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Abstract 
 

An Investigation of Teachers’ Noticing, Cognitive Demand, and Mathematical Knowledge for 

Teaching: Video Reflections in an Elementary Mathematics Context 

by  

Lorelei R. Coddington 

Claremont Graduate University: 2014 

In the past decade, mathematics performance by all students, especially minority students 

in low socioeconomic schools, has shown limited improvement nationwide (NCES, 2011). 

Traditionally in the United States, mathematics has consisted of arithmetic and computational 

fluency; however, mathematics researchers widely believe that this method of instruction does 

not enhance the development of mathematical reasoning and ignores the research on students’ 

mathematical development (Blanton & Kaput, 2005; Stigler & Hiebert, 1999). 

Recommendations by the mathematics community are to broaden and strengthen teacher content 

knowledge in mathematics and to provide the pedagogical tools needed by teachers to extend 

their students’ thinking and reasoning (Darling-Hammond, Wei, Andree, Richardson, and 

Orphanos, 2009; Mewborn, 2003).  

The purpose of this quantitative study was to investigate the relationship between the 

teachers’ levels of noticing, the levels of cognitive demand in their enacted tasks, and their levels 

of mathematical knowledge for teaching in two urban high-need low performing elementary 

schools. The 54 elementary teachers participated in a long-term mathematics professional 

development program aimed at developing teachers’ mathematical knowledge for teaching and 

recognizing and fostering students’ early algebraic reasoning. The data for this dissertation 

included teachers’ self-selected video segments, written video reflections, and mathematical 

knowledge for teaching levels from the second year of the professional development. 



 

 

Relationships were explored between mathematical knowledge for teaching, teachers’ levels of 

noticing, and the levels of cognitive demand represented in mathematics lessons.  

The findings indicated shifts in teachers’ cognitive demand of enacted tasks and noticing 

over the course of the second year of professional development. Correlation results indicated 

significant relationships between teachers’ cognitive demand, teacher noticing, participation, and 

teachers’ mathematical knowledge for teaching. Moreover, the results showed that the teachers 

in the K-3 cohort benefited more from the professional development than their 4-6 cohort 

counterparts when it came to mathematical knowledge for teaching, noticing, and cognitive 

demand levels.  
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 1 

Chapter One:  Statement of the Problem 

Background 
 

In the past decade, mathematics performance by all students, especially minority 

students in low socioeconomic schools, has shown limited improvement nationwide 

(NCES, 2011). Traditionally in the United States, mathematics has consisted of 

arithmetic and computational fluency; however, mathematics researchers widely believe 

that this method of instruction does not enhance the development of mathematical 

reasoning and ignores current research on students’ mathematical development (Battista, 

1999; Blanton & Kaput, 2005; Stigler & Hiebert, 1999). According to Martin and Kasmer 

(2009), it is essential that children in the elementary classroom explore important 

mathematical ideas by reasoning and sense-making in order to provide a strong 

foundation for future success; however, American schools focus narrowly on skills, 

procedures, and fluency in mathematics rather than higher levels of reasoning and 

problem solving (Charalambous, 2010; Hiebert & Carpenter, 2003; Ma, 1999; Stigler & 

Hiebert, 1999).  Recommendations by the mathematics community are to broaden and 

strengthen teacher content knowledge in mathematics and to provide the pedagogical 

tools needed by teachers to extend their students’ thinking and reasoning (Darling-

Hammond, Wei, Andree, Richardson, and Orphanos, 2009; Mewborn, 2003).  

To reduce the achievement gap and improve students’ performance, professional 

development has been aimed at improving teachers’ mathematical knowledge for 

teaching (Blanton & Kaput, 2005; Hill & Ball, 2004; Jacobs, Franke, Carpenter, Levi, & 

Battey, 2007). Mathematical knowledge for teaching is considered knowledge about 
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mathematics that is needed in the work of teaching. This type of knowledge is described 

as “explaining terms and concepts to students, interpreting students’ statements and 

solutions, judging and correcting textbook treatments of particular topics, using 

representations accurately in the classroom, and providing students with examples of 

mathematical concepts, algorithms, or proofs” (Hill, Rowan, & Ball, 2005, p. 373). 

According to research, teachers’ mathematical knowledge for teaching is a contributing 

factor in students’ mathematics performance (Blanton & Kaput, 2005; Hill & Ball, 2004; 

Hill et al., 2005) and has a positive effect on student achievement (Hill et al., 2005). Thus, 

the effort of mathematics professional development (MPD) has been to increase teachers’ 

mathematical knowledge for teaching thereby creating shifts in practice towards students’ 

thinking. 

One goal of increasing teachers’ mathematical knowledge for teaching is to 

improve the depth and complexity of their mathematics instruction and tasks. This type of 

shift moves from procedural types of practice to more conceptual types of instruction and 

requires tasks of higher cognitive demand. Cognitively demanding tasks are described as 

mathematical activities that include “procedures with connections to understanding, 

meaning, or concepts” (Stein, Smith, Henningsen, & Silver, 2009, p. 1). Students use 

various representations and require meaning to be attached to their work by referring to 

the representations, when engaging in cognitively demanding tasks. According to Stein et 

al.’s conceptual model, teachers’ content knowledge influences the enactment of 

cognitively demanding tasks. 

To promote a greater understanding of student thinking, mathematics professional 

development has investigated how teachers notice and respond to student thinking using 
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videos of lessons and work samples (Jacobs, Lamb, and Philipp, 2010; Sherin, Jacobs, & 

Philipp, 2011; Sherin & van Es, 2009; van Es & Sherin, 2002). This emerging field of 

study is known as teacher noticing. Teacher noticing in mathematics is conceptualized as 

teacher expertise in three interrelated skills: “attending to children’s strategies, 

interpreting children’s understandings, and deciding how to respond on the basis of 

children’s understandings” (Jacobs et al., 2010, p. 172). Teacher noticing has shown 

promise in shifting teachers’ instruction toward a focus on students’ thinking, an area 

recommended by the National Council for Teachers of Mathematics (NCTM, 2000). 

Particularly, studies that used video to capture instruction with post-reflection showed 

gains in teacher change (van Es & Sherin, 2002). 

Purpose of Study 

Specifically, how teachers notice, interpret, and respond to student thinking in 

mathematics is critical. Additionally, understanding the role of mathematical knowledge 

for teaching on practice and noticing student thinking is also an area ripe with 

possibilities to better understand the complexities of teaching and learning and improving 

instruction. Therefore, the purpose of this quantitative study is to investigate the 

relationship between the teachers’ levels of noticing, the levels of cognitive demand in 

their enacted tasks, and their levels of mathematical knowledge for teaching. 

Literature Review 

Teacher Knowledge  

Teaching is a highly complex task that requires significant amounts of varied 

types of knowledge in order for teachers to respond and interpret learning. Shulman 



 

 4 

(1987), in his seminal writing, identified pedagogical content knowledge as a distinctive 

body of knowledge needed by all teachers. He claimed, “Teachers must learn to use their 

knowledge base to provide the grounds for choices and actions” (p. 13). According to 

Shulman, the most critical point in teaching is where pedagogy and knowledge intersect. 

At this juncture, he believed a teacher could transform his or her content knowledge into 

“forms that [were] pedagogically powerful, yet adaptive to the variations in ability and 

background presented by the students” (p. 15). Thus, effective teaching was envisioned 

as more than just a set of skills; rather, it was a transformative experience in which 

content and pedagogy came together.   

Ball, Thames, and Phelps (2008) continued to expand on Shulman’s beliefs by 

exploring different types of pedagogical knowledge needed for teaching related to 

mathematics. In their analysis of teachers and the professional work of teaching, they 

conceptualized four domains of pedagogical knowledge: 1) common content knowledge, 

2) specialized content knowledge, 3) knowledge of content and students, and 4) 

knowledge of content and teaching. First, common content knowledge was defined as 

knowledge and skill needed by teachers but also used in a variety of settings other than 

teaching. This type of mathematical knowledge is shared by other educated adults and 

thus is considered “common.” Second, specialized content knowledge is described as 

mathematical knowledge and skill specific to teaching. Knowledge of this kind allows 

teachers to hold an understanding beyond what students’ need and enables teachers to 

unpack a concept in multiple ways to make the content visible and learnable. Only 

teachers in their professional context need this type of knowledge. Third, teachers need to 

have combined knowledge of their students and what they know about mathematics so as 
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to engage and motivate students and recognize misconceptions. This type of familiarity 

also allows teachers to hear and interpret their students’ thinking. Fourth, teachers need to 

know both mathematical content and teaching. This type of knowledge impacts teachers’ 

design for instruction. For example, instructional decisions about sequencing of content, 

examples, and representations are all impacted by teachers’ knowledge of content and 

teaching. These four specific domains identified by Ball et al. have helped to define the 

various aspects of knowledge needed for teaching and also new areas to investigate.  

Research has begun to establish a strong relationship between teachers’ 

mathematical knowledge for teaching and its impact on student achievement. Hill et al.’s 

(2005) study supported a significant correlation between teachers’ mathematical 

knowledge for teaching, as measured by the Learning Mathematics for Teaching (LMT) 

survey, and student achievement in first and third grade students. Teachers’ mathematical 

knowledge for teaching was also found to be a strong predictor of student achievement, 

with higher levels of mathematical knowledge for teaching predicting greater gains in 

achievement. This study also found that teachers with mathematical knowledge for 

teaching in the bottom three deciles were most often found in low socioeconomic schools. 

Broad implications can be drawn from the results of Hill et al. to inform professional 

development, policy, and educational equity.  

Building on the importance of pedagogical knowledge in mathematics teaching, 

research has begun to connect mathematical knowledge for teaching to teacher 

instruction (Charalambous, 2010) and teacher decisions in analyzing teaching (Kersting, 

Givvin, Sotelo, and Stigler, 2010). Charalambous, studied how the level of teachers’ 

decision-making in task unfolding was impacted by the teachers’ level of mathematical 
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knowledge for teaching. The sample consisted of 10 teachers from which two were 

randomly selected. Before collecting the data, the two teachers’ mathematical knowledge 

for teaching was assessed using the Learning Mathematics for Teaching survey. Then 

data was gathered through nine videotaped lessons from each of the teachers’ 

mathematics lessons; these were analyzed both quantitatively and qualitatively.  The 

findings suggested that the teachers’ mathematical knowledge for teaching contributed to 

the enactment of the tasks. The teacher who possessed a higher level of mathematical 

knowledge for teaching was able to connect greater meaning to the mathematical content 

rather than focusing only on the mathematical procedure. Also, the teacher with the 

higher mathematical knowledge for teaching enacted tasks at a higher cognitive level 

when interacting with her students. Similarly, mathematical knowledge for teaching was 

correlated to the teachers’ ability to accurately evaluate learning in Kersting et al.’s study. 

In this study, the teachers (N = 257) were assessed for their knowledge of fractions, 

evaluations of authentic online classroom video clips, and written observations. The 

findings were coded and analyzed and showed correlations between teachers’ levels of 

MKT and their accuracy in responding to the mathematical events on the video clips. 

In an effort to develop teachers’ pedagogical content knowledge, Jacobs et al. 

(2007) and Blanton and Kaput (2005) conducted sustained professional development with 

a mathematical knowledge for teaching focus. Their work was distinct in that it directly 

linked teachers’ pedagogical content knowledge to children’s improved algebraic 

reasoning. In the study by Jacobs et al., the 180 teachers increased their ability to identify 

a wider variety of student strategies. Students of participating teachers also showed 

marked improvement in their ability to reason algebraically. Likewise, Blanton and 
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Kaput conducted professional development to improve teachers’ ability to foster 

algebraic reasoning by strengthening their pedagogical content knowledge. In the case 

study presented, the teacher not only showed an ability to extend students’ thinking and 

ability to reason but also supported her students in making significant achievement gains 

in algebraic reasoning.   

Teacher Noticing 

Far less is understood about how pedagogical content knowledge manifests itself in 

teacher noticing through attending, interpreting, and responding to students’ 

mathematical thinking. Jacobs et al. (2010) examined various levels of teachers’ 

experience and their ability to notice based on teaching experience and degree of 

professional development. The findings suggested that those with the least amount of 

teaching experience were less able to interpret and respond to students’ mathematical 

thinking. Those with teaching experience alone were still limited in their ability to 

interpret and respond to students’ thinking. However, teachers who engaged in sustained 

mathematics professional development were more able to interpret and appropriately 

respond to students in the classroom context. This study suggested that there was a 

continuum of development in teachers’ ability to notice students’ thinking. 

Teacher noticing and its developmental nature were the focus of studies by Sherin 

and van Es (2009) and van Es and Sherin (2006). These studies incorporated video clubs 

as the vehicle for teachers to observe classroom situations. Teachers regularly came 

together in video clubs to discuss their practice by watching videotapes of their lessons. 

The findings from these studies suggested that over time, in a collegial collaborative 

setting, teachers showed an increased ability to analyze the teaching context in more 
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depth. At first, their focus was on pedagogical issues rather than content. After multiple 

discussions about the videotapes, teachers shifted in their discussions to address the 

underlying mathematical ideas and content rather than a focus on pedagogical issues.   

Cognitive Demand of Tasks 

Engaging students in quality mathematical tasks that require a high degree of 

cognitive demand has been found essential to developing student thinking and reasoning 

(Stein et al., 2009). In their early research, Stein, Grover, and Henningsen (1996) found 

that teachers who had engaged in professional development could select and initiate tasks 

with cognitive demand but were unable to sustain the level of cognitive demand 

throughout the lesson. Further research revealed that factors such as teachers’ education, 

experience, and content knowledge affected the enacted quality of task as well as how the 

teacher used the curriculum that was provided (Stein & Kaufman, 2010). In Stein and 

Kaufman’s study, quality was defined by level of cognitive demand, student thinking, 

and student autonomy evident in a lesson. The findings from these studies showed that a 

task’s level of cognitive demand was related to opportunities for student thinking. 

Over the course of their NSF-funded research, Stein et al. (2009) used the Task 

Analysis Guide to differentiate levels of cognitive demand throughout a lesson. This 

four-level guide, previously developed by Stein & Smith (1998) enabled researchers to 

evaluate enacted tasks based on the demand for student thinking and reasoning. Examples 

of case studies from the research demonstrated teachers’ ability to sustain various levels 

of cognitive demand that influenced the building of students’ capacity to think and reason.  

Research by Smith, Bill, and Hughes (2008) and Stein and Kaufman (2010) have 

continued to support teachers’ ability to effectively use curricular materials in ways that 
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are cognitively demanding. Smith et al. showed that lesson design using the Thinking 

Through A Lesson Protocol allowed teachers more success at maintaining high levels of 

cognitive demand when planning instruction since the protocol prompted the teacher to 

start with a more open-ended type of problem and also allowed multiple pathways to the 

solution. Stein and Kaufman’s study looked at teachers’ planning of big mathematical 

ideas using two curricular materials, Everyday Mathematics and Investigations. The two-

year study suggested that Investigations curricular materials provided the teachers more 

support in using bigger mathematical ideas and allowing students multiple pathways to 

answers which promoted higher levels of cognitive demand, student thinking, and 

mathematical reasoning.  

Significance and Research Questions 

Significance of the Study 

Little research exists to explain how teachers develop the ability to notice students’ 

thinking (Jacobs, et al. 2010; Sherin & Han, 2004; Sherin et al., 2011; Sherin & van Es, 

2009; van Es & Sherin, 2006); nor do we know much about how teachers interpret or 

respond to student thinking through noticing (Scherrer & Stein, 2012; Sherin et al., 2011; 

Stein et al., 2009; van Es & Sherin, 2002). Though the field has begun to understand the 

mediating effects of teachers’ knowledge on student achievement (Hill et al. 2004), there 

is a dearth of research connecting teacher knowledge to classroom practice 

(Charalambous, 2010). This dissertation adds to the body of research on teacher noticing 

in mathematics and will aid in understanding the relationship between mathematical 

knowledge for teaching, teacher noticing, and the cognitive demand of enacted tasks.  
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Research Questions 

This study seeks to understand teacher noticing and the cognitive demand of 

enacted tasks, as well as the relationship of these two constructs with teachers’ 

mathematical knowledge for teaching. Thus, the following research questions will be 

addressed: 

1) How do teachers’ written reflections and observations of their 

mathematics lessons explain teachers’ levels of noticing in the second 

year of mathematics professional development focused on developing 

teachers’ mathematical knowledge for teaching? 

2) How do teachers’ self-selected video segments of mathematics lessons 

explain the level of cognitive demand of the teachers’ enacted tasks 

during the second year of mathematics professional development 

focused on developing teachers’ mathematical knowledge for teaching? 

3) How do teachers’ levels of mathematical knowledge for teaching relate 

to teachers’ levels of noticing and levels of cognitive demand in enacted 

tasks during the second year of mathematics professional development 

focused on developing teachers’ mathematical knowledge for teaching? 

Theoretical Perspective 

My theoretical perspective was influenced by the conceptualizations of both 

mathematical knowledge for teaching (Ball et al., 2008) and teacher noticing (Jacobs et al. 

2010; van Es, 2011). Ball et al. identified mathematical knowledge for teaching as 

divided into two parts: subject matter knowledge and pedagogical content knowledge. It 

was my belief that teacher knowledge, both subject matter and pedagogical, influences 
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teachers’ classroom decisions, sense making, and teaching moves. In addition, I espoused 

Jacobs et al.’s (2010) conceptualization of teacher noticing as teachers’ ability to attend 

to, respond to, and interpret students’ thinking. Furthermore, the lens I used to view 

teacher noticing was guided by van Es’ (2011) Framework for Learning To Notice 

Student Mathematical Thinking that recognized teachers at different levels on the 

continuum of noticing and responding to students’ thinking. The level of teacher noticing 

was not dependent on teachers’ years of experience, but rather on the teachers’ 

mathematical knowledge and ability to identify specific aspects of student thinking and 

how to interpret and respond to students’ thinking.   

Conceptual Model For Study 

Figure 1 below depicted my original conceptual model for this study within the 

context of mathematics professional development. I believed that the central parts, 

teacher noticing, and the cognitive demand of enacted tasks, were influenced by both 

teachers’ mathematical knowledge for teaching and their reflection on practice. 

Ultimately, the end results were shifts in the teachers’ instruction that allowed students 

more opportunities for reasoning and thinking about mathematics.  
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Figure 1  

Conceptual Model 

 

(Coddington, 2013) 

Methodology 

Context 

The 54 teachers in this study were participants in a California funded Improving 

Teacher Quality grant called the Making Algebra Accessible Project (MAAP), a four-

year grant that began in 2008 and ended funding in 2012. This project was a partnership 

between Claremont Graduate University’s (CGU) Teacher Education, Pitzer College, and 

a participating urban predominantly minority southern California school district. From 

2008-2011, the teachers participated in monthly seminars, summer institutes, and 

classroom observations. The teachers experienced the mathematics professional 

development in two cohorts with one year of overlap. The first cohort included the 

kindergarten through third grade teachers from 2008-2010. The second cohort included 

the fourth through sixth grade teachers from 2009-2011 (see Figure 2 below). The 
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teachers were paid an hourly stipend for their participation in MAAP to cover the time 

that occurred beyond their district-contracted hours. 

Figure 2 

Study Context 

         

As a research associate, I was intimately involved in the video recording of the 

lessons, the planning and facilitating of the seminars and summer institutes, and the 

analysis of the data. Therefore, this dissertation continues to build on my prior research.  

Internal Review Board 

The MAAP research design, surveys, and the participation forms were approved by 

the Internal Review Board (IRB) of both CGU and Pitzer College in 2008, at the start of 

the grant funding. The proposed analyses described in this dissertation fits within the 

original and amended design of the MAAP IRB approval. The videos used in this 

dissertation were those gathered during the MAAP classroom observations; thus, the 

videos with student and teacher participants were under the auspices of the grant. Those 

students pictured on the videos submitted parent/guardian permission forms at the 

beginning of each year of MAAP and the teachers signed release forms at the start of the 

project. The participant video permission forms for both teachers and students were 

locked in a cabinet in the care of Teacher Education at CGU. All participant 
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identification was protected and pseudonyms were used in the results. Since this study 

was situated within the MAAP grant, the data created and generated was still considered 

data analysis on behalf of the MAAP professional development and ultimately belonged 

to the State of California. 

Sample 

There were 54 participating teachers in the treatment group of the MAAP 

professional development. Each member of the population was used in the sample for this 

study. Previously, all teachers were categorized based on their level of participation in the 

project. These levels were determined by the MAAP research team based on the teachers’ 

number of hours of participation in monthly seminars, summer institutes, and classroom 

observations. Over the two years, high-level participants had more than 75% participation 

in yearly seminars, summer institutes, and classroom observations; moderate-level 

participants more than 50% seminars, summer institutes, and classroom observations; and 

low-level participants less than 50% seminar, summer institute, or classroom observation. 

It is important to note that those teachers who did not have high participation had 

incomplete sets of video data and/or reflection forms; nevertheless, analyses of all 

collected data was conducted regardless of quantity. 

Even though there was a control group in the design of the MAAP research, there 

was no professional development offered to this group during the project. Therefore, 

there was no data to analyze. 
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Data 

The data for this dissertation was drawn from the MAAP professional development, 

particularly from the second year of each cohort in the mathematics professional 

development. The second year data was selected for analysis since it was a more accurate 

picture of teachers’ skills in analyzing student thinking and the teachers experienced an 

initial year of professional development focused on attending and analyzing student 

thinking and reasoning. Also, second year data was used since there was a change in 

observation and reflection forms before the start of the second year of the first cohort. 

The use of second-year data in each cohort eliminated any differences caused by the 

change in forms.  

Over the course of the two years of mathematics professional development, the 

teachers’ mathematics lessons were videotaped six to seven times a year. For each 

videotaped lesson, the teachers completed a written pre-observation form, a post-

observation form, and a video reflection form. Only the post-observation and the video 

reflection forms were examined in this study. Additionally, the five-minute teacher-

selected video segment as marked on the reflection form was analyzed. If no 5-minute 

video segment was identified, the section described in the teacher’s reflection was found 

on the video and then coded. 

The data drawn from MAAP for this dissertation included: 1) up to seven 

videotaped lessons per teacher, 2) up to seven post-observation forms for each videotape 

per teacher, 3) up to seven reflection forms for each video per teacher, and 4) teachers’ 

mathematical knowledge for teaching tercile rankings. These data will continue to be 

described in more detail.  
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Video Segments and Video Reflection Form 

During MAAP, the teachers were asked to incorporate the concepts and ideas that 

were introduced during the seminars and summer institutes into their mathematics 

instruction; however, no packaged tasks or curricular material were given. The teachers’ 

mathematics lessons were video recorded monthly by a member of the MAAP research 

team.  

After the taping of a lesson, the teachers received a copy of their lesson on a 

compact disc and were asked to view and select a five-minute segment and record its 

corresponding time stamp. Then teachers were asked to situate the segment within the 

context of their lesson and describe why it was selected on the Video Reflection Form 

(see Appendix A). 

In this dissertation the teacher-selected five-minute segments were analyzed for 

cognitive demand using the Task Analysis Guide (Stein & Smith, 1998) (see Appendix 

B), and the written reflections were analyzed for teacher noticing of student thinking 

using the Framework for Learning to Notice Student Mathematical Thinking (van Es, 

2011) (see Appendix C).  

Post-Observation Form 

The post-observation form (see Appendix D) asked the teachers to reflect on their 

mathematics lesson. They were also asked to state any connections of the lesson to the 

seminars and activities and to describe the types of discourse they observed in their 

lessons. The Framework for Learning to Notice Student Mathematical Thinking (van Es, 

2011) was used in this study to analyze the teachers’ post-observation forms. 
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MKT Tercile Rankings  

The teachers’ mathematical knowledge for teaching (MKT) tercile levels came 

directly from the MAAP professional development data and were scores resulting from 

annual administrations of the Learning Mathematics for Teaching (LMT) survey. The 

scores represented the teachers’ beginning terciles at the start of the first year and at the 

end of the second year of MPD. The LMT survey was nationally normed and found to be 

both valid and reliable (Hill, 2010; Hill & Ball, 2004; Hill, Ball, Blunk, Goffney, & 

Rowan, 2007). The survey consisted of questions developed to effectively measure 

teachers’ mathematical knowledge for teaching. This collection of questions asked 

teachers to respond to classroom mathematics situations by analyzing students’ responses, 

recognizing students’ misconceptions, identifying appropriate mathematical content, and 

making decisions about ways to address mathematics instruction. As a way to evaluate 

teachers’ growth in mathematical knowledge for teaching in MPD, the LMT survey was 

frequently used as a comparison pre- and post-test (Bell, Wilson, Higgins, & McCoach, 

2010; Charalambous, 2010; Santagata, 2009).  

