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THE LINKING PROBABILITY OF DEEP SPIDER-WEB NETWORKS∗

NICHOLAS PIPPENGER†

Abstract. We consider crossbar switching networks with base b (that is, constructed from b× b
crossbar switches), scale k (that is, with bk inputs, bk outputs, and bk links between each consecutive
pair of stages), and depth l (that is, with l stages). We assume that the crossbars are interconnected
according to the spider-web pattern, whereby two diverging paths reconverge only after at least k
stages. We assume that each vertex is independently idle with probability q, the vacancy probability.
We assume that b ≥ 2 and the vacancy probability q are fixed, and that k and l = ck tend to infinity
with ratio a fixed constant c > 1. We consider the linking probability Q (the probability that there
exists at least one idle path between a given idle input and a given idle output). In a previous
paper [Discrete Appl.Math., 37/38 (1992), pp. 437–450] it was shown that if c ≤ 2, then the linking
probability Q tends to 0 if 0 < q < qc (where qc = 1/b(c−1)/c is the critical vacancy probability) and

tends to (1 − ξ)2 (where ξ is the unique solution of the equation
(
1 − q(1 − x)

)b
= x in the range

0 < x < 1) if qc < q < 1. In this paper we extend this result to all rational c > 1. This is done
by using generating functions and complex-variable techniques to estimate the second moments of
various random variables involved in the analysis of the networks.
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1. Introduction. We deal in this paper with linking in crossbar switching net-
works, a phenomenon not dissimilar to that of percolation in lattices (as introduced
by Broadbent and Hammersley [B] and surveyed by Grimmett [G]). An important
difference, however, is that while percolation can be studied in finite subgraphs of a
single infinite graph modeling the lattice, there is no single graph that naturally hosts
the graph modeling crossbars switching networks in which we are interested. Our first
order of business will be to describe these graphs.

A crossbar graph is characterized by three parameters: its base, b ≥ 2, its scale,
k ≥ 0, and its depth, l ≥ 0. Its vertices are partitioned into l + 1 ranks, each
containing bk vertices, which are labeled with the strings of length k over the alphabet
{0, . . . , b− 1}. The vertices in rank 0 are called inputs, those in rank l are called
outputs, and those in all other ranks are called links. The edges of the graph are
partitioned into l stages, each containing bk+1 edges. For 1 ≤ m ≤ l, the edges of
stage m are directed out of vertices in rank m − 1 and into vertices in rank m. In a
spider-web crossbar graph, which is our main concern in this paper, there is an edge
of stage m from vertex v of rank m−1 to vertex w of rank m if and only if v and w are
labeled by strings that differ at most in position j, where j ≡ m (mod k). The edges
of each stage are thus partitioned into bk−1 b × b complete bipartite graphs (called
crossbars). The spider-web crossbar graph with base b, scale k, and depth l will be
denoted Gb,k,l. We shall see in section 2 that if l ≥ k, there are bl−k paths from a
given input to a given output; if l < k, there is at most one path from a given input to
a given output. Our main interest is in spider-web crossbar graphs with l ≥ k, since
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in these graphs any input can be connected by a path to any output; in our analysis,
however, graphs with l < k will occur as subgraphs, so it will be necessary to allow
this case in some of our intermediate results.

We shall assume that each vertex in the graph Gb,k,l is independently assigned
the status idle, with probability q (called the vacancy probability), or busy, with
the complementary probability p = 1 − q (called the occupancy probability). This
random assignment of a status to each vertex in a graph will be called the state of
the graph. Given an input v and output w, let Qv,w (called the linking probability)
denote the probability that there exists a path consisting entirely of idle links from
v to w. (In this paper, “path” will always mean “directed path.” In general, the
linking probability is defined as the conditional probability that there exists an idle
path, given that v and w are themselves idle, but for the probabilistic model that we
are using, this condition is independent.) We shall see in section 2 that if l ≥ k, the
probability Qv,w does not depend on the choice of the input-output pair (v, w), so
we shall let Q denote the common value of these probabilities. The complementary
probability P = 1 − Q (called the blocking probability) is the probability that all
paths between a given input-output pair (v, w) are broken by a set of busy links.

In practice, the parameter p represents the amount of traffic being carried by a
crossbar network (which one would like to maximize), and the parameter P represents
the fraction of arriving traffic lost due to congestion within the network (which one
would like to minimize). In analysis, however, it is almost always more convenient to
work with the complementary parameters q and Q, so we shall work exclusively with
these parameters in what follows.

