, the graph H1 in Figure 3.1 has degree matrix

D(G1) �



1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2


and Laplacian

L(G1) �



1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2



.

The Laplacian can also be described entrywise as

L(i , j) �



di if i � j,
−1 if i , j and i ∼ j,
0 otherwise.

Since D and A are always real symmetric, the Laplacian is also real
symmetric. By Theorem 2.4, the Laplacian eigenvalues are real, so they
can be ordered. We elect to index these eigenvalues from zero, so that µ0
denotes the smallest eigenvalue.

Definition. Let G be a graph on n vertices. Let the eigenvalues of L be µ0(G) ≤
µ1(G) ≤ · · · ≤ µn−1(G). We will write µi for µi(G) when G is clear from context.



The Laplacian 15

For more information on the Laplacian and its eigenvalues, we refer the
reader to the extensive surveys by Merris (1994) and Zhang (2011).

Let f ∈ Rn be a vector. Recall that for a graph on n vertices, we write
V(G) � {1, 2, . . . , n}. This lets us consider the vector f as a function that
assigns a real number to each vertex of G, and also lets us express the
Laplacian as a quadratic form.

Proposition 3.1. Let G be a graph on n vertices, and let f ∈ Rn . Then

f>Lf �
∑
i∼ j

( fi − f j)2 ,

where the sum is over all unordered pairs i , j of adjacent vertices.

Proof. Write D � diag(d1 , . . . , dn). We compute

f>Lf � f>Df − f>Af

�

∑
i

f 2
i di −

∑
i

∑
j

fi f j ai j

�
1
2

*.
,

∑
i

f 2
i di − 2

∑
i

∑
j

fi f j ai j +
∑

j

f 2
j d j

+/
-
.

Since di �
∑

j ai j and d j �
∑

i ai j ,

f>Lf � 1
2

∑
i

∑
j

ai j( fi − f j)2 �

∑
i∼ j

( fi − f j)2. �

We just showed that f>Lf ≥ 0 for all f ∈ Rn , so L is positive semidef-
inite. Thus, by Proposition 2.7, the eigenvalues of L are all nonnegative;
equivalently, µ0 ≥ 0. In fact, µ0 � 0 always.

Proposition 3.2. Let G be a graph on n vertices. Then µ0 � 0, with the all-ones
vector 1 ∈ Rn as a corresponding eigenvector.

Proof. In both D and A, the entries in row i sum to the degree of vertex
i. Since L � D − A, the columns of L sum to the zero vector, so 0 is an
eigenvalue of L with corresponding eigenvector 1. The result that µ0 � 0
then follows from the inequality µ0 ≥ 0, which we have already shown. �

A stronger result is true: the multiplicity of 0 as an eigenvalue of L
counts the components of G. We first prove this for connected graphs.
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Lemma 3.3. Let G be a connected graph. Then 0 is an eigenvalue of L with
multiplicity 1.
Proof. From Proposition 3.2, we know 0 is an eigenvalue of L, so it remains
to show that this eigenvalue 0 has multiplicity at most 1.

Suppose f ∈ Rn is an eigenvector corresponding to the eigenvalue 0, so
f>Lf � 0. By Proposition 3.1, we have

∑
i∼ j( fi− f j)2 � 0, which can only hold

if fi � f j for every pair i , j of adjacent vertices. Since G is connected, the
eigenvector f must be a nonzero multiple of 1. Because f was an arbitrary
eigenvector corresponding to 0, the eigenvalue 0 has multiplicity at most
1. �

Theorem 3.4. Let G be a graph. Then the number of components of G equals the
multiplicity of 0 as an eigenvalue of L.

Proof. Let k be the number of components of G. Without loss of generality,
we may assume that vertices are ordered so that each component’s vertices
are contiguous in the ordering. Then L has the block diagonal form

L �



L1
L2

. . .

Lk



,

where each Li is a Laplacian for the i-th component. Now by Lemma 3.3,
each Li has 0 as an eigenvalue with multiplicity 1, so by Proposition 2.3, we
conclude that L has 0 as an eigenvalue with multiplicity k. �

The Laplacian eigenvalues of a graph are related to those of its comple-
ment.
Theorem 3.5. Let G be a graph on n vertices. Then the eigenvalues of Gc are
µ0 � 0 and µi(Gc) � n − µn−i(G) for 1 ≤ i ≤ n − 1.
Proof. Let J denote the n × n all-ones matrix. Observe that

D(G) + D(Gc) � D(Kn) � (n − 1)I ,
A(G) + A(Gc) � A(Kn) � J − I .

Thus, the Laplacian of Gc is

L(Gc) � D(Gc) − A(Gc)
� (n − 1)I − D(G) + A(G) − J + I
� nI − J − L(G).
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By Theorem 2.4, the eigenspaces of L(G) are orthogonal. We know the all-
ones vector 1 ∈ Rn is an eigenvector of L(G) by Proposition 3.2. Thus, we
may find eigenvectors f1 , . . . , fn−1 ∈ Rn of L(G) such that {1, f1 , . . . , fn−1} is
an orthogonal set.

Let f ∈ {f1 , . . . , fn−1}, and say f as an eigenvector of L(G) corresponds
to the eigenvalue µ. We know f is orthogonal to 1, so Jf � 0 and

L(Gc) f � nIf − Jf − L(G) f
� nf − 0 − µf
� (n − µ)f.

Thus, f is an eigenvector of L(Gc) that corresponds to the eigenvalue n −
µ. The result follows from noting that the set {1, f1 , . . . , fn−1} consists of
eigenvectors of L(Gc). �

The preceding result gives an upper bound on the largest Laplacian
eigenvalue µn−1.

Corollary 3.6. Let G be a graph. Then µn−1 ≤ n, with equality if and only if Gc

is disconnected.

Proof. By Theorem 3.4, µ1(Gc) ≥ 0, with equality if and only if Gc is discon-
nected. Using Theorem 3.5, we have

µn−1(G) � n − µ1(Gc) ≤ n. �

3.2 The normalized Laplacian

We showed in the preceding section that [0, n] ⊆ R is the smallest interval
that contains every Laplacian eigenvalue of every graph on n vertices. If two
graphs have different numbers of vertices, then we may put these graphs’
spectra on the same scale by working with a normalized version of the
Laplacian.

Definition. Let G be a graph on n vertices that has no isolated vertices. The
normalized Laplacian of G, denoted L(G), is defined as

L(G) � D(G)−1/2 · L(G) · D(G)−1/2.

We will write L for L(G) when G is clear from context.
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Left-multiplication by D−1/2 scales the rows of L; row i is scaled by d−1/2
i .

Similarly, right-multiplication by D−1/2 scales the columns of L; column j is
scaled by d−1/2

j . Thus, L is related to L by

L(i , j) � L(i , j)√
di d j

.

Equivalently, L can be described entrywise as

L(i , j) �




1 if i � j,

− 1√
di d j

if i , j and i ∼ j,

0 otherwise.

In this section, we present properties of the normalized Laplacian spec-
trum,mostly following the presentation inChung (1997). For the remainder
of this section, we assume that graphs have no isolated vertices, so that the
matrices D−1/2 and L are defined.

Like the Laplacian, the normalized Laplacian has real eigenvalues, so
these eigenvalues can be ordered.

Definition. Let G be a graph on n vertices. Let the eigenvalues of L be λ0(G) ≤
λ1(G) ≤ · · · ≤ λn−1(G). We will write λi for λi(G) when G is clear from context.

These eigenvalues sum to the number of vertices in the graph.

Proposition 3.7. Let G be a graph on n vertices. Then
∑n−1

i�0 λi � n.

Proof. We have
n−1∑
i�0

λi � trL � n ,

since the diagonal entries of L are 1. �

We can express the normalized Laplacian as a quadratic form, just like
we did for the Laplacian (Proposition 3.1).

Proposition 3.8. Let G be a graph on n vertices. Let g ∈ Rn and define f �

D−1/2g. Then
g>Lg �

∑
i∼ j

( fi − f j)2 ,

where the sum is over all unordered pairs i , j of adjacent vertices.
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Proof. We compute

g>Lg � g>D−1/2LD−1/2g � f>Lf �
∑
i∼ j

( fi − f j)2 ,

where the last equality is due to Proposition 3.1. �

We just showed that g>Lg ≥ 0 for all g ∈ Rn , so L is positive semidefi-
nite. Thus, by Proposition 2.7, we have λ0 ≥ 0. In fact, λ0 � 0 always.

Proposition 3.9. Let G be a graph on n vertices. Then λ0 � 0, with D1/2
1 ∈ Rn

as a corresponding eigenvector.

Proof. We know L1 � 0 by Proposition 3.2, so LD1/2
1 � D−1/2L1 � 0. �

The following analog of Theorem 3.4 holds for L.
Theorem 3.10. Let G be a graph. Then the number of components of G equals the
multiplicity of 0 as an eigenvalue of L.
Proof. Since D−1/2 is a diagonal matrix without zeros on its diagonal, it has
full rank. It follows that L and L � D−1/2LD−1/2 have the same rank. By
the rank-nullity theorem, L and L have the same nullity, and thus have 0
as an eigenvalue with the same multiplicity. The result then follows from
Theorem 3.4. �

We can characterize the Rayleigh quotient RL in terms of the graph’s
structure.

Proposition 3.11. Let G be a graph on n vertices. Let g ∈ Rn and define
f � D−1/2g. Then

RL(g) �
∑

i∼ j( fi − f j)2∑
i f 2

i di
.

Proof. We compute

g>g � (D1/2f)>(D1/2f) � f>Df �
∑

i

f 2
i di .