It is important to understand the derivation of the Learning Mathematics for 

Teaching survey scores and their interpretation. As described in the MAAP Final Report:  

Since the LMT instrument used IRT theory to develop their instrument, all scores 

are θ scores that are based on a standard scale with a mean of 0 and a standard 

deviation of 1. Due to this characteristic, the growth scores can be interpreted as 

effect sizes. Thus, a growth score of .3 equals an increase of .3 SD, which 

corresponds to an effect size of Cohen’s d of .3. (Brown, 2012, p. 31) 
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Statistically significant growth occurred in MAAP teachers’ mathematical knowledge for 

teaching as measured by the LMT (see Table 1). According to the MAAP Final Report, 

There was a significant overall increase of (0.43, p < .01) for the treatment group 

and no overall change for the control group (p > .05). We also observed a 

significant increase for teachers who stayed one year (0.52, p = .04) or two years 

(0.49, p < .001). There was no change for the group with less than one year of 

participation. Neither control group showed any significant overall change (p > .05). 

(Brown, 2012, p. 31) 

Table 1 
 
Total LMT Change Score Analysis, Treatment and Control 
 
  Mean Difference t df Sig. (2-tailed) 

Treatment 
<1 Year -0.058 -0.552 5 0.605 
1 Year 0.524 2.429 8 0.041 
2 Years 0.488 6.749 38 0.000 

 Overall 0.433 6.412 53 0.000 

Control 1 Year 0.080 0.436 11 0.672 
2 Years 0.082 0.929 44 0.358 

 Overall 0.082 1.034 56 0.306 
 
(Brown, 2012, p. 31) 

From the MAAP professional development’s LMT analysis, teachers’ scores were 

ranked according to tercile. To better understand this process, the description from the 

MAAP Final Report (2012) is again helpful:  

 Both treatment and control site teachers’ knowledge was measured annually with 

the Learning Mathematics for Teaching survey. Even though the LMT is scored 

using a continuous measure, we also analyzed the teachers’ scores in terms of their 

tercile ranking. This analysis was carried out because we believe that the linearity 

assumption would be violated if we used a continuous LMT variable. Also, 
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previous research (Hill et al., 2005) has shown that the relationship between 

teachers’ mathematical knowledge for teaching (the content knowledge measured 

by the LMT) and student achievement is not consistent across the scoring 

continuum but rather significant effects existed between teachers scoring in the 

lowest 20-30% of teachers and those scoring in the top four deciles (Hill et al., 

2005). This research indicates that attention should be paid to teachers’ tercile 

rankings when considering growth. 

In our research, the two cut points for the terciles were based on the norming 

sample and not the study sample. That is, 1st tercile teachers are teachers whose 

LMT score falls below 33rd percentile for the norming sample, 2nd tercile are 

teachers between 33rd and 66th percentile, and 3rd tercile are teachers above 66th 

percentile. Since our cut points are based on the norming sample, distribution of 

teachers across the three terciles was not equal in this study. (Brown, 2011, p. 33-

34) 

Thus, it is important to note that the 1st tercile represented those teachers scoring below -1 

SD from the mean, the 2nd tercile between -1 and +1 SD, and the 3rd tercile above +1 SD 

above the mean. At the start of MAAP, 46% (n = 25) of teachers scored in the 1st tercile. 

Since only one known study has been able to document a relationship between 

teachers’ mathematical knowledge for teaching and instruction (Charalambous, 2010), 

examining the LMT results in correlation with both noticing and cognitive demand of 

enacted tasks added to this dissertation’s significance and contribution to the field.  
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Analyses 

Quantitative analyses were used to analyze the five-minute video segments, teacher 

observations, and reflections to respond to the research questions in this study. A 

description of the method of analysis is listed for each question below.   

Research question 1. How do the teachers’ written reflections and observations of 

their mathematics lessons explain teachers’ levels of noticing in the second year of 

mathematics professional development focused on developing teachers’ mathematical 

knowledge for teaching?  

The Framework for Learning to Notice Student Mathematical Thinking, developed 

by van Es (2011), was used to analyze how and what teachers noticed when they 

observed and reflected on their lessons. This framework was derived from van Es and 

Sherin’s video club studies that occurred from 2000 – 2001. In the video clubs, teachers 

viewed their teaching and discussed what they noticed. Van Es described a detailed 

process of idea unit analysis of the discourse resulting in ten idea units. The meaning and 

scope of categories evolved from a detailed analysis of patterns and variations from ten 

video clubs resulting in two main categories or dimensions. For each category a trajectory 

was then developed. These analyses resulted in the Framework for Learning to Notice 

Student Mathematical Thinking. 

The two dimensions proposed in van Es’ (2011) framework first identified what is 

noticed and the second looks at how teachers reason about what they observe. These two 

dimensions were then organized across four levels of noticing: 1 – Baseline, 2 – Mixed, 3 

– Focused, and 4 – Extended. The levels showed an increase in depth and interpretation 

of a situation or student thinking with Level 4 being the highest degree of noticing. For 
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example, a Level 1 response in the what is noticed dimension might be focused more on 

the teachers’ own pedagogy or the class as a whole. In contrast, a Level 4 might seek to 

make interpretations of students’ thinking or make deeper connections between teaching 

strategies and students’ mathematical thinking. In the dimension of how teachers notice, 

a Level 1 might include descriptive and evaluative comments of what occurred. In 

contrast, a Level 4 might give specific interpretive comments citing specific evidence or 

might make connections between the events of the classroom to bigger principles of 

teaching and learning.  

For each video recorded lesson, the teachers completed a post-observation form and 

a video reflection form. There was potential for the teachers to have fourteen forms total 

for the second year; however for this study, the video reflection form and the post-

observation form for each lesson were instead considered one reflection and received one 

score level using the Framework for Learning to Notice Student Mathematical Thinking. 

These forms were evaluated as a whole since they represented the teachers’ reflection on 

their practice. Throughout the rest of the analyses, when I refer to reflections or reflection 

forms, I am referring to the score from these two combined forms.  

In SPSS, a categorical score was recorded for each lesson based on the Framework 

for Learning to Notice Student Mathematical Thinking score: 1 – Baseline, 2 – Mixed, 3 

– Focused, and 4 – Extended. Since the research question sought to explore how the data 

explained teacher noticing, I analyzed the noticing scores using descriptive statistics and 

frequency distributions for the teachers. The mean, mode, and standard deviations were 

calculated for the teachers’ lessons from the start to the end of the second year. The mean 

provided information on the average level of noticing across the teachers’ reflections. 
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Calculating the mode helped to determine the most prevalent noticing level over the year 

of lessons. I looked for trends in the distribution of the noticing scores and shifts in the 

data to see if there were any noticeable changes as a group over the course of the second 

year. A paired samples t-test was conducted using the intermediate (beginning of the 

second year) and ending (of the second year) teacher noticing scores to look for 

differences in the means. A Pearson’s correlation was conducted on the teachers’ noticing 

levels and their overall mathematics professional development participation levels to see 

if there was a relationship between teacher participation and teacher noticing. These 

findings were then recorded. 

Research question 2. How do teachers’ self-selected video segments of 

mathematics lessons explain the level of cognitive demand of the teachers’ enacted tasks 

during the second year of mathematics professional development focused on developing 

teachers’ mathematical knowledge for teaching? 

The Task Analysis Guide, developed by Stein and Smith (1998), was used to 

evaluate the levels of cognitive demand for teachers’ enacted tasks. This four-level guide 

identified the levels of the five-minute teacher-selected video segments for each of the 

lessons. As previously stated, the Task Analysis Guide was developed as a result of an 

NSF-funded professional development entitled Quantitative Understanding: Amplifying 

Student Achievement and Reasoning Project (QUASAR). Stein et al. (2009) worked with 

teachers in this project to incorporate challenging tasks in the urban classroom to increase 

middle school students’ opportunities to think, reason, problem-solve, and increase 

mathematical communication. Subsequent studies described by Stein et al. also used the 

Task Analysis Guide to evaluate curriculum and classroom enactment of tasks. 
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Each level of the Task Analysis Guide increased in cognitive demand. The first 

level, Memorization Tasks, described tasks that included mostly reproduction of learned 

facts, rules, formulae, or definitions. This level had no connection to an underlying 

meaning and did not provide a procedure. Procedures Without Connections Tasks was 

the second level that included tasks that were algorithmic with limited cognitive demand. 

At this level, there was no connection to the procedures underlying the concepts or 

meaning and the focus was on the right answer. There were no explanations required by 

the students unless they specifically focused on describing the procedure that was used. 

The third level, Procedures with Connections Tasks, focused students’ attention on 

procedures to develop deeper conceptual understanding and required some cognitive 

demand. In this level there were broad pathways for students to follow rather than narrow 

algorithms, and there could be multiple representations and connections between 

representations to bring about meaning. Students at this level needed to engage the 

conceptual ideas that were beneath the procedures in order to successfully complete the 

task. At the fourth Doing Mathematics Tasks level, the students were required to think in 

complex, non-algorithmic ways. There was no rehearsed approach or pathway that was 

suggested or worked-out as an example, and students must have analyzed the task for 

possible solutions, strategies, and limitations. At this level, the students had to explore the 

nature of the concept, relationship, or processes, and sustained a significant cognitive 

effort through self-monitoring and self-regulation. Also, students were to have accessed 

appropriate related knowledge and experiences and applied them while working through 

the task.  
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To add to the reliability of the data, one third of the teacher videos were coded by 

members of the MAAP research team. At the start of the coding, the MAAP team began 

by reading through the work of Stein et al. (2009) and looking at examples of tasks and 

their cognitive demand levels. Discussion followed as the team examined the nuances 

and differences between levels as designed by Stein et al. on the Task Analysis Guide. 

Eight video segments were viewed as a team. Through discussion and agreement, a code 

level was given to the video segments and the highest coding level reached during the 

five-minute video segment was recorded. Then the team worked in pairs to continue to 

code the video segments for the rest of the 18 teachers. If disagreement or questions arose, 

the whole group viewed and discussed the video segment until consensus was reached.  

The coded scores were recorded in Excel where I notated the teacher, the lesson 

number, and the score level for the video segment. The cognitive demand means for each 

teacher were calculated as well as the mode to look at variations between teachers and the 

most common level of cognitive demand gained by the teachers. 

The Excel files were transferred to SPSS for further analyses. A categorical score 

was recorded for each lesson based on the Task Analysis Guide score: 1 – Memorization 

Tasks, 2 – Procedures Without Connections Tasks, 3 – Procedures with Connections 

Tasks, and 4 – Doing Mathematics Tasks. Since the research question asked how the 

video segments explained the level of cognitive demand of enacted tasks, I began by 

analyzing descriptive statistics. First, I analyzed the teachers’ scores by calculating their 

mean, mode, and standard deviation of the cognitive demand across the seven video 

lessons. The mean provided information on the average level of cognitive demand 

achieved across the teachers’ lesson segments. Calculating the mode helped to determine 
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the most prevalent cognitive demand level over the year of lessons. I also looked at the 

data for trends in the teachers’ levels of cognitive demand and the variation represented 

by the standard deviations. A paired samples t-test was conducted using the intermediate 

and ending cognitive demand scores to analyze differences in the second year. Since 

participation was possibly related to the cognitive demand in the enacted tasks, I also 

conducted Pearson’s correlations between the teachers’ level of cognitive demand and the 

teachers’ participation level to see if these variables were related. Understanding the 

context of the mathematics professional development and the relationship to cognitive 

demand of lessons was valuable. All results were reported in detail. 

Research question 3. How do teachers’ levels of mathematical knowledge of 

teaching relate to teachers’ levels of noticing and levels of cognitive demand in enacted 

tasks during the second year of mathematics professional development focused on 

developing teachers’ mathematical knowledge for teaching? 

The analysis suggested by this question drew on three groups of data: teachers’ 

levels of mathematical knowledge for teaching; teachers’ levels of noticing; and levels of 

cognitive demand of enacted task. Pearson’s correlations were conducted to examine the 

relationships between the following variables: MKT tercile ranking; teacher noticing 

level; cognitive demand level; grade level; school; and level of participation in the 

MAAP project. The levels at the end of the second year of data were used in this analysis 

to examine the relationships between MKT tercile rankings, noticing levels, and 

cognitive demand levels.  

Sharing the Findings 
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I shared the findings from this study with those who were integral to the MAAP 

professional development. This included the MAAP research team and the leadership of 

the Teacher Education Department at CGU. Additionally, I anticipate sharing my 

findings at national conferences such as the American Educational Research Association, 

National Council for Teachers of Mathematics, and the Association for Mathematics 

Teacher Educators. Publishing these results will benefit the educational community, and I 

plan to submit articles to the Journal for Research in Mathematics Education, Journal of 

Mathematics Teacher Education, and the Journal of Teacher Education. 

I have provided a written report of the entire study consisting of five chapters. 

The first chapter provides a general overview of the project and its significance to the 

field. The second chapter gives a thorough review of the supporting literature. Third, I 

describe in detail the methods used to obtain the data with specific attention to the 

selection of the sample, the application of The Framework for Learning to Notice Student 

Mathematical Thinking (van Es, 2011), the Task Analysis Guide (Stein et al., 2009), and 

the use of teachers’ mathematical knowledge for teaching as determined by the MKT 

tercile levels. Fourth, I delineate the results of the data analysis by sharing the evidence 

from both the teachers’ noticing and from the cognitive demand of the enacted tasks. I 

also include the results from the comparison of the teachers’ noticing levels the teachers’ 

cognitive demand of enacted tasks level with their MKT tercile levels. Fifth, a 

comparison is made between the results and the existing literature on professional 

noticing, cognitive demand of tasks, and the development of teachers’ mathematical 

knowledge for teaching. Additional findings are also described. I conclude by identifying 

recommendations for policy and further research. 
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Limitations & Conclusion 

This study has its limitations. First, the sample size was small and represented only 

54 teachers who participated in the two-year professional development. Second, some of 

the teachers did not complete a full set of videos and reflections in the second year of 

MAAP, thus in some instances the data was limited. Third, the teacher-selected video 

segments at times were limited in the richness of mathematical content, and this may 

have constrained the teachers’ ability to notice higher levels of student thinking. Fourth, 

the teacher participants were under a great deal of stress during the two years of the 

professional development due to the Program Improvement status of their schools and the 

economic climate of California; therefore, the teachers’ responses at times appeared 

rushed and limited in depth and attention to detail. Finally, the majority of the statistical 

strength of this study was limited to correlation and thus cannot prove causality between 

variables. 

By conducting this study, I hoped to provide new data to the educational field 

regarding teacher noticing, the cognitive demand of enacted tasks, and their relationship 

to teachers’ mathematical knowledge for teaching in the context of mathematics 

professional development. Little to no research currently exists to explore the relationship 

between these variables (Charalambous, 2010) and no study links these three variables in 

the context of professional development. Ideally, this study will help to shed light on the 

complexities of teaching and learning and help the field to better understand the 

relationship of teaching and learning in the context of effective professional development. 

Having a better grasp of this impact is needed if we expect to influence classroom 

practice and improve student achievement in mathematics.    



 

 28 

Chapter Two: Review of Relevant Literature 

Introduction 

In the past decade, mathematics performance for fourth and eighth grade students 

in the United States showed little improvement regardless of national efforts (NCES, 

2011). In an attempt to improve student performance, professional development has been 

aimed at improving instruction by increasing teachers’ mathematical content knowledge 

as it applies to classroom practice (Darling-Hammond et al., 2009). Mathematics reform 

has been the critical focus in education for the past decade (Cavanagh, 2009; Rampey, 

Dion, and Donahue, 2009) and the demand for students with competencies in the fields of 

science, technology, engineering, and mathematics (STEM) has become paramount 

(EdSource, 2008). According to the 2011 report by the National Center for Education 

Statistics, there was only slight growth in the mathematics scores of fourth and eighth 

graders between 2009 and 2011; only five states showed increases in their fourth grade 

results. In 32 states, there was no difference found between fourth graders’ mathematics 

performance between the 2009 and 2011 scores.  

Traditionally in the United States, mathematics has consisted of arithmetic and 

computational fluency, however mathematics researchers widely believed that this 

method of instruction does not enhance the development of mathematical reasoning and 

ignores current research on students’ mathematical development (Battista, 1999; Blanton 

& Kaput, 2005; Hiebert & Carpenter, 2003; Stigler & Hiebert, 1999). According to 

Martin and Kasmer (2009), it is essential that children in the elementary classroom 

explore important mathematical ideas by reasoning and sense-making in order to provide 

a strong foundation for future success. It seems that American schools focus narrowly on 
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skills, procedures, and fluency in mathematics rather than higher levels of reasoning and 

problem solving (Charalambous, 2010; Hiebert & Carpenter, 2003; Hiebert & Stigler, 

1999; Ma, 1999). According to experts in the field, the current narrow focus of 

mathematics instruction needs to be broadened by strengthening teacher content 

knowledge in mathematics and providing the pedagogical tools needed by teachers to 

extend their students’ thinking and reasoning (Ball, Hill, & Bass, 2005; Hill & Ball, 

2004; Hill et al., 2005).   

In traditional teacher preparation, candidates for an elementary credential receive 

minimal learning experiences to enhance and deepen their own understanding of 

mathematical concepts. As a product of the same education system as their students, 

teachers often have past mathematics experiences that emphasized computation, 

memorization, and skills rather than deeper conceptual understandings (Ball, 1990; Ball, 

1997; Ball et al., 2005). This is problematic since teachers are limited by their own 

knowledge (Hill & Ball, 2004; Ball et al., 2005). Many teacher candidates in elementary 

education also have self-reported feelings of inadequacy and anxiety when it comes to 

mathematics and can point to an event that caused them to no longer feel motivated to 

learn mathematics. Teachers’ experiences and feelings have a detrimental effect on their 

practice as well as their knowledge in mathematics (Ball, 1997; Drew, 2011; Swars, 

Daane, & Giesen, 2006). Therefore, teachers’ own base of knowledge needs to be 

expanded so they can provide students with rich mathematical learning experiences. This 

continued development of teachers’ knowledge and skill is a critical aspect of deepening 

students’ learning opportunities to reason and problem solve. 
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Researchers in the area of mathematics professional development (MPD) have 

identified teachers’ mathematical content knowledge with a focus on opportunities for 

reasoning and sense-making as essential elements needed to ensure a strong foundation 

for improved instruction in mathematics (Hill & Ball, 2004; Martin and Kasmer, 2009; 

Mewborn, 2003). Various types of professional development (PD) reform have been 

implemented across the nation to improve teachers’ mathematical content knowledge as 

it relates to teaching and planning (Bell et al., 2010; Hill & Ball, 2004; Jones et al., 2009; 

Walker, 2007).  Others strategies have focused on developing and strengthening teachers’ 

abilities to notice and foster student reasoning and thinking (Blanton & Kaput, 2005; 

Franke, Carpenter, Fennema, Ansell, Behrend, 1998; Franke, et al., 2007; Jacobs, Lamb, 

& Philipp, 2010; Sherin, & van Es, 2009; van Es & Sherin, 2006). In the hopes of 

improving teachers’ instructional practices, some researchers have used mathematics 

professional development to foster collaboration between teachers in their planning and 

evaluation of student work (Blanton & Kaput, 2005; Franke et al. 2009; Jacobs et al., 

2007; Santagata, 2009; Walker, 2007). The majority of these various professional 

development programs were geared toward shifting teachers’ practice with the aim of 

improving student achievement; thus, the purpose of this paper is to review the research 

in elementary professional development, particularly those studies that address 

mathematical knowledge for teaching, student reasoning and thinking, teacher noticing, 

cognitive demand, and reflection.  



 

 31 

Literature Review 

Mathematics Research and Professional Development 

The current state of mathematics education is a result of its past history. In the 

1920s and 1930s in the United States, there was great debate between superintendents, 

principals, educational researchers, and professors of education over the mathematics to 

be taught across the grade levels and the necessity of mathematics and other core subjects 

at the high school level for all students (Ravitch, 2000). According to Kilpatrick (1992), 

it was generally agreed that basic arithmetic at the elementary school level was 

important; however, at the high school level, there was disagreement about the required 

form of mathematics and who should take the courses. One of the big questions revolved 

around who should study algebra. In response to this growing disagreement within the 

mathematics community, the National Council of Teachers of Mathematics (NCTM) was 

formed in 1920. This organization not only called for increased research in mathematics 

but also declared that changes should not be made to learning that were not first 

supported by scientific research focused on the learners’ needs, the learning process, and 

the needs of society.  

One of the first major studies resulting from this call for research was the Eight 

Year Study, funded by the Carnegie Corporation and the General Education Board in 

1932 (Kilpatrick, 1992). As described by Kilpatrick, 30 secondary schools were allowed 

to “experiment with innovative curricula” (p. 21) for five years. The research showed that 

the 1,475 students from the 30 schools did slightly better than their peers in college when 

it came to their grades, honors, and graduation rates; however, this study overlooked 

examining the effects of the curricular changes at the schools. Once this study’s results 
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were released, an emphasis on mathematics curriculum research and a measurement 

approach to education ensued that instituted national and international assessments of 

mathematics achievement.  

Historical events and other outside influences began to impact the field of 

mathematics between the 1930s and the 1960s. Kilpatrick (1992) noted that during this 

time psychology began to influence mathematics research as the field attempted to define 

itself. In the 1960s there was also a lack of continuity between the mathematics of the 

universities in comparison to the lower schools. National concern about the declining 

enrollments in university mathematics, the atomic weapons of the 1940s, the Soviet 

launch of Sputnik in 1957, and the need for engineers and skilled technical workers 

brought increased federal funding for research in mathematics and science. Woodward 

(2004) called the 1950s and 1960s the “golden age” (p. 16) in mathematics education due 

to the enormous amount of research funding that was received to improve teaching and 

learning.  

During the 1950s, a movement in mathematics education known as new math 

became paramount in the United States. In this movement an emphasis was placed on the 

new math curricula that emphasized instruction on abstract mathematical concepts at the 

elementary level. According to Woodward (2004), the goal of this mathematics education 

movement was to promote student understanding versus memorization and calculation.  

Another aspect within the new math movement included discovery learning. This 

approach attempted to combat the behaviorist approaches from previous years and was to 

embody teachers as guides and prompters of learning while providing students the 

opportunity to draw diagrams, use manipulatives, and provide explanations in problem 
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solving (Woodward, 2004). Though discovery learning appeared to be clearly envisioned 

by theorists and educational leaders, Woodward noted that teachers were not as 

successful at implementing the construct at the classroom level. What became apparent 

was that teachers needed high levels of pedagogical content knowledge to carry out all of 

the envisioned aspects to make discovery learning successful. Also, discovery learning 

required teachers to reconceptualize their own understanding of mathematics to that 

which was more abstract. The K-12 teachers not only needed these individual teacher 

attributes, but they also needed professional development to successfully implement this 

new way of teaching and learning; however, the professional development was non-

existent. As the nation moved into the 1970s, the back-to-basics movement drove schools 

away from discovery learning and instead emphasized reading, writing, and arithmetic 

within which the teacher was to be the dominant central figure (Woodward, 2004).  

In the 1970s and 1980s the focus of researchers became the process of teaching 

and the resulting student outcomes or products. This became known as process-product 

research (Woodward 2004). Politically, it also became important during this time period 

to use standardized tests as a central dependent measure. According to Woodward, one 

influential research example from this time period was The Missouri Mathematics 

Effectiveness Project that studied the relationship between specific teaching behaviors 

and improved performance on standardized tests. The government funding of similar 

studies became a demonstration of the federal government’s commitment to educational 

equity; however, using scripted materials placed a huge burden on static curricula that 

allowed few liberties for those who were teaching.  
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Throughout the 1970s and 1980s, mathematics researchers also became 

increasingly interested in cognitive science and conducted smaller quasi-experimental 

and qualitative studies to analyze students’ mathematical understanding. During this time, 

Skemp’s (1987) influential book entitled, The Psychology of Learning Mathematics, 

provided insight into knowledge organization, the importance of schema, and 

metacognition. Interest in the late 1980s also included the relationship of visual imagery 

and memory (e.g., Marr, 1982), conceptual and procedural understanding (e.g., Hiebert, 

1986) and the natural development of mathematical understanding in preschool children 

(e.g., Baroody, 1987; Fuson, 1988). These studies influenced the development of school 

curricula that attempted to “link an informal with a formal understanding of mathematics” 

(Woodward, 2004, p. 20). By the end of the 1980s, there were many researchers who 

were moving toward constructivist theory to provide a foundation for information 

processing (Woodward, 2004).  

In the late 1980s and 1990s, there were some significant developments that 

continued to influence the face of mathematics education. Woodward (2004) pointed to 

the development of standards and comparative international research that showed 

weakness in the national teaching of mathematics. For example, NCTM developed 

standards that were introduced in 1989 in response to dissatisfaction with standardized 

testing. States began formulating their own standards and performance-based assessments 

to produce rigorous outcomes. Also, the findings from the Third International 

Mathematics and Science Study (TIMSS) produced harsh criticism about the lack of 

depth and increased breadth of American mathematics in comparison to other countries. 

