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ANALYSIS OF N-CARD LE HER

ARTHUR T. BENJAMIN AND A.J. GOLDMAN

Abstract. We present a complete solution to a card game with historical ori-

gins. Our analysis exploits convexity properties in the payoff matrix, allowing

this discrete game to be resolved by continuous methods.

In this paper, we analyze a variant of the card-game Le Her, which has a long
history in the mathematical literature (cf. Section 18.6 of [7]). The authentic
two-player 52-card version is reported and solved by Dresher [3, 4], with some
anticipation by R.A. Fisher [6]. Todhunter [10] describes efforts at its solution
by N. Bernoulli and Montmort; retrospectively, their lack of the “mixed strategy”
concept can be recognized as crucial. The present version, formulated by Karlin
([9], p. 100) who poses the case N = 5 as a problem, involves a single-suit deck
of N ≥ 3 cards with respective face-values 1, 2, . . . , N . Let X, Y, Z denote the top
three cards, all face down, after a randomizing shuffle of the deck. Cards X and Y
are dealt to Players 1 and 2 respectively, leaving Z on top. Each player inspects his
or her own card; thus Player 1 knows X but not Y or Z, while Player 2 knows Y
but not X or Z. (Our notation will slur the distinction between a random variable
and its realization, without real risk of confusion.)

Player 1 moves first. He can either keep X, or else elect a swap of cards with
Player 2. In the latter case, both players inspect their new cards, and therefore
know both X and Y (but not Z). Next, it is Player 2’s turn to move. She can
either keep her current card, or else elect to swap that card for Z. That concludes
play: the player holding the higher card wins one unit from the opponent.

The pure strategies for Player 1 are associated one-to-one with the subsets S of
{1, 2, . . . , N}; playing strategy S, Player 1 keeps X if X ∈ S, and otherwise swaps
X for Y . Note that if Player 1 swaps, then Player 2 will know that she holds X
while Player 1 is holding Y , and will therefore surely keep X if X > Y , and surely
swap X for Z if X < Y , the swap “succeeding” iff Z > Y . Thus a pure strategy
for Player 2 need specify that player’s action only when Player 1 keeps his card.
Those strategies are associated one-to-one with subsets T of {1, 2, . . . , N}; playing
strategy T after a “keep” by Player 1, Player 2 keeps Y if Y ∈ T , and otherwise
swaps Y for Z.

The joint distribution of (X, Y ) is of course given by P (X, Y ) = p = 1
N(N−1)

if X 6= Y , P (X, Y ) = 0 if X = Y . Let P (S, T |X, Y ) denote the probability of a
win by Player 1 when respective strategies S and T are employed, conditional on
(X, Y ); the corresponding unconditional probability is given by

(1) P (S, T ) =
∑
X,Y

P (S, T |X, Y )P (X, Y ) = p
∑

X 6=Y

P (S, T |X, Y ).
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The entries of the payoff matrix are given by 1 ·P (S, T )+(−1) · [1−P (S, T )], but an
equivalent strategic analysis results if this payoff function is replaced by P (S, T ),
and we will do so.

The preceding description yields a 2N×2N matrix game. But this size can clearly
be reduced; for instance, it would be foolish to swap away the highest possible card
N , so that rational play requires N ∈ S∩T . Intuitively, Players 1 and 2 can restrict
themselves to “gapless” strategies. That is, Player 1 has a critical number s ≥ 2
where he will keep exactly those cards greater than or equal to s, and Player 2 has
a critical number t ≥ 2 where if Player 1 keeps his card, she will keep just those
cards that are greater than or equal to t. For brevity we omit the confirmation
(in [1]) of this intuition, i.e., the formal proof that any strategy that keeps k cards
is dominated by the strategy that keeps the k cards of highest value. We let
Ss = {X : X ≥ s} and Tt = {Y : Y ≥ t}. Thus our matrix game can be reduced
to the (N − 1) × (N − 1) payoff matrix A = [a(s, t)], where a(s, t) = P (Ss, Tt) for
2 ≤ s, t ≤ N . Our goal is to establish a radical further reduction, to an explicitly-
identified submatrix game of size at most only 2 × 2, whose solution is therefore
given by standard formulas.