The result then follows by substituting this and the statement of Proposi-
tion 3.8 into the definition of RL(g). �
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Recall that our goal for a normalized version of the Laplacian was that
graphs on different numbers of vertices would have spectra on the same
scale. The next result shows that L as we defined it achieves this goal,
because [0, 2] ⊆ R is the smallest interval that contains every normalized
Laplacian eigenvalue of every graph on n vertices.

Theorem 3.12. Let G be a connected graph on n ≥ 2 vertices. Then λn−1 ≤ 2,
with equality if and only if G is bipartite.

Proof. For all x , y ∈ R, we have the inequality

(x − y)2 � 2
�
x2

+ y2� − (x + y)2 ≤ 2
�
x2

+ y2�
. (3.1)

By Corollary 2.6 and then Proposition 3.11, the largest eigenvalue of L is

λn−1 � max
g∈Rn\{0}

RL(g) � max
f∈Rn\{0}

∑
i∼ j( fi − f j)2∑

i f 2
i di

.

Applying Inequality 3.1,∑
i∼ j( fi − f j)2∑

i f 2
i di

≤
∑

i∼ j 2
�

f 2
i + f 2

j

�

∑
i f 2

i di
� 2.

We conclude that λn−1 ≤ 2 and that λn−1 � 2 if and only if there exists
f ∈ Rn such that for every pair i , j of adjacent vertices,

( fi − f j)2 � 2
�

f 2
i + f 2

j

�
,

which is equivalent to fi + f j � 0. It remains to show that this condition is
satisfied if and only if G is bipartite.

(⇒) Suppose there exists f ∈ Rn such that fi + f j � 0 for every pair i , j
of adjacent vertices. Since G is connected, there must be a partition of V(G)
into parts X,Y such that, for some constant c ∈ R, we have

fv �




c if v ∈ X,
−c if v ∈ Y

(3.2)

for every vertex v. Thus, we know no two vertices in X are adjacent because
c + c , 0, and similarly no two vertices in Y are adjacent. It follows that G
is bipartite with parts X and Y.

(⇐) Suppose G is bipartite with parts X and Y. Define f ∈ Rn by
Equation 3.2. Then for every pair i , j of adjacent vertices, we have i ∈ X and
j ∈ Y or vice versa, so fi + f j � c − c � 0. �
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Having characterized the smallest eigenvalue λ0 and the largest eigen-
value λn−1 of L, we turn to the middle n − 2 eigenvalues λ1 , . . . , λn−2.

We will use the following result (Das et al., 2015: Theorem 3.4) without
including a proof.

Theorem 3.13. Let G be a graph on n ≥ 3 vertices. Then the n − 2 eigenvalues
λ1 , . . . , λn−2 are all equal if and only if G is complete or complete bipartite.

For a bipartite graph G, Theorem 3.10 and Theorem 3.12 imply that
λ0 + λn−1 � 2. In fact, if G is bipartite, then the entire spectrum of L is
symmetric about 1.

Proposition 3.14. Let G be a graph on n ≥ 2 vertices. Then λi + λn−1−i � 2 for
0 ≤ i ≤ n − 1 if and only if G is bipartite.

Proof. If G is not bipartite, then λ0 � 0 by Theorem 3.10 and λn−1 < 2 by
Theorem 3.12, so λ0 + λn−1 < 2. Thus, we need only show that if G is
bipartite, then λi + λn−1−i � 2 for 0 ≤ i ≤ n − 1.

Suppose G is bipartite with parts X and Y. Let f ∈ Rn be an eigenvector
of L corresponding to eigenvalue λ. Writing Lf � λf componentwise, for
every vertex v we have

fv +
∑
u∼v

− fu√
du dv

� λ fv ,

or equivalently

(1 − λ) fv �

∑
u∼v

fu√
du dv

.

Since G is bipartite, for every x ∈ X and y ∈ Y we have

(1 − λ) fx �

∑
u∈Y
u∼x

fu√
du dx

, (3.3)

(1 − λ) fy �

∑
u∈X
u∼y

fu√
du dy

. (3.4)

Define g ∈ Rn by

gv �




fv if v ∈ X,
− fv if v ∈ Y.
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Substituting into Equations 3.3 and 3.4,

(1 − λ)gx �

∑
u∈Y
u∼x

−gu√
du dx

,

(1 − λ)(−gy) �
∑
u∈X
u∼y

gu√
du dy

.

Equivalently,

gv +
∑
u∼v

−gu√
du dv

� (2 − λ)gv

for every vertex v, so g is an eigenvector of L corresponding to eigenvalue
2 − λ. It can be shown that the eigenvalues λ and 2 − λ must have equal
multiplicity, so the result follows. �

We have the following characterization of the smallest nontrivial eigen-
value of L.
Proposition 3.15. Let G be a graph on n vertices. Then

λ1 � min
f∈Rn\{0}

f⊥D1

∑
i∼ j( fi − f j)2∑

i f 2
i di

.

Proof. By Proposition 3.9, the vector D1/2
1 is an eigenvector of L corre-

sponding to eigenvalue λ0 � 0. By Theorem 2.5,

λ1 � min
g∈Rn\{0}
g⊥D1/2

1

RL(g).

Note that g ⊥ D1/2
1 if and only if D−1/2g ⊥ D1. The result then follows

from Proposition 3.11. �

Wecanuse thepreceding result toput anupper boundon λ1 by choosing
an f , 0 orthogonal to D1. Chung (1997) gives the following variational
characterization of λ1, which removes the requirement that f be orthogonal
to D1. This is similar to a characterization of µ1 byMohar (1997: Proposition
2.7).
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Proposition 3.16. Let G be a graph on n vertices. Then

λ1 � vol G ·min
∑

i∼ j( fi − f j)2∑
i , j( fi − f j)2di d j

,

where the minimum is taken over all f ∈ Rn such that f is not constant (that is,
f , c1 for all c ∈ R), and

∑
i , j denotes the sum over all unordered pairs {i , j} of

vertices.

Proof. Suppose f ∈ Rn satisfies f ⊥ D1. Then∑
i , j

( fi − f j)2di d j �
1
2

∑
i

∑
j

( fi − f j)2di d j

�
1
2

∑
j

d j ·
∑

i

f 2
i di +

∑
i

fi di ·
∑

j

f j d j +
1
2

∑
i

di ·
∑

j

f 2
j d j

� *
,

∑
i

di+
-

*
,

∑
i

f 2
i di+

-
+ *

,

∑
i

fi di+
-

2

.

Rearranging while noting that
∑

i fi di � f>D1 � 0 and
∑

i di � vol G,

∑
i

f 2
i di �

∑
i , j( fi − f j)2di d j

vol G
.

Substituting into Proposition 3.15,

λ1 � vol G · min
f∈Rn\{0}

f⊥D1

∑
i∼ j( fi − f j)2∑

i , j( fi − f j)2di d j
.

Observe that the term being minimized is invariant under the operation of
adding a constant vector to f. Fix an arbitrary g ∈ Rn that is not constant.
The resultwould follow if there existsh ∈ Rn , obtained by adding a constant
vector to g, that satisfies h , 0 and h ⊥ D1. We define such a vector h
entrywise by

hi � gi −
∑

j g j d j∑
j d j

for 1 ≤ i ≤ n. If h � 0, then every entry of g equals
∑

j f j d j/
∑

j d j ,
contradicting the fact that g is not constant. Thus h , 0. Finally, we
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compute

h>D1 �

∑
i

hi di

�

∑
i

(
gi −

∑
j g j d j∑

j d j

)
di

�

∑
i

gi di −
∑

i

di ·
∑

j g j d j∑
j d j

� 0,

showing that h ⊥ D1. �

3.3 Kirchhoff’s theorem

Using a theorem of Kirchhoff (1847), we can count the spanning trees in
any graph given only its Laplacian. In this section, we’ll follow the proof
of Kirchhoff’s theorem given in Brouwer and Haemers (2012: Proposition
1.3.4), while adding considerable detail to their proof.

We generalize our definition of the Laplacian to include multigraphs.

Definition. Let G be a multigraph on n vertices. Let A(G) be the n × n matrix
whose (i , j)-th entry is the number of edges between vertices i and j. Let D(G)
be the n × n diagonal matrix whose (i , i)-th entry is the degree of vertex i. The
Laplacian of G, denoted L(G), is defined as L(G) � D(G) − A(G). We will write
L for L(G) when G is clear from context.

This definition allows us to state the following necessary lemma for
multigraphs. In the proof of this lemma, we will use the fact that Theo-
rem 3.4 still holds for multigraphs.

Lemma 3.17. Let G be a multigraph on n vertices. Then τ(G) � cxx(L) for every
vertex x of G.

Proof. Fix a vertex x of G. We proceed by two-dimensional induction on n
and on dx(G).

Suppose n � 1 and dx(G) � 0. Then τ(G) � 1 and, since the empty
matrix has determinant 1, we have cxx(L) � 1. This proves the result for
n � 1 and dx(G) � 0.

Suppose n ≥ 2 and dx(G) � 0. Then x is an isolated vertex, so τ(G) � 0.
The matrix L{x} is a Laplacian for the graph obtained from G by deleting x,
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so by Theorem 3.4, the matrix L{x} has 0 as an eigenvalue. Thus cxx(L) �
det L{x} � 0. This proves the result for n ≥ 2 and dx(G) � 0.