Ravitch (2000) noted that NCTM revised their standards in 1997 in response to criticism 
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for a lack of basic skills. Woodward described the 1990s as particularly unique since the 

research concentrated on analyses of conceptual topics that in turn pushed the field 

toward a constructivist approach. Moreover, a socio-cultural perspective became 

dominant in understanding teaching and learning. 

By the 2000s, a marked shift occurred in relationship between the federal 

government and education. Woodward (2004) noted The Bush administration’s No Child 

Left Behind Act of 2001 increased the degree of accountability in public education. 

Moreover, the concept of scientifically based research began to direct practices in schools. 

After a long history of decentralized education, the federal government began to force the 

hand of educators across the country in response to the accountability movement. As the 

current tenor of education suggests, the air of reform is again being enacted through the 

development and adoption of the Common Core Standards in Mathematics. 

Effective Professional Development 

In the mid to late 1990s, researchers and policy makers began paying closer 

attention to the effects of mathematics and science professional development on teaching 

practice and student achievement (Ball & Cohen, 1999; Loucks-Horsley & Matsumoto, 

1999; Louks-Horsley, Stiles & Hewson, 1996; Wilson & Berne, 1999). At the time, there 

were only a handful of studies that supported a relationship between professional 

development, practice, and achievement (Campbell & Robles, 1997; Cohen & Hill, 2000; 

Stein & Smith, 1998; Wiley & Yoon, 1995). The context for teaching proved to be so 

complex that researchers felt that little was known about the true nature of teaching and 

learning and the role of professional development (Ball, 1997; Loucks-Horsley & 

Matsumoto, 1999; Wilson & Berne, 1999); thus, a call was made to the educational 
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research community for research in this area. Since teaching had become more standards-

based, there was a new realization that teachers needed to not only be supported through 

professional development but also become active leaders and decision-makers in 

professional development to bring about change in their schools (Loucks-Horsley & 

Matsumoto; Loucks-Horsley et al., 1996). 

In this new effort to better understand effective PD, those in the mathematics 

community attempted to characterize its qualities, though there was no agreement in the 

field on a set of criteria (Ball, 1997; Loucks-Horsley, 1997; Loucks-Horsley & 

Matsumoto, 1999; Loucks-Horsley et al., 1996; Wilson & Berne, 1999). Some of the 

characteristics included collaboration, follow-up, knowledge of children, reflection, 

modeling of strategies/approaches, context of teaching, content/subject focused, cognitive 

dissonance, time, and continued support (Ball, 1997; Darling-Hammond & Ball, 1998; 

Friel & Bright, 1997; Loucks-Horsley, 1997; Loucks-Horsley & Matsumoto, 1999; 

Loucks-Horsley et al., 1996; Thompson & Zeuli, 1999; Wilson & Berne, 1999). There 

was a wide range of opinion about what constituted effectiveness.  

Since the early 2000s, more agreement has been reached in identifying the key 

factors of effective PD in mathematics and science (Darling-Hammond et al., 2009; 

Desimone, Porter, Garet, Yoon & Birman, 2002; Garet, Porter, Desimone, Birman & 

Yoon, 2001). Garet et al.’s research was the first large-scale empirical comparison of 

effective characteristics. This study was based on a national survey of science and math 

teachers who had participated in professional development through the Eisenhower 

program, funded by the federal government. It represented 1,027 teachers from across 

358 districts that participated in math and science PD. As a result of this study, three 
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main core features were found to have significant positive effects on teachers’ self-

reported increases in knowledge and skills and change in practice; these included: 1) 

focus on content knowledge, 2) opportunities for active learning, and 3) coherence with 

other learning activities. Three significant additional structural features were found 

within these core features: 1) the form of the activity (study group or workshop), 2) 

collective participation (grade, subject, or school), and 3) the duration of the activity. 

This study helped to solidify on a large scale the effectiveness characteristics; however, 

the data gathered was based on teacher self-report. 

Garet et al.’s (2001) research was supported by Darling-Hammond et al.’s (2009) 

report by the National Staff Development Council. Darling-Hammond and colleagues 

based their characteristics of effective professional development on a meta-analysis of 

1,300 research studies and evaluation reports. The characteristics consistent across 

successful studies included: intensive and ongoing; connected to practice; focused on 

student learning; addressed the teaching of subject-specific content; aligned with school 

priorities and goals; and built opportunities for collaboration and strong working 

relationships. The findings suggested a minimum of 49 hours a year was best for 

professional development with an ideal amount between 30 to 100 hours spread over six 

to 12 months.  

Current reports and articles have drawn on these foundational studies to solidify 

and promote the characteristics of effective professional development (Bell et al., 2010; 

Borko, 2004; Wilson, 2009; Yoon, Duncan, Lee, Scarloss, & Shapley, 2007); however, a 

recent call was made to reconsider effective professional development in terms of design 

and outcomes (Hill, Beisiegel, & Jacob, 2013). Aside from this most recent call for an 
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evaluation of effective professional development, previous agreement in the field 

identified that effective professional development: 

• focuses on deepened content specifically for teaching, and includes relevant 

understandings of how students learn as well as difficulties and common 

misconceptions. 

• is intensive and ongoing, including 40 or more hours of a course or program 

distributed over 12 months.  

• is coherent by building on teachers’ previous knowledge and abilities and is 

related to what teachers are asked to do regularly in their classrooms. 

• engages teachers actively rather than showing through demonstrations or 

lecture. 

• includes teams of teachers from the same school, the same grade, or the 

same subject, and provides opportunities for collaboration and mutual 

support in using what teachers have learned. 

In the following section, application of effective mathematics professional 

development will be explored within the context of teachers’ mathematical knowledge 

for teaching. 

Mathematical Knowledge for Teaching 

Shulman was the first to present a varied theory of teacher knowledge (1986, 

1987).  Countering the popular belief that pedagogy and content were separate, Shulman 

called for an examination of what teachers know and how they know it as well as an 

investigation of the source of teacher knowledge and how it was acquired, retrieved, and 
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formed. In his seminal writing, Those Who Understand: Knowledge Growth in Teaching, 

Shulman (1986) presented a new theoretical framework for understanding teacher 

knowledge. He posited that teacher knowledge was divided into domains and categories; 

a major domain was content knowledge. Within content knowledge were the categories 

of subject matter content knowledge, pedagogical content knowledge, and curricular 

knowledge. Content knowledge was described by Shulman as teacher knowledge about 

particular content that included ways of defining and explaining truths for students. 

Shulman defined pedagogical content knowledge as the way a teacher uses 

representations to make content comprehensible. He extended this knowledge to include 

teachers’ understanding and mediation of students’ developmental needs as well as 

preconceptions and misconceptions. Lastly, Shulman defined curricular knowledge as 

teacher knowledge about the appropriate use of alternative curricular materials and tools 

(e.g. visuals, video, texts, software, inquiry) to enhance students’ content learning. In 

addition, he wrote about lateral and vertical knowledge: teachers need to know grade-

level content in other subjects and how to make connections to this content, and they also 

need to know students’ prior knowledge from preceding years and knowledge needed for 

later years. Considering teacher knowledge in this way was revolutionary and laid the 

foundation for researchers and teacher educators to examine its complexities more 

closely.  

Since Shulman, others have continued the quest to understand more about teacher 

knowledge including how it should be defined and measured (Ball et al., 2008; Hill, Ball, 

& Schilling, 2008; Hill & Ball, 2004; Hill Schilling, & Ball, 2004; Ma, 1999). In 

mathematics, Ball et al. have taken Shulman’s theory and conceptualized mathematical 
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knowledge for teaching as divided into two parts: content knowledge and pedagogical 

content knowledge. Within content knowledge, there was common content knowledge, 

specialized content knowledge, and horizon knowledge. Common content knowledge 

was conceived of as common knowledge that other adults have that use mathematics in 

their work or lives, but specialized content knowledge was knowledge that went beyond 

that of the general public and was specific content knowledge teachers possess as it 

relates to teaching. Horizon knowledge was teachers’ understanding of what students 

needed to know in future grades; knowing future mathematical content, teachers were 

able to build on the knowledge students currently possessed or were learning. This type 

of knowledge helped teachers make decisions about introducing content in order for it to 

connect to future knowledge.  

Pedagogical content knowledge, the second category of mathematical knowledge 

for teaching, was conceptualized as knowledge about content and students, knowledge 

about content and teaching, and knowledge of content and curriculum. These three types 

of knowledge were based on the way that content is taught and how students learn. 

Pedagogical knowledge supports teachers’ understanding of the developmental needs of 

students and how students think about mathematics in knowledge of content and students. 

Knowledge about content and teaching helps teachers decide on methods and strategies to 

introduce content to students, and knowledge of content and curriculum enables a teacher 

to know how best to use the curriculum and materials in instruction.  

In a quest to further understand mathematical knowledge for teaching, 

mathematics researchers and teacher educators have explored ways in which 

mathematical knowledge for teaching can be measured. Through a series of studies over 



 

 41 

many years and various professional development settings (Hill & Ball, 2004; Hill et al., 

2008; Hill et al., 2005; Hill et al., 2004; Ma, 1999), questions were developed to 

effectively measure teachers’ mathematical knowledge for teaching. This collection of 

questions asked teachers to respond to classroom mathematics situations by analyzing 

students’ responses, recognizing students’ misconceptions, identifying appropriate 

mathematical content, and making decisions about ways to address mathematics 

instruction. The questions covered a broad range of domains and have been found to be 

valid and reliable (Hill, 2010; Hill & Ball, 2004; Hill et al., 2007; Hill et al., 2004). This 

resulting tool, the Learning Mathematics for Teaching survey was used frequently as both 

pre- and post-tests in mathematics professional development to evaluate teachers’ growth 

in mathematical knowledge for teaching (Bell et al., 2010; Charalambous, 2010; 

Santagata, 2009).  

Researchers have tried to answer whether mathematical knowledge for teaching 

can be grown and, if so, under what conditions (Bell et al., 2010; Charalambous, 2010; 

Hill & Ball, 2004; Hill et al., 2005). It was shown that teachers with an extensive amount 

of teaching experience had a higher rate of mathematical knowledge for teaching in 

general tests of teachers (Fennema & Franke, 2005). Researchers attributed this higher 

rate of mathematical knowledge for teaching to teachers learning on their own from 

students and using curriculum materials (Hill, 2010; Fennema & Franke, 2005); however, 

there was evidence to suggest that teachers’ mathematical knowledge for teaching could 

be affected as a result of mathematics professional development (Bell et al.; Hill & Ball, 

2004). Several studies used the mathematical knowledge for teaching assessments 

developed by Ball and colleagues’ to assess changes in elementary teachers’ 
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mathematical knowledge through mathematics professional development and to analyze 

the relationship of MKT to other variables in teaching and learning (Bell et al., 2010; 

Charalambous, 2010; Hill & Ball, 2004; Hill & Ball, 2005; Hill et al., 2008; Hill et al., 

2004; Kersting et al., 2010; Santagata, 2009).  

Charalambous (2010) and Santagata (2009) were studies that used mathematical 

knowledge for teaching in professional development as a pre- and post-test with a small 

number of elementary teachers; however, developing mathematical knowledge for 

teaching was not the sole purpose of the mathematics professional development. 

Charalambous analyzed how teacher knowledge informed teacher actions and decisions 

in the teaching of a lesson or “task unfolding,” using Stein and Smith’s (1986) Task 

Analysis Guide as the tool to measure the cognitive demand of the task. In his research, 

Charalambous found a relationship between the level of task unfolding and the teachers’ 

mathematical knowledge for teaching. In a case study of two teachers, differences were 

highlighted between a teacher with higher mathematical knowledge for teaching and 

higher task unfolding in contrast to a teacher with lower mathematical knowledge for 

teaching and lower levels of task unfolding. The teacher with higher mathematical 

knowledge for teaching provided more meaningful explanations and presented and 

enacted tasks at higher cognitive levels. Limitations, however, pointed to differences in 

curriculum materials and the size of the sample.  

Santagata (2009), in her two-year mathematics professional development working 

with sixth-grade teachers assessed teachers’ mathematical knowledge for teaching, but 

she did not report final data; instead, Santagata stated that the teachers lacked the 

conceptual understanding of fractions and other content knowledge and this was 
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“supported by the multiple-choice survey used to measure teacher content and 

pedagogical content knowledge” (p. 44). Since the teachers experienced difficulty with 

questions that relied on their own conceptual understandings, students’ understandings, 

and deep analyses of students’ work, it seemed apparent that the teachers held a low level 

of mathematical knowledge for teaching; however, Santagata omitted reporting on the 

results of the Learning Mathematics for Teaching survey as a result of the professional 

development. 

In contrast to small examples of mathematics professional development, Hill and 

Ball (2004) and Bell et al. (2010) analyzed teachers’ mathematical knowledge for 

teaching in large-scale professional development programs. Hill and Ball used the 

Learning Mathematics for Teaching survey as a pre- and post-test to evaluate California’s 

Mathematics Professional Development Institutes (MPDIs). The MPDIs were conducted 

throughout the state and consisted of 80 hours of professional development by trained 

facilitators. Although the sample was to be much larger, it resulted in 398 participants. 

The findings of this study showed that teachers’ mathematical content knowledge 

increased through one mathematics professional development program. Likewise, the 

results indicated a positive correlation between length of mathematics professional 

development and gains in mathematical knowledge for teaching. 

Hill et al. (2005) found interesting relationships between mathematical knowledge 

for teaching and other variables in their analysis of a multi-school (N = 115) 

Comprehensive School Reform that focused on instructional improvements. This study 

was longitudinal in nature and included 26 comparison sites. A variety of data was 

collected from the teachers including interviews, questionnaires, teacher logs, and 
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mathematical content questions. Hill and Ball found that teachers’ mathematical 

knowledge for teaching positively predicted student gains in mathematics achievement in 

first and third grade. Findings also indicated that even the mathematics knowledge of 

early-grade teachers affected students’ achievement. The results suggested that teachers 

in the lowest third of the distribution of knowledge were those who benefitted the most 

from the professional learning.  

Two studies, Kersting et al. (2010) and Hill et al. (2008) compared mathematical 

knowledge for teaching and its relationship to other assessments; although these were not 

mathematics professional development programs, they were investigations that 

contributed to researchers’ understanding of mathematical knowledge for teaching and 

were grounded in teachers’ perspectives and classrooms. Kersting et al. (2010) used 

mathematical knowledge for teaching in the development of an alternate video-based 

assessment of elementary teachers’ abilities to analyze lesson situations. In this study, the 

researchers provided the teachers with video clips of mathematics lessons to view and 

evaluate after which they responded individually to prompts on the computer. A 

comparison was drawn between the teachers’ results of mathematical knowledge for 

teaching using Ball and colleagues’ questions and the classroom video analysis (CVA) 

measure. Findings from this study showed that mathematical knowledge for teaching was 

significantly related to the CVA measure; however, the results were unable to predict 

student learning. 

Hill et al. (2008) analyzed the relationship between mathematical knowledge for 

teaching and a teachers’ mathematical quality of instruction (MQI) tool. Though ten 

teachers were involved in this study, only five were reported as case studies. The teachers’ 
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mathematical knowledge for teaching was assessed and their instruction was analyzed 

using the elements of MQI. The findings from this study suggested a strong relationship 

between “what a teacher knows, how she knows it, and what she can do in the context of 

instruction” (p. 496). The results indicated a correlation between teachers with low 

mathematical knowledge for teaching scores and the presence of mathematical error 

during instruction. Conversely, for those with high mathematical knowledge for teaching, 

there was the presence of mathematical richness of instruction and lack of mathematical 

error. The mediating factors appeared to be teachers’ mathematical knowledge for 

teaching, teachers’ beliefs about how mathematics should be learned, curriculum 

materials and how they should be used, and the availability of curriculum.  

These studies illustrate the value of content focused professional development with 

an emphasis on mathematical knowledge for teaching and their impact on teachers’ 

knowledge and development of expertise. The types of studies described in this section 

expounded on Shulman’s (1986, 1987) theory of teacher knowledge and the need to 

unpack classroom interactions and underlying beliefs with care. As stated earlier, the 

process of teaching is highly complex and multi-faceted with many aspects yet to be 

understood; thus, teachers’ knowledge of mathematics, the effects of this knowledge on 

instruction, and the role of mathematics professional development are critical elements 

for understanding the classroom context. 

Children’s Reasoning and Thinking 

Mathematics professional development has focused not only on mathematical 

knowledge for teaching but also children’s thinking and reasoning as a way to better 

understand the relationship between teaching and learning mathematics. Several 
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elementary mathematics professional development programs were designed around 

teachers’ learning from children’s thinking and reasoning (Blanton & Kaput, 2005; 

Campbell & Robles, 1997; Fennema, Carpenter, & Franke, 1997; Franke et al., 2009; 

Jacobs et al., 2007). This focus on children’s thinking and reasoning allowed the teachers 

in these projects to learn from their students, engage in practical inquiry, and make 

instructional decisions based on their knowledge of children’s mathematics (Franke et al., 

1998).  

One of the most successful and widely known studies centered on children’s 

thinking was Cognitively Guided Instruction (CGI) (Carpenter, Fennema, Franke, Levi, 

& Empson, 1999; Carpenter, Fenemma, & Franke, 1996; Fenemma et al., 1996; Franke et 

al., 2009). The fundamental notion of this longitudinal study was that teachers make 

decisions based on knowledge of how students learn particular content. The CGI 

framework was founded on cognitive science and posited that new knowledge needs to 

be connected to existing knowledge (Koehler & Grouws, 1992). In the CGI study, 

teachers were not provided curriculum or specific tasks; instead, they were exposed to the 

CGI framework and challenged to learn from children’s thinking through video, 

observation, and analysis of student work. Over the course of ten years, CGI showed that 

primary grade teachers’ knowledge of their students’ thinking was related to students’ 

mathematics achievement. Participants in the study focused on conceptual learning 

through problem solving more than computational skills and the results indicated that 

students scored significantly higher in problem solving than control classes. Also, these 

students did not lose any gains in computational skills because of the focus on problem 

solving (Carpenter et al., 1999). Moreover, teachers’ instructional beliefs and practices 
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changed so that teachers allowed students to engage in more problem solving rather than 

directing students’ actions through explicit instruction (Fennema et al., 1996). 

Similar to CGI, Increasing the Mathematical Power of All Children and Teachers 

(Project IMPACT), also focused on students’ thinking; however, Project IMPACT was 

specifically targeted at urban, low performing, highly diverse classrooms (Campbell, 

1996; Campbell & Robles, 1997). Like CGI, this project did not purposefully focus on 

curriculum materials or specific implementation tasks. Rather, the K-3 teachers from the 

three treatment schools collaborated with their colleagues on instruction, worked with a 

math specialist provided by the project at each participating school site, and attended 

weekly grade-level meetings and summer institutes during which teachers worked on 

adult mathematics problems. The results of this program did not show an increase in the 

first year; however, in the second year, there was a significant increase in the mean for 

student achievement on items dealing with mathematical abstraction. This increase lasted 

through third grade until the end of the project. Though project IMPACT focused on 

providing students more opportunities to learn through discourse and group work, the 

authors admitted that 10 – 15% of the teachers could not easily probe students’ ideas to 

consider their thinking. Nevertheless, observations showed that 40% of teachers had 

changed practices that included questioning and probing students and providing 

opportunities to engage in reasoning.  

Two other studies investigated children’s thinking, particularly focusing on 

developing children’s algebraic reasoning (Jacobs et al., 2007; Blanton & Kaput, 2005). 

Jacobs and colleagues provided a yearlong mathematics professional development for 19 

urban elementary schools and 180 teachers in one of the lowest performing school 
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districts in California. Their study focused on extending teachers’ ideas about algebraic 

reasoning by helping teachers to see that this type of reasoning was deeply imbedded in 

the curriculum and relevant at the elementary level. Additionally, this study sought to 

develop teachers’ ability to attend to their students’ thinking by analyzing student work 

and observing students’ strategies. Jacobs et al. also focused on relational thinking that 

helped turn teachers’ focus away from computation to examining relationships between 

and among numbers as found in expressions and equations. The findings from this study 

indicated that teachers grew significantly in their ability to identify student strategies. 

Moreover, student achievement was positively affected and students of participating 

teachers were more likely to use relational strategies when problem solving.  

Blanton and Kaput’s (2005) Generalizing to Extend Arithmetic to Algebraic 

Reasoning (GEAAR) had a central focus aligned with Jacob et al.’s (2007); both studies’ 

goal was to shift teachers’ focus from computation to an understanding of reasoning. 

Through this study, Blanton and Kaput wanted to develop teachers “eyes” and “ears” to 

see and hear their students’ thinking and to help teachers adapt their practice. During 

professional development sessions, 20 kindergarten through fifth grade teachers engaged 

in solving mathematics tasks and then adapted the tasks to teach in the classroom. The 

participant teachers were constantly challenged in the PD sessions to reflect on their 

practice and to develop their students’ ability to question, pattern, conjecture, generalize, 

and justify relationships in math. The findings from this five-year study were described 

using a case study of a participant teacher. This teacher expanded the algebraic thinking 

in her teaching and in students’ thinking in flexible ways. Results indicated that student 

achievement in the project’s third grade students on the statewide test showed a 
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significant improvement in relationship to third grade performance at the state and district 

level. 

The fundamental idea generated by these studies was that studying children’s 

thinking and reasoning was valuable and prompted teacher growth and change (Blanton 

& Kaput, 2005; Campbell, 1996; Fennema et al., 1997; Franke et al., 2009; Jacobs et al., 

2007). Teachers engaged in practical inquiry when analyzing what students bring to and 

know from learning. As these four studies indicated, inevitable shifts in teacher practice 

occurred when the teachers were confronted by children’s thinking and reasoning.  

Teacher Noticing 

Giving attention to children’s thinking goes back to the early twentieth century to 

the development of progressive pedagogy and encompasses Dewey’s perspective on 

attention. In Dewey’s essay, “The Relation of Theory to Practice in Education” (as cited 

in Erickson, 2007), Dewey believed that teachers, through observation, could make a 

distinction between two types of attention: outer attention referred to the physical 

behavior of the child (also known as “deportment”; e.g. sitting at attention with hands 

folded); the inner attention regarded the evidence that showed genuine interest of the 

child toward learning or disinterest in learning (e.g. a child looking out the window while 

the teacher or another student is talking). Dewey believed that novice teachers had a 

difficult time seeing the differences between these two types of observed attention, 

though teachers’ attention to these cues were of fundamental importance to pedagogy. 

This attention to noticing, or observing, as discussed by Dewey, has continued to be 

expanded on through various lenses of research. 
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Previous studies have commented on the subjectivity of noticing based on 

individual or group perception. Erickson (2007) described how a person’s cultural lens 

affected the way in which a video of teaching was understood. After showing a brief 

video of a Native American reservation classroom, teachers held strong opinions about 

what they noticed based on their view of typical norms in American classrooms. The 

observers did not understand that the slow and monotone speech, lack of individual praise, 

and whole group questioning evidenced by the teacher was a cultural artifact rather than 

evidence of poor teaching. In fact, quite the opposite was true since the teacher they were 

observing was a highly effective teacher in that cultural setting. Similarly, Goodwin 

(1994) commented on the specific lens various professions bring to a situation. He argued 

that groups from the same profession possessed a framework that enabled them to make 

sense of a situation in particular ways. The way that the group viewed a situation was 

titled professional vision. For example, police would see a crime scene differently than a 

social worker. Stevens and Hall (1998) also described the visual practices of disciplines 

or professions as disciplined perception. Mason (2002) commented on intentional 

noticing which was a way of understanding a situation through the lens of a professional 

rather than an everyday lens. As can be seen through these perspectives, the idea of 

noticing has existed on a conceptual level; however, only until the past few years has it 

become a broadly known researched construct within the field of education. 

Recent research on children’s mathematical thinking and reasoning has given rise 

to the new field of teacher noticing. Sherin et al. (2011) described teacher noticing as 

encompassing two actions: 1) “attending to particular events in an instructional setting,” 

and 2) “making sense of events in an instructional setting” (p. 5). These two actions were 
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considered interrelated and a cyclical process in teaching. As Sherin et al. stated, 

“teachers select and ignore on the basis of their sense making; the way they respond 

shapes subsequent instructional events, resulting in a new and varied set of experiences 

from which teachers attend and make sense” (p. 5). During instruction, teachers have a 

barrage of information they sift through moment-to-moment. What they attend to in those 

moments and the sense making and decision-making that result are central to teacher 

noticing. Teacher noticing has become an object of study not only in teacher in-service 

but also pre-service professional development (Brunvand & Fishman, 2006; Star, Lynch, 

& Perova, 2011; Star & Strickland, 2008). Studies in noticing have also crossed into 

other subject areas including science (Russ & Luna, 2013; Tomanek, Talanquer, & 

Novodvorsky, 2013) and literacy (Ross & Gibson, 2010). 