In practice, a graph Gb,k,l would be fixed, and the linking probability Q would
be studied as a function of the vacancy probability q. It is found that Q undergoes
a rapid transition from a value near zero to a significantly positive value as q passes
through a neighborhood of 1/b(l−k)/(l−1). This is easily understood in the following
way.

Let the random variable Xv,w denote the number of idle paths from v to w. We
shall see in section 2 that if l ≥ k, the distribution of Xv,w does not depend on the
choice of the input-output pair (v, w), so we shall let X denote a random variable
with this common distribution. Each of the bl−k paths from v to w contains l − 1
links, which are all idle with probability ql−1. Thus we have

Ex[X] = bl−k ql−1.(1.1)

Thus as q passes through 1/b(l−k)/(l−1), the expected number of idle paths from v
to w (called the specific transparency) goes from an exponentially decreasing to an
exponentially increasing function of k and l. This suggests that if k and l tend to
infinity in such a way that their ratio c = l/k > 1 remains fixed while b and q are also
held fixed, then Q will tend to a limit, and this limit will have a discontinuity as q
passes through the critical value

qc = 1/b(c−1)/c.

(We note that 1 < c < ∞ implies 1/b < qc < 1.) Our goals in this paper are to
confirm this conjecture and to determine the limiting value of Q.

Our first step toward these goals, taken in section 2, will be to derive the following
estimate for the second moment Ex[X2] of X.
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Theorem 1.1. Let both b ≥ 2 and 1/b < q < 1 be fixed. Then

Ex[X2] = Ex[X] ·
((

b− 1

bq − 1

)2

bl−k ql+1 + 1 + O(l bl−2k ql) + O(l qk)

)

as k, l → ∞ with l ≥ k and
(
log(l + 1)

)
/(k + 1) → 0. (The constants in the O-terms

may depend on b and q, but are independent of k and l.)
We observe that this estimate is enough to establish that the limiting value (if it

exists) of Q for k → ∞ and l = ck cannot be a continuous function of Q as q passes
through qc. Indeed, from Markov’s inequality and (1.1), we have

Q = Pr[X ≥ 1] ≤ Ex[X] = bl−k ql−1 → 0(1.2)

for q < qc. On the other hand, (1.1) and Theorem 1.1, together with the inequality

Pr[X ≥ 1] ≥ Ex[X]2

Ex[X2]
,(1.3)

imply

Q = Pr[X ≥ 1] ≥ Ex[X]2

Ex[X2]
=

(bq − 1)2

(b− 1)2q2 + (bq − 1)2q

(
1 + O

(
l

bk

)
+ O

(
l qk

))

→ (bq − 1)2

(b− 1)2q2 + (bq − 1)2q
> 0(1.4)

for q = qc. (To verify (1.3), we consider the distribution of X conditioned on the
event X ≥ 1. Since x2 is a convex function of x, we have

Ex[X2 | X ≥ 1] ≥ Ex[X | X ≥ 1]2.

Multiplying by Pr[X ≥ 1]2 yields

Ex[X2] Pr[X ≥ 1] = Ex[X2 | X ≥ 1] Pr[X ≥ 1]2

≥ Ex[X | X ≥ 1]2 Pr[X ≥ 1]2

= Ex[X]2,

which is equivalent to (1.3).) The inequalities in (1.2) and (1.4) show that the inferior
limit of Q for q = qc is strictly greater than the limiting value for q < qc, as claimed.

The argument of the preceding paragraph also sheds some light on the condition(
log(l+1)

)
/(k+1) → 0 in Theorem 1.1. (This condition involves k+1 and l+1 rather

than k and l simply to avoid dividing by or taking the logarithm of 0.) This condition
is not the weakest one sufficient to give an estimate of the form Ex[X2] = O

(
Ex[X]2

)
,

but it is clear that some upper bound on the growth of l must be imposed, for with

probability (1 − q)b
k

all the links in a given rank are busy, disconnecting all input-

output pairs. Thus if l · (1− q)b
k → ∞, we have Q → 0, contradicting the implication

of (1.3) when Ex[X2] = O
(
Ex[X]2

)
.

In section 3, we shall combine Theorem 1.1 with branching-process arguments
from Pippenger [P3] to establish the existence and determine the limiting value of Q
for q > qc.