Having established the base cases where dx(G) � 0, we proceed to the
inductive step. Our inductive hypothesis will be that the result holds for
any graph H that contains vertex x and satisfies

• H has fewer vertices than G, or

• H has as many vertices as G and dx(H) < dx(G).
Suppose dx(G) ≥ 1. Let y be a vertex adjacent to x, and let e denote the

edge x y. Consider det L{x}. Deleting e changes L{x} in only the (y , y)-th
entry, which decreases by 1. Thus, computing cxx(L) � det L{x} by cofactor
expansion along row y, we see that deleting e decreases cxx(L) by det L{x ,y},
so

cxx(L) � cxx
�
L(G\e)� + det L{x ,y} .

Next, let us consider what happens to det L when the edge e is con-
tracted. Contracting e is equivalent to:

1. replacing each edge z y with an edge zx, which changes only the rows
and columns of L indexed by {x , y}, and then

2. deleting y, which deletes row y and column y of L.

Thus
cxx

�
L(G/e)� � det L{x ,y} ,

which gives
cxx(L) � cxx

�
L(G\e)� + cxx

�
L(G/e)�.

Deleting e decreases dx(G) by 1 and does not change the number of
vertices, so cxx(L(G\e)) � τ(G\e) by the inductive hypothesis. Contracting
e decreases the number of vertices by 1, so cxx(L(G/e)) � τ(G/e) by the
inductive hypothesis. Using Proposition 2.1,

τ(G) � τ(G\e) + τ(G/e)
� cxx

�
L(G\e)� + cxx

�
L(G/e)�

� cxx(L). �

In the preceding proof of Lemma 3.17, even if G is a simple graph, the
inductive hypothesis must hold for G/e, which need not be a simple graph.
This forced us to establish the lemma for multigraphs.

We finally prove Kirchhoff’s theorem, which extends Lemma 3.17 to the
statement that every cofactor of L counts spanning trees.
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Theorem 3.18 (Kirchhoff’s theorem). Let G be a graph on n vertices. Then

τ(G) � cx y(L) � 1
n

n−1∏
i�1

µi

for all vertices x , y of G.

Proof. Let x , y be vertices of G. Given Lemma 3.17, it suffices to prove that
cxx(L) � cx y(L) and that

∏n−1
i�1 µi � n · τ(G).

First, we prove that cxx(L) � cx y(L). The columns of L sum to zero, so
we can change L(x , y) into L(x , x) by performing the following elementary
column operations:

1. adding each of the n − 2 other columns to column x, then

2. multiplying column x by −1, and then

3. shifting column x to position y.

Operation 1 doesn’t change the determinant, operation 2 multiplies the
determinant by−1, andoperation 3multiplies thedeterminant by (−1)x+y−1,
so that

cxx(L) � det L(x , x) � (−1)x+y det L(x , y) � cx y(L).
Second, we prove that

∏n−1
i�1 µi � n · τ(G). Since µ0 � 0, we have

pL(µ) � µ
∏n−1

i�1 (µ−µi). Differentiating this product with respect to µ gives

p′L(0) � (−1)n−1
n−1∏
i�1

µi .

On the other hand, using Lemma 2.2,

p′L(0) �
∑

x

pL{x} (0)

�

∑
x

det
� − L{x}�

� (−1)n−1
∑

x

det L{x}

� (−1)n−1
∑

x

cxx(L),
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which gives
∏n−1

i�1 µi �
∑

x cxx(L). Now cxx(L) � τ(G) by Lemma 3.17 and
the sum ranges over all n vertices, so

n−1∏
i�1

µi �
∑

x

τ(G) � n · τ(G). �

Kirchhoff’s theorem counts spanning trees using the eigenvalues of the
Laplacian. We now prove a variation, due to Sachs (1976), that uses the
eigenvalues of the normalized Laplacian instead.

Theorem 3.19. Let G be a graph on n vertices that has no isolated vertices. Then

τ(G) �
∏

v dv∑
v dv

·
n−1∏
i�1

λi .

Proof. We will relate the (n − 1) × (n − 1) principal minors of L and L. Let
W be the set of all vertices except u, that is, W � {1, . . . , n}\{u}. Let SW be
the symmetric group on W . Using the definitions of the determinant and
the normalized Laplacian,

detL{u}
�

∑
σ∈SW

sgn(σ)
∏
v∈W

L�
v , σ(v)�

�

∑
σ∈SW

sgn(σ)
∏
v∈W

L
�
v , σ(v)� · �dv dσ(v)

�−1/2 (3.5)

For every permutation σ ∈ SW ,∏
v∈W

dv �

∏
v∈W

dσ(v) ,

since each vertex in W is counted once on each side. It follows that∏
v∈W

�
dv dσ(v)

�−1/2
� *

,

∏
v∈W

dv+
-

−1

�
du∏
v dv

,

which does not depend on σ. Substituting into Equation 3.5,

detL{u}
�

du∏
v dv
·
∑
σ∈SW

sgn(σ)
∏
v∈W

L
�
v , σ(v)� � du∏

v dv
· det L{u} ,

so by Lemma 3.17,

detL{u}
�

du∏
v dv
· τ(G). (3.6)
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Computations similar to those in the proof of Theorem 3.18 give

n−1∏
i�1

λi � (−1)n−1p′L(0) �
∑

u

detL{u} . (3.7)

The result now follows by substituting Equation 3.6 into Equation 3.7 and
then rearranging. �



Chapter 4

Electrical networks

Ehrenborg and van Willigenburg (2004) show that Conjecture 1.1 holds
with equality for Ferrers graphs, which are a class of bipartite graphs. In
this chapter, we review the theory of electrical networks, follow their proof,
and conclude by showing that Ferrers graphs are equivalent to connected
difference graphs.

In this section, we view a connected graph G as a representation of an
electrical network. Each edge ab of G is assumed to have a resistance R(a , b).
We may also denote the resistance of an edge e by R(e).

Fix two distinct vertices of G: a source s and a sink t. We assume a unit
current enters at s and leaves at t. Now for each edge ab of G, there is a
current I(a , b) in the edge and there is a voltage V(a , b) across the edge. The
voltage, resistance, and current are related by a physical law.

Ohm’s law. V(a , b) � R(a , b) · I(a , b) for each edge ab in G.

Additionally, the currents and voltages must satisfy Kirchhoff’s laws.
Kirchhoff’s current law states that the total current into any vertex equals
the total current out of that vertex.

Kirchhoff’s current law. For every vertex v of G,∑
b∈N(v)

I(v , b) � 0.

Kirchhoff’s voltage law states that the voltages around any cycle sum to
zero.
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Kirchhoff’s voltage law. For every cycle C � v1 · · · vk in G,

k∑
i�1

V(i , i + 1) � 0,

where we set vk+1 � v1.

4.1 Currents and spanning trees

The content in this section follows Bollobás (1979: Section II.1). Bollobás
only proves Theorem 4.3 for the case where every edge has unit resistance,
but we provide a proof for the general case. The conductance of an edge ab
is 1/R(a , b), the reciprocal of its resistance. We will derive a formula for the
current in each edge in terms of the conductances in spanning trees.

Definition. The weight of a spanning tree T in G, denoted w(T), is defined as

w(T) � *.
,

∏
e∈E(T)

R(e)+/
-

−1

.

In the proof of the current formula, we will consider subgraphs of the
electrical network G that are almost spanning trees.

Definition. A thicket is a spanning subgraph of G with exactly two components
Us and Ut , such that Us contains s and Ut contains t. The weight of a thicket U
in G, denoted w(U), is defined as

w(U) � *.
,

∏
e∈E(U)

R(e)+/
-

−1

.

Definition. Let ab be an edge of G. An ab-thicket is a thicket of G such that
Us contains a and Ut contains b. The weight of an ab-thicket U in G, denoted
wab(U), is defined as

wab(U) � *.
,
R(a , b)

∏
e∈E(U)

R(e)+/
-

−1

.

This next lemma immediately follows from the definitions of ab-thicket
weight and thicket weight.
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Lemma 4.1. Let U be an ab-thicket. Then wab(U) � w(U)/R(a , b).

Note that any ab-thicket U is also a thicket, and by Lemma 4.1, U’s
weight as an ab-thicket differs from its weight as a thicket, unless the edge
ab happens to have unit resistance.

Next, we relate the ab-thickets in the network G to some spanning trees
in G. Wewill say an st-path P contains the edge ab if the sequence of vertices
along P is s · · · ab · · · t.
Lemma 4.2. Let ab be an edge of G. Let W(a , b) be the sum of weights of all
spanning trees in which the st-path contains ab. Let WU(a , b) be the sum of
weights of all ab-thickets. Then W(a , b) � WU(a , b).

Proof. Let ST be the set of spanning trees considered inW(a , b), and let SU be
the set of ab-thickets considered in WU(a , b). To show that the sum W(a , b)
of spanning tree weights equals the sum WU(a , b) of ab-thicket weights, it
suffices to define a bĳection f : ST → SU that preserves weight.

For a spanning tree T ∈ ST , define f (T) as the subgraph obtained from T
by removing the edge ab. Since the st-path in T was s · · · ab · · · t, we know
s , a are connected in f (T) and b , t are connected in f (T). Since there was
only one st-path in T, the subgraph f (T) has two components. It follows
that f (T) is an ab-thicket, and it’s easy to see that f is bĳective and that f
preserves weight. �

We are now ready to derive the formula given in Kirchhoff (1847) for
the current in each edge.

Theorem 4.3. Let G be a connected graph representing an electrical network. Let
W be the sum of weights of all spanning trees. Then the current in every edge ab
of G is

I(a , b) � W(a , b) −W(b , a)
W

,

where W(a , b) is defined as in Lemma 4.2.