Several mathematics professional development studies in the context of video 

clubs shaped the mathematic community’s understanding of teacher noticing in 

mathematics (Sherin & Han, 2004; Sherin & van Es, 2005; Sherin & van Es, 2009; van 

Es & Sherin, 2002; van Es & Sherin, 2006). In these studies, elementary teachers 

watched videos of their own or their colleagues’ teaching. The teachers were then asked 

what they noticed. Free discussion ensued about the content of the videos, and over the 

course of monthly video clubs the researchers noticed that teachers moved from 

discussions about the teachers’ pedagogy toward discussions about the students’ thinking. 

By the time the video clubs ended, the teachers were digging more deeply into the 

mathematical content, the focus was centered on students’ thinking, and often teachers 

grappled with the interpretation of students’ thinking. Although there was no evidence of 

a transfer directly to classroom practice, the research suggested that video could be used 
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as a tool to deepen teachers’ ability to listen to their students’ thinking and attend to their 

mathematical ideas.  

 In a study by Jacobs et al. (2010), teachers’ professional noticing of students’ 

thinking was analyzed. The sample, both practicing and prospective K-3 teachers, was 

drawn from a larger study entitled Studying Teachers’ Evolving Perspectives (STEP). 

STEP that was a professional development focused on children’s mathematical thinking. 

Two written measures were designed to assess teachers’ skills of attending, interpreting, 

and responding. The results indicated different levels of expertise among the participants: 

Initial Participants, Advancing Participants, and Emerging Teacher Leaders. Jacobs et al. 

noticed that the teachers’ ability to notice the students’ thinking increased with the 

amount of years of teaching; however, the length of teaching did not ensure that teachers 

could interpret children’s understandings. The researchers also reported that teachers’ 

expertise in noticing and interpreting students’ thinking increased with two or more years 

of professional development and leadership activities.   

Cognitive Demand of Tasks 

In the 1980s, there was a significant amount of interest in students’ cognition and 

the development and implementation of mathematical tasks. Doyle (1983; 1988), Marx 

and Walsh (1988), and Hiebert and Wearne (1993) began to investigate the learning 

context and the influence of subject matter and task design on the cognition of students. 

International studies also looked at the differences of tasks across cultures to see if the 

teachers’ implementation and the task design impacted students’ learning (Stevenson & 

Stigler, 1992; Ma, 1999).  

Stein and colleagues (Silver & Stein, 1996; Stein & Lane, 1996; Stein et al., 1996; 
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Stein & Smith, 1998), funded by the National Science Foundation (NSF), began to 

investigate the cognitive demand and implementation of tasks in urban middle school 

mathematics classrooms. Their work became known as the Quantitative Understanding: 

Amplifying Student Achievement and Reasoning (QUASAR) project and was inspired by 

Doyle (1983; 1988). In their research, they found that many teachers who were teaching 

sixth and seventh grade mathematics were trained elementary teachers who did not have 

mathematics beyond the high school level. They began to work with the teachers to 

examine their mathematical tasks and task implementation. 

The research conducted by Stein and her colleagues (Silver & Stein, 1996; Stein 

& Lane, 1996; Stein et al., 1996; Stein & Smith, 1998) examined many aspects of 

cognitive demand of tasks including students’ capacity for reasoning and sense-making, 

teacher capacity for implementing and sustaining high cognitive demand, factors that 

support students in maintaining high levels of cognitive demand, and cognitive demand 

of specific curriculum implementation. Findings from their work showed that teachers 

could select and set up cognitively demanding tasks, however, the implementation of 

cognitive demand in the task was often not maintained due to insufficient time, poor 

management, a shift in emphasis from concepts and meaning to correctness of the answer, 

inappropriateness of tasks for the students, or lack of accountability for high-level 

products (Stein & Smith, 1998). Likewise, Stein et al. (1996) found that teachers who had 

engaged in professional development could select and initiate tasks with cognitive 

demand but often were unable to sustain the level of cognitive demand throughout the 

lesson.  

From Stein and Smith’s (1998) early research, a four-level guide was developed. 
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The two beginning levels characterized tasks with lower levels of cognitive demand such 

as memorization and procedures that did not have connections. The top two levels 

characterized higher-level tasks with procedures that were connected to concepts and an 

even higher level in which students were “doing mathematics” (Stein & Smith, 1998, p. 

348). This tool was originally used as a reflective tool for teachers as they viewed their 

personal videotaped lessons; however, the tool also became useful in professional 

development as teachers evaluated the cognitive demand of tasks and improved in their 

knowledge of how to select tasks with high levels of cognitive demand.  

Based on their research, Stein et al. (2009) compiled a handbook for professional 

development providers to support teachers’ selection of cognitively demanding tasks, as 

well as insight from their research in the form of case studies of implementation. In this 

text, they compiled a series of tasks that represented the different levels of cognitive 

demand. These materials were highly focused on the student thinking required by the 

demand of the tasks. Several teachers are chronicled and their stories told of how they 

implemented the tasks in their classrooms, some with greater fidelity and cognitive 

demand than others. 

The research on cognitive demand has continued to look at task and curriculum 

implementation since there is still so much to understand. Research by Smith et al. (2008) 

and Stein and Kaufman (2010) has continued to support teachers’ ability to effectively 

use curricular materials in ways that are cognitively demanding. Smith et al. showed that 

lesson design using the Thinking Through A Lesson Protocol allowed teachers more 

success at maintaining high levels of cognitive demand when planning instruction since 

the protocol prompted the teacher to start with a more open-ended type of problem and 
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also allowed multiple pathways to the solution. Stein and Kaufman’s study examined task 

quality and teachers’ planning of big mathematical ideas using two curricular materials, 

Everyday Mathematics and Investigations. The two-year study suggested that 

Investigations curricular materials provided the teachers more support in using bigger 

mathematical ideas and allowing students multiple pathways to answers which promoted 

higher levels of cognitive demand, student thinking, and mathematical reasoning. The 

findings from both of these studies showed that a task’s level of cognitive demand was 

related to opportunities for student thinking. 

Reflection 

It has been long understood that teacher reflection is an important aspect of 

teacher development (Brown & Borko, 2003; Rogers, 2002; Schön, 1983, 1987). As a 

key component of teacher change, reflection has been at the heart of inquiry and is 

cyclical resulting in action (Franke et al., 1998; Philipp, Flores, Sowder, & Schappelle, 

1994; Sowder, J. T., 2007). In many reform types of mathematics professional 

development, change in teachers’ practice was often the goal; thus, many studies have 

included opportunities for reflection as part of the professional development structure 

(Fennema et al. 1997; Joyner, 1997; Nelson, 1997). Opportunities for collective 

discussion and support have been found to be critical in providing opportunities for 

reflection as a part of mathematics professional development (Sherin & Han, 2004; 

Sherin & Van Es, 2005). As Ball (1997) aptly stated,  

Reflection is central to learning to teach. For the most part, this perspective 

focuses on structure and context, emphasizing that teachers need time, space, and 

encouragement to reflect in ways that facilitate their learning – by talking with 
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others, by keeping a journal, by engaging in action research. (p. 90) 

Teachers at any stage in their development are still learning; therefore, providing teachers 

these opportunities, as Ball described, has been considered a significant aspect of an 

effective mathematics professional development program.  

In the literature, effective mathematics professional development afforded 

elementary teachers the time to engage in reflection, ultimately affecting their practice in 

positive ways. In the video clubs described in the noticing studies (Sherin & Han, 2004; 

Sherin & van Es, 2005; van Es & Sherin, 2002), reflection was the central activity of the 

teachers.  In these studies, video slowed down the events of the classrooms and afforded 

the participants multiple views of the interactions from different perspectives than in their 

role as teachers. This new lens on teaching allowed the teachers to hear and see the 

children’s thinking in new ways and to unearth the salient features of the teaching 

situations. Their discussions became richer as time went on as they grappled with the 

heart of the children’s learning through their questions and actions. For these teachers, 

the discussions resulted in shifts in their thinking, and, for many, their teaching; teachers 

began to notice students’ mathematical thinking and attended to students’ ideas in ways 

that otherwise would have been dismissed (Sherin & van Es, 2009). Similarly, Whitenack, 

Knipping, Novinger, Coutts & Reys (1998) reported that multiple opportunities for 

teachers to view students’ mathematical thinking on video prompted them to reflect and 

arrive at deeper understandings about students’ knowledge. Video as a catalyst for 

reflection in these studies appeared to impact teachers’ beliefs and practice. 

Other mathematics professional development that used reflective methods also 

noted an impact on teachers’ instruction and attitudes. Gabriele and Joram (2007) found 
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that teachers’ engagement in think-aloud reflection about their instruction provided 

increased self-efficacy. Philipp et al. (1994) noted that extraordinary mathematics 

teachers took the time to reflect on their own learning, came prepared to sessions, and 

reported thinking about seminar sessions on their own time outside of seminars and work. 

This reflective characteristic was found in each of the four teachers they studied. As the 

researchers noted, the teachers were in the process of gradual and ongoing change in their 

teaching practice. Being reflective was the characteristic that seemed to promote change. 

In the process of understanding inquiry on practice and change, Franke et al. (1998) 

reported teachers’ generative change, or changes in their epistemological framework, as 

prompted by mathematics professional development. They pointed out that a teacher 

engaged in practical inquiry “can be viewed as a teacher questioning and reflecting about 

his/her practice with a specific focus. The focus of a teacher’s practical inquiry 

determine[d] what a teacher [saw] as critical, and what constitute[d] an opportunity for 

reflection” (p. 68). Inquiry was identified as a key process that was central to the 

professional development and was a significant part of teachers’ generative change. 

Using the reflective process, Blanton and Kaput (2005) required teachers to keep written 

reflections on their teaching and to note instances of students’ algebraic reasoning and 

ways they promoted algebraic reasoning. In this study, teachers were constantly 

challenged to reflect on their practice and the results linked teachers’ practices to 

increased student achievement. 

It was clear from the literature that reflection played a significant role in 

mathematics professional development. The act of reflection has been a critical 

component of growing as a teacher and has often been linked to changes in practice and 
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student achievement. To effectively reflect, Rogers (2002) called for teachers to be 

present in the moment of teaching. For Rogers, presence meant to be alert, attentive, and 

awake to the students’ thinking and the content of the instruction. Covering the material, 

listening for the right answer, or just keeping the students engaged was not enough to 

promote learning. “It is by practicing this process outside the moment— reflecting on 

action — that teachers are able to employ the various components in the moment and 

reflect as the action unfolds” (p. 237). Indeed, reflection as a central component to 

mathematics professional development has shown to deepen teachers’ attention toward 

students’ thinking and bring about shifts in practice.   

Conclusion 

In conclusion, teaching elementary mathematics has been shown by the research 

to be a highly complex task. Thus, teachers need opportunities through effective 

professional development to develop their mathematical knowledge for teaching, as well 

as the ability to notice students’ mathematical thinking and develop and sustain the 

cognitive demand of their lessons. Teachers must have not only the knowledge of 

mathematics for teaching but also the pedagogy and understanding of children’s thinking 

and reasoning to improve their instruction; this is not an easy task. However, research has 

shown that teachers have the capacity to learn and adapt their practice to meet children’s 

learning needs if given the opportunity. Clearly, more needs to be known about the 

teaching and learning process and how teacher knowledge relates to student thinking and 

instruction. Examining the relationships between teacher noticing of student thinking, the 

cognitive demand of tasks, and mathematical knowledge for teaching are constructs ripe 

for continued exploration and research at the elementary level.   
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Chapter Three: Methodology 

Research Design 

This study used a quantitative design to analyze data drawn from a long-term 

mathematics professional development project funded by a California Improving Teacher 

Quality grant. The purpose of this study was to examine the possible relationships 

between three variables: 1) teacher noticing of student mathematical thinking, 2) 

cognitive demand of enacted tasks, and 3) teacher mathematical knowledge for teaching 

tercile levels.  

My initial prediction of how these three variables were thought to interact is 

illustrated in the following conceptual model: 

Figure 3  

Conceptual Model

 

(Coddington, 2013) 

Creswell (2009) suggested that models are beneficial for showing hypothesized 

relationships between variables and providing a foundation for understanding the 
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research design of quantitative studies. A conceptual model, such as Figure 3, provides 

insight into the researcher’s theoretical perspective of how the variables might interact.  

In this study, I hypothesized that the variables shown in Figure 3 were closely 

interrelated. It was my perspective that teachers’ mathematical knowledge for teaching 

was a foundational variable that mediated teacher noticing and the cognitive demand of 

enacted tasks. Moreover, I believed that teacher noticing and the cognitive demand of 

enacted tasks ultimately influence shifts in instruction, though mediated by teachers’ 

reflection on practice. Thus, by examining the relationships between these three variables, 

teacher noticing, cognitive demand of enacted tasks, and mathematical knowledge for 

teaching, I hope to assist the field of education in better understanding shifts in teachers’ 

instruction while engaged in professional development.  

Context of the Study 

It is important to understand the professional development context from which the 

data for this study was drawn. The Making Algebra Accessible Project (MAAP) was the 

result of a partnership that brought together teacher education faculty from Claremont 

Graduate University, a mathematics professor from Pitzer College, and principals and 

teachers from four elementary schools. The mathematics professional development took 

place in an urban high-need southern California school district that serviced a large 

minority population. Funding for this project was provided by a California Improving 

Teacher Quality grant with the purpose of reducing the achievement gap. The goals of 

MAAP were to: 

(1) Increase teachers’ pedagogical content knowledge as it relates to early  

algebraic thinking; (2) Increase student performance on state-wide  
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mathematics assessments; (3) Increase English Learners’ performance  

on state-wide mathematics assessments; (4) Increase student success in  

taking and passing Algebra in later years; and (5) Develop professional  

learning communities. (CPEC, 2012) 

MAAP’s monthly seminars and summer institutes were specifically focused on 

developing teachers’ pedagogical content knowledge in early algebraic thinking (see 

Figure 4). These ways of thinking, or reasoning, are highly interrelated and can be 

developed in very young children while learning arithmetic (Carpenter, Franke, & Levi, 

2003). During MAAP, the teachers were engaged in activities to develop and enhance 

students’ mathematical thinking. This was a particular type of thinking called early 

algebraic reasoning. MAAP’s intent was to assist teachers in recognizing early algebraic 

reasoning, as well as to discuss and explore ways to promote opportunities for children’s 

early algebraic reasoning. 

Figure 4 

Forms of Early Algebraic Thinking 

 

(Brown, 2012) 
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Two cohorts of teachers were involved in the professional development that 

consisted of teachers from kindergarten through third grade (first cohort) and teachers 

from fourth through sixth grade (second cohort). The first cohort participated in the 

professional development for two years between 2008-2010, and the second cohort from 

2009-2011. There was one year of overlap during which both groups met together. The 

professional development included monthly seminars, monthly lesson observations that 

were video-recorded, and two two-week summer institutes. In total, the teachers 

experienced 102 hours of professional development over the two years with an additional 

32 hours of involvement in professional development related activities (Brown, 2012).  

There were four participating schools in the project: two treatment schools that 

received professional development and two control schools that did not receive any 

professional development. Each of the schools represented a majority of English 

language learners (ELLs) and a high percentage of students qualifying for free or reduced 

lunch. All of the participating schools were in Program Improvement status at the start of 

MAAP (see Table 2). 

Table 2  

School Characteristics at Start of Year 1 

 Site A Site E* Site B Site D* 
Student Population 657 544 910 859 
% Hispanic 94 85 92.5 96 
% African American 3 9 4 1 
% Asian 2 1.5 <1 < 1 
% White < 1 3.5 2 2 
% Free or Reduced Lunch 93 85 95 94 
% ELL 59 48 51 56 
PI (Program Improvement) Yes Yes Yes Yes 

Note. *Control Sites     
(Brown, 2012) 
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Sample 

There were 54 participating teachers in MAAP, and the whole population was 

used as the sample for this study, since the participant size was small. The sample 

represented teachers from kindergarten through sixth grade at two treatment schools. 

There were 34 participating kindergarten through third grade teachers and 20 fourth 

through sixth grade teachers. Also invited to participate were teachers on special 

assignment, special education teachers, and academic coaches; however, this group did 

not participate in video-recorded observations or video reflections. 

Individual ethnographic data was not gathered on the participants in order to 

secure their anonymity; however, some general information about the participants’ 

teaching experiences was gained through the MAAP Teacher Survey given during the 

second year of the grant. Treatment teachers who were surveyed (N =38) had two to 32 

years of teaching experience. Nine teachers reported teaching more than 25 years. 

Twenty-three teachers held master’s degrees, and all but one teacher reported 

participation in some type of mathematics related professional development at the district 

or school level prior to MAAP.  

The teachers’ hours of participation were recorded at all professional development 

activities, and these hours were totaled and recorded over two years of participation. 

Teachers who participated more than 75% were considered high-level participants; those 

with more than 50% were considered moderate-level participants; and those below 50% 

were considered low-level participants. Regardless of how many hours the teachers 

participated, all second-year data for each cohort was included in this study.  
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Protection of Human Subjects 

At the start of MAAP funding in 2008, the research design, surveys, and 

participation forms were approved by the Internal Review Board (IRB) of both 

Claremont Graduate University and Pitzer College. An amendment was made to the 

forms after the first year that was approved by the IRB at both universities. The data and 

analysis for this dissertation’s study fits within the parameters of both the original IRB 

and the amended IRB approval. 

When the grant was funded, the teachers from the treatment schools met with the 

MAAP Project Director at their school site to go over the details of the project. During 

the initial meeting, teachers were promised confidentiality and anonymity and were 

assured their identities would be protected and that pseudonyms would be used in any 

future reports of the data. The teachers were also given release forms for their 

participation. These signed forms were stored in a locked cabinet at Claremont Graduate 

University under the care of the Teacher Education Department. 

The classroom videos used in this dissertation were those gathered during the 

MAAP classroom observations; thus, the videos with student and teacher participants are 

under the auspices of the grant. Those students pictured on the videos submitted 

parent/guardian permission forms that were signed and retained at the beginning of the 

project. For each year of participation, the students were asked to complete release forms. 

Those students who did not have a signed form were seated in the room outside of the 

camera’s lens. The participant video permission forms for the students were kept in a 

locked cabinet under the care of Teacher Education at CGU.  
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The funding for this project was based on whole school participation and teachers 

were expected to participate as a collective. The participants understood that “whole 

school” meant 80% participation from each school and they also realized the funding of 

the project was contingent on their participation. The teachers’ participation was highly 

encouraged and supported by their administration and thus the teachers were more than 

“motivated volunteers.” The teachers were paid by the grant for their involvement outside 

of their normal district-contracted day 25 dollars per hour for attendance at seminars and 

summer institutes. Payment was also given to the teachers for activities outside of school, 

such as viewing their lesson videos, writing reflections, and other grant related paperwork. 

If for some reason the teachers chose not to participate in MAAP, they were given 

the liberty to leave the project. Over the four years of the grant, three teachers chose to 

end their participation for personal reasons while several others left the project due to 

long-term illness, re-assignment, non-renewal of teaching contract, or retirement. A few 

teachers did not want their videos viewed or coded by the research team (n = 2), and thus 

they were given the copies of their CDs. It is important to note that the grant took place 

during a severe economic crisis in California that reduced teacher positions and 

encouraged early retirement through incentive packages. 

Since this study was situated within the MAAP grant, the data created and 

generated was still considered data analysis on behalf of the MAAP professional 

development and ultimately belongs to the State of California. All reports of the data will 

give credit to the State of California for the grant funding, to Claremont Graduate 

University, Pitzer College, as well as the Project Director and MAAP research team. 



 

 66 

Research Questions & Planned Analysis 

The research questions central to this study called for an examination of the 

relationship between three teacher variables: level of noticing, level of cognitive demand 

of enacted tasks, and mathematical knowledge for teaching tercile level. Table 3 shows a 

summary of the research design. 
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Table 3  

Summary of the Research Design 

Research Question 1: How do teachers’ written reflections and observations of their 
mathematics lessons explain teachers’ levels of noticing in the second year of mathematics 
professional development focused on developing teachers’ mathematical knowledge for teaching? 
Data: 
Teacher reflections 

Variables:   
1) Individual teacher noticing 
levels 

Methods: 
• Descriptive statistics (mean 
and mode) 

2) Group teacher noticing 
levels 

• Descriptive statistics (mean 
and mode) 
• Paired Samples t-Test 
(intermediate and ending 
noticing level, analyzed by 
cohort) 

 

Research Question 2: How do teachers’ self-selected video segments of mathematics lessons 
explain the level of cognitive demand of the teachers’ enacted tasks during the second year of 
mathematics professional development focused on developing teachers’ mathematical knowledge 
for teaching? 
Data: 
5-minute segments from 
video-recorded lessons 

Variables: 
1) Individual teacher cognitive 
demand levels 

Methods: 
• Descriptive statistics (mean 
and mode) 
 

2) Group teacher cognitive 
demand levels 

• Paired Samples t-Test 
(intermediate /ending 
cognitive demand level, 
analyzed by cohort) 

 

Research Question 3: How do teachers’ levels of mathematical knowledge for teaching relate to 
teachers’ levels of noticing and levels of cognitive demand in enacted tasks during the second 
year of mathematics professional development focused on developing teachers’ mathematical 
knowledge for teaching? 
Data: 
Teacher reflections 
Video-recorded lessons 
Teacher MKT tercile levels 

Variables: 
1) Teacher noticing levels  
2) Teacher cognitive demand 
levels 
3) Teacher MKT tercile levels 

Methods: 
• Pearson correlation  
(ending level, analyzed by 
grade level, school, and level 
of participation) 
 

Note.“Beginning level” refers to the level at the start of Year 1 of the MPD.  
         “Intermediate level” refers to the level at the start of Year 2 of MPD.  
         “Ending level” refers to the level at the end of Year 2 of the MPD.  
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Data 

5-Minute Video Segments and Reflections  

During MAAP, the teachers were observed approximately once a month during 

which a research team member video-recorded the teachers’ mathematics lesson. The 

teachers were asked to reflect on their videos monthly and to respond to specific 

questions on two separate forms. The Post-Observation Reflection Form asked the 

teachers to write a reflection on the observed lesson, identify connections that they saw 

between the observed lesson and the MAAP seminars, and comment on the type of 

discourse that occurred during the lesson. A second form, the Video Reflection Form, 

asked the teachers to identify a 5-minute segment from their lesson by beginning and 

ending time, to situate the context of the lesson, and describe why they selected the 

segment. The teachers were asked to plan their lessons keeping the ideas from the 

seminars in mind, though they were not given specific curricula or content to cover. As 

data for this dissertation, both the Post Observation Reflection and Video Reflection 

Forms for each video were considered as one reflection.  

MKT Tercile Levels  

As participants in MAAP, the teachers’ mathematical knowledge for teaching was 

assessed at the start of the project prior to treatment and at four other times throughout 

the course of the teachers’ two-year participation using the Learning Mathematics for 

Teaching survey. This survey is a well-respected, nationally normed assessment tool (Hill, 

2010; Hill & Ball 2004; Hill et al., 2007; Hill, et al., 2004) that is used often in 

comparison pre- and post-tests in professional development to measure teachers’ growth 

in mathematical knowledge (Bell et al., 2010; Charalambous, 2010; Santagata, 2009). 
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The MAAP Final Report (Brown, 2012), explained how the Learning Mathematics for 

Teaching survey scores were interpreted: 

Since the LMT instrument used IRT theory to develop their instrument, all scores 

are θ scores that are based on a standard scale with a mean of 0 and a standard 

deviation of 1. Due to this characteristic, the growth scores can be interpreted as 

effect sizes. Thus, a growth score of .3 equals an increase of .3 SD, which 

corresponds to an effect size of Cohen’s d of .3. (p. 31) 

A key finding of the MAAP professional development was the statistically significant 

growth of teachers’ mathematical knowledge for teaching (see Table 4). According to the 

MAAP Final Report (Brown, 2012), 

There was a significant overall increase of (0.43, p < .01) for the treatment group 

and no overall change for the control group (p > .05). We also observed a 

significant increase for teachers who stayed one year (0.52, p = .04) or two years 

(0.49, p < .001). There was no change for the group with less than one year of 

participation. Neither control group showed any significant overall change (p 

> .05). (p. 31) 
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Table 4  

Total LMT Change Score Analysis, Treatment, and Control 

 
  Mean 

Difference 
     t df  Sig. (2-tailed) 

Treatment 
<1 Year -0.058 -0.552 5 0.605 
1 Year 0.524 2.429 8 0.041 
2 Years 0.488 6.749 38 0.000 

 Overall 0.433 6.412 53 0.000 

Control 
1 Year 0.080 0.436 11 0.672 
2 Years 0.082 0.929 44 0.358 

 Overall 0.082 1.034 56 0.306 
(Brown, 2012, p. 31) 

The mathematical knowledge for teaching scores from the LMT during MAAP 

were analyzed by tercile ranking. To better understand this process, the MAAP Final 

Report was again helpful: 

Both treatment and control site teachers’ knowledge was measured annually with 

the Learning Mathematics for Teaching (LMT) survey. Even though the LMT is 

scored using a continuous measure, we also analyzed the teachers’ scores in terms 

of their tercile ranking. This analysis was carried out because we believe that the 

linearity assumption would be violated if we used a continuous LMT variable. 