Next we provide a formula for a(s, t). The formula depends on the sign of s− t.
As preparation, we define for integral s, t ∈ [2, N ],

h(s, t) = (N − t)(N + 1 − t) + (N − 1)(s + t − 2),(2)
f(s, t) = h(s, t) − (s− 1)(s− 2)(s + 3t − 12)/3(N − 2),(3)
g(s, t) = h(s, t) − (s− 2)(s− 3)(s + 3t − 4)/3(N − 2)− (s− t)(s− t − 1),(4)

and observe that f(s, t) = g(s, t) when s = t.

Lemma 1. For s ≤ t, 2a(s, t)/p = f(s, t).

Proof. There are three cases to consider in evaluating (1) for S = Ss and T = Tt.
If X < s ≤ t then Player 1 swaps, and wins iff X < Y and Z < Y . If s ≤ X < t
then Player 1 keeps X; since Player 2 wins if he keeps (i.e., if Y ≥ t), Player 1 wins
iff Y < t and Z < X, the latter corresponding to X − 1 possibilities for Z if X < Y
but to only X−2 (the value Y is ruled out) if Y < X. Finally, if X ≥ t then Player
1 wins iff either X > Y ≥ t or Y < t ≤ X and Z < X (the value Y is ruled out for
Z). These cases yield three groups of terms in the evaluation of (1):

1
p
a(s, t) =

∑
X<s

∑
Y >X

Y − 2
N − 2

+
∑

s≤X<t

∑
X<Y <t

X − 1
N − 2

+
∑

s≤X<t

∑
Y <X

X − 2
N − 2

.

+
∑
X≥t

∑
t≤Y <X

1 +
∑
X≥t

∑
Y <t

X − 2
N − 2

.

Heroic algebra, and the formula for the sum of the first s− 1 perfect squares, yield
the stated result. �

Lemma 2. For s ≥ t, 2a(s, t)/p = g(s, t).

Proof. Now there are two cases to consider. If X < s then Player 1 swaps, and
wins iff X < Y and Z < Y . And if X ≥ s ≥ t then Player 1 keeps X, winning iff
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either Y < t and Z < X, or X > Y ≥ t. These cases yield two groups of terms in
the evaluation of (1):

1
p
a(s, t) =

∑
X<s

∑
Y >X

Y − 2
N − 2

+
∑
X≥s

∑
Y <t

X − 2
N − 2

+
∑
X≥s

∑
X>Y≥t

1,

from which algebraic manipulation leads to the stated result. �

The payoff function a(s, t) has some desirable properties. By straightforward
algebra, one can show [1] that the columns of the payoff matrix A are discrete
concave and the rows of A are discrete convex. That is,

Lemma 3. For each 2 ≤ t ≤ N , a(s + 1, t)− a(s, t) is nonincreasing in s ≥ 2.

Lemma 4. For each 2 ≤ s ≤ N , a(s, t + 1)− a(s, t) is nondecreasing in t ≥ 2.

Howard [8] proves that in a game that satisfies the concavity condition of Lemma
3 Player 1 has an optimal mixed strategy that mixes at most two consecutive pure
strategies. Analogous results apply for Player 2 when the convexity condition of
Lemma 4 occurs. (An alternative treatment, whose preview in [1] was apparently
the stimulus for [8], occurs in [2].) Since the only difference between consecutive
strategies Ss and Ss+1 is how they treat card s, then the above results give us:

Theorem 1. In our variant of N -card Le Her, Player 1 has a critical card s such
that he will always swap cards below s, always keep cards above s and will keep or
swap card s according to a mixed strategy. Likewise, Player 2 has a critical card t
such that when Player 1 keeps his card, she will always swap cards below t, always
keep cards above t and will keep or swap card t according to a mixed strategy.