Proof. It is known that at most one set of currents satisfies both Kirchhoff’s
current law and Kirchhoff’s voltage law, so we need only check that the
currents defined satisfy both laws. Let T be an arbitrary spanning tree in
G, and let PT denote the (unique) st-path in T.

First, we check Kirchhoff’s current law at vertices s and t. The path
PT contains the edge sb for exactly one b ∈ N(s), so summing across all
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spanning treesT, we have
∑

b∈N(s) W(s , b) � W . The path PT doesn’t contain
any edge bs where b ∈ N(s), so ∑

b∈N(s) W(b , s) � 0. It follows that∑
b∈N(s)

I(s , b) � W − 0
W

� 1,

so the current law holds at s. By a symmetric argument, the current law
also holds at t.

Second, we check Kirchhoff’s current law at a vertex y < {s , t}. If y is
not on PT , then T contributes 0 to the current into or out of y. Suppose y
is on PT , and say PT is s · · · x yz · · · t. Then T contributes w(T) to W(x , y),
and so contributes w(T) to the current into y. Also, T contributes w(T) to
W(y , z), and so contributes w(T) to the current out of y. We have shown
that an arbitrary spanning tree T contributes 0 to the net current flow out
of y. It follows that the net current flow out of y is

∑
b∈N(y) I(y , b) � 0, so

the current law holds at y.
Third, we check Kirchhoff’s voltage law. Let C be an arbitrary cycle in

G, and orient C’s edges so that C is a directed cycle. It remains to check that
the voltages around C sum to 0. Let U be an arbitrary thicket in G, with
components Us (containing s) and Ut (containing t). Using Lemma 4.2, we
consider W(a , b) in the formula for I(a , b) as a sum of ab-thicket weights.
Let ab be an arc in C. We check three cases:

Case 1: a , b are in the same component of U. Then U contributes 0 to
W(a , b) and W(b , a), so U contributes 0 to the sum of voltages around C.

Case 2: a is in Us and b is in Ut . Then the thicket U is also an ab-thicket,
so U contributes wab(U)/W to I(a , b). By Ohm’s law and Lemma 4.1, U
contributes

R(a , b) · wab(U)
W

�
w(U)

W
to the sum of voltages around C.

Case 3: a is in Ut and b is in Us . Then the thicket U is also a ba-thicket,
so U contributes −wab(U)/W to I(a , b). By Ohm’s law and Lemma 4.1, U
contributes

R(a , b) · −wab(U)
W

� −w(U)
W

to the sum of voltages around C.
Since C is a directed cycle, it contains as many arcs from Us to Ut as arcs

from Ut to Us . It follows that an arbitrary thicket U contributes 0 to the
sum of voltages around C, so the voltage law holds around C. �
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The preceding theorem has the following useful specialization.

Corollary 4.4. Let G be a connected graph representing an electrical network in
which every edge has unit resistance. Assume the source s and the sink t are
adjacent. Then the current in the edge st is

I(s , t) � τ(G) − τ(G\st)
τ(G) , (4.1)

where G\st is the graph obtained from G by deleting st.

Proof. Since every edge has resistance 1, every spanning tree has weight 1,
giving W � τ(G). For any spanning tree T in G, the st-path in T contains
the edge st if and only if T contains st. The spanning trees in G that contain
st are exactly those spanning trees in G that are not spanning trees in G\st,
which gives W(s , t) � τ(G)− τ(G\st). Of course, an st-path cannot contain
the edge ts, so W(t , s) � 0. Substituting all this into Theorem 4.3 yields

I(s , t) � W(s , t) −W(t , s)
W

�
τ(G) − τ(G\st)

τ(G) . �

4.2 Effective resistance

In this section, we introduce the effective resistance between two vertices, first
defined in Klein and Randić (1993). The content of this section serves as
background for our results in Section 5.4.

Throughout this section, let G be a graph representing an electrical
network in which every edge has unit resistance. We assume, as in the
previous section, that each edge ab of G has a resistance R(a , b). Moreover,
we assume that no current flows in the network before we connect a battery.

Definition. Let ab be an edge of G. Connect a battery’s terminals to a and b.
The effective resistance between a and b, denoted rab(G), is the battery’s voltage
divided by the current supplied by the battery. We will write rab for rab(G) when
G is clear from context.

Unlike the (intrinsic) resistance R(a , b), the effective resistance rab is
defined when a and b are not adjacent. Even when a and b are adjacent,
rab in general differs from R(a , b). For example, consider the graph H1 in
Figure 3.1. The edge between vertices 3 and 4 has resistance R(3, 4) � 1 and
effective resistance r34 � 2/3.
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The effective resistance can be computed using standard techniques.
These techniques involve replacing multiple resistors in parallel or in series
with a single resistor. We do not provide further explanation; see Bollobás
(1979) for an overview.

When the vertices a and b are adjacent, the effective resistance rab coin-
cides in value with the current in Equation 4.1.

Proposition 4.5. The effective resistance of every edge ab of G is

rab �
τ(G) − τ(G\ab)

τ(G) .

Proof. We assume a battery’s terminals are connected to a and b, as in the
definition of effective resistance. The effective resistance does not depend
on the battery’s particulars, so we can and will assume the battery supplies
unit current. By Corollary 4.4, the current between a and b is

I(a , b) � τ(G) − τ(G\ab)
τ(G) .

Using Ohm’s law, the battery’s voltage is

V(a , b) � R(a , b) · I(a , b) � τ(G) − τ(G\ab)
τ(G) ,

since every edge has unit resistance. Dividing this by the unit current sup-
plied by the battery, we obtain the claimed value for the effective resistance
rab . �

Stated in other words, the effective resistance of any edge is the propor-
tion of spanning trees containing that edge.

One way to simplify an electrical network G is to short a set of vertices
S ⊆ V(G), that is, connect all the vertices in S with wires having zero
resistance. Shorting S is equivalent to collapsing all the vertices in S into
a single vertex. It is well-known that shorting a set of vertices cannot
increase the effective resistance of any edge; see for example Doyle and
Snell (1984: Section 2.2.2).

Short-cut principle. Let S ⊆ V(G), and let G′ be the graph obtained from G by
shorting S. Then rab(G′) ≤ rab(G).

Coppersmith et al. (1996: Proposition 2) use the short-cut principle to
prove the following lower bound on effective resistance.
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Proposition 4.6. Let G be a connected graph representing an electrical network
in which every edge has unit resistance. Then

rab ≥ 1
da + 1 +

1
db + 1

for every edge ab of G.

This lower bound is improved by Palacios and Renom (2011), again by
using the short-cut principle.

Proposition 4.7. Let G be a connected graph representing an electrical network
in which every edge has unit resistance. Then

rab ≥ da + db − 2
da db − 1 .

for every edge ab of G.

4.3 Ferrers graphs

Ehrenborg and van Willigenburg (2004) define a class of bipartite graphs
called Ferrers graphs. In this section, we will follow their proof that Conjec-
ture 1.1 holds with equality for Ferrers graphs.

Definition. A Ferrers graph is a bipartite graph with parts X � {x0 , . . . , xn}
and Y � {y0 , . . . , ym} such that

• x0 ym and xn y0 are edges, and

• whenever xp yq is an edge, xi y j is an edge for all 0 ≤ i < p and 0 ≤ j < q.

A Ferrers graph represents the integer partition (dx0 , . . . , dxn ). Thus,
there is a natural correspondence between Ferrers graphs and Ferrers dia-
grams, which also represent integer partitions. For example, the partition
of 8 into (4, 3, 1) is represented both by the Ferrers graph in Figure 4.1 and
the Ferrers diagram in Figure 4.2.

We first prove a lemma about how adding an edge to a Ferrers graph
changes the number of spanning trees.

Lemma 4.8. Let H be a Ferrers graph without the edge xp yq , where p , q ≥ 1.
Suppose adding xp yq to H forms another Ferrers graph G. Then

τ(G)
τ(H) �

(p + 1)(q + 1)
pq

.
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x0 x1 x2

y0 y1 y2 y3

Figure 4.1 Ferrers graph representing the partition (4, 3, 1).

x0

x1

x2

y0 y1 y2 y3

Figure 4.2 Ferrers diagram representing the partition (4, 3, 1).

Proof. We view the Ferrers graph G as an electrical network. Assume a unit
current enters at xp and leaves at yq . Write N � (p + 1)(q + 1). To each edge
xi y j , assign the resistance R(xi , y j) � 1 and the current

I(xi , y j) �




−1/N if i < p, j < q,
p/N if i � p, j < q,
q/N if i < p, j � q,
(1 + p + q)/N if i � p, j � q,
0 otherwise.

We will check Kirchhoff’s current law at xp . We compute
q∑

j�0
I(xp , y j) � q · p

N
+

1 + p + q
N

�
(p + 1)(q + 1)

N
� 1,

so the current law holds at xp . By a symmetric argument, the current law
also holds at yq . Next, we will check Kirchhoff’s current law at xi , for i < p.
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We compute
q∑

j�0
I(xi , y j) � q · − 1

N
+

q
N

� 0,

so the current law holds at xi . By a symmetric argument, the current law
also holds at y j , for j < q. No current flows into or out of xi for i > p or y j
for j > q, so the current law holds at every vertex.