Also, previous research (Hill, Rowan, & Ball, 2005) has shown that the 

relationship between teachers’ mathematical knowledge for teaching (the content 

knowledge measured by the LMT) and student achievement is not consistent 

across the scoring continuum but rather significant effects existed between 

teachers scoring in the lowest 20-30% of teachers and those scoring in the top 
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four deciles (Hill et al., 2005). This research indicates that attention should be 

paid to teachers’ tercile rankings when considering growth. 

In our research, the two cut points for the terciles were based on the 

norming sample and not the study sample. That is, 1st tercile teachers are teachers 

whose LMT score falls below 33rd percentile for the norming sample, 2nd tercile 

are teachers between 33rd and 66th percentile, and 3rd tercile are teachers above 

66th percentile. Since our cut points are based on the norming sample, distribution 

of teachers across the three terciles was not equal in this study. (Brown, 2011, p. 

33-34) 

Thus, it is important to note that the 1st tercile represented those teachers scoring below -1 

SD from the mean, the 2nd tercile between -1 and +1 SD, and the 3rd tercile above +1 SD 

above the mean. At the start of MAAP, 46% (n = 25) of teachers scored in the 1st tercile. 

Permission to use the mathematical knowledge for teaching tercile levels in this 

dissertation was granted by the MAAP Project Director, Dr. Stacy Brown. The data 

provided by MAAP included the mathematical knowledge for teaching tercile rankings 

for each teacher (1st tercile, 2nd tercile, or 3rd tercile) from the start of the project to the 

end; however, the teachers’ individual LMT survey scores were not provided due to IRB 

protections. 

Instrumentation 

Two of the data sources for this study, teachers’ written reflections on their own 

video-recordings and 5-minute self-selected video segments, were coded based on two 

separate frameworks: the Framework for Learning to Notice Student Mathematical 
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Thinking (van Es, 2011) and The Task Analysis Guide (Stein and Smith, 1998). The 

following section describes these two instruments in more detail. 

The Framework for Learning to Notice Student Mathematical Thinking  

The Framework for Learning to Notice Student Mathematical Thinking (van Es, 

2011) was used in this study to analyze teacher noticing of student thinking through 

written reflections on their own lessons. This framework was applied to the written 

reflections to analyze two aspects of teacher noticing: What Teachers Notice and How 

Teachers Notice. Within each of these two categories, four levels were coded: 1 – 

Baseline, 2 – Mixed, 3 – Focused, and 4 – Extended. The progression in each category 

moved from a general observation of the class to a more detailed attention to student 

thinking. In the What Teachers Notice category, a Level 1 reflected comments on the 

whole class environment, learning, behaviors, and pedagogy. Level 2 comments reflected 

a focus on pedagogy and showed beginning reflection on particular students’ thinking or 

behavior. A Level 3 response focused on particular students’ mathematical thinking. In a 

Level 4 response, the teacher attended to the relationship between an individual student’s 

mathematical thinking and also made connections between teaching strategies and 

student thinking. In the second category, How Teachers Notice, a Level 1 reflection 

formed general impressions, was evaluative in nature, and provided little or no evidence. 

A Level 2 reflection highlighted noteworthy events, included some evaluative or 

interpretive comments and began to include comments on specific events and interactions. 

For a Level 3 response, the teacher’s reflection highlighted specific noteworthy events, 

included interpretive comments, provided evidence, and elaborated on the interactions. A 
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Level 4 reflection highlighted noteworthy events, gave interpretive comments, provided 

evidence, and made connections between events and principles of teaching and learning.  

The Framework for Learning to Notice Student Mathematical Thinking was a new 

framework proposed by van Es (2011) and was developed from an extensive video 

collection derived from van Es and Sherin’s video club studies that occurred from 2000 – 

2001. In the video clubs, teachers viewed video segments of their teaching and discussed 

what they noticed. In the creation of this framework, van Es carefully identified 

categories of teacher responses to the videos using a systematic process. A detailed 

process of idea unit analysis of the teachers’ discourse was described by van Es that 

resulted in ten idea units. The meaning and scope of categories evolved from a detailed 

analysis of patterns and variations from ten video clubs resulting in two main categories 

or dimensions. For each category, van Es then developed a trajectory. These analyses 

resulted in the Framework for Learning to Notice Student Mathematical Thinking. This 

framework, though published, has not been applied to any other known published 

research; thus, one third of the reflections was coded by the MAAP research team to 

support this instrument’s reliability.   

The Task Analysis Guide  

A second set of data for this study resulted from an analysis of the cognitive 

demand of the enacted tasks captured in the 5-minute segments of the teachers’ videos. 

The Task Analysis Guide (Stein and Smith, 1998) was used as the instrument for coding 

the cognitive demand of the enacted tasks. Stein and her fellow researches used this guide 

broadly in their middle school research to measure the cognitive demand of tasks found 

both in curricular materials as well as enacted tasks (Stein et al., 2009). Through their 



 

 74 

work on the QUASAR Project, Stein and her colleagues developed the criteria for 

measuring the cognitive demand in mathematical tasks. They applied these criteria to 

multiple settings to evaluate teachers’ enactment of mathematical tasks and the fidelity of 

the curricula’s implementation by teachers to promote and sustain cognitive demand 

during instruction (Henningsen & Stein, 1997; Stein et al., 1996; Stein & Kaufman, 2010; 

Stein & Smith, 1998). A formal introduction of the levels of cognitive demand occurred 

in Stein and Smith’s 1998 publication and was used subsequently in professional 

development to train teachers to recognize the cognitive demand placed on students while 

engaging in a mathematical task. Research on cognitive demand has been of great interest 

to the field since its inception in the 1990s and the QUASAR Project was considered a 

foundational study that helped researchers further understand the role of mathematics 

tasks as used in middle school instruction. 

The Task Analysis Guide outlines four categorical levels of cognitive demand. 

The first level, Memorization Tasks described tasks that were solely focused on 

memorized knowledge and reproduction of that knowledge. This knowledge was 

described as “facts, rules, formulae, or definitions that were committed to memory” 

(Stein & Smith, 1998, p. 348). Tasks of this nature did not make connections to the 

underlying concepts or meaning, nor did they require procedures because they were too 

short or a procedure did not exist. The second level, Procedures without Connections 

Tasks, was algorithmic, used a specific procedure or one that was evident, required 

limited cognitive demand to complete successfully, did not connect to the concepts or 

meaning underlying the procedure, and required no explanations. The third level, 

Procedures with Connections Tasks, made connections between the deeper levels of 
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understandings of concepts and ideas behind the tasks, suggested pathways to follow that 

were connected to the underlying conceptual ideas, were represented in multiple ways 

and made connections between representations, and required cognitive effort that could 

not be followed mindlessly. Finally, the fourth level, Doing Mathematics Tasks, required 

complex, nonalgorithmic thinking that was not predictable, well-rehearsed, or explicitly 

suggested by the task. The task required students to explore the concepts, processes, and 

relationships, examine the types of possible solutions, and exert significant cognitive 

effort that might produce some level of anxiety. These 5-minute segments were scored 

based on the Level 1 – 4 as suggested by the sequence of the guide: Level 1 was 

Memorization Tasks up to Level 4 that was Doing Mathematics Tasks.  

Procedures 

Reliability 

To ensure consistency in the scoring of teachers’ reflections and video-segments, 

reliability was established by having members of the MAAP research team code one third 

of the entire data. Four members of the MAAP research team, Wayne Snyder, Kristen 

Baldridge, Becky Orona, and myself, twice convened to code both the teachers’ 

reflections and video segments. These individuals were selected to code since they were a 

part of the original team that researched the MAAP professional development and were 

intimately involved with the project and gathering of data.  

A systematic sampling technique was used to select the representative one-third 

sample of teachers to be scored by the team. Using a list of the 54 participating teachers 

in the population, I selected every third teacher. Subsequently, the 17 teachers’ 
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reflections and videos were coded by the team using the two coding frameworks 

previously described.  

Team, Paired, and Individual Coding  

Members of the MAAP team met on two Saturdays during the summer of 2013 to 

code both the written reflections and the video segments. On the first day, the team 

members met and began with a discussion about the noticing framework used to analyze 

the written reflections. We noted the differences between the four levels of cognitive 

demand and then applied the framework using a few sample reflections that I had 

previously selected from the 17 teachers’ data. At first, we read each individual reflection 

and then discussed its perceived level as a group. Nuances of the framework language 

were discussed and we came to consensus on a final level for each task. We agreed to 

assign the highest level attributed to each reflection according to the identified level on 

the framework. From the reflections we scored together, an exemplar was identified for 

each level from 1 – 4. Together, we coded 14 reflections from three different teachers as 

a group to reduce variations in scoring. Then we broke into pairs and coded the rest of the 

written reflections systematically by teacher. The team worked in pairs to code the 

remaining teachers’ reflections. When discrepancies arose, we discussed them fully until 

consensus was reached. A record was kept by each pair of coders to record the scoring 

for each of the reflections. After the coding session, I transferred these records into an 

Excel file. 

Similarly, the same MAAP research team members met on a second day to code 

the video segments. We began by discussing the Task Analysis Guide. In their book, 

Stein et al. (2009) provide a set of tasks that exemplify the type of thinking needed for 
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each level of cognitive demand as described in the guide. The team solved the eight tasks 

individually without knowing the prescribed levels, and then we discussed as a group the 

level we believed each exemplified. This discussion helped to tease out the thinking level 

of each problem and the differences represented between the levels of cognitive demand 

as described by the framework guide. We then, as a group, applied the framework to 

seven video segments from four teachers selected from the one-third coding sample. We 

watched each individual video segment as a group and then discussed the segment and its 

level of cognitive demand. As questions arose in the coding, we stopped and discussed 

each until consensus was reached. A paper record of the results was kept of the coding 

that I later transferred into an Excel file. After coding each of the seven video segments, 

we broke into pairs to continue coding the rest of the 17 teachers’ data. When 

discrepancies arose, we again talked through the problem as a group and came to 

consensus on the final score. The coding ended after the 17 teachers’ video data were 

coded. 

The team made specific decisions about the coding of the reflections that helped 

to shape our protocol. For example, if the Video Reflection Form was present but no 5-

minute segment was selected by the teacher, the written description of the segment’s 

context as described on the form was used to identify the segment. In some cases, the 

teachers identified more than five minutes, in others they identified less; regardless of the 

amount identified, the segments were included in the data collection, as specified by the 

teacher. Also, if there was no Video Reflection Form completed for a lesson, the video 

data was not included in the data collection since there was no 5-minute identified 

segment. Eliminating video data based on the missing Video Reflection Forms reduced 
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the amount of viable video data for this study; however, we found it unreasonable to code 

data upon which the teacher had not reflected.  

After the MAAP team coded one third of the data, I continued to code the data 

independently, keeping in mind the decisions and justifications we had made as a group. 

Coding continued until all of the video and reflection data for the second year were 

exhausted. Overall, a total of 132 videos and 113 reflections were coded. All the records 

from these coding sessions were recorded and maintained systematically in an Excel file.  

Coding Data for SPSS 

To organize the data representing participation levels in MAAP, three codes were 

developed (see Table 5 below). This data came directly from the MAAP research records. 

The variable representing the teacher participation was named Participation Levels and 

the data was coded categorically as either level 1 - Low, 2 – Moderate, and 3 – High. 

Level 1 represented teachers who had Low/Low participation over two years of the 

MAAP professional development. This meant they had less than 50% participation both 

year 1 and year 2, thus they were Low/Low. Level 1 also represented teachers within the 

category of NA/Low and Low/NA as labeled in the MAAP records. NA/Low meant that 

they had not participated the first year and had less than 50% the second year. Low/NA 

meant that they had participated less than 50% the first year and had no participation the 

second year.  

Those teachers coded as Level 2 participants represented teachers who had 

Low/Mod, Mod/Low, and Mod/Mod levels of participation according to the MAAP data. 

Low/Mod and Mod/Low participation represented teachers who had less than 50% in one 

year of participation and between 50% and 75% in the other year. Mod/Mod participation 
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meant that teachers had more than 50% during both years of participation. This category 

also included High/Low, and Low/High participants. High/Low or Low/High meant that 

they had high participation in one year and less than 50% during the second.  

Finally, Level 3 participation represented teachers who had high levels of 

participation. In the MAAP data, these teachers were listed as High/High, which meant 

they had participated more than 75% during both years of the professional development. 

Additionally, High/Mod or Mod/High participation represented 50% participation one 

year and over 75% participation during the second.  

Table 5 

SPSS Coding for Participation Variable 

 
SPSS  
Participation Level 

 MAAP 
Corresponding Participation Category 

1 – Low Participation Low/Low, NA/Low, Low/NA 
2 – Moderate Participation Low/Mod, Mod/Low, Mod/Mod 
3 – High Participation High/High, High/Mod, Mod/High 

 

Codes were also developed for MKT tercile beginning and ending tercile levels. 

The beginning MKT tercile levels represented the beginning scores of the participants’ 

first year. The MKT tercile beginning and ending levels were coded in SPSS as variables: 

Beginning MKT Tercile Level and Ending MKT Tercile Level. For these two variables, 

the categorical codes recorded in SPSS were: 1 – Tercile 1, 2 – Tercile 2, and 3 – Tercile 

3 (see Table 6 below). 
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Table 6 

SPSS Coding for MKT Tercile Level Variables 

Beginning MKT Tercile Level Ending MKT Tercile Level 

1 – Tercile 1 1 – Tercile 1 
2 – Tercile 2 2 – Tercile 2 
3 – Tercile 3 3 – Tercile 3 
 

The teachers’ cohort grade levels were coded in SPSS for both the K-3 and 4-6 

cohorts.  The variable representing the cohort was labeled Cohort Grade Level and was 

coded categorically as 1 – K-3 Cohort and 2 – 4-6 Cohort.  

To identify the school where the teacher taught, a variable of School was added to 

SPSS. This variable was coded as either 1 – Zinnia Elementary1 or 2 – Willow 

Elementary.  

Missing Data  

The variables included in the study contained missing data between 2% – 42%. 

These data were coded in SPSS as 99. Forty teachers’ data were coded in this study since 

14 teachers either did not have viable second-year data or they had withdrawn from the 

project. 

Data Analysis 

Question 1  

How do teachers’ written reflections and observations of their mathematics 

lessons explain teachers’ levels of noticing in the second year of mathematics 

                                                
1 All names are pseudonyms.  
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professional development focused on developing teachers’ mathematical knowledge for 

teaching? 

The reflection data was carefully prepared and organized in an Excel sheet and an 

analysis of the individual teacher data was conducted. The means and modes were 

calculated for each individual teacher’s reflections. These results measured the teacher 

noticing level and the most common noticing level per teacher. An overall grand mean 

for the individual teacher reflections was calculated by averaging the noticing level mean. 

This resulted in a variable that was named Mean Noticing Level, and the data for this 

variable was transferred into SPSS per teacher.  

Several analyses were conducted using the noticing level variables to examine the 

teachers’ noticing levels as a group. Descriptive statistics of the variables Intermediate 

Noticing Level, Ending Noticing Level, and Mean Noticing Level were conducted in SPSS 

and resulted in the mean, mode, and standard deviation for the group teacher data. 

Additionally, a Paired Samples t-Test was conducted comparing the means of the 

variables Intermediate Noticing Level and Ending Noticing Level. This data was also 

grouped and analyzed by the variable, Cohort Grade Level, to look at possible 

differences between the means of each cohort. Pearson’s correlations were used to 

analyze the relationships between noticing variables as well as Participation Level and 

Cohort Grade Level. These data were also grouped by participation and cohort level 

during Pearson’s correlations.  

Question 2  

How do teachers’ self-selected video segments of mathematics lessons explain the 

level of cognitive demand of the teachers’ enacted tasks during the second year of 
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mathematics professional development focused on developing teachers’ mathematical 

knowledge for teaching? 

Initially, the mean and mode were calculated for the individual teachers’ video 

segments. The results measured the mean cognitive demand levels over the course of the 

second year for each teacher and the most common level of cognitive demand. An overall 

grand mean for the 5-minute video recorded segments was calculated for each teacher’s 

video data and resulted in a variable named Mean Cognitive Demand Level. This variable 

was recorded in SPSS.  

To analyze the teachers’ cognitive demand as a group, several different analyses 

were conducted. First, the mean, mode, and standard deviation were analyzed using the 

Intermediate Cognitive Demand, Ending Cognitive Demand, and Mean Cognitive 

Demand variables. Pearson’s correlations were conducted on the cognitive demand 

variables as well as cohort and participation level. The correlations were also grouped by 

Cohort Grade Level and Participation Level. A Paired Samples t-Test was conducted 

using the Intermediate Cognitive Demand and Ending Cognitive Demand variables. The 

data in this analysis was also conducted on the same variables grouped by Participation 

Level and Cohort Grade Level.   

Since two new variables were added during the analysis for Question 1 and 

Question 2, a complete list of variables in SPSS is presented in Table 7 below.  
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Table 7 

Variables in SPSS 

 
Variables 

Intermediate Cognitive Demand 
Ending Cognitive Demand 
Intermediate Noticing Level 
Ending Noticing Level 
Mean Cognitive Demand 
Mean Noticing Level 
Beginning MKT Tercile Level 
Ending MKT Tercile Level 
Cohort Grade Level 
Participation Level 
School 
 

Question 3 

How do teachers’ levels of mathematical knowledge for teaching relate to 

teachers’ levels of noticing and levels of cognitive demand in enacted tasks during the 

second year of mathematics professional development focused on developing teachers’ 

mathematical knowledge for teaching? 

To analyze the relationships between noticing, cognitive demand, and 

mathematical knowledge for teaching, Pearson’s correlations were conducted. 

Correlations were conducted by whole group on the variables, Beginning MKT Tercile 

Level, Ending MKT Tercile Level, Intermediate Noticing level, Ending Noticing Level, 

Intermediate Cognitive Demand Level, and Ending Cognitive Demand Level, Participation, 

Cohort Grade Level, and School. These data were further grouped by: Cohort Grade 

Level, School, and Participation Level. This analysis was conducted to better understand 

the relationship and variance between these variables. Additionally, linear regressions 
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were conducted on the following variables: Participation Level and Beginning MKT 

Tercile Level, to predict Ending MKT Tercile Level; Participation Level and Intermediate 

Noticing Level, to predict Ending Noticing Level; and, Intermediate Cognitive Demand 

Level and Participation Level, to predict Ending Cognitive Demand. 

Limitations 

There were several limitations to this study that should be noted. One limitation was 

the small sample size. Since this study was part of a larger study, the population was 

limited to the two treatment schools. Additionally, not all the teachers participated 

equally in the project during the second year and this limited the numbers of videos and 

reflections that were completed. Teachers who had moderate to low participation were 

missing video and reflection data and this impacted some of the results. Some teachers 

had video data, though they did not complete the reflection forms and this reduced the 

amount of valid data. In a few cases, the video data was missing and could not be found. 

Furthermore, the teacher participants were under a great deal of stress during the two 

years of the professional development due to the Program Improvement status of their 

schools and the economic climate of California; therefore, the teachers’ responses may 

have been rushed and limited in depth and attention to detail. Finally, the majority of the 

statistical strength of this study was limited to correlation and thus cannot prove causality 

between variables. 
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Chapter Four: Results 

Sample 

The data analyzed and reported in this study were drawn from 40 of 54 participant 

teachers in the MAAP professional development. There were fewer participants due to 

attrition and lack of second year data. The participants included 30 kindergarten through 

third grade teachers and 10 fourth through sixth grade teachers. Fifty-three percent of the 

teachers were from Zinnia Elementary and 48% were from Willow Elementary. An 

analysis of the participation levels showed that 53% of the teachers were considered high 

level participants, 35% were moderate level participants, and 13% were low level 

participants.  

Analyses 

Data 

Both the reflections and videos for the 40 teachers were coded. On average, 

teachers had four videos over the course of the second year. In total, there were 132 video 

segments and 113 teacher reflections coded in gathering these results.  

Variables 

To better understand the variables in this study, descriptive analyses were 

conducted in SPSS to provide a richer view of the variables. All of the main variables 

were analyzed for mean and standard deviation (see Table 8).  
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Table 8  

Whole Group Descriptive Statistics 

Variable N M SD 
Intermediate Cognitive Demand Level 24 2.71 .550 
Ending Cognitive Demand Level 24 2.79 .884 
Mean Cognitive Demand Level 25 2.65 .454 
Intermediate Noticing Level 31 2.19 .946 
Ending Noticing Level 31 2.29 1.039 
Mean Noticing Level 32 2.22 .74 
Beginning MKT Tercile Level 37 1.62 .639 
Ending MKT Tercile Level 37 1.92 .795 
Cohort Grade Level 40 1.25 .439 
Participation Level 40 2.40 .709 
School 40 1.48 .506 

 

Research Question 1 

How do teachers’ written reflections and observations of their mathematics 

lessons explain teachers’ levels of noticing in the second year of mathematics 

professional development focused on developing teachers’ mathematical knowledge for 

teaching?  

Descriptive analysis. The individual teacher noticing data was analyzed for both 

mean and mode. The analysis indicated that the overall mean noticing level for the 

teachers in the second year was 2.22 (SD = .74, N = 32). The teachers’ overall group 

noticing mode was 2.24 with a SD of .970. Twenty-eight percent of teachers had a 

noticing mode of 1 – Baseline, 28% of had a mode of 2 – Mixed, 36% had a mode of 3 – 

Focused, and 8% had a noticing mode of 4 – Extended. These results indicated that the 

teachers were more likely to have noticing levels that were at 1 – Baseline and 2 – Mixed 

during their second year of the MAAP professional development, which meant that they 
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were more attuned to their class at large, their own pedagogy, and were more likely to 

form general impressions of events.  

When analyzing the teacher data as a group, descriptive statistics were conducted 

to compare the intermediate and ending noticing levels. The mean intermediate noticing 

level was 2.19 (SD = .946, N = 31) and the mean ending noticing level was 2.29 (SD = 

1.039, N = 31) (see Table 8 above).  

The whole group intermediate and ending noticing data was analyzed by 

frequencies as is shown in Table 9. The ending noticing data showed changes from the 

initial levels, particularly between level 2 – Mixed and level 3 – Focused. Shifts between 

the intermediate and ending noticing levels are shown in Table 10. By the end of the 

second year of the MAAP professional development, more teachers were in the top two 

levels of noticing. This meant that teachers were attending more to the relationships 

between students’ mathematical thinking and their instruction and were including more 

interpretive comments about their students’ thinking than at the beginning of the second 

year.  

Table 9  

Whole Group Intermediate Noticing Level 

 
Intermediate Noticing Level 

 
   Ending Noticing Level 

 
Variable N % Variable N % 
 1-Baseline 8 26 1-Baseline 9 29 
2-Mixed 12 39 2-Mixed 8 26 
3-Focused 8 26 3-Focused 10 32 
4-Extended 3 10 4-Extended 4 13 
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Table 10 

Shifts Between Intermediate and Ending Noticing Levels 

 
Noticing  
Level 

Intermediate Noticing 
Level (%) 

Ending Noticing Level 
(%) 

Δ Noticing  
Level (%) 

1-Baseline 26 (n = 8) 29 (n = 9) +3 (n = +1) 

2-Mixed 39 (n = 12) 26 (n = 8) -13 (n = -4) 

3-Focused 26 (n = 8) 32 (n = 10) +6 (n = +2) 

4-Extended 10 (n = 3) 13 (n = 4) +3 (n = +1) 

 

Chi Square (χ2 ) Test. The intermediate and ending noticing variables in Table 

10 were further analyzed by a chi square test. The results showed χ2 (obtained) = 1.222 

and the χ2 (critical) = 7.815 at the Alpha .05 level with a dƒ = 3. Since χ2 was not 

significant, the null hypothesis was accepted which meant that there was no relationship 

between the variables.  