146 NICHOLAS PIPPENGER

Theorem 1.2. Let b ≥ 2 and 0 < q < 1 be fixed, and let c > 1 be rational. Then
as k → ∞ with l = ck, we have

Q →

⎧⎪⎨
⎪⎩

0 if 0 < q < qc,

(1 − ξ)2 if qc < q < 1,

where ξ is the unique solution of the equation x =
(
1 − q(1 − x)

)b
in the range

0 < x < 1.
A comment is in order concerning the behavior of (1− ξ)2 as a function of q. The

function f(x) =
(
1 − q(1 − x)

)b
is a strictly convex function of x for 0 < q ≤ 1, since

f ′′(x) = b(b − 1)q2
(
1 − q(1 − x)

)b−2
> 0 in this range. Thus the graph of f(x) can

intersect the diagonal at most twice in this range. There is one intersection at x = 1,
and the conditions f(0) = (1 − q)b > 0 and f ′(1) = bq > 1 imply that there is at
least one intersection in the range 0 < x < 1 when 1/b < q < 1. Thus there is indeed

a unique solution of the equation x =
(
1 − q(1 − x)

)b
in the range 0 < x < 1 when

1/b < q < 1, and this latter condition is implied by qc < q < 1. The degree of this
equation can be reduced by 1 (because of the solution x = 1), and it is easy to see
that the resulting equation is irreducible over the field of rational functions of q; thus
ξ is an algebraic function of q of degree b− 1. Since (1 − ξ)2 is a polynomial in ξ, it
is also an algebraic function of q of degree b− 1. Straightforward analysis shows that
Q → 1 as q → 1 with 1−Q = 1− (1− ξ)2 ∼ 1− 2(1− q)b, which may be interpreted
as saying that the main obstacle to linking when q → 1 is complete occupation either
of the b links adjacent to the input in rank 1, or of the b links adjacent to the output

in rank l − 1. As q → 1/b from above, we have (1 − ξ)2 ∼ (bq − 1)2/
(
b
2

)2
.

Theorem 1.2 was proved, under the additional restriction c ≤ 2, by Pippenger [P3],
so the additional contribution of the current paper consists of lifting this restriction.
Nevertheless, the techniques used in the current paper go considerably beyond those
employed in the previous paper in that the proof of Theorem 1.1 starts with a detailed
combinatorial examination of the intersections between paths, then uses complex-
variable techniques to determine the asymptotics of the quantities involved.

Spider-web networks were introduced by Ikeno [I] (though the term spider-web
has sometimes been used to refer to a broader class of networks). They have several
optimality properties among networks constructed from the same type and number of
crossbars. Takagi [T] showed that they have the largest linking probability in a large
class of crossbar networks called “rhyming” networks. Chung and Hwang [C] showed
that, surprisingly, these networks are not optimal in the larger class of “balanced”
networks. But Pippenger [P3] showed that they are asymptotically optimal in this
class for 1 < c ≤ 2, and the current paper extends this result to all c > 1.

The probability distribution on states that we use was introduced by Lee [L1]
and Le Gall [L2, L3]. It is by far the easiest to use for analytical purposes, but it
suffers from the defect that the set of busy vertices does not form a set of coherent
paths from inputs to outputs. Models addressing this defect have been introduced by
Koverninskĭı [K] and Pippenger [P1], and the results in [P3] have been extended to
these models in [P2]. It seems likely that the results of the the present paper can be
similarly extended.

The current paper is self-contained, except for some estimates concerning branch-
ing processes taken from Pippenger [P3]. We have followed the notation of that paper,
except that the base, which was denoted d in that paper, is now denoted b (to free
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the symbol d for its traditional use in the calculus).

2. The second moment. Our goal in this section is to prove Theorem 1.1. We
begin with a combinatorial result concerning spider-web graphs.

Lemma 2.1. The automorphism group of Gb,k,l acts transitively on the paths
from inputs to outputs.

Proof. Since an automorphism must permute the vertices within each rank, an
automorphism ϑ may be regarded as a sequence ϑ = (ϑ0, . . . , ϑl) of permutations, one
for each rank. We shall focus on automorphisms in which each ϑm (for 0 ≤ m ≤ l) is
characterized by a string ϑm,1 · · ·ϑm,k of k digits from the alphabet {0, . . . , b−1} and
acts on the vertices of rank m by carrying the vertex labeled a1 · · · ak to the vertex
labeled a′1 · · · a′k, where a′j ≡ aj + ϑm,j (mod b) for 1 ≤ j ≤ k. If, for 1 ≤ m ≤ l, the
string ϑm−1 differs from the string ϑm in at most position j, where j ≡ m (mod k),
then the sequence ϑ = (ϑ0, . . . , ϑl) will constitute an automorphism.