Observe that the only nontrivial cycle in G is xp → yq → xi → y j → xp ,
where i < p and j < q. Thus, it suffices to check that Kirchhoff’s voltage
law holds around this cycle. Since every edge has resistance 1, Ohm’s law
gives V(xi , y j) � R(xi , y j). The voltages around this cycle sum to

1 + p + q
N

− q
N
− 1

N
− p

N
� 0,

so the voltage law holds.
We assigned I(xp , yq) � (1 + p + q)/N , where N � (p + 1)(q + 1), so

I(xp , yq) �
N − pq

N
� 1 − pq

(p + 1)(q + 1) . (4.2)

Corollary 4.4 gives the current between the source xp and the sink yq as

I(xp , yq) �
τ(G) − τ(H)

τ(G) � 1 − τ(H)
τ(G) .

Comparing this with Equation 4.2 yields the result. �

Conjecture 1.1 holds with equality for Ferrers graphs.

Theorem 4.9. Let G be a Ferrers graph with parts X and Y. Then

τ(G) � 1
|X | · |Y |

∏
v∈V(G)

dv .

Proof. Label the vertices such that X � {x0 , . . . , xn} and Y � {y0 , . . . , ym}.
Fix n and m. We proceed by induction on |E|.

Let G0 be the Ferrers graph whose only edges are x0 y0, x0 y j for 1 ≤ j ≤
m, and xi y0 for 1 ≤ i ≤ n. Then G0 has n + m + 1 edges, which is fewer than
any other Ferrers graph with parts X and Y, so we take G0 as the base case.
Since G0 is a tree, τ(G0) � 1. We find

1
|X | · |Y |

∏
v∈V(G0)

dv �
dx0 · dy0

(n + 1)(m + 1) � 1 � τ(G0),



38 Electrical networks

so the base case holds. If n � 0 or m � 0, then G0 is the only Ferrers graph
with parts X and Y, so we are done. Thus, assume n ,m ≥ 1.

Let G be a Ferrers graph with more edges than G0. Remove an edge
from G to form another Ferrers graph H (it can be shown that this is always
possible); say the edge xp yq is removed. Since H is a Ferrers graph, remov-
ing xp yq decreased dxp from p + 1 to p and decreased dyq from q + 1 to q,
so ∏

v∈V(G)
dv �

(p + 1)(q + 1)
pq

∏
v∈V(H)

dv .

By the induction hypothesis, the right-hand side product equals τ(H). Us-
ing Lemma 4.8, ∏

v∈V(G)
dv �

τ(G)
τ(H) · τ(H) � τ(G),

completing the inductive step. �

4.4 Difference graphs

Chestnut and Fishkind (2013) study another class of bipartite graphs called
difference graphs.

Definition. A bipartite graph with parts X and Y is a difference graph if there
exist a function φ : X ∪Y → R and a threshold α ∈ R such that for all x ∈ X and
y ∈ Y, the graph has edge x y if and only if φ(x) + φ(y) ≥ α.

They assert that Ehrenborg and van Willigenburg (2004) proved The-
orem 4.9 for difference graphs, not for Ferrers graphs. This suggests that
Ferrers graphs and difference graphs are equivalent, which is proven in
Hammer et al. (1990: Theorem 2.3(4)). We give a more direct proof of this
equivalence.

Theorem 4.10. G is a Ferrers graph if and only if G is a connected difference graph.

Proof. (⇒) Suppose G is a Ferrers graph with parts X � {x0 , . . . , xn} and
Y � {y0 , . . . , ym}. Then G is connected, since G contains the edges x0 y0,
x0 y j for 1 ≤ j ≤ m, and xi y0 for 1 ≤ i ≤ n.

To show that G is a difference graph, define the function φ : X ∪Y → R

by φ(xi) � n− i and φ(y j) � dy j . Since G is a Ferrers graph, the neighbors of
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y j are those xi where i ≤ dy j−1, sowe can establish the chain of equivalences

φ(xi) + φ(y j) ≥ n + 1
⇔ n − i + dy j ≥ n + 1
⇔ i ≤ dy j − 1
⇔ G has edge xi y j .

Thus, G is a difference graph with the function φ as defined and the thresh-
old α � n + 1.

(⇐) Suppose G is a connected difference graph with parts X and Y, so
there exists a function φ : X ∪ Y → R and a threshold α ∈ R as in the
difference graph definition. Label the vertices in X as x0 , . . . , xn and the
vertices in Y as y0 , . . . , ym such that φ(x0) ≥ · · · ≥ φ(xn) and φ(y0) ≥ · · · ≥
φ(ym). We must check the two conditions in the Ferrers graph definition.

First, we must show that x0 ym and xn y0 are edges of G. Since G is
connected, x0 is adjacent to at least one y j . Because j � m minimizes φ(y j),
we have φ(x0) + φ(ym) ≥ α, so x0 ym is an edge of G. A similar argument
shows that xn y0 is also an edge of G.

Second, we must show that whenever xp yq is an edge, xi y j is an edge
for all 0 ≤ i < p and 0 ≤ j < q. Fix p , q , i , j so that xp yq is an edge,
0 ≤ i < p, and 0 ≤ j < q. By our choice of labels, we have φ(xi) ≥ φ(xp)
and φ(y j) ≥ φ(yq). It follows that

φ(xi) + φ(y j) ≥ φ(xp) + φ(yq) ≥ α,
so xi y j is an edge of G. �

Now Theorem 4.9, together with Theorem 4.10, shows that Conjec-
ture 1.1 holdswith equality for difference graphs. Hammer et al. (1990: The-
orem 2.3) prove the following forbidden graph characterization of the bi-
partite graphs that are also difference graphs.

Proposition 4.11. Let G be a bipartite graph. Then G is a difference graph if and
only if G does not contain K2 ∪ K2 as an induced subgraph.

Thus, Conjecture 1.1 would follow in general if it were proved for bipar-
tite graphs containing K2 ∪ K2 as an induced subgraph.

Yet another common name for a difference graph is a chain graph; see
Yannakakis (1981) for example.





Chapter 5

Results

This chapter contains original results of ours that represent progress to-
wards Conjecture 1.1. For a summary of our results, refer to Section 1.3.

We will assume that all graphs are connected throughout this chapter,
because if G were disconnected, then τ(G) � 0 and the conjecture clearly
holds.

5.1 Specific classes of graphs

We provide combinatorial proofs of Conjecture 1.1 for G having |X | ≤ 2 and
for G being an even cycle.

Proposition 5.1. Let G � (V, E) be a bipartite graph with parts X,Y, where
|X | � 1. Then

τ(G) � 1
|Y |

∏
v∈V(G)

dv .

Proof. Since G is connected, G must be the complete bipartite graph K1,|Y |.
The vertex in X has degree |Y |, and every other vertex has degree 1. Since
G is itself a tree, τ(G) � 1, showing the result. �

Proposition 5.2. Let G � (V, E) be a bipartite graph with parts X,Y, where
|X | � 2. Then

τ(G) ≤ 1
2|Y |

∏
v∈V(G)

dv .
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Proof. Let X � {x1 , x2}. For i � 1, 2, let Yi denote the set of vertices in Y
adjacent to only xi in X. Let Y12 denote the set of vertices in Y adjacent to
both x1 and x2.

Since G is connected, Y12 cannot be empty. Let T be a spanning tree in
G. Then T must contain all the edges between X and Y1 and all the edges
between X and Y2. For exactly one vertex u ∈ Y12, the tree T contains the
edges x1u and x2u. For every other vertex w ∈ Y12, w , u, the tree T
contains exactly one of the edges x1w and x2w.

There are |Y12 | choices for u, and for each of the |Y12 | − 1 other vertices
w ∈ Y12, there are 2 choices for which of x1w and x2w is in T, so

τ(G) � |Y12 | · 2|Y12 |−1.

We find

2|Y | · τ(G) � 2(|Y1 | + |Y12 | + |Y2 |) · |Y12 | · 2|Y12 |−1

� (|Y1 | + |Y12 | + |Y2 |) · |Y12 | · 2|Y12 |

� (|Y1 | + |Y12 |)(|Y12 | + |Y2 |) · 2|Y12 | − |Y1 | · |Y2 | · 2|Y12 |

≤ (|Y1 | + |Y12 |)(|Y12 | + |Y2 |) · 2|Y12 |

�

∏
v∈V(G)

dv ,

and then dividing through by 2|Y | gives the result. �

Conjecture 1.1 holds for all even cycles.

Proposition 5.3. Conjecture 1.1 holds for even cycles.

Proof. Let G be an even cycle with 2n vertices, where n ≥ 1. The spanning
trees in G are exactly the subgraphs obtained by deleting one edge in G.
Since G has 2n edges, we have τ(G) � 2n. Moreover

∏
v dv � 22n and

|X | · |Y | � n2, so Conjecture 1.1 for G is equivalent to

2n3 ≤ 22n . (5.1)

We proceed by induction on n. Equation 5.1 holds for n ≤ 2, and we take
n � 2 as the base case. As the inductive hypothesis, assume Equation 5.1
holds for some k ≥ 2. Because (k + 1)/k ≤ 3/2 < 22/3, we have

2(k + 1)3 �

(
k + 1

k

)3

· 2k3 ≤ �
22/3�3 · 22k

� 22(k+1) ,

completing the inductive step. �
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5.2 Connecting graphs by a new edge

We extend Proposition 1.3 by proving that Conjecture 1.1 holds under the
operation of connecting two bipartite graphs by a new edge.

Proposition 5.4. Let G and G′ be bipartite graphs for which Conjecture 1.1 holds.
Let X and Y be the parts of G, and let X′ and Y′ be the parts of G′. Choose vertices
x ∈ X and x′ ∈ X′.

Define the graph H by V(H) � V(G) ∪ V(G′) and E(H) � E(G) ∪ E(G′) ∪
{xx′}. Then the conjecture holds for H also.