Paired samples t-test. To further investigate the differences between the 

intermediate and ending noticing levels, a paired-samples t-test was conducted to 

compare the means of the two variables. On average, the Ending Noticing Level was 

greater (M = 2.29, SE = .187) than the Intermediate Noticing Level (M = 2.19, SE = .170). 

This difference was not significant, t(30) = -.516, p > .05, r = .58; however, it represented 

a moderate effect size.  

The data was grouped by the variable Cohort Grade Level and another paired 

samples t-test was conducted to analyze potential differences in the means. No 

significance was found between the variables Intermediate Noticing Level and Ending 

Noticing Level for the K-3 Cohort. Neither was there any significance difference found 

between the 4-6 Cohort’s means for the variables Intermediate Noticing Level and Ending 
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Noticing Level (M = 1.83 SE = .477). The findings showed little significance when 

comparing the means of the intermediate and ending noticing levels for both cohorts; 

however, for the 4-6 Cohort, there was a moderate effect size found in the comparison of 

the means of the intermediate and ending noticing levels, t(5) = -1.000, p > .05, r = .41.  

Bivariate correlation. To analyze the relationship between the variables 

Intermediate Noticing Level and Ending Noticing Level a Pearson’s correlation was 

conducted on the whole group data. The correlation between the teachers’ intermediate 

and ending noticing level was significant, r = .45, p < .05, r2 = .20. This correlation 

indicated there was a moderately positive relationship between teachers’ intermediate 

noticing levels and teachers’ ending noticing levels, and that 20% of the ending noticing 

level variance could be explained by the intermediate noticing level. 

Another Pearson’s correlation was conducted between the variables Intermediate 

Noticing Level and Ending Noticing Level for both the K-3 and the 4-6 Cohorts. The 

correlation for the K-3 Cohort did not indicate a significant relationship. It is important to 

note that although the analysis was conducted for the 4-6 Cohort, the sample size for this 

cohort dropped below optimal levels (n < 10). The correlation comparing the relationship 

between intermediate and ending noticing levels for the 4-6 Cohort, however, was 

significant, r = .94, p < .01, r2 = .89, indicating a strong positive relationship between 

intermediate and ending noticing levels for the 4-6 Cohort. The results can be understood 

to mean that 89% of the ending noticing level variance was explained by the intermediate 

noticing level. 
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Research Question 2 

How do teachers’ self-selected video segments of mathematics lessons explain the 

level of cognitive demand of the teachers’ enacted tasks during the second year of 

mathematics professional development focused on developing teachers’ mathematical 

knowledge for teaching?  

Descriptive statistics. To begin, individual teacher data were analyzed by 

calculating the overall grand mean for the teachers’ mean cognitive demand levels, as 

well as the overall grand mode to learn more about the levels of cognitive demand in the 

video segments. The analysis of the mean cognitive demand level indicated a grand mean 

of 2.65 (SD = 4.54, N = 25). The grand mean for the teachers’ mode of cognitive demand 

level was 2.82 (SD  = .529, N = 17). From these analyses, it appeared that teachers as a 

group were more likely to plan lessons that had a cognitive demand level of either a level 

2 – Procedures without Connections Tasks or a level 3 – Procedures with Connections 

Tasks.  

Frequency analyses were conducted on the whole group data to look specifically 

at teachers’ intermediate and ending levels of cognitive demand in their 5-minute video 

segments. As shown in Table 11, the intermediate cognitive demand frequencies 

indicated that 33% of teachers were at level 2 – Procedures without Connections Tasks, 

63% at level 3 – Procedures with Connections Tasks, and 4% were at level 4 – Doing 

Mathematics Tasks. These results indicated that at the start of the second year of the 

professional development the majority of teachers were at the third level of cognitive 

demand. At this level, mathematics lessons were more connected to concepts and ideas, 

required more cognitive effort, and used multiple representations. 
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As indicated in Table 11 below, the ending cognitive demand frequencies showed 

that 50% of teachers’ were at level 2 – Procedures without Connections Tasks, 21% were 

at level 3 – Procedures with Connections Tasks, and 29% were at level 4 – Doing 

Mathematics Tasks. It is interesting to note that there was a shift in the number of 

teachers in level 3 at the end of the second year of the MAAP professional development; 

many of the teachers either moved up to a higher level of cognitive demand or they 

moved down to use procedures and tasks without connections during the year. Primarily, 

there were a larger number of teachers who moved to a higher cognitive demand in their 

lessons. This shift is demonstrated in Table 12 below. These results suggested that the 

majority of teachers were using the ideas and concepts introduced in the MAAP 

professional development and engaged their students more often in problem solving and 

working through cognitively demanding tasks. 

Table 11  

Intermediate and Ending Cognitive Demand Level 

Intermediate Cognitive Demand Level 
 

Ending Cognitive Demand Level 
 

Variable N % Variable N % 
 
1-Memorization Tasks 
 
2-Procedures without    
   Connections Tasks 

 
0 
 
 

8 

 
0 
 
 

33 

 
1-Memorization Tasks 
 
2-Procedures without  
   Connections Tasks 

 
0 
 

        
       12 

 
0 
 

         
       50 

 
3-Procedures with  
   Connections Tasks 

 
15 

 
63 

 
3-Procedures with  
   Connections Tasks 

 
5 

 
21 

 
4-Doing Mathematics    
   Tasks 

 
1 

 
4 

4-Doing Mathematics  
   Tasks 

 
7 

 
29 
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Table 12  

Shifts in Teachers' Intermediate and Ending Cognitive Demand Levels 

 
Cognitive Demand  

Level 
Intermediate 

Cognitive Demand 
Level (%) 

Ending Cognitive  
Demand Level (%) 

Δ Cognitive 
Demand (%) 

1- Memorization    
    Tasks 
 

0 0 
 

0 

2- Procedures without  
    Connections Tasks 

33% (n = 8) 50% (n = 12)  +17% (n = +4) 

 
3- Procedures with  
    Connections Tasks 

 
63% (n = 15) 

 
21% (n = 5) 

 
-42% (n = -10) 

 
4-Doing Mathematics    
   Tasks 

 
4% (n = 1) 

 
29% (n = 7) 

 
+25% (n = +6) 

 

Chi Square (χ2 ) Test. The intermediate and ending cognitive demand variables 

in Table 11 were further analyzed by a chi square test. The results showed χ2 (obtained) = 

10.3 and the χ2 (critical) = 7.815 at the Alpha .05 level with a dƒ = 3. According to the 

results, χ2 was significant, thus the null hypothesis was rejected which meant there was a 

relationship between the variables Intermediate Cognitive Demand Level and Ending 

Cognitive Demand Level.  

Cramer’s V. To test the strength of the relationship between Intermediate 

Cognitive Demand Level and Ending Cognitive Demand Level, Cramer’s V was 

calculated. The results showed a moderate relationship between the variables (V = .655). 

Characteristics of Ending Cognitive Demand Level 4 Participants. A closer 

examination was conducted of the data surrounding the seven participants who were at a 

cognitive demand level 4. The results of these characteristics are shown in the Table 13 

below. Two similarities were clear: the majority (86%, n = 6) had a high level of 
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participation in the professional development (75% or greater), and the majority (86%, n 

= 6) were in the K-3 Cohort. Interestingly, the teachers represented all levels of MKT, 

from terciles 1 – 3, and not all of the teachers shifted MKT tercile levels. Four of the 

seven (57%) teachers increased one tercile level of mathematical knowledge, though their 

ending tercile levels were anywhere from tercile 1 to tercile 3. Since four teachers were 

beginning at the first tercile, it is likely that these teachers grew in their mathematical 

knowledge for teaching, even though they did not move into the next tercile. Though it 

appeared that participation and grade level seemed to be the most prevalent 

characteristics of teachers with an ending cognitive demand level 4, careful consideration 

of these teachers’ MKT tercile levels further characterized them as teachers “in motion” – 

those teachers who were in the midst of their own learning and cognitive growth. 

Table 13  

Characteristics of Participants With an Ending Cognitive Demand Level 4 

 
Teacher Intermediate 

Noticing 
Level 

Ending 
Noticing 
Level 

Beginning 
MKT 
Tercile 
Level 

Ending 
MKT 
Tercile 
Level 

Grade 
Level 
Cohort 

Participation 
Level  

School 

A 3 3 2 3 K-3 Moderate Willow 
B 1 2 1 1 K-3 High Zinnia 
C 3 4 1 2 K-3 High Zinnia 
D 2 3 1 2 K-3 High Zinnia 
E 3 3 3 3 K-3 High Willow 
F 4 2 1 1 K-3 High Willow 
G 1 1 2 3 4-6 High Willow 

 

Paired samples t-test. A paired-samples t-test was conducted on the whole group 

data to examine the differences between the means of the variables Intermediate 

Cognitive Demand Level and Ending Cognitive Demand Level. The t-test indicated no 

significant difference in the means between the two variables.  
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The data was grouped by the K-3 and 4-6 Cohorts and another paired samples t-

test was conducted to see if there was a difference in the means for the intermediate and 

ending cognitive demand levels. There was no significant mean difference found in the 

K-3 Cohort’s variables Intermediate Cognitive Demand Level or Ending Cognitive 

Demand Level. Nor was there any significant mean difference found in the 4-6 Cohort’s 

Intermediate Cognitive Demand Level (M = 2.50, SE = .289) or Ending Cognitive 

Demand Level (M = 2.75, SE = .479), t(3) = -.397, p > .05, r = .58. Even though these 

results indicated no significant difference in the means of the intermediate and ending 

cognitive demand variables by cohort, there was a medium effect size noted in the 4-6 

cohort results. 

Bivariate correlation.  Pearson’s correlations were conducted to analyze the 

relationship between the variables, Intermediate Cognitive Demand and Ending Cognitive 

Demand for the whole group and also for the K-3 and 4-6 Cohorts. There was no 

significant relationship found between the two variables for the whole group, nor for 

either cohort.  

Additional Pearson’s correlations were conducted on the whole group data to 

further investigate the relationships between participation and other cognitive demand 

variables. Pearson’s correlations were conducted between the variable Participation 

Level, and Intermediate Cognitive Demand Level; Participation Level and Ending 

Cognitive Demand Level; and Participation and Cohort Grade Level. The results are 

shown in Table 14 below. The findings indicated a moderately positive relationship 

between Participation Level and Intermediate Cognitive Demand Level, r = .60, p < .01, 
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r2 = .36. As interpreted by the statistic r2, participation level explained 36% of the 

variance of the teachers’ intermediate cognitive demand level. 

Table 14  

Whole Group Correlations - Cognitive Demand, Participation, and Cohort Level  

 
 
 
Variable 

Participation 
Level 

Intermediate 
Cognitive 

Demand Level 

Ending 
Cognitive 
Demand 

Level 

Cohort 
Grade 
Level 

Participation Level 
Pearson Correlation 1 .602** .307 .231 
Sig. (2-tailed)  .002 .145 .157 
N 39 24 24 39 

 
Intermediate 
Cognitive Demand 
Level 

 
Pearson Correlation 

 
.602** 

 
1 

 
.317 

 
-.173 

Sig. (2-tailed) .002  .131 .419 
N 24 24 24 24 

 
Ending Cognitive 
Demand Level 

 
Pearson Correlation 

 
.307 

 
.317 

 
1 

 
-.022 

Sig. (2-tailed) .145 .131  .920 
N 24 24 24 24 

 
Cohort Grade 
Level 

 
Pearson Correlation 

 
.231 

 
-.173 

 
-.022 

 
1 

Sig. (2-tailed) .157 .419 .920  
N 39 24 24 39 

Note. ** Correlation is significant at the 0.01 level (2-tailed). 

 
To examine whether the correlation between intermediate cognitive demand and 

participation varied by cohort, the data was grouped by the variable Cohort Grade Level 

and another Pearson’s correlation was conducted between Intermediate Cognitive 

Demand Level, Ending Cognitive Demand Level, and Participation Level. A moderately 

positive relationship was found in the K-3 Cohort between Intermediate Cognitive 

Demand Level and Participation Level, r = .63, p < .01, r2 = .39 (see Table 15 below); 

however, there were no other significant relationships found between these variables and 

the 4-6 Cohort. These results indicated that 39% of the variance in the K-3 Cohort’s 
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intermediate cognitive demand was explained by their level of participation in the MAAP 

professional development. 

Table 15  

K-3 Cohort Correlations - Cognitive Demand Level and Participation 

 Intermediate 
Cognitive 

Demand Level 

Ending 
Cognitive 

Demand Level 

Participation 
Level 

Intermediate Cognitive 
Demand Level 

Pearson Correlation 1 .428 .626** 
Sig. (2-tailed)  .060 .003 
N 20 20 20 

Ending Cognitive Demand 
Level 

 
Pearson Correlation 

 
.428 

 
1 

 
.256 

Sig. (2-tailed) .060  .275 
N 20 20 20 

Participation Level 

      
Pearson Correlation 

 
 .626** 

 
.256 

 
1 

Sig. (2-tailed) .003 .275  
N 20 20 29 

Note. ** Correlation is significant at the 0.01 level (2-tailed). 

Research Question 3 

How do teachers’ levels of mathematical knowledge for teaching relate to 

teachers’ levels of noticing and levels of cognitive demand in enacted tasks during the 

second year of mathematics professional development focused on developing teachers’ 

mathematical knowledge for teaching?  

Bivariate correlation. A Pearson’s correlation analysis was conducted using the 

whole group data to explore the relationships between the main ending variables Ending 

MKT Tercile Level, Ending Noticing Level, Ending Cognitive Demand Level, Cohort 

Level, Participation Level, and School. The findings are shown in Table 16 below. A 

significant moderately positive correlation was found between the variables Ending MKT 

Tercile Level and Participation Level, r = .43, p < .01, r2 = .19. It can be interpreted that 

19% of the variance of teachers’ ending mathematical knowledge for teaching was 
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explained by the level of participation in MAAP. The relationship between the variables 

Cohort Grade Level and Ending MKT Tercile Level was not significant; however, it may 

have been significant had the sample been larger. A Type II error may have occurred due 

to the small sample size. Overall, the findings showed increased professional 

development participation was related to increased teacher knowledge.  

Table 16  

Whole Group Correlations - Ending Cognitive Demand Level Variables With Cohort 
Grade Level, Participation Level, and School 

 Ending 
Cognitive 
Demand 

Level 

Ending 
Noticing 

Level 

Ending 
MKT 

Tercile 
Level 

Cohort 
Grade 
Level 

Participa-
tion Level 

School 

Ending Cognitive 
Demand Level 

Pearson 
Correlation 

 
1 

 
.246 

 
.008 

 
-.022 

 
.307 

 
-.125 

Sig. (2-tailed)  .247 .971 .920 .145 .561 
N 24 24 22 24 24 24 

Ending Noticing 
Level 

 
Pearson 
Correlation 

 
 

.246 

 
 

1 

 
 

.132 

 
 

-.219 

 
 

.188 

 
 

.041 
Sig. (2-tailed) .247  .496 .236 .310 .828 
N 24 31 29 31 31 31 

Ending MKT 
Tercile Level 

 
Pearson 
Correlation 

 
 

.008 

 
 

.132 

 
 

1 

 
 

.300 

 
 

.434** 

 
 

.090 
Sig. (2-tailed) .971 .496  .072 .007 .595 
N 22 29 37 37 37 37 

Cohort Grade Level 

 
Pearson 
Correlation 

 
 

-.022 

 
 

-.219 

 
 

.300 

 
 

1 

 
 

.231 

 
 

-.072 
Sig. (2-tailed) .920 .236 .072  .157 .661 
N 24 31 37 39 39 39 

Participation Level 

 
Pearson 
Correlation 

 
 

.307 

 
 

.188 

 
 

.434** 

 
 

.231 

 
 

1 

 
 

-.141 
Sig. (2-tailed) .145 .310 .007 .157  .391 
N 24 31 37 39 39 39 

School 

 
Pearson 
Correlation 

 
               

         -.125 

 
 

.041 

 
 

.090 

 
 

-.072 

 
 

-.141 

 
 

1 
Sig. (2-tailed) .561 .828 .595 .661 .391  
N 24 31 37 39 39 39 

Note. **Correlation is significant at the 0.01 level (2-tailed). 
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Table 17  

K-3 Cohort Correlations - Ending Cognitive Demand level Variables With Cohort Grade 
Level, Participation Level, and School 

 
 Ending 

Cognitive 
Demand 

Level 

Ending 
Noticing 

Level 

Ending 
MKT 

Tercile 
Level 

Participation 
Level 

School 

Ending Cognitive 
Demand Level 

Pearson 
Correlation 

 
1 

 
.311 

 
-.022 

 
.256 

 
-.208 

Sig. (2-tailed)  .182 .928 .275 .380 
N 20 20 19 20 20 

Ending Noticing 
Level 

 
Pearson 
Correlation 

 
 

.311 

 
 

1 

 
 

.200 

 
 

.202 

 
 

.296 
Sig. (2-tailed) .182  .350 .332 .151 
N 20 25 24 25 25 

Ending MKT 
Tercile Level 

 
Pearson 
Correlation 

 
 

-.022 

 
 

.200 

 
 

1 

 
 

.401* 

 
 

.073 
Sig. (2-tailed) .928 .350  .034 .713 
N 19 24 28 28 28 

Participation Level 

 
Pearson 
Correlation 

 
 

.256 

 
 

.202 

 
 

.401* 

 
 

1 

 
 

-.087 
Sig. (2-tailed) .275 .332 .034  .654 
N 20 25 28 29 29 

School 

 
Pearson 
Correlation 

 
 

-.208 

 
 

.296 

 
 

.073 

 
 

-.087 

 
 

1 
Sig. (2-tailed) .380 .151 .713 .654  
N 20 25 28 29 29 

Note. *Correlation is significant at the 0.05 level (2-tailed). 
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Table 18  

4-6 Cohort Correlations - Ending Cognitive Demand Level Variables With Cohort Grade 
Level, Participation Level, and School 

 
 Ending 

Cognitive 
Demand 

Level 

Ending 
Noticing 

Level 

Ending 
MKT 

Tercile 
Level 

Participation 
Level 

School 

Ending Cognitive 
Demand Level 

Pearson 
Correlation 

 
1 

 
.000 

 
.b 

 
.522 

 
.302 

Sig. (2-tailed)  1.000 .000 .478 .698 
N 4 4 3 4 4 

Ending Noticing Level 

 
Pearson 
Correlation 

 
 

.000 

 
 

1 

 
 

.456 

 
 

.349 

 
 

-.773 
Sig. (2-tailed) 1.000  .440 .497 .071 
N 4 6 5 6 6 

Ending MKT Tercile 
Level 

 
Pearson 
Correlation 

 
 

.b 

 
 

.456 

 
 

1 

 
 

.177 

 
 

.354 
Sig. (2-tailed) .000 .440  .649 .351 
N 3 5 9 9 9 

Participation Level 

 
Pearson 
Correlation 

 
 

.522 

 
 

.349 

 
 

.177 

 
 

1 

 
 

-.255 
Sig. (2-tailed) .478 .497 .649  .477 
N 4 6 9 10 10 

School 

 
Pearson 
Correlation 

 
 

.302 

 
 

-.773 

 
 

.354 

 
 

-.255 

 
 

1 
Sig. (2-tailed) .698 .071 .351 .477  
N 4 6 9 10 10 

Note. b. Cannot be computed because at least one of the variables is constant. 
              The size of the 4-6 Cohort was below optimal levels (n < 10) and should be interpreted with      
                caution. 
 

Another Pearson’s correlation of the variables, Ending MKT Tercile Level, Ending 

Noticing Level, Ending Cognitive Demand Level, Participation Level, and School, was 

conducted with the data grouped by cohort. The results are shown in Table 17 and 18 

above. No significant relationships were found in the 4-6 Cohort, though this could be due 

to the small sample size. A Type II error may have occurred affecting the relationship 

between School and Ending Noticing Level (p > .05). A positively moderate significant 
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correlation was evident however in the K-3 Cohort between the variables Participation 

Level and Ending MKT Tercile Level, r = .40, p < .05, r2 = .16. This meant that 16% of K-3 

teachers’ mathematical knowledge for teaching was explained by their participation in the 

MAAP professional development. These results indicated that increased participation level 

in the professional development was related to the increased K-3 teachers’ mathematical 

knowledge development for the K-3 Cohort as well as the whole group (see Table 19). 

Table 19  

Summary of Ending MKT Tercile Level Variables Correlated and Participation 

 
Grouping Variable r Sig. 

(2-tailed) 
N r2 

Whole Group Ending MKT Tercile Level   .43 .007 37 .18 

K-3 Ending MKT Tercile Level    .40 .034 28 .16 
   

To analyze any other potential relationships between cognitive demand, noticing, 

and MKT for the whole group, a correlation was conducted to examine relationships 

between the variables Intermediate Noticing Level, Intermediate Cognitive Demand Level, 

Beginning MKT Tercile Level, Ending Noticing level, Ending Cognitive Demand Level, 

Ending MKT Tercile Level, Participation Level, and Cohort Grade Level. The results are 

shown in Table 20 below.  

The findings in Table 20 showed several significant relationships. Those not 

already reported earlier in this chapter included: Intermediate Noticing Level and 

Intermediate Cognitive Demand Level, r = .50, p < .05, r2  = .25; Beginning MKT Tercile 

Level and Cohort Grade Level, r = .44, p < .01, r2 = .19; Beginning MKT Level and 

Participation Level, r = .37, p < .05, r2 = .14; and Beginning MKT Tercile Level and 
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Ending MKT Tercile Level, r = .70, p < .01, r2 = .49. Interestingly, this analysis showed 

that the level of intermediate noticing accounted for 25% of the variance of the beginning 

cognitive demand level. In addition, there were many correlations found in association 

with the Beginning MKT Tercile Level variable. 

Table 20  

Whole Group Correlations – Intermediate and Ending Noticing, Intermediate and Ending 
Cognitive Demand, Beginning and Ending MKT Tercile Level, Participation Level, and 
Cohort Grade Level 

 Intermediate  
Noticing 

Level 

Intermediate 
Cognitive 
Demand 

Level 

Beginning 
MKT 

Tercile 
Level 

Ending 
MKT 

Tercile 
Level 

Cohort 
Grade 
Level 

Particip-
ation 
Level 

Intermediate 
Noticing Level 

Pearson 
Correlation 

 
1 

 
.497* 

 
.248 

 
.097 

 
-.277 

 
.122 

Sig. (2-tailed)  .013 .195 .616 .131 .515 
N 31 24 29 29 31 31 

Intermediate 
Cognitive 
Demand Level 

 
Pearson 
Correlation 

 
 

.497* 

 
 

1 

 
 

.051 

 
 

.023 

 
 

-.173 

 
 

.602** 
Sig. (2-tailed) .013  .820 .920 .419 .002 
N 24 24 22 22 24 24 

Beginning 
MKT Tercile 
Level 

 
Pearson 
Correlation 

 
 

.248 

 
 

.051 

 
 

1 

 
 

.703** 

 
 

.440** 

 
 

.372* 
Sig. (2-tailed) .195 .820  .000 .006 .023 
N 29 22 37 37 37 37 

Ending MKT 
Tercile Level 

 
Pearson 
Correlation 

 
 

.097 

 
 

.023 

 
 

.703** 

 
 

1 

 
 

.300 

 
 

.434** 
Sig. (2-tailed) .616 .920 .000  .072 .007 
N 29 22 37 37 37 37 

Cohort Grade 
Level 

 
Pearson 
Correlation 

 
 

-.277 

 
 

-.173 

 
 

.440** 

 
 

.300 

 
 

1 

 
 

.231 
Sig. (2-tailed) .131 .419 .006 .072  .157 
N 31 24 37 37 39 39 

Participation 
Level 

 
Pearson 
Correlation 

 
 

.122 

 
 

.602** 

 
 

.372* 

 
 

.434** 

 
 

.231 

 
 

1 
Sig. (2-tailed) .515 .002 .023 .007 .157  
N 31 24 37 37 39 39 

Note.  *Correlation is significant at the 0.05 level (2-tailed). 
         **Correlation is significant at the 0.01 level (2-tailed). 
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For the analysis shown in Table 20 above, it was apparent that the variable 

Beginning MKT Tercile Level was significantly correlated with several other variables. As 

indicated by the results, the shared variance between the whole group Beginning MKT 

Tercile Level and Cohort Grade Level variables was 19%. The shared variance between the 

whole group’s Beginning MKT Tercile Level and Participation Level variance was 14%. 

The shared variance between the whole group Ending MKT Tercile Level and Beginning 

MKT Level variables was 49%. 

Additional Pearson’s correlations were conducted to determine if grouping by 

cohort had any impact on the relationship between the intermediate cognitive demand and 

intermediate noticing variables. A summary of these results is shown in Table 21 below. 