To determine which consecutive strategies are optimal, suppose that a(s, t) can
be interpolated by a function A(s, t) defined on the real domain [2, N ] × [2, N ],
where for fixed t, A is a concave function of s. By [5], such a game has an optimal
pure strategy s∗. The authors prove in [2] that in the discrete version of such a
game, Player 1 has an optimal strategy which mixes at most the pure strategies
bs∗c and ds∗e. Likewise, if A is a convex function of t, then the continuous game
will have a pure optimal strategy t∗, and the original game will optimally mix on
pure strategies bt∗c and dt∗e.

The right-hand sides of equations (2–4) yield extensions (H,F, G) of the respec-
tive functions (h, f, g) from integer to continuous variables (s, t) ∈ [2, N ], with
F = G when s = t. By Lemmas 1 and 2, a “natural” extension A(s, t) of a(s, t) to
a continuous-game payoff function is given by

(5)
2
p
A(s, t) =

{
F (s, t) for s ≤ t,
G(s, t) for s ≥ t.

To solve the game as proposed in the previous paragraph, we need to verify that
A(s, t) – or equivalently, 2

pA(s, t) – is concave in s for fixed t. We first observe by
straightforward differentiation that

∂2G/∂s2 = −2(N + s + t − 5)/(N − 2),

which is non-positive (as desired) since s, t ∈ [2, N ], and that

∂2F/∂s2 = −2(s + t − 5)/(N − 2),
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which has the desired sign except in the upper left corner (defined by s + t < 5) of
the square [2, N ] × [2, N ]. In view of (5), it is also necessary for concavity (in s)
to check that ∂F/∂s ≥ ∂G/∂s when s = t. This condition reduces to the explicit
form

(6) t ≥ Θ =def (N + 2)/2,

leaving the subinterval [2,Θ) to be dealt with. The next lemma shows that this
initial subinterval of [2, N ] can be eliminated by a suitable domination argument on
the matrix game. In what follows, we use the floor and ceiling symbols bxc and dxe
to denote the greatest integer less than or equal to x and the least integer greater
than or equal to x, respectively.

Lemma 5. For integral s ∈ [2, N ], a(s, t) ≥ a(s, dΘe) holds for all integral t ∈
[2, dΘe].

Proof. For continuous (s, t) with 2 ≤ t ≤ s ≤ N , we have

(7) 2p−1∂A/∂t = ∂G/∂t = −(N − s)(N − s + 1)/(N − 2) ≤ 0,

so that A(s, t) is nonincreasing in t. And if s ≤ t, then

(8) 2p−1∂A/∂t = ∂F/∂t = −{(N + 2 − 2t) + (s− 1)(s− 2)/(N − 2)},
yielding the same conclusion if also t ≤ Θ. Thus a(s, t) is nonincreasing in t for
t ≤ Θ, yielding the desired result when N is even so that Θ is integral. And if N
is odd, then a(s, t) is nonincreasing in t for t ≤ bΘc = (N + 1)/2; the remaining
desired conclusion a(s, bΘc) ≥ a(s, dΘe) follows from (7) if dΘe ≤ s, while if integral
s < dΘe (i.e., s ≤ bΘc) then integration over [bΘc, dΘe] = [Θ − 1

2 ,Θ + 1
2 ] of the

expression in (8) implies the result via the conclusion

2p−1[a(s, bΘc)− a(s, dΘe)] = −(s− 1)(s− 2)/(N − 2) ≤ 0.

�

It follows from Lemma 5 that Player 2’s pure strategies in the matrix game
can be restricted by t ≥ dΘe, so that the same can be done in the continuous
extension. We may assume that N ≥ 4 (since if N = 3 the matrix game is already
2× 2), so that the last restriction implies t ≥ 3, which in junction with s ≥ 2 rules
out the troublesome corner s + t < 5. Thus the concavity-in-s property has been
established. We note in passing the following intuitively plausible interpretation,
in the matrix game, of the domination-enforced condition (6): If Player 1 has kept
his card, then Player 2 should swap any card that is not above average.