Proof. Suppose that at least one of the parts X, Y, X′, and Y′ contains just
one vertex. Then at least one of G or G′ is a tree; without loss of generality,
say G′ is a tree. We may start from G and build up H by adding the vertex
x′ and the edge xx′, and then adding the rest of G′ similarly. The result
follows by applying Proposition 1.3 at each step.

We may now assume that each of the parts X,Y,X′,Y′ contains at least
two vertices. Then

|X | · |Y′| � (|X | − 1)(|Y′| − 1) + |X | + |Y′| − 1
≥ 1 · 1 + |X | + |Y′| − 1
� |X | + |Y′|
� |X ∪ Y′|,

and similarly |X′| · |Y | ≥ |X′ ∪ Y |. It follows that

|X | · |Y | · |X′| · |Y′| ≥ |X ∪ Y′| · |X′ ∪ Y |. (5.2)

Every spanning tree in H is obtained by connecting a spanning tree in G
and a spanning tree in G′ by xx′. Since this correspondence is bĳective,

τ(H) � τ(G) · τ(G′). (5.3)

Since Conjecture 1.1 holds for G and G′, we have

τ(G) ≤ 1
|X | · |Y |

∏
v∈V(G)

dv(G),

τ(G′) ≤ 1
|X′| · |Y′|

∏
v∈V(G′)

dv(G′),
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Multiplying these inequalities and using Equation 5.3,

τ(H) ≤ 1
|X | · |Y | · |X′| · |Y′|

*.
,

∏
v∈V(G)

dv(G)+/
-

*.
,

∏
v∈V(G′)

dv(G′)+/
-
.

Of course dv(H) ≥ dv(G) for every v ∈ V(G), and in particular we have
dx(H) � dx(G) + 1. This holds for the vertices of G′ too, so

τ(H) < 1
|X | · |Y | · |X′| · |Y′|

*.
,

∏
v∈V(G)

dv(H)+/
-

*.
,

∏
v∈V(G′)

dv(H)+/
-

�
1

|X | · |Y | · |X′| · |Y′|
∏

v∈V(H)
dv(H).

Observe that the parts of H are X ∪ Y′ and X′ ∪ Y. By Inequality 5.2,

τ(H) < 1
|X ∪ Y′| · |X′ ∪ Y |

∏
v∈V(H)

dv(H),

showing that Conjecture 1.1 holds for H also. �

5.3 Using spectral techniques

In this section, we approach Conjecture 1.1 by analyzing the normalized
Laplacian spectrum. The following lemma is a direct consequence of The-
orem 3.12 and Theorem 3.19.

Lemma 5.5. Let G be a bipartite graph on n ≥ 3 vertices. Then

τ(G) �
∏

v dv

|E(G)| ·
n−2∏
i�1

λi .

Next, we follow a proof in Bozkurt (2012) of the following bound on the
number of spanning trees in a bipartite graph.

Theorem 5.6. Let G be a bipartite graph on n ≥ 2 vertices. Then

τ(G) ≤
∏

v dv

|E(G)| , (5.4)

with equality if and only if G is complete bipartite.
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Proof. If n � 2, then G is K2 and both sides of Inequality 5.4 are 1, so the
result holds. Assume n ≥ 3. Using the AM-GM inequality on the statement
of Lemma 5.5,

τ(G) ≤
∏

v dv

|E(G)|
*
,

∑n−2
i�1 λi

n − 2
+
-

n−2

,

with equality exactly when the n − 2 eigenvalues λ1 , . . . , λn−2 are equal. By
Theorem 3.13, this condition is equivalent to G being complete bipartite.

By Proposition 3.7, we have
∑n−2

i�1 λi � n − λ0 − λn−1. In every graph,
λ0 � 0, and here λn−1 � 2 (again by Theorem 3.12). Thus

∑n−2
i�1 λi � n − 2,

and the result follows. �

Because there can be at most |X | · |Y | edges in a bipartite graph with
parts X and Y, if Conjecture 1.1 were true, then Theorem 5.6 would follow.
Specifically, the conjecture’s result improves upon Theorem 5.6 by a factor
of |E(G)|/(|X | · |Y |), which motivates the following definition.

Definition. Let G be a bipartite graph with parts X and Y. The bipartite density
of G, denoted ρ(G), is the ratio |E(G)|/(|X | · |Y |).

Equivalently, G contains ρ(G) times as many edges as the complete
bipartite graph K |X |,|Y |. The bipartite density, along with the normalized
Laplacian eigenvalues, is involved in the following reformulation of Con-
jecture 1.1.

Proposition 5.7. Let G be a bipartite graph on n ≥ 3 vertices with parts X and
Y. Then Conjecture 1.1 holds for G if and only if

n−2∏
i�1

λi ≤ ρ(G). (5.5)

Proof. This follows directly from Lemma 5.5 and Conjecture 1.1. �

Our strategy to approach Conjecture 1.1 will be to use the following
sufficient condition for the conjecture to hold.

Lemma 5.8. Let G be a bipartite graph on n ≥ 3 vertices with parts X and Y.
Suppose, for some 1 ≤ k ≤ b(n − 1)/2c, we have

k∏
i�1

λi(2 − λi) ≤ ρ(G).

Then Conjecture 1.1 holds for G.
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Proof. We use the form of Conjecture 1.1 provided by Proposition 5.7.
Proposition 3.14 gives λn−1−i � 2 − λi , so that

k∏
i�1

λi(2 − λi) � *
,

k∏
i�1

λi+
-

*
,

k∏
i�1

λn−1−i+
-
� *

,

k∏
i�1

λi+
-

*
,

n−2∏
i�n−k−1

λi+
-
. (5.6)

We distinguish three cases.
Case 1: n is even and k � b(n − 1)/2c � n/2 − 1. Then the right-hand

side of Equation 5.6 involves each of the eigenvalues λ1 , . . . , λn−2 once, so
the supposition is equivalent to Inequality 5.5.

Case 2: n is odd and k � b(n−1)/2c � (n−1)/2. Then the right-hand side
of Equation 5.6 involves the middle eigenvalue λ(n−1)/2 twice, and involves
each of the other eigenvalues λ1 , . . . , λn−2 once. By Proposition 3.14, we
have λ(n−1)/2 � 1, so the supposition is again equivalent to Inequality 5.5.

Case 3: k < b(n − 1)/2c. In this case, there are some eigenvalues in the
middle that are not involved in the right-hand side of Equation 5.6. These
middle eigenvalues are the n − 2k − 2 eigenvalues λk+1 , . . . , λn−k−2. Their
sum is, from Proposition 3.7 and Proposition 3.14,

n−k−2∑
i�k+1

λi �

n−2∑
i�1

λi − *
,

k∑
i�1

λi +

n∑
i�n−k−1

λi+
-

� n −
k∑

i�1
(λi + 2 − λi)

� n − 2k.

Thus, applying the AM-GM inequality to these middle eigenvalues,

n−k−2∏
i�k+1

λi ≤ *
,

∑n−k−2
i�k+1 λi

n − 2k − 2
+
-

n−2k−2

� 1. (5.7)
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We finally show that Inequality 5.5 is satisfied, since
n−2∏
i�1

λi � *
,

k∏
i�1

λi+
-

*
,

n−k−2∏
i�k+1

λi+
-

*
,

n−2∏
i�n−k−1

λi+
-

≤ *
,

k∏
i�1

λi+
-

*
,

n−2∏
i�n−k−1

λi+
-

�

k∏
i�1

λi(2 − λi)

≤ ρ(G),
where we used Equation 5.7, Equation 5.6, and the supposition in that
order. �

The preceding lemma gives a way Conjecture 1.1 by obtaining upper
bounds on the first k eigenvalues. Because the spectrum is symmetric
(Proposition 3.14), these would also be lower bounds on the last k eigen-
values. In this report, we focus on the smallest nontrivial eigenvalue λ1.
Specializing the preceding lemma to k � 1 gives the following lemma.

Lemma 5.9. Let G be a bipartite graph on n ≥ 3 vertices with parts X and Y.
Suppose

λ1(2 − λ1) ≤ ρ(G).
Then Conjecture 1.1 holds for G.

For graphs having a cut vertex of degree 2, we have the following upper
bound on λ1.

Proposition 5.10. Let G be a graph having a cut vertex x of degree 2. Write
m � |E(G)|. Then

λ1 ≤ 2m

4m − 5 +
√

8m2 − 28m + 25
.

Proof. Let G1 and G2 be the two components obtained from G by removing
the cut vertex x. Write α � vol V(G1) and β � vol V(G2), where vol V(Gi) �∑

v∈V(Gi) dv(G). Then, define f ∈ Rn by

fv �




c1 if v ∈ V(G1),
c2 if v ∈ V(G2),
0 if v � x.
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where the ci’s are constants that depend only on α and β. We will specify
the ci’s later. Observe that every edge of G connects two vertices in G1,
connects two vertices in G2, or is incident to x. Thus,∑

i∼ j

( fi − f j)2 � c2
1 + c2

2 .

Also, ∑
i , j

( fi − f j)2di d j � 2c2
1α + 2c2

2β + (c1 − c2)2αβ,

where each term corresponds to a choice of two parts from the partition
{V(G1),V(G2), {x}} of the vertex set V(G). Substituting this sum and the
previous one into Proposition 3.16, we obtain the upper bound

λ1 ≤ vol G · c2
1 + c2

2

2c2
1α + 2c2

2β + (c1 − c2)2αβ
. (5.8)

We choose

c1 �

√
(α − β)2 + (αβ)2 − αβ

α − β − 1,

c2 �

√
(α − β)2 + (αβ)2 − αβ

α − β + 1,

since computations with Mathematica indicate that these choices of the ci’s
minimize the upper bound in Equation 5.8. Choosing these ci’s gives the
upper bound

λ1 ≤ vol G

α + β + αβ +
√
(α − β)2 + (αβ)2

. (5.9)

Because x is adjacent to some vertex in G1 and to some vertex in G2, we
have α, β ≥ 1. The only other constraint on α, β is that

α + β � vol G − vol{x} � vol G − 2.