To show that the automorphisms act transitively on the paths, it will suffice to
show, for some fixed path u∗, that for every path u, there is an automorphism that
carries u∗ to u (since then the inverse of such an automorphism can be used to carry
any other path u′ to u∗). A path u may be regarded as a sequence u = (u0, . . . , ul)
of vertex labels in which, for 1 ≤ m ≤ l, the string um−1 differs from the string um

in at most position j, where j ≡ m (mod k). We shall choose for u∗ the path u∗ =
(0k, . . . , 0k). Then clearly the automorphism ϑ = (ϑ0, . . . , ϑl) defined by ϑm = um

for 0 ≤ m ≤ l carries u∗ to u.
Corollary 2.2. If l ≥ k, the graph Gb,k,l contains bl−k paths from any given

input to any given output; if l < k, there is at most one path from any given input to
any given output.

Proof. If l ≥ k, every input-output pair is joined by at least one path, since every
position in the strings labeling vertices has an opportunity to change at least once.
Thus, by Lemma 2.1 every input is joined by the same number of paths. Since each
of the bk inputs is the origin of bl paths to outputs, there are a total of bl+k paths
joining inputs to outputs, and thus bl−k paths joining each of the b2k input-output
pairs. If l < k, there is a path from input v to output w only if the labels of v and
w agree in the last k − l positions. Thus Gb,k,l breaks into bk−l disjoint components,
each containing bl vertices in each rank; there is a unique path joining input v to
output w if they belong to the same component, but no path joining them if they
belong to different components.

Corollary 2.3. If l ≥ k, the automorphism group of Gb,k,l acts transitively on
the input-output pairs.

Proof. If k ≥ k, each input-output pair is joined by a path, so the corollary follows
from Lemma 2.1.

This corollary, together with the fact that the probability distribution on states of
the graph is invariant under automorphisms of the graph, justifies our earlier assertion
that the linking probability Qv,w and the distribution of the random variable Xv,w

are independent of the choice of the input-output pair (v, w) when l ≥ k. Henceforth
we shall focus our attention on the input-output pair (v∗, w∗) = (0k, 0k). If l ≥ k,
this entails no loss of generality. When l < k, we shall deal only with cases in which
the input and output of interest are joined by a path, and in these cases there is again
no loss of generality.

Fix b ≥ 2 and k ≥ 1. For l ≥ 0, let ϕl(y) denote the generating function for the
number of paths from the input v∗ = 0k to the output w∗ = 0k classified according to
the number of links that have labels different from 0k; that is, the coefficient of ym in



148 NICHOLAS PIPPENGER

ϕl(y) is the number of paths from v∗ to w∗ that have l− 1−m links in common with
the path u∗ = (0k, . . . , 0k). Clearly ϕl(y) = 1 for 0 ≤ l ≤ k, and ϕl(y) is a polynomial
in y of degree l − 1 if l ≥ k + 1.

We are interested in the polynomials ϕl(y) for various values of l ≥ 0, with b and
k fixed. To determine them, it will be convenient to work with a graph Gb,k that
contains as subgraphs all the graphs Gb,k,l for various values of l. For any m ≥ l ≥ 0,
Gb,k,l may be regarded as the subgraph comprising the vertices in ranks 0 through l
and the edges in stages 1 through l of Gb,k,m. Thus we may define the infinite graph

Gb,k =
⋃
l≥k

Gb,k,l

as the union (inductive limit) of all these graphs. The graph Gb,k has inputs in rank 0,
but all other vertices will be referred to as links.

For l ≥ 0, the polynomial ϕl(y) is the generating function for the number of
paths from the input v∗ = 0k to the link labeled 0k in rank l classified according to
the number of links that have labels different from 0k.

Let

ψ(y, z) =
∑
l≥0

ϕl(y) z
l

be the generating function for the polynomials ϕl(y). The key to our estimate for the
second moment of X is the following proposition.

Proposition 2.4. We have

ψ(y, z) =
1 − byz + (b− 1)(yz)k+1

(1 − z)(1 − byz) − (b− 1)z(1 − y)(yz)k
.