When grouped by cohort, the results indicated a significant positively moderate correlation 

for the K-3 Cohort, r = .46, p < .05, r2 = .21 between intermediate cognitive demand and 

intermediate noticing. There was, however, no significance found for the 4-6 Cohort 

between intermediate cognitive demand and intermediate noticing. These findings 

indicated that for the K-3 Cohort, the intermediate cognitive demand and the intermediate 

noticing had a shared variance of 21%. It seemed that the teachers’ ability to notice student 

thinking increased with the level of cognitive demand in their lessons.  
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Table 21  

Summary of Intermediate Cognitive Demand and Intermediate Noticing Correlations 
Results 

Grouping Variable 1 Variable 2 r Sig. 
(2-tailed) 

r2 

Whole Group Intermediate 
Noticing Level 
 

Intermediate 
Cognitive Demand 

Level 

.50 .013* .25 

K-3 Cohort Intermediate 
Noticing Level 
 

Intermediate 
Cognitive Demand 

Level 

.46 .042* .21 

4-6 Cohort Intermediate 
Noticing Level 

Intermediate 
Cognitive Demand 

Level 

.58 .423  

Note. *Correlation is significant at the 0.05 level (2-tailed). 
          The size of the 4-6 Cohort was below optimal levels (n < 10) and should be interpreted with  
          caution. 
 

A Pearson’s correlation was conducted with the data grouped by cohort to analyze 

the relationship between the variables Beginning MKT Tercile Level and Ending MKT 

Tercile Level and Intermediate Noticing Level and Ending Noticing Level. The results are 

shown in Tables 22 and 23 below. No significance was found in the K-3 Cohort; however, 

a significant relationship was found in the 4-6 Cohort between Beginning MKT Tercile 

Level and Intermediate Noticing Level and Ending MKT Tercile Level and Ending Noticing 

Level. It is important to note that although the analysis was conducted, the sample size for 

the 4-6 Cohort dropped below optimal levels (n < 10). Due to the sample size, these 

correlation results should be interpreted with caution. The results showed a significant 

strong positive relationship between Beginning MKT Tercile Level and Intermediate 

Noticing Level, r = .94, p < .05, r2 = .88. The results also indicated a significant strong 

positive relationship between Beginning MKT Tercile Level and Ending Noticing Level, r 

= .91, p < .05, r2 = .83. From this analysis, it can be interpreted that the 4-6 Cohort’s 
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beginning MKT level explained 88% of the variance of their intermediate noticing level, 

and that the 4-6 Cohort’s beginning MKT level explained 83% of the variance of their 

ending noticing level.  

Table 22 

K-3 Correlations – Beginning and Ending MKT Tercile Level and Intermediate and 
Ending Noticing Level 
 Intermediate 

Noticing 
Level 

Ending 
Noticing 

Level 

Beginning 
MKT 

Tercile 
Level 

Ending 
MKT 

Tercile 
Level 

Intermediate Noticing 
Level 

Pearson 
Correlation 

1 .235 .279 .220 

Sig. (2-tailed)  .259 .187 .301 
N 25 25 24 24 

Ending Noticing Level 

 
Pearson 
Correlation 

 
.235 

 
1 

 
-.057 

 
.200 

Sig. (2-tailed) .259  .791 .350 
N 25 25 24 24 

Beginning MKT 
Tercile Level 

 
Pearson 
Correlation 

 
.279 

 
-.057 

 
1 

 
.723** 

Sig. (2-tailed) .187 .791  .000 
N 24 24 28 28 

Ending MKT Tercile 
Level 

 
Pearson 
Correlation 

 
.220 

 
.200 

 
.723** 

 
1 

Sig. (2-tailed) .301 .350 .000  
N 24 24 28 28 

Note. **Correlation is significant at the 0.01 level (2-tailed). 
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Table 23 
 
4-6 Correlations – Beginning and Ending MKT Tercile Level and Intermediate and Ending 
Noticing 
 Intermediate 

Noticing 
Level 

Ending 
Noticing 

Level 

Beginning 
MKT 

Tercile 
Level 

Ending  
MKT  

Tercile  
Level 

Intermediate 
Noticing Level 

Pearson Correlation 1 .942** .943* .343 
Sig. (2-tailed)  .005 .016 .572 
N 6 6 5 5 

Ending Noticing 
Level 

 
Pearson Correlation 

 
.942** 

 
1 

 
.913* 

 
.456 

Sig. (2-tailed) .005  .030 .440 
N 6 6 5 5 

Beginning MKT 
Tercile Level 

 
Pearson Correlation 

 
.943* 

 
.913* 

 
1 

 
.354 

Sig. (2-tailed) .016 .030  .351 
N 5 5 9 9 

Ending MKT 
Tercile Level 

 
Pearson Correlation 

 
.343 

 
.456 

 
.354 

 
1 

Sig. (2-tailed) .572 .440 .351  
N 5 5 9 9 

Note. **Correlation is significant at the 0.01 level (2-tailed). 
            *Correlation is significant at the 0.05 level (2-tailed). 

              The size of the 4-6 Cohort was below optimal levels (n < 10) and should be interpreted with  
              caution. 
 

 
The intermediate cognitive demand and intermediate noticing variables were 

grouped by participation level and a Pearson’s correlation was conducted to examine the 

relationship. For the low participation level there was no analysis that SPSS could generate 

due to missing data. The moderate level participation results were non-significant as were 

the high level participation results. These findings indicated that there was no relationship 

between intermediate cognitive demand and intermediate noticing variables when grouped 

by participation level.  

A Pearson’s correlation was conducted between Beginning MKT Tercile Level, 

Ending MKT Tercile Level, and Participation Level with the data grouped by cohort to 

examine any possible relationships. Tables 24 and 25 show these results below. The results 
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indicated no significance for the 4-6 Cohort; however for the K-3 Cohort, a positive strong 

correlation was found between the beginning and ending MKT level, r = .72, p < .01, r2 

= .52, and a moderately positive correlation was found between the ending MKT level and 

participation level, r = .40, p < .05, r2 = .16.   

Table 24  

K-3 Cohort Correlations - Beginning and Ending MKT Tercile Level and Participation 

 Beginning MKT 
Tercile Level 

Ending MKT 
Tercile Level 

Participation 
Level 

Beginning MKT Tercile 
Level 

Pearson Correlation 1 .723** .267 
Sig. (2-tailed)  .000 .169 
N 28 28 28 

Ending MKT Tercile 
Level 

 
Pearson Correlation 

 
.723** 

 
1 

 
.401* 

Sig. (2-tailed) .000  .034 
N 28 28 28 

Participation Level 

 
Pearson Correlation 

 
.267 

 
.401* 

 
1 

Sig. (2-tailed) .169 .034  
N 28 28 29 

Note. **Correlation is significant at the 0.01 level (2-tailed). 
            *Correlation is significant at the 0.05 level (2-tailed). 

 
Table 25 

4-6 Cohort Correlations - Beginning and Ending MKT Tercile Level and Participation 

 
 Beginning MKT 

Tercile Level 
Ending MKT 
Tercile Level 

Participation 
Level 

Beginning MKT Tercile 
Level 

Pearson Correlation 1 .354 .125 
Sig. (2-tailed)  .351 .749 
N 9 9 9 

Ending MKT Tercile 
Level 

 
Pearson Correlation 

 
.354 

 
1 

 
.177 

Sig. (2-tailed) .351  .649 
N 9 9 9 

Participation Level 

 
Pearson Correlation 

 
.125 

 
.177 

 
1 

Sig. (2-tailed) .749 .649  
N 9 9 10 

   Note.  The size of the 4-6 cohort was below optimal levels (n < 10) and should be interpreted with  
              caution. 
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Similarly, a Pearson’s correlation was conducted between Beginning MKT Tercile 

Level, Ending MKT Tercile Level, and Cohort Grade Level, with the data grouped by 

participation level. These results are shown in Tables 26 and 27 below. There was only one 

significant relationship found in these results; when grouped by Participation Level, a 

strong positive relationship was identified between the variables Beginning MKT Tercile 

Level and Ending MKT Tercile Level, r = .70, p < .01, r2 = .49. According to SPSS, the low 

level participant correlation could not be computed since there was a large amount of 

missing data. Therefore, the tables represent only the moderate and high participation level 

results. 

Table 26 

Moderate Level Participation Correlations - MKT Tercile Levels and Cohort Grade Level 

 Beginning MKT 
Tercile Level 

Ending MKT 
Tercile Level 

Cohort Grade 
Level 

Beginning MKT 
Tercile Level 

Pearson Correlation 1 .507 .320 
Sig. (2-tailed)  .064 .264 
N 14 14 14 

Ending MKT Tercile 
Level 

 
Pearson Correlation 

 
.507 

 
1 

 
.162 

Sig. (2-tailed) .064  .579 
N 14 14 14 

Cohort Grade Level 

 
Pearson Correlation 

 
.320 

 
.162 

 
1 

Sig. (2-tailed) .264 .579  
N 14 14 14 
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Table 27  

High Level Participation Correlation - MKT Tercile Levels and Cohort Grade Level 

 
 Beginning 

MKT Tercile 
Level 

Ending MKT 
Tercile Level 

Cohort Grade 
Level 

Beginning MKT Tercile 
Level 

Pearson Correlation 1 .702** .373 
Sig. (2-tailed)  .000 .096 
N 21 21 21 

Ending MKT Tercile Level 

 
Pearson Correlation 

 
.702** 

 
1 

 
.182 

Sig. (2-tailed) .000  .429 
N 21 21 21 

Cohort Grade Level 

 
Pearson Correlation 

 
.373 

 
.182 

 
1 

Sig. (2-tailed) .096 .429  
N 21 21 21 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

Since many variables were significantly correlated with Beginning MKT Tercile 

Level, a summary table is presented in Table 28 below. 

Table 28 

Summary of Variables Correlated With Beginning MKT Tercile Level 

 
Grouping Correlated Variable r r2 Sig.        

(2-tailed) 
Whole Group Ending MKT Tercile Level .70 .49 <.001 

Whole Group Cohort Grade Level .44 .19 .006 

Whole Group Participation Level .37 .14 .023 

K-3 Cohort Ending MKT Tercile Level .72 .52 <.001 

High Participation 
Level 

Ending MKT Tercile Level .70 .49 <.001 

*4-6 Cohort Intermediate Noticing Level .94 .88 .016 

*4-6 Cohort Ending Noticing Level .91 .83 .030 

Note: *The size of the 4-6 Cohort was below optimal levels (n < 10) and should be interpreted  
            with caution. 
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Linear regression. A regression was conducted to analyze the change in Ending 

MKT Tercile Level by predicting its ending level. The variables used in the regression were 

Participation Level and Beginning MKT Tercile Level since they were found the most 

often in correlation with other variables and research has shown that long-term 

participation in PD can increase MKT (Bell et al., 2010; Yoon et al., 2007). A forced entry 

method was used and missing data were treated with mean substitution. The regression 

results are presented in Table 29 below.  

The regression results showed that R2 was .52 indicating that the independent 

variables, Beginning MKT Tercile Level and Participation Level, predicted 52% of the 

change in the Ending MKT Tercile Level; this was a strong prediction. Only the teachers’ 

beginning MKT was a significant strong predictor of the change in teachers’ ending MKT 

level.  

Table 29  

Regression Results Predicting Ending MKT Tercile Level 

 
Variable Beta t sig t 

1. Beginning MKT 
Tercile Level 

.649 5.321 < .001 

Participation Level .167 1.372 .179 

N = 39 
R = .721 
R2 = .520 
F =  19.481 
Sig F = < .001 
 

A second regression was conducted to predict the Ending Noticing Level with the 

independent variables Participation Level and Intermediate Noticing Level. A forced entry 

method was used and missing data were treated with mean substitution. The results are 
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shown in Table 30 below. These results indicated that Intermediate Noticing Level and 

Participation Level predicted 22% (R2 = .22) of the dependent variable, Ending Noticing 

Level; this was a moderate prediction. Intermediate noticing was found to be a significant 

predictor of ending noticing (p < .01). 

Table 30 

Regression Results Predicting Ending Noticing Level 

Variable Beta t sig t 
1. Intermediate 
Noticing Level 

.435 2.933 .006 

Participation Level .127 .858 .396 

N = 39 
R = .467 
R2 = .218 
F =  5.024 
Sig F = .012 

 

A third regression was conducted to analyze whether the dependent variable, 

Ending Cognitive Demand Level, could be predicted by the independent variables, 

Intermediate Cognitive Demand Level and Participation Level. A forced entry method was 

used in this regression and missing data were treated with mean substitution. The 

regression results are presented in Table 31 below.  

The results of the regression showed that neither independent variable, 

Intermediate Cognitive Level nor Participation Level, was able to significantly predict the 

level of cognitive demand. 
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Table 31 

Regression Results Predicting Ending Cognitive Demand Level 

Variable Beta t sig t 
1. Intermediate 
Cognitive Level 

.407 1.402 .170 

Participation Level .128 .702 .487 

N = 39 
R = .335 
R2 = .113 
F =  2.283 
Sig F = .117 
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Chapter Five: Background, Discussion, Recommendations, and Conclusion 

Background 

The teaching and learning context is highly complex, and researchers have tried for 

years to uncover and study the variables associated with the process, particularly in 

mathematics. Variables such as mathematical knowledge for teaching, teacher noticing, 

and cognitive demand were known constructs found to mediate the classroom context (Hill 

et al., 2004; Stein et al., 2009; Sherin et al., 2011). Research has shown that teachers’ 

mathematical knowledge for teaching was a key construct that had an effect on student 

achievement (Hill et al., 2004) and also influenced instruction (Hill et al., 2008; 

Charalambous, 2010). Researchers were able to measure MKT though little is currently 

known about its impact on teachers’ ability to interpret student thinking or implement 

instruction.  

Teacher noticing in mathematics was a recently identified construct researched by 

Sherin and colleagues through video clubs (Sherin & Han, 2004; van Es & Sherin, 2002). 

Sherin and colleagues found that when teachers viewed videotapes of classroom lessons 

they attended to different aspects of teaching, including pedagogy and student learning. 

Over time, the teachers’ lens shifted and became more focused on student thinking and the 

mathematics in lessons, rather than on pedagogy. The video discussions also became richer 

in discourse related to student thinking that caused teachers to be challenged and shift their 

opinions and practice (Sherin & Han, 2004; van Es & Sherin, 2002; van Es & Sherin 2006).  

Stein and her colleagues (1998; 2009) developed and researched the construct of 

cognitive demand by examining characteristics of mathematics instruction and the rigor of 

tasks given to middle school students. They created professional development to assist 
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teachers in recognizing cognitive demand in curriculum and to enact cognitively 

demanding tasks in teachers’ own classrooms at the middle school level. Research on 

cognitive demand showed that teachers’ knowledge of cognitive demand made a difference 

to the rigor of their mathematics lessons. With sustained professional development, the 

teachers in these studies grew in their ability to plan and select cognitively demanding 

tasks; however, the researchers noted that teachers had difficulty sustaining the cognitive 

demand to the end of the lesson (Stein et al., 1998).  

In this dissertation, I examined all three of these constructs, mathematical 

knowledge for teaching, teacher noticing, and the cognitive demand in enacted tasks, in the 

context of one professional development aimed at elementary teachers teaching in two 

high-need low-performing schools. The purpose of the study was to investigate teachers’ 

levels of noticing, the levels of cognitive demand in enacted tasks, and the relationship 

between these two constructs and teachers’ level of mathematical knowledge for teaching. 

One-third of the data was coded with other members of the MAAP research team. We 

analyzed quantitative data from the MAAP professional development that occurred during 

2008-2011 that included teachers’ written reflections, 5-minute self-selected video 

segments from mathematics lessons, and mathematical knowledge for teaching tercile 

levels. These data were drawn from the second year of the MAAP professional 

development project.  

The results of this study will be of interest to the field of education for several 

reasons. To begin, there is a limited understanding in the field of how teacher noticing, 

cognitive demand of enacted tasks, and teachers’ mathematical knowledge influence 
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teaching and learning. Only a few studies have shown the relationship between teachers’ 

mathematical knowledge for teaching and level of instruction (Charalambous, 2010; Hill et 

al., 2008). Moreover, there is limited research on teachers’ noticing of their own 

mathematics lessons during professional development (Sherin & Han, 2004; Sherin & van 

Es , 2005; Sherin & van Es, 2009), and no research that analyzes teachers’ mathematical 

knowledge for teaching in relationship to both teacher noticing and cognitive demand. 

Therefore, this study fills a gap in the literature and will provide the field with valuable 

data about the relationships between mathematical knowledge for teaching, teacher 

noticing, cognitive demand in enacted tasks within professional development.   

The three main research questions guiding this study were: 

1) How do teachers’ written reflections and observations of their 

mathematics lessons explain teachers’ levels of noticing in the second 

year of mathematics professional development focused on developing 

teachers’ mathematical knowledge for teaching? 

2) How do teachers’ self-selected video segments of mathematics lessons 

explain the level of cognitive demand of the teachers’ enacted tasks 

during the second year of mathematics professional development focused 

on developing teachers’ mathematical knowledge for teaching? 

3) How do teachers’ levels of mathematical knowledge for teaching relate 

to teachers’ levels of noticing and levels of cognitive demand in enacted 

tasks during the second year of mathematics professional development 

focused on developing teachers’ mathematical knowledge for teaching? 
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Methodology 

All the participants in the MAAP professional development were included in the 

sample for this study, though only data from 40 of the 54 teachers were analyzed. Some 

data was missing due to attrition, and in some cases it could not be located. Regardless of 

how much was available, the data was analyzed and coded by teacher. The second year 

data included teachers’ written reflections, 5-minute segments from videos, and teachers’ 

mathematical knowledge for teaching tercile levels. In total, there were 132 videos and 113 

reflections coded in the process of analyzing these results.  

Several frameworks were used as instruments to code the teachers’ written 

reflections for noticing levels and the 5-minute video segments selected by teachers for 

cognitive demand levels. These frameworks included the Task Analysis Guide (Stein et al., 

2009) and the Framework for Learning to Notice Student Mathematical Thinking (van Es, 

2011). One third of the coding was completed by the research team of both the written 

reflections and the video 5-minute segments for the second year data. I coded the rest of 

the data independently. Once the data was derived from the codes, I entered it into SPSS 

along with the MKT tercile, participation, school, and cohort level data provided by the 

MAAP professional development.  

Statistical Analyses 

In the statistical analyses, I employed descriptive statistics, correlation, paired 

samples t-tests, and linear regression. Initially, I evaluated all the variables for descriptive 

statistics. Then I conducted Pearson’s correlations and paired samples t-tests to analyze the 

differences in the means of the initial and ending data for the MKT tercile levels, cognitive 
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demand levels, and teacher noticing levels. Additional variables included in the 

correlations analyses were the variables, Participation Level, Cohort Grade Level, and 

School. These analyses indicated whether there were significant or non-significant 

differences in the means of initial and ending variables and also their effect sizes. I 

conducted Pearson’s correlation to analyze relationships between variables. The data were 

analyzed both as a whole group and by either cohort or participation level. The last 

analyses I conducted were linear regressions to predict ending MKT levels, ending 

noticing levels, and ending cognitive demand levels. 

Major Findings 

1. There were notable shifts in the frequencies of teachers’ noticing from the 

beginning to the end of the second year.  

2. There were significant increases in the whole group and 4-6 Cohort’s noticing 

levels from the beginning to the ending of the second year.  

3. There were significant shifts in the levels of the teachers’ cognitive demand in their 

lessons from the beginning to the ending of the second year.  

4. The 4-6 Cohort had a significant relationship between the intermediate noticing 

level and the beginning and ending MKT tercile level. 

5. The teachers’ beginning mathematical knowledge for teaching level was 

significantly related to their ending MKT tercile level, participation level, and 

cohort. 

6. The teachers’ intermediate noticing level was significantly related to the 

intermediate level of cognitive demand in enacted tasks, in both the whole group 
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and the K-3 Cohort.  

7. The K-3 Cohort had significant correlations between mathematical knowledge for 

teaching, the cognitive demand of tasks, teacher noticing, and participation. 

Discussion 

There were many prominent findings and relationships as a result of the analyses in 

this study. These findings will be discussed in more detail by research question.  

Research Question 1 

Shifts in noticing. There were notable findings and interesting shifts in the 

frequencies over the course of the second year of data and between intermediate and 

ending noticing level. Upon close examination of the frequencies of the whole group 

noticing levels, I found shifts that occurred from the beginning to the end of the second 

year of professional development. By the end of the second year, there was a 9% increase 

of teachers in the top two levels of noticing (Focused and Extended). This meant that more 

teachers moved from making general comments about student learning and thinking to 

comments that highlighted specific events by honing in on specific students’ thinking, and 

providing interpretations of students’ actions with evidence. This seemed reasonable 

considering the professional development was focused on mathematics content for 

teaching and student thinking. Regularly, teachers came together in the professional 

development to discuss student work artifacts, selected video, and to discuss mathematical 

problems. Many of the problems that were brought to the foreground in seminars 

anticipated students’ misconceptions and prompted teachers to dig deeply into the students’ 

conceptual understandings.  
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The shifts in noticing levels suggested that, during the second year of mathematics 

professional development, teachers applied their knowledge and made changes in their 

practice. This was consistent with the research on teacher change in professional 

development. For example, Jacobs et al. (2010) found that teachers’ noticing levels 

increased after two years of professional development. Carpenter et al. (1999), Campbell & 

Robles (1997), and Fennema et al. (1996) also reported changes in their participant 

teachers’ instruction after several years of long-term professional development focused on 

students’ thinking. Findings on change in practice often have relied on teacher self-report 

and were not considered reliable (Hill, 2010); however, the shifts noted in this study’s 

findings were drawn from teachers’ written reflections over the course of a year of 

professional development and for this reason are much more reliable. 

In addition to the shift in frequencies, I found a significant relationship in the 4-6 

Cohort between the intermediate and ending noticing levels (p < .01) with an effect size 

growth of 89%. Perhaps the staggered model and the intensive summer institutes made a 

difference between the two cohorts. The professional development started the first year 

with the K-3 Cohort and then added the 4-6 Cohort at the start of the second summer. 

Therefore, the first summer institute was held at the start of the 4-6 Cohort, whereas the K-

3 Cohort had their first summer institute at the end of their first year. Frontloading the 

professional development with a summer institute focused on student thinking and 

mathematical content for instruction may have increased the teachers’ noticing in the 

second cohort. Conceivably, the fourth through sixth grade teachers had a heightened 

awareness of student thinking starting their first year of the program. As well, they most 
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likely had stronger levels of mathematical knowledge for teaching (Hill, 2010) that guided 

their noticing. Although the 4-6 Cohort as a whole was more opinionated about the 

professional development, the 4-6 grade teachers did agree, according to MAAP anecdotal 

data, that listening to students was important and that they had provided more 

opportunities for students to share their thinking with others. As found during MAAP, 

when students were provided more opportunities to share their thinking, more 

opportunities were created for teachers to reflect on that thinking. 

Research Question 2 

Shifts in cognitive demand. The results indicated significant shifts in the cognitive 

demand of lessons. At the end of the second year, there was a 25% increase in the amount 

of lessons that reached a level 4 – Doing Mathematics Tasks. Conversely, there was a 17% 

decrease of teachers in level 3 – Procedures with Connections Tasks who had dropped 

their lessons’ cognitive demand from a level 3 to a level 2 – Procedures without 

Connections Tasks. This shift could be evidence of a type of settling effect at the end of the 

second year of professional development. It was possible that teachers made decisions by 

the end of their participation in the second year to adopt or not adopt the ideas and beliefs 

of the new practice. In the results of this study, more teachers moved to a higher level of 

cognitive demand than a lower cognitive demand level that showed more teachers chose to 

extend their students’ reasoning and mathematical thinking.  

Another possible reason for the negative shift in level could be inherent in teachers’ 

attitudes and actions in preparation for spring testing. At the beginning of the year, 

teachers were more likely to focus on enhancing their instruction. As they moved toward 
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periods of standardized testing, perhaps they resorted to more independent work that was 

more skill-based rather than conceptual and problem oriented, or perhaps they limited 

instruction to basic types of review materials. Regardless, more teachers moved to higher 

levels of cognitive demand over the course of the professional development than when 

they first began.  

Research Question 3 

There were many noteworthy relationships found between the main variables, 

MKT, cognitive demand, and noticing in this study. The significant relationships identified 

in the analyses will be further discussed by themes derived from the data.  

Participation. In many of the significant findings, the variable Participation Level 

was a common link. A summary from the correlation results is shown in Table 32 below. 