We continue to assume N ≥ 4, and now know that the continuous game with
payoff function A(s, t) restricted to the rectangle [2, N ]× [dΘe, N ] has some optimal
pure strategy s∗ for Player 1, and that in the matrix game Player 1 has an optimal
strategy which mixes at most the consecutive rows bs∗c and ds∗e. To identify these
rows, we proceed to determine s∗. By the “maximin” definition of an optimal
strategy for Player 1, s∗ is characterized by maximizing, over [2, N ], the function

(9) µ(s) = min{A(s, t) : dΘe ≤ t ≤ N},
i.e., µ(s) = A(s, t∗(s)) where t∗(s) minimizes A(s, t) over [dΘe, N ]. By (7), we have
t∗(s) ≥ s if s < N and can take t∗(s) ≥ s if s = N , so that

(10) µ(s) = F (s, t∗(s))

where t∗(s) minimizes F (s, t) over [max(s, dΘe), N ].
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To determine t∗(s), we use (8) to equate ∂F/∂t to 0, obtaining the t-value

τ∗(s) = Θ + (s− 1)(s− 2)/2(N − 2).

It follows from (8) that t∗(s) is given by τ∗(s) if the latter lies in the interval
[max(s, dΘe), N ]. Analyzing the conditions for membership of τ∗(s) in this interval,
we find that τ∗(s) ≥ s is equivalent to (N − s)2 + (s− 2) ≥ 0, which is true. Next,
τ∗(s) ≤ N is equivalent to (s − 1)(s − 2) ≤ (N − 2)2, which is true for s ≤ N − 1
but not for s = N . Finally, since s ≥ 2, τ∗(s) ≥ dΘe is true when N is even (so
that Θ is integer), but for odd N it is equivalent to

(s− 1)(s− 2) ≥ N − 2,

which fails for sufficiently small s.
However, one can show (see [1]) that the “troublesome cases” mentioned above

need never occur in an optimal solution. That is, without loss of optimality, Player
1 can restrict himself to

(11) s ≤ N − 1 and (s− 1)(s− 2) ≥ N − 2.

These conclusions follow (respectively) from the next two additional domination
results about the matrix game, whose proofs (in [1]) are again omitted for brevity:

Lemma 6. For integral t ∈ [2, N ], a(N, t) ≤ a(N − 1, t).

Lemma 7. For integral t ∈ [dΘe, N ] and integral s with (s − 1)(s − 2) < N − 2,
a(s + 1, t) > a(s, t).

We have now justified equating t∗(s) to τ∗(s), i.e.,

(12) t∗(s) = Θ + (s− 1)(s− 2)/2(N − 2).

Substitution of (12) into (10), and differentiation, yield for −6(N − 2)2dµ/ds the
expression

(13) φ(s) = 6s3 +(6N −39)s2 +(6N2−60N +135)s− (6N3−21N2−28N +110).

Its derivative is a quadratic function whose discriminant −36(8N2 − 68N + 110),
is negative (hence φ(s) is increasing) for N ≥ 7, where it is easily verified that
φ(N −1) > 0 > φ(Θ). Thus for N ≥ 7 the unique real root of dµ/ds = 0, is interior
to the interval [Θ, N − 1], hence satisfies (11), so that s∗ can be calculated as the
real root of φ(s) = 0. As for the remaining small values of N , according to (11)
Player 1’s pure strategies can be confined to s = 3 if N = 4, to s = 4 if N = 5,
and to the consecutive pair s ∈ {4, 5} if N = 6. In these three cases the restriction
t ≥ dΘe translates into t ∈ {3, 4}, t ∈ {4, 5} and t ∈ {4, 5, 6} respectively; in the
last of these the third column of the 2 × 3 submatrix coincides with the second,
permitting reduction to a 2× 2 game. So for what follows, we can and will assume
N ≥ 7.