Proof. In this proof, we shall employ a concise alternative representation of a
path u = (u0, . . . , ul) of length l ≥ 0 as a string t = t1 · · · tk+l of length k + l over
the alphabet B = {0, . . . , b − 1}. The first k digits t1 · · · tk of t will be the k digits
of the label u0. For 1 ≤ m ≤ l, tk+m will be the digit in position j of um, where
j ≡ m (mod k) (the digit of um that might be different from that of um−1). Then for
0 ≤ m ≤ l, um is the string tm+1 · · · tm+k. In particular, the last k digits of t are the
k digits of the label ul of the link in rank l, and the paths from the input v∗ = 0k

to the link labeled 0k in rank l are in one-to-one correspondence with the strings of
length k + l over the alphabet B, whose first k digits and last k digits are 0’s.

Given a path t = 0ktk+1 · · · tl−k0
k, let us overline each digit tk+m (1 ≤ m ≤ l)

for which um−1 �= 0k. The result is a string over the alphabet B ∪ B, where B =
{0, . . . , b− 1} is the set of overlined digits. For l ≥ 0, let the language Kl ⊆ (B∪B)k+l

comprise the strings obtained in this way for all paths from the input v∗ = 0k to the
link labeled 0k in rank l, and define K ⊆ (B ∪B)∗ by

K =
⋃
l≥0

Kl.

Then ψ(y, z) is the power series in y and z in which the coefficient of yjzl is the
number of strings of length k + l in K in which j digits are overlined. Let

L = 0−k K = {t ∈ (B ∪B)∗ : 0k t ∈ K}
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be the language obtained from K by deleting the k initial 0’s from each string. Since
none of this initial 0’s are overlined, ψ(y, z) is the power series in y and z in which
the coefficient of yjzl is the number of strings of length l in L in which j digits are
overlined.

Our next step is to write a regular expression for the language L. Define the

alphabets B′ = {1, . . . , b − 1} and B
′
= {1, . . . , b− 1}. Then L is described by the

regular expression((
Λ +

(
B

′ (
Λ + 0 + · · · + 0

k−1
))∗

B
′
0
k−1

)
0
)∗

,(2.1)

where Λ denotes the empty string. To see this, we observe that a string in L can be
uniquely parsed into zero or more stretches, each of which ends with an unoverlined 0.
A stretch consists of an unoverlined 0 optionally preceded by an excursion. An ex-
cursion consists of a final segment preceded by zero or more preliminary segments.

A final segment consists of a digit from B
′

followed by exactly k − 1 overlined 0’s.

A preliminary segment consists of a digit from B
′

followed by at most k − 1 over-

lined 0’s. Clearly a final segment is described by the regular expression B
′
0
k−1

, and

a preliminary segment is described by the regular expression B
′(

Λ + 0 + · · ·+ 0
k−1)

.
Thus an excursion is described by the regular expression(

B
′ (

Λ + 0 + · · · + 0
k−1

))∗
B

′
0
k−1

,

and a stretch is described by the regular expression(
Λ +

(
B

′ (
Λ + 0 + · · · + 0

k−1
))∗

B
′
0
k−1

)
0.

Thus the strings in L are described by the regular expression (2.1).
We now observe that the regular expression (2.1) is unambiguous in the following

sense: A string described by a subexpression R + S is described by R or by S (but
not both); a string t described by a subexpression RS has a unique parsing t = rs
such that r is described by R and s is described by S; and a string t described by a
subexpression S∗ has a unique parsing s = s1 · · · sn with n ≥ 0 such that s1, . . . , sn
are described by S.

For an unambiguous regular expression, if ψR(y, z) and ψS(y, z) are the generating
functions counting the strings described by subexpressions R and S, respectively, then
ψR(y, z)+ψS(y, z), ψR(y, z)ψS(y, z), and 1/

(
1−ψS(y, z)

)
are the generating functions

counting the strings described by the subexpressions R+S, RS, and S∗, respectively.
Thus the final segments are counted by the generating function (b− 1)(yz)k and

the preliminary segments are counted by the generating function

(b− 1)yz
(
1 + yz + · · · + (yz)k−1

)
=

(b− 1)(yz − (yz)k+1)

1 − yz
.