Participation level refers to the degree to which teachers participated in the professional 

development during the two years. Participation level was found to have a significant 

positive relationship with both mathematical knowledge for teaching and cognitive 

demand variables when tested by whole group and when grouped by the K-3 Cohort (p 

< .05). It appeared that the level of seminar and summer institute participation contributed 

to the level of mathematics learning that occurred in the MAAP classrooms. It is 

reasonable to conjecture from these findings that those teachers who participated at higher 

levels reaped numerous benefits from the professional development when it came to their 

own mathematical knowledge for teaching and designing tasks of richer cognitive demand 

for students.   
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Table 32 

Summary of Variables Correlated With Participation Level 

Grouping Variable r Significance 
(2-tailed) 

R2 

Whole Group Intermediate Cognitive 
Demand Level 
 

.60 .002 .36 

Whole Group Ending MKT Tercile Level .43 .007 .19 

K-3 Cohort Intermediate Cognitive 
Demand Level 
 

.63 .003 .39 

K-3 Cohort Ending MKT Tercile Level  .40 .034 .16 

 

Cognitive demand was correlated with the teachers’ level of participation in the 

MAAP professional development. For example, a significant relationship was identified 

between participation and the whole group intermediate cognitive demand level. This 

indicated that high-level participants had higher cognitive demand than lower-level 

participants at the beginning of the second year of the program. Conversely, low-level 

participants had a lower cognitive demand level. Ultimately, this meant that those who 

participated to a greater degree showed higher levels of cognitive demand in their lessons. 

Also, participation level explained 36% of the variance in the intermediate cognitive 

demand. This meant that almost one third of the cognitive demand level could be explained 

by the amount of the teachers’ participation in the beginning of the second year of the 

MAAP professional development. Clearly, this showed that the teachers benefited from 

their participation in the MAAP professional development and that it supported greater 

rigor and cognitive demand in their lessons.  

Intermediate cognitive demand was also found to correlate with participation level 

for the K-3 Cohort. At this point in the professional development, teachers had experienced 
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at least one year of seminars and at least one summer institute. If they had high levels of 

participation, the cognitive demand in their lessons also increased significantly (p < .01). 

One might ask from these results, what transpired during MAAP seminars and summer 

institutes that could have led high-level participant teachers to strengthen their 

mathematical knowledge for teaching and the cognitive demand levels in lessons? Perhaps 

the answer to this question lies within the structure of the participation of the MAAP 

professional development and also its emphasis on both children’s mathematical thinking 

and mathematical content. 

Structure of MAAP’s participation. It is difficult to require teachers to commit to 

high levels of attendance and participation in professional development over a long period 

of time. The MAAP professional development, however, was required to maintain 80% 

whole school participation over the life of the grant to maintain its funding status. The 

teachers knew when they agreed to participate that the funding was dependent on their 

commitment to participate. The majority of teachers complied with the participation 

requirements, especially when they began to value their learning during MAAP sessions.  

Children’s mathematical thinking. The focus of each of the MAAP seminars and 

summer institutes was on children’s thinking and mathematics. At the seminars, teachers 

were regularly engaged in solving challenging problems after which the teachers applied 

their learning to the concepts at their own grade level. Seminars always included modeling 

and practice of mathematical representation, the use of concrete methods, and 

communicating mathematical thinking. In many sessions, teachers’ own lesson videos 

were shared to analyze and discuss student thinking. Student artifacts were also brought in 



 

 123 

regularly and teachers made sense out of the students’ solutions and written explanations. 

In the summer institutes, California Standards Test release items were used to generate 

grade-level discussion regarding the type of thinking required by students and teachers 

were asked to examine the mathematical communication needs of English language 

learners. The seminars and summer institutes were rich opportunities for teachers to learn 

more about the ways children think about mathematics and provided examples of ways to 

deepen students’ reasoning and understanding.  

Other studies have found professional development focused on children’s 

mathematical thinking to be effective in promoting student learning and improved 

instruction. The Cognitively Guided Instruction program demonstrated the value of 

focusing on students’ thinking and its positive impact on student achievement (Carpenter 

et al., 1999). Likewise, Blanton and Kaput’s (2005) professional development study also 

focused also on student thinking. The results of Blanton and Kaput’s study found an 

increase in teachers’ ability to recognize students’ strategies. Though these programs had 

similarities to the MAAP professional development, the one way that they were different 

was MAAP’s use of teachers’ own classroom videos. Not only did some of the videos 

become shared learning opportunities for discussion about student thinking during 

seminars but they were also viewed and reflected on regularly by the individual teachers. 

Many teachers commented in their reflections on group and individual student discourse as 

they engaged in mathematics. It was unknown exactly how much this influenced teachers’ 

overall cognitive demand, though it was one more way that teachers had access to their 

students’ thinking in a slower reflective setting. 
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Content-focused professional development. The MAAP seminars and summer 

institutes were always content-focused. During MAAP, teachers gained mathematical 

knowledge and this made a difference in the teachers’ choice of student task and the degree 

of cognitive demand during instruction. Stein et al. (2009) also found that professional 

development focused on student thinking and the cognitive demand of tasks caused 

teachers to become more aware of the richness of mathematics in their tasks. Also, they 

were more adept at evaluating their curriculum and selecting cognitively demanding tasks. 

Perhaps the teachers in the MAAP professional development also began to think 

differently about the types of tasks they were using to engage students and felt more 

confident in their selection and implementation of tasks related to problem solving.  

The tasks at higher levels of cognitive demand required students to make more 

connections between the mathematics and the underlying mathematical concepts. A 

distinct characteristic of the higher-level task on the Task Analysis Guide was to use 

manipulatives, representations, or symbols to help express meaning. Also, students were 

required to provide explanations of their thinking. These tasks also required students to 

exert cognitive effort rather than be led through a procedure-type process where the teacher 

modeled or deconstructed the problem for the students. To teach in this way, MAAP 

participant teachers had to abandon preconceived notions about students’ abilities. Even 

though they may have believed students were capable of solving the problems without 

assistance, many teachers did feel their students, as English learners, needed the support of 

scaffolding through solution steps. By gaining higher levels of cognitive demand 

throughout the PD, high-level participant teachers must have understood through the 
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MAAP seminars and summer institutes that their students were capable of solving 

problems independent of the teacher and that they needed to make deeper connections to 

the underlying concepts. Taking away these bigger ideas about tasks and student learning 

may have given the teachers a new sense of confidence in knowing how to teach students 

in ways that were more cognitively demanding.  

Mathematical knowledge for teaching. A significant result in the linear 

regression showed that teachers’ beginning MKT tercile level predicted 50% of teachers’ 

ending MKT tercile level. This strong prediction demonstrated the power of teachers’ need 

for mathematical content and their capacity for growth. MAAP was focused on growing 

teachers’ mathematical content and gave teachers’ regular opportunities to wrestle with 

and dig into concepts and ideas that challenged their own held knowledge. It appeared that 

challenging teachers’ mathematical knowledge for teaching along with a heightened ability 

to listen to student thinking made a difference.  

According to the beginning MAAP mathematical knowledge for teaching tercile 

levels, there was a broad range of teacher knowledge represented in the K-6 group and 

there was a clear need for teachers to develop their mathematical knowledge for teaching. 

This was aligned with Hill’s (2010) findings that teachers in schools of high poverty were 

more likely to have lower mathematical knowledge for teaching. MAAP teachers were in 

need of professional development focused on mathematical knowledge for teaching; thus, 

high levels of participation provided an opportunity to grow in mathematical content 

knowledge for teaching. Hill et al. (2005) also reported that teachers have the capacity to 

grow their mathematical knowledge for teaching when given the opportunity through 
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professional development focused on content and student thinking. The findings of this 

study supported Hill’s findings and also triangulated with the data on mathematical 

knowledge for teaching growth found in the MAAP final report (Brown, 2012). This report 

showed that the MAAP teachers’ mathematical knowledge for teaching grew significantly 

over one (p < .01) or two (p < .001) years of involvement in the professional development. 

It can be surmised from the results of this study that increased levels of participation along 

with increased growth in mathematical knowledge provided the right foundation for 

teachers to become more knowledgeable and confident in their mathematics instruction. 

Mathematical knowledge for teaching and 4-6 cohort noticing. The significant 

relationship between teachers’ beginning MKT tercile levels and intermediate and ending 

4-6 Cohort’s noticing levels, though cautionary (n < 10), is an indicator of the likelihood of 

a relationship between these variables. In the case of the 4-6 Cohort, it is probable that 

these teachers had stronger levels of MKT (Hill, 2010) and were able to notice the 

mathematics in their students’ thinking to a higher degree. As mentioned earlier, the 

summer institute also may have influenced teachers’ ability to observe their students’ 

thinking since the K-3 Cohort did not experience a summer institute until after their first 

year. As a result, the staggered model favored the 4-6 Cohort and may have jump-started 

their noticing. The finding of a relationship between MKT and noticing is an important 

finding even though cautionary, since this relationship has not been evident in prior 

research. Future research with a larger sample may help to provide reliable evidence to 

support this significance. 

Mathematical knowledge for teaching, participation, and cohort. The results 
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indicated that mathematical knowledge for teaching was related to both participation level 

and cohort. Teachers who had increased levels of participation also had increased levels of 

mathematical knowledge for teaching. Conversely, this meant lower level participants had 

lower mathematical knowledge for teaching levels. Since significant growth in 

mathematical knowledge for teaching was known to have occurred during the professional 

development, it is reasonable to infer that those who had high participation levels benefited 

from the ideas and content of the professional development and thus had increased levels 

of mathematical knowledge for teaching at the end of the professional development.  

When grouped by cohort, the K-3 teachers showed a significant relationship 

between mathematical knowledge for teaching and level of participation. For this group, 

high levels of participation mattered. With higher levels of participation, they had 

increased levels of mathematical knowledge for teaching. As mentioned earlier, this 

correlated with Hill’s (2010) findings on the mathematical knowledge for teaching levels 

of primary grade teachers and their general need for learning opportunities in mathematical 

content.   

Cognitive demand and noticing. The correlation between cognitive demand and 

noticing indicated that cognitive demand explained 25% of the variance in teachers’ 

noticing in the whole group and 21% of the variance in the K-3 Cohort’s noticing (see 

Table 33 below). It seemed that teachers were able to identify the cognitive demand in the 

lessons they were observing, as well, they were likely seeing an increase in the cognitive 

demand in the lessons. Though it is unknown, it seems possible that the growth in teachers’ 

mathematical knowledge for teaching levels could have impacted what teachers’ were 
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attending to when they listened to their lessons and student thinking. Perhaps this 

awareness, in conjunction with the professional development sessions focused on 

mathematical content, created a rich climate for teachers to become more aware of the 

cognitive demand in their own lessons. This would make sense for the group as a whole 

since this phenomenon was not seen just within the K-3 teachers’ results but with the 

whole group data as well. 

Table 33 

Summary of Cognitive Demand and Noticing Correlations  

 
Grouping Variable 1 

 
Variable 2 r Sig. 

(2-tailed) 
R2 

Whole Group Intermediate Cognitive 
Demand Level 
 

Intermediate Noticing 
Level 

.50 .013 .25 

K-3 Cohort Intermediate Cognitive 
Demand Level 

Intermediate Noticing 
Level 

.46 .042 .21 

 

A model to explain this phenomenon is suggested in Figure 5 below. Mathematical 

knowledge for teaching prompted teachers’ noticing of the cognitive demand in their 

lessons (or lack of cognitive demand). This, in turn, drew on teachers’ developing 

mathematical knowledge for teaching. As this cycle continued, it required teachers to 

constantly dig more deeply into their knowledge, look for instances of the conceptual 

knowledge in their students’ thinking, which then prompted the teachers to plan more rich 

cognitively demanding instruction, therefore putting into action what they learned about 

mathematics for teaching in the professional development.  
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Figure 5 

The MKT, Noticing, and Cognitive Demand Cycle 

 

 

K-3 Cohort. According to the results, the K-3 Cohort had many significant 

correlations with the three variables: cognitive demand, mathematical knowledge for 

teaching, and noticing. The results also indicated that participation explained a moderate 

amount of the cognitive demand in lessons and their ending mathematical knowledge for 

teaching. Table 34 shows a summary of the significant findings below. These results 

pointed to the K-3 Cohort as a unique group, in comparison to the 4-6 Cohort.  

 

 

 

 

 

 

 

 

 



 

 130 

Table 34 

Summary of K-3 Cohort Significant Correlations  

Variable 1 Variable 2 N r Sig. 
(2-tailed) 

R2 

Participation Level 
 
 

Intermediate 
Cognitive Demand 
Level 
 

20 .63 .003 .39 

Participation Level 
 
 

Ending MKT 
Tercile Level  

28 .40 .034 .16 

Beginning MKT 
Tercile Level 
 

Ending MKT 
Tercile Level 

28 .72 <.001 .53 

Intermediate Noticing 
Level  

Intermediate 
Cognitive Demand 
Level 

20 .46 .042 .21 

 

From Hill’s (2010) national sample of mathematical knowledge for teaching levels 

and characteristics of elementary teachers, correlations showed that teachers in the primary 

grades often possessed lower levels of mathematical knowledge for teaching than their 

upper-grade counterparts. If these characteristics were applied to the K-3 Cohort in the 

current study, it is conceivable that MAAP’s K-3 teachers had the most to gain from a 

professional development focused on mathematical knowledge for teaching. This can be 

seen in the results for the K-3 Cohort’s correlation between beginning and ending 

mathematical knowledge for teaching (p < .001). The teachers’ beginning MKT tercile 

level explained 53% of the variance of their ending MKT tercile level. This strong variance 

indicated the importance of MAAP professional development for the K-3 teachers’ 

development of mathematical knowledge for teaching. 

There was also a positive significant relationship between the K-3 Cohort’s 

noticing and cognitive demand levels; the teachers’ intermediate noticing level explained 
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21% of their intermediate cognitive demand level (p < .05). As mentioned earlier, 

intermediate refers to the start of the second year. At this point, the teachers had shown 

statistically significant growth in their mathematical knowledge for teaching, according to 

the MAAP final report (Brown, 2012). This growth likely enabled the teachers to notice 

mathematical content in the lessons they watched and upon which they reflected. 

Furthermore, the K-3 teachers were noticing at higher levels at the same time the levels of 

cognitive demand of their lessons increased. Since mathematical knowledge for teaching 

was known to have a positive impact on instructional quality (Hill et al., 2007), perhaps the 

K-3 Cohort’s lessons became richer in cognitive demand and thus resulted in more 

mathematical learning complexity that the teachers unpacked and discussed in the written 

reflections.  

A model to describe the relationships between the K-3 Cohort’s mathematical 

knowledge for teaching, noticing, and participation was created to demonstrate the 

interactions between these variables (see Figure 6). It appeared that participation was a 

critical part of the K-3 teachers’ experience in MAAP. Without their participation, much of 

the teachers’ growth in the cognitive demand of their lessons would not have taken place, 

according to the variance described by the correlations. This growth is represented on the 

model by the arrows pointing up from participation level. Also, shifts were noticed in the 

teachers’ noticing and in the cognitive demand of their lessons that meant the teachers had 

increased the cognitive difficulty and engagement in their lessons and were noticing more 

of their students’ thinking. The increased mathematical engagement and increased noticing 

is noted on the inside of the model’s triangle and is also represented by the arrows pointing 
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up from participation. It is known that teachers’ level of mathematical knowledge for 

teaching was increasing at the time that their cognitive demand and noticing were 

increasing. What is important to note about this model, is that it is particular to the K-3 

teachers in MAAP. Also, this model takes place within a professional development that 

took place over the course of two years.  

Figure 6  

Model of K-3 Teachers in MKT-Focused Professional Development 

 

Suggested Elementary Grade Task Analysis Guide 

Using the Tasks Analysis Guide (Stein & Smith, 1998) to code the cognitive 

demand of teachers’ video segments was extremely useful; however, at times it was 

evident that the guide was designed for middle school and not elementary classrooms. As 

the coding team recognized elements that seemed to be missing, the additions were noted. 

These recommended additions are shown below in Table 35 and represent some of the 

scenarios found repeatedly in the elementary classrooms during the coding of data in this 

study that were missing from the original Task Analysis Guide.  
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Table 35 

Suggested Additions - Elementary Classroom Task Analysis Guide 

Task Level Suggested Addition 
Level 1 – Memorization Tasks • No suggestions 

 
Level 2 – Procedures without 
Connections Tasks 

• Reproduce class generated answers that 
include group or individual responses.  

• Generate ideas and explanations that are 
unrelated to the underlying conceptual 
meaning. 

• May have multiple pictures or manipulatives 
though students are not actively engaged in 
conceptual development. 

 
Level 3 – Procedures with Connections 
Tasks 

• Build conceptual understanding either 
through whole class engagement or 
individually. 

 
Level 4 – Doing Mathematics Tasks • Encourage students to produce and explain 

multiple possible solutions. 
 

 

Limitations 

There were many limitations associated with this study. First, the sample size was 

small. Since this study was part of a larger study, the population was limited to the two 

treatment schools. Second, not all the teachers participated equally in the project during the 

second year and this limited the number of videos and reflections that were completed. 

Teachers who had moderate to low participation were missing video and reflection data. 

Some teachers had video data, though they did not complete the reflection forms and this 

reduced the amount of valid data. In a few cases, the video data was missing. Third, the 

teacher participants were under a great deal of stress during the two years of the 

professional development due to the Program Improvement status of their schools and the 
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economic climate of California; therefore, the teachers’ responses may have been rushed 

and limited in depth and attention to detail. Finally, the majority of the statistical strength 

of this study was limited to correlation and thus cannot prove causality between variables. 

Recommendations 

1. The noticing results from this study support Darling-Hammond et al.’s (2009) 

conclusion that change in teacher practice occurs with on-going sustained 

professional development programs with at least 12 months of support; however, 

this study’s findings also suggested that the second year of professional 

development is just as critical. Twelve months, as currently recommended in the 

research, may not be enough time to promote teacher change embedded in practice. 

The results from this study recommend to policy-makers and those overseeing 

grant requirements that at least 24 months of professional development be required 

to support teachers’ growth in developing mathematical knowledge for teaching, 

noticing of student thinking, and increased cognitive demand of lessons. 

2. Professional development focused on mathematical knowledge for teaching and 

student thinking is critical for all teachers to develop rigor in the cognitive demand 

of lessons and to develop mathematical knowledge for teaching. It is important for 

policy-makers, grant providers, and school districts to realize that greater 

professional development opportunities are needed at the elementary level that go 

beyond curriculum implementation. Most teachers do not receive long-term 

content-focused mathematics professional development; this is critical during a 

time of reform when we expect teachers to make significant changes in their 
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instruction to improve student thinking and achievement. 

3. It is rare for professional development studies to publish their participation rates in 

their program description; though, based on this study’s findings it would seem 

prudent for future researchers to include participation data in published 

professional development descriptions. By doing this, the field can further 

understand how level of participation interacts among other key variables in 

professional development settings. Policy-makers and those providing grant 

funding should also take note that high participation was correlated with the highest 

degrees of MKT, cognitive demand, and noticing results. Grant recipients should 

be asked to comply with high, yet reasonable, levels of participation for maximum 

impact on results. 

4. This study speaks to the need for teacher education programs to provide elementary 

teacher candidates with a stronger foundation in mathematical knowledge for 

teaching. It is the recommendation of this study to have a minimum of two 

mathematics classes at the pre-service level that directly relate to content for 

developing elementary pre-service teachers’ mathematical knowledge for teaching. 

Not only will this build teachers’ mathematical knowledge for teaching but it will 

also strengthen their confidence in math instruction. 

5. Further research on the relationship between cognitive demand, noticing, and 

mathematical knowledge for teaching is warranted. More needs to be known about 

the influence of mathematical knowledge for teaching on instruction and the 

relationship between mathematical knowledge for teaching to what teachers notice 
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when provided cognitively demanding lessons; or conversely, how cognitively 

demanding lessons promote noticing. Moreover, more should be known about what 

teachers can learn from viewing and reflecting on their own lessons and the impact 

of mathematical knowledge for teaching on this process, especially at the K-3 level. 

Future investigations may want to concentrate on such variables as collaboration, 

individual teacher characteristics, video use, and mathematical content. Particular 

attention should be given to how these potential variables might interact with 

participation, mathematical knowledge for teaching, and cognitive demand in tasks 

to better understand the dynamics between teaching and learning.  

6. This study showed that K-3 teachers benefit particularly from professional 

development. Policy-makers and professional development providers who seek to 

impact instruction by targeting teachers’ mathematical knowledge for teaching 

should be aware of the relationships between K-3 teachers and the variables found 

in this study. Continued investigation into the particular needs of K-3 teachers is 

warranted as well as the need to provide all elementary teachers with effective 

professional development to build capacity for mathematical knowledge for 

teaching. 

7. Future research for evaluating enacted elementary mathematical tasks for cognitive 

demand using the suggested adaptations for the Task Analysis Guide is 

recommended. It would be beneficial to test the adapted guide to see if the 

additions assist in addressing the uniqueness of the elementary classroom. More 

studies that focus on analyzing the cognitive demand of elementary teachers’ 
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mathematics instruction are also needed. 

Conclusion 

In the conception of this study, it was my hypothesis that mathematical knowledge 

for teaching, teacher cognitive demand of tasks, and teacher noticing of student thinking 

would be related (see Figure 7 below). As the results indicated, mathematical knowledge 

for teaching was significantly correlated with level of participation, and cohort grade level. 

Likewise, significant relationships were found between cognitive demand level and 

noticing level for the whole group and the K-3 Cohort. Also discovered were significant 

correlations between teacher noticing and the cognitive demand of tasks; however, a direct 

correlation between MKT and cognitive demand of enacted tasks was not found. 

Additionally, a cautionary significant relationship was found between mathematical 

knowledge for teaching and teacher noticing. Of the three constructs, mathematical 

knowledge for teaching carried the most statistical power to predict and also to explain the 

variation in many of the correlations. Interestingly, participation level was a previously 

unknown variable that played an important role, as shown in the revised conceptual model 

(see Figure 8 below). 
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Figure 7 

Original Conceptual Model 

 
(Coddington, 2013) 

Figure 8  

Revised Conceptual Model 

 
(Coddington, 2014) 

As hypothesized, there were shifts in the cognitive demand of enacted tasks over 

the course of the second year that indicated instructional change. Since the MAAP results 

showed that teachers’ mathematical knowledge for teaching was also growing during the 

second year, it appeared that teachers’ MKT  influenced the shifts in instruction. This was 
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highly possible considering previous research in this area that has linked MKT to levels of 

instruction (Charalambous, 2010). Within this study, there are unknown variables that 

must explain MKT, teacher noticing, and the cognitive demand of enacted tasks. These 

variables may become known with further research. The revised conceptual model 

presented in Figure 8 represents those variables that were identified in this study and those 

still hypothesized. To best support elementary teachers and to more fully understand the 

teaching and learning process, continued research is needed that focuses on developing 

teachers’ mathematical knowledge for teaching, noticing of student thinking, and cognitive 

demand of lessons.  
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Appendix A: MAAP Video Reflection Form  
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Appendix B: The Task Analysis Guide 
 

 
 

(Stein & Smith, 1998)  
Note. Used with permission 
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Appendix C: The Framework for Learning To Notice Student Mathematical Thinking 
 
 Level 1 

Baseline 
Level 2 
Mixed 

Level 3 
Focused 

Level 4 
Extended 

What 
Teachers  
Notice 

Attend to whole class 
environment, behavior, and 
learning and to teacher 
pedagogy  

Primarily attend to 
teacher pedagogy 
 
Begin to attend to 
particular students’ 
mathematical 
thinking and 
behaviors 

Attend to particular 
students’ 
mathematical 
thinking 
 
 

Attend to the 
relationship 
between particular 
students’ 
mathematical 
thinking and 
between teaching 
strategies and 
student 
mathematical 
thinking 

How 
Teachers 
Notice 

Form general impressions 
of what occurred 
 
Provide descriptive and 
evaluative comments 
 
Provide little or no 
evidence to support 
analysis 

Form general 
impressions and 
highlight 
noteworthy events 
 
Provide primarily 
evaluative with 
some interpretive 
comments 
 
Begin to refer to 
specific events and 
interactions as 
evidence 

Highlight 
noteworthy events 
 
Provide interpretive 
comments 
 
Refer to specific 
events and 
interactions as 
evidence 
 
Elaborate on events 
and interactions 

Highlight 
noteworthy events 
 
Provide interpretive 
comments 
 
Refer to specific 
events and 
interactions as 
evidence  
 
Elaborate on events 
and interactions 
 
Make connections 
between events and 
principles of 
teaching and 
learning 
 
On the basis of 
interpretations, 
propose alternative 
pedagogical 
solutions 

 
Note. Used with permission. License ID #3317200184939 
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Appendix D: MAAP Post-Observation Form 

  


	Claremont Colleges
	Scholarship @ Claremont
	2014

	An Investigation of Teachers’ Noticing, Cognitive Demand, and Mathematical Knowledge for Teaching: Video Reflections in an Elementary Mathematics Context
	Lorelei R. Coddington
	Recommended Citation