We have showed that the (N − 1) × (N − 1) matrix game can be reduced to a
subgame involving the last N − dΘe + 1 columns and at most a consecutive pair
(bs∗c, ds∗e) of rows, and a procedure for determining this pair has been given. As
noted after Lemma 4, we are also assured that in principle this subgame can be
reduced further to a sub-subgame of dimensions at most 2×2 involving consecutive
columns (bt∗∗c, dt∗∗e). For given N it seems brute-force practical to proceed by
successive solution of 2× 2 sub-subgames involving consecutive columns, retaining
the solution with the smallest payoff value. However, it would be more elegant
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to mirror the preceding analysis from Player 2’s viewpoint, giving a “semi-closed”
recipe for t∗∗.

Such an attempt would naturally begin by verifying that for fixed s, A(s, t) is
convex in t. We find by straightforward differentiation that

(14) ∂2F/∂t2 = 2, ∂2G/∂t2 = 0

which by (5) assures convexity over the separate t-intervals (s,N ] and [2, s). But
in view of (5), it is also necessary to check that ∂F/∂t ≥ ∂G/∂t when t = s. This
condition reduces to the explicit form s ≤ Θ, whereas we showed above (second
sentence after (13) that s∗ > Θ. So our mirror must be blurred by an additional
line of argument.

Theorem 2. For N ≥ 7, optimal mixed strategies for our variant of Le Her can be
obtained by solving the 2× 2 subgame involving only rows bs∗c and ds∗e, where, s∗

is the real zero of the cubic φ(s) defined by (13), and only columns bt∗∗c and dt∗∗e,
where t∗∗ = max(t∗(s∗), ds∗e) as defined by (12) and (6).

Proof. It has already been proved that attention can be restricted to the rows bs∗c
and ds∗e, and to columns t ≥ dΘe. We first show that the latter restriction can be
tightened to t ≥ max(dΘe, bs∗c). (Since the material following (13) yields s∗ > Θ,
this tightening might be a strict one.) For this purpose note that by (7), for integer
t ≤ bs∗c ≤ ds∗e, we have

a(bs∗c, t) ≥ a(bs∗c, bs∗c), a(ds∗e, t) ≥ a(ds∗e, bs∗c),

so that in the 2-rowed matrix subgame column t is dominated by column bs∗c and
can therefore be deleted if t < bs∗c.

We next show that if s∗ is non-integer and the surviving matrix subgame still
contains column bs∗c, then that column is dominated by column ds∗e and can
therefore be deleted. For this we must demonstrate

a(bs∗c, bs∗c) ≥ a(bs∗c, ds∗e), a(ds∗e, bs∗c) ≥ a(ds∗e, ds∗e).

The second assertion with t ≤ s on both sides, is a consequence of (7). The first
assertion, since s ≤ t on both sides, is by Lemma 1 an instance of the relation
f(s, s) ≥ f(s, s + 1). Using (2) and (3), we find this relation to take the explicit
form

(N + 1 − 2s) + (s− 1)(s− 2)/(N − 2) ≥ 0,

which is readily verified to hold for integral s, failing only in (N − 1, N).
Now the matrix subgame is restricted to rows bs∗c and ds∗e, and to columns

t ≥ max(dΘe, ds∗e) = ds∗e. Our continuous extension can therefore be restricted
to the corresponding strip in the square [2, N ]× [2, N ], throughout which s ≤ t, so
that A(s, t) = p

2F (s, t). The first part of (14) now establishes strict convexity of
A(s, t) in t for fixed s throughout the strip. Thus the restricted continuous game
has a pure optimal strategy t∗∗ for Player 2, and the remarks following Theorem
1 assure that the matrix game can be further limited to columns bt∗∗c and dt∗∗e.
Since s∗ remains optimal for Player 1 in the restricted continuous game, t∗∗ can be
identified as a minimizer of A(s∗, t) = p

2F (s∗, t) over [ds∗e, N ]. Thus t∗∗ coincides
with t∗(s∗) = τ∗(s∗) if the latter is ≥ ds∗e; if not, the convexity (in t) of A(s∗, t)
identifies t∗∗ as the nearest feasible point to the “relaxed minimizer” t∗(s∗), i.e.,
t∗∗ = ds∗e. �
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