It can be shown that under these constraints, the upper bound in Equa-
tion 5.9 is worst when α � 1 and β � 2m − 3 or vice versa. The result then
follows by substituting these values for α, β into Equation 5.9 and using the
fact that vol G � 2m. �
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Figure 5.1 Upper bound on λ1(2 − λ1) for 2 ≤ |E(G)| ≤ 50.

Figure 5.1 shows the upper bound on λ1(2 − λ1) given by Proposi-
tion 5.10. This upper bound is decreasing in |E(G)| and approaches 0.5
from above as |E(G)| →∞.

We establish as a lemma that for graphs with few edges, Conjecture 1.1
is settled by the results of Garrett and Klee (2014). This lemma will let us
give a better upper bound on λ1(2 − λ1), since this bound gets better as
|E(G)| increases (see Figure 5.1).
Lemma 5.11. Conjecture 1.1 holds for bipartite graphs with at most 12 edges.

Proof. Let G be a bipartite graph. If G has at most 11 vertices, then the
conjecture holds by Theorem 1.2. Thus, we may assume G has at least 12
vertices, so it has at least 11 edges. It remains to check two cases:

Case 1: G has 11 edges and 12 vertices, or G has 12 edges and 13 vertices.
Then G is a tree, so the conjecture holds for G by Corollary 1.4.

Case 2: G has 12 edges and 12 vertices. Then G can be obtained from an
even cycle by the operation in Proposition 1.3. Since the conjecture holds
for even cycles by Proposition 5.3, the conjecture holds for G also. �

Our main result proves Conjecture 1.1 for sufficiently dense graphs
containing a cut vertex of degree 2.

Theorem 5.12. Let G be a bipartite graph. Suppose that ρ(G) ≥ 0.544 and that
G contains a cut vertex x of degree 2. Then Conjecture 1.1 holds for G.
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Proof. Let G1 and G2 be the two components obtained from G by removing
the cut vertex x. We check two cases:

Case 1: G has at most 14 edges. Then each of G1 and G2 has at most
12 edges, so by Lemma 5.11, the conjecture holds for each Gi . Since we
can reconstruct G from the Gi’s using the operations in Proposition 1.3 and
Proposition 5.4, the conjecture holds for G also.

Case 2: G has at least 15 edges. The upper bound on λ1 given by
Proposition 5.10 is λ1 ≤ 30/(55 +

√
1405) ≈ 0.324. This gives

λ1(2 − λ1) < 0.544 ≤ ρ(G),

which is sufficient to prove the conjecture by Lemma 5.9. �

The preceding result proves Conjecture 1.1 for graphs that are globally
dense (have high ρ(G)) but also locally sparse (contain a cut vertex). These
conditions suggest that the deviation from equality in the conjecture does
not depend on the graph’s density in a straightforwardmanner. This obser-
vation is consistent with equality for Ferrers graphs (Theorem 4.9), because
Ferrers graphs can range in density from trees to complete bipartite graphs.

5.4 Using electrical network analysis

Let G be a bipartite graph. We also adopt the setup from Section 4.2, so we
view G as representing an electrical network in which every edge has unit
resistance.

We are interested in a lower bound for the effective resistance rx y in
terms of the degrees dx and dy . Recall as examples Proposition 4.6 and
Proposition 4.7, which apply to graphs in general. We establish a lower
bound for bipartite graphs that, in some cases, improves on the mentioned
bounds.

The following technical lemma will be helpful.

Lemma5.13. LetG be a bipartite graphwith partsX andY. Then |E(G)| ≥ dx+dy
for every edge x y of G, assuming that G\x y is connected.

Proof. We know G\x y is connected and does not contain the edge x y, so it
contains dx − 1 edges incident to x, another dy − 1 edges incident to y, and
at least one more edge. We have identified dx + dy − 1 edges in G\x y, so
adding x y back gives

|E(G)| ≥ dx + dy . �
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Proposition 5.14. Let G be a bipartite graph with parts X and Y. View G as
representing an electrical network in which every edge has unit resistance. Then

rx y ≥ *
,
1 +

(
1

dx − 1 +
1

dy − 1 +
1

|E(G)| − dx − dy + 1

)−1
+
-

−1

for every edge x y of G, assuming that G\x y is connected.

Proof. Write m � |E(G)|. Fix an edge x y of G, assuming x ∈ X and y ∈ Y.
Short X\{x} by collapsing it into a vertex x1, and short Y\{y} by collapsing
it into avertex y1. LetG′denote thegraphobtained, soV(G) � {x , y , x1 , y1}.

In the graph G′, the number of edges between x and y is 1, that between
x and y1 is dx − 1, and that between y and x1 is dy − 1. Since G′ is bipartite,
all of the m − dx − dy + 1 remaining edges are between x1 and y1, and there
is at least one remaining edge by Lemma 5.13.

We can thus replace the edges between x and y1 by an edge with re-
sistance 1/(dx − 1), replace the edges between y and x1 by an edge with
resistance 1/(dy − 1), and replace the edges between x1 and y1 by an edge
with resistance 1/(m − dx − dy + 1). The result follows from directly com-
puting the effective resistance in the shorted network, and then applying
the short-cut principle. �

Using this bound, we give a sufficient condition for the ratio τ(G)/∏v dv
to not increase when an edge x y is deleted from G.

Theorem 5.15. Let G be a bipartite graph with parts X and Y. Suppose x y is an
edge of G such that dx(G) · dy(G) ≥ |E(G)|, and assume that G\x y is connected.
Then

τ(G\x y)∏
v dv(G\x y) ≤

τ(G)∏
v dv(G) .

Proof. Write m � |E(G)|. For convenience, let

b � *
,
1 +

(
1

dx − 1 +
1

dy − 1 +
1

m − dx − dy + 1

)−1
+
-

−1

denote the lower bound in Proposition 5.14, so from Proposition 5.14, we
have rx y ≥ b. By Proposition 4.5,

τ(G) − τ(G\x y)
τ(G) ≥ b ,
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which rearranges to
τ(G\x y)
τ(G) ≤ 1 − b.

The result would follow from

1 − b ≤
∏

v dv(G\x y)∏
v dv(G) �

(dx − 1)(dy − 1)
dx dy

, (5.10)

which we now verify. We compute

(dx − 1)(dy − 1)
dx dy

− 1 + b �
(dx − 1)(dy − 1)(dx dy − m)

dx dy
�
dx dy(m − dx − dy + 2) − m

�

Here the numerator is nonnegative because we supposed that dx dy ≥ m.
The denominator is positive because

dx dy(m − dx − dy + 2) − m � dx dy(m − dx − dy + 1) + (dx dy − m),

inwhich m−dx−dy+1 > 0 byLemma 5.13 and dx dy ≥ m by the supposition.
It follows that

(dx − 1)(dy − 1)
dx dy

− 1 + b ≥ 0,

which verifies Inequality 5.10 and completes the proof. �

The following corollary gives a degree condition such that the conjecture
holds under the operation of removing an edge.

Corollary 5.16. Let G be a bipartite graph for which Conjecture 1.1 holds. Suppose
x y is an edge of G such that dx(G) · dy(G) ≥ |E(G)|. Then the conjecture holds
for G\x y also.

Proof. If G\x y is connected, then the result directly follows from Theo-
rem 5.15 and Conjecture 1.1. Otherwise, the result still holds because
Conjecture 1.1 holds for disconnected graphs. �

Here is an example of how the preceding corollary can be used to show
that Conjecture 1.1 holds for certain bipartite graphs.

Proposition 5.17. Let K′ be the graph obtained by removing a matching from the
complete bipartite graph K |X |,|Y |. Then Conjecture 1.1 holds for K′.
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Proof. Write K � K |X |,|Y |. Since K is a Ferrers graph, Conjecture 1.1 holds
for K by Theorem 4.9. For all x ∈ X and y ∈ Y, we have dx(K) · dy(K) �
|Y | · |X | � |E(K)|.

Remove the edges of the matching one by one. Right before each edge
xi yi is removed from the intermediate graph Ki , we still have dxi (Ki) ·
dyi (Ki) � |E(K)|, because no edge incident to xi or yi has been removed
before. Thus, Corollary 5.16 applies when each edge is removed, which
gives the result. �

This result establishes Conjecture 1.1 for a new class of graphs. Indeed,
whenever the matching removed contains more than one edge, Proposi-
tion 4.11 implies that K′ cannot be a Ferrers graph.





Chapter 6

Conclusion

6.1 Discussion

In this report, we approached Ehrenborg’s conjecture (Conjecture 1.1) along
three different routes: combinatorial proofs, spectral techniques, and elec-
trical network analysis. We discuss each route in turn.

6.1.1 Combinatorial proofs

In Section 5.1, we gave combinatorial proofs for G having |X | ≤ 2 and for G
being an even cycle. These proofs rely on how straightforward it is to count
spanning trees in such graphs. For graphs in general, Kirchhoff’s theorem
(Theorem 3.18) reduces the problem of counting spanning trees to that of
computing a determinant. However, except for special classes of graphs, it
is rare that the number of spanning trees is easy to compare to the product
of vertex degrees, as is required to resolve Conjecture 1.1. That said, it
would be interesting to see combinatorial proofs for other specific classes
of bipartite graphs.