The excursions are counted by

(b− 1)(yz)k

1 − (b−1)(yz−(yz)k+1)
1−yz

=
(b− 1)((yz)k − (yz)k+1)

1 − yz − (b− 1)(yz − (yz)k+1)
,

and the stretches are counted by(
1 +

(b− 1)((yz)k − (yz)k+1)

1 − yz − (b− 1)(yz − (yz)k+1)

)
z =

z − yz2 − (b− 1)z(yz − (yz)k)

1 − yz − (b− 1)(yz − (yz)k+1)
.
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Thus the strings in L are counted by

1

1 − z−yz2−(b−1)z(yz−(yz)k)
1−yz−(b−1)(yz−(yz)k+1)

=
1 − byz + (b− 1)(yz)k+1

(1 − z)(1 − byz) − (b− 1)z(1 − y)(yz)k
,

which completes the proof of the proposition.
Proposition 2.5. Let b ≥ 2 and 0 < q < 1 be fixed. Then as k → ∞, and as

l ≥ 0 behaves in such a way that
(
log(l + 1)

)
/(k + 1) → 0, we have

ϕl(q) =

(
b− 1

bq − 1

)2

bl−kql+1 + 1 + O(lbl−2kql) + O(lqk) + O(lql).

(The constants in the O-terms may depend on b and q, but are independent of k and l.)
Proof. Write A(z) = 1− bqz + (b− 1)(qz)k+1 and B(z) = (1− z)(1− bqz)− (b−

1)z(1 − q)(qz)k so that ψ(q, z) = A(z)/B(z). Then from Cauchy’s formula we have

ϕl(q) =
1

2πi

∮
Γ0

ψ(q, z) dz

zl+1

=
1

2πi

∮
Γ0

A(z)

B(z)

dz

zl+1
,(2.2)

where Γ0 is a contour taken counterclockwise around a circle |z| = ε centered at 0 and
having radius ε sufficiently small to exclude all other singularities of the integrand.

To make further progress, we must estimate the locations of these other singu-
larities, which are poles at the values of z for which the denominator B(z) vanishes.
One such singularity is at z = 1/q. Let

ζ1 =
1

q

(
1 − 1

l

)
,

and let Γ1 be a contour taken counterclockwise around the circle |z| = ζ1 centered
at 0 and having radius ζ1. As z traverses this contour, the magnitude of the first term
(1 − z)(1 − bqz) of B(z) satisfies the lower bound

|(1 − z)(1 − bqz)| = |1 − z| · |1 − bqz|

≥
(

1

q
− 1 − 1

ql

)(
b− 1 − b

l

)

≥
(

1

q
− 1

)
(b− 1) − bq − 1

ql
,

since the minimum occurs when z is real and positive. The magnitude of the second
term, (b− 1)z(1 − q)(qz)k, on the other hand, satisfies the upper bound

|(b− 1)z(1 − q)(qz)k| ≤ (b− 1)

(
1

q
− 1

)(
1 − 1

l

)k+1

≤ (b− 1)

(
1

q
− 1

)
e−k/l

≤ (b− 1)

(
1

q
− 1

)(
1 − (e− 1)k

el

)
.
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Here we have used the inequality 1−x ≤ e−x, which holds for all x because the graph of
the convex function e−x lies above that of 1−x, its tangent at x = 0, and the inequality
e−x ≤ 1 − (e − 1)x/e, which holds for 0 ≤ x ≤ 1 because the graph of the convex
function e−x lies below that of 1− (e− 1)x/e, its chord across the interval 0 ≤ x ≤ 1.
Thus for all sufficiently large k (specifically, for k > (bq − 1)e/(b− 1)(1 − q)(e− 1)),
we have the bound

|B(z)| = Ω

(
1

l

)

for z on the contour Γ1. Since we also have A(z) = O(1) for z on Γ1, we have the
estimate

1

2πi

∮
Γ1

A(z)

B(z)

dz

zl+1
= O(l ql).(2.3)

Furthermore, as z traverses the contour Γ1, the value of the first term, (1−z)(1−
bqz), in B(z) circles the origin twice, since it is a quadratic polynomial. Since the
second term, (b − 1)z(1 − q)(qz)k, has strictly smaller magnitude, the value of B(z)
also circles the origin twice. It follows that the denominator of B(z) has exactly two
zeros inside the contour Γ1. These are perturbations of the zeros of the first term:
the zero of the first term at z = 1 is perturbed to one at

z = ζ2 = 1 + O(qk),(2.4)

and the zero of the first term at z = 1/bq is perturbed to one at

z = ζ3 =
1

bq

(
1 − (b− 1)(1 − q)

(bq − 1) bk
+ O

(
k

b2k

))
.(2.5)

The condition
(
log(l + 1)

)
/(k + 1) → 0 ensures that the O-terms in (2.4) and (2.5)

have smaller orders of magnitude than the terms preceding them. We observe that
0 < ζ3 < ζ2 < ζ1, and thus 0, ζ3, and ζ