We gave another combinatorial proof in Section 5.2. When two bipartite
graphs G and G′ are connected by an edge to form a graph H, there is the
simple relation τ(H) � τ(G) · τ(G′). This relation let us extend a result of
Garrett and Klee (2014) by proving that Ehrenborg’s conjecture holds under
the operation of connecting two graphs by a new edge.
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6.1.2 Spectral techniques

We found a sufficient condition for Ehrenborg’s conjecture in Section 5.3
using techniques from spectral graph theory. This condition involved the
smallest nontrivial eigenvalue λ1 and the bipartite density ρ(G). In order
to exploit a variational characterization due to Chung (1997), we supposed
that the graph G contains a cut vertex of degree 2. This vertex served as
a bottleneck, letting us obtain a good upper bound on λ1 and eventually
prove Conjecture 1.1 when ρ(G) is sufficiently large.

As Lemma 5.8, we state a sufficient condition for Ehrenborg’s conjecture
that involves the k smallest eigenvalues. However, as Butler (2008: Section
5.5) points out, the middle eigenvalues λ2 , . . . , λn−3 are much less well-
understood than λ1 and λn−1. In particular, suppose we write down a
variational characterization of λ2, in analogy with the characterizations of
λ1 (Propositions 3.15 and 3.16). But those characterizations of λ1 were easy
to work with because they involved the eigenvector D1/2

1 corresponding to
λ0, while an analogous characterization of λ2 would need to depend on the
eigenvector corresponding to λ1.

There are ways to control all the eigenvalues at once. One example is the
technique of eigenvalue interlacing, surveyed in Haemers (1995). However,
because the number of spanning trees involves the product of all n − 1
nontrivial eigenvalues of L (Theorem 3.18) or L (Theorem 3.19), even a
small difference between a bound and the actual eigenvalue can render the
bound too weak to establish Conjecture 1.1.

6.1.3 Electrical network analysis

Section 5.4 saw us apply the theory of electrical networks towards Conjec-
ture 1.1. Using the short-cut principle, we obtained a lower bound on the
effective resistance of each edge, which is related via Proposition 4.5 to the
proportion of spanning trees containing that edge.

Unfortunately, even with our lower bound, Theorem 5.15 requires the
strict degree condition dx(G) · dy(G) ≥ |E(G)| in order to guarantee that
removing the edge x y does not increase the ratio τ(G)/∏v dv . One way
forward would be to improve our lower bound.

It might be fruitful to investigate a formula, derived in Ghosh et al.
(2008: Section 2.4), for the effective resistance in terms of theMoore–Penrose
pseudoinverseL+ ofL. Relatedly, the pseudoinverseL+ has a neat expres-
sion when the graph is bipartite (van Dooren and Ho, 2005: Theorem 1).
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6.2 Future work

6.2.1 Cartesian product

Proposition 5.4 is an example of the strategy of showing the conjecture
holds under operations that combine two bipartite graphs. Another such
operation is the Cartesian product of two graphs G and G′, which produces a
newgraphdenoted G�G′. TheCartesian product seems promising because
it enjoys the following properties:

(i) (Sabidussi, 1957: Lemma 2.6) The Cartesian product G�G′ is bipartite
if and only if G and G′ are bipartite.

(ii) (Sabidussi, 1960: Corollary 2.15) Every connected graph G has a factor-
ization with respect to the Cartesian product into prime factors, which
are graphs that cannot be expressed as a nontrivial Cartesian product.
Moreover, this factorization is unique up to isomorphisms.

(iii) (Fiedler, 1973: Property 3.4) Let G be a graph on n vertices and let G′
be a graph on m vertices. Includingmultiplicities, the nm eigenvalues
of L(G�G′) are the values of µi(G) ·µ j(G′) for 0 ≤ i < n and 0 ≤ j < m.

For example, Wu and Chung (2014) apply the eigenvalue relation in
property (iii) to count spanning trees in certain regular graphs.

6.2.2 Laplacian eigenvalues

The proof of Theorem 5.12 uses an upper bound on the eigenvalue λ1 of
L. Order the vertices by their degrees so that d1 ≤ d2 ≤ · · · ≤ dn . It can be
shown using Theorem 3.18 that Conjecture 1.1 is equivalent to

n−1∏
i�1

µi ≤ n
|X | · |Y |

n∏
i�1

di . (6.1)

This suggests approaching the conjecture by finding an upper bound on the
eigenvalues µi of L.

Based on a result of Brouwer and Haemers (2008), it is shown by Farber
and Kaminer (2011) that for 1 ≤ i ≤ n − 1, we have µi ≤ di + i − 1 except for
one graph. This gives

n−1∏
i�1

µi ≤
n−1∏
i�1

(di + i − 1). (6.2)
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Checking some bipartite graphs reveals that the upper bound in Inequal-
ity 6.2 can be many orders of magnitude larger than that in Inequality 6.1.
Perhaps one can improve the result of Brouwer and Haemers (2008) for the
case of bipartite graphs.

6.2.3 Local graph operations

We can rewrite Conjecture 1.1 as

τ(G)∏
v dv(G) ≤

1
|X | · |Y | .

Since the conjecture holds with equality for Ferrers graphs (Theorem 4.9),
it can be reformulated as follows.

Conjecture 6.1. Let G be a connected bipartite graph with parts X and Y. Then

τ(G)∏
v dv(G) ≤

τ(GF)∏
v dv(GF)

for any Ferrers graph GF with parts X and Y.

Fix parts X and Y, and let B denote the set of all connected bipartite
graphs with parts X and Y. The reformulation in Conjecture 6.1 suggests
finding a graph operation whose effect on τ(G)/∏v dv(G) we understand
well. We now state the properties that we want such a graph operation to
have.

Proposition 6.2. Conjecture 6.1 would be implied by the existence of a map
f : B → B with the following properties:

(i) applying f to any G ∈ B does not decrease τ(G)/∏v dv(G), and

(ii) starting from any G ∈ B, one can obtain a Ferrers graph by applying f zero
or more times.

The operation of adding an edge certainly satisfies property (ii), so one
might hope that it satisfies property (i) as well. For some evidence in this
direction, considerwhat happenswhenwe repeat the proof of Theorem5.15
using the rx y bound from Proposition 4.7 instead of our bound from Propo-
sition 5.14.
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Proposition 6.3. LetG be a connected bipartite graphwith partsX andY. Suppose
x y is an edge of G. Then

τ(G\x y)
(dx − 1)(dy − 1) ≤

τ(G)
dx dy − 1 , (6.3)

where we assume that G\x y is connected.

Proof. From Proposition 4.7, we have

rx y ≥
dx + dy − 2

dx dy − 1 .

Using Proposition 4.5,

τ(G\x y)
τ(G) � 1 − rx y ≤ 1 − dx + dy − 2

dx dy − 1 �
(dx − 1)(dy − 1)

dx dy − 1 . �

Imagine if Proposition 6.3 held with the small change that the right-
hand side of Inequality 6.3 is τ(G)/(dx dy) instead of τ(G)/(dx dy − 1). Then
the operation of adding an edge would indeed satisfy property (i) of Propo-
sition 6.2, establishing Conjecture 1.1. However, adding an edge does not
satisfy property (i). As a counterexample, consider the graph H2 in Fig-
ure 6.1.

x

y

Figure 6.1 The counterexample graphH2.

We compute
τ(H2\x y)∏
v dv(H2\x y) �

4
54 >

15
216 �

τ(H2)∏
v dv(H2)

,

verifying that H2 is a counterexample. Note that neither H2 nor H2\x y are
Ferrers graphs.

Having seen that adding an edge does not satisfy Proposition 6.2, we
define two graph operations that might.
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Definition. Let G ∈ B. Suppose G is not complete bipartite, so there exists a
vertex x ∈ X whose neighborhood is not all of Y. Define the spread graph, denoted
spread(G, x), as the graph obtained from G by connecting x to every vertex in Y.

Definition. Let G ∈ B. Suppose G is not a Ferrers graph, so G contains K2 ∪ K2
as an induced subgraph by Proposition 4.11. Equivalently, there exist vertices
x1 , x2 ∈ X and y1 , y2 ∈ Y such that x1 ∼ x2 and y1 ∼ y2, but x1 / y2 and
x2 / y1. Define the cross graph, denoted cross(G, x1 y1 , x2 y2), as the graph
obtained from G by adding the edges x1 y2 and x2 y1.

Starting from any connected bipartite graph G, repeatedly applying
the spread operation will result in a complete bipartite graph (which is a
Ferrers graph). Similarly, starting from G and repeatedly applying the cross
operation will result in a Ferrers graph. Thus, both of these operations have
property (ii) in Proposition 6.2. We conjecture that these operations have
property (i) as well.

Conjecture 6.4. Let G be a connected bipartite graph with parts X and Y. If G′
is a graph obtained from G via a spread operation, then

τ(G)∏
v dv(G) ≤

τ(G′)∏
v dv(G′)

.

Conjecture 6.5. Let G be a connected bipartite graph with parts X and Y. If G′
is a graph obtained from G via a cross operation, then

τ(G)∏
v dv(G) ≤

τ(G′)∏
v dv(G′)

.

Wehave obtained empirical data in support of Conjectures 6.4 and 6.5 by
randomly generating bipartite graphs using the Python package NetworkX
(Hagberg et al., 2008). Because neither of our conjectures directly implies the
other, we believe our conjectures indicate two distinct approaches towards
confirming Conjecture 1.1 in general.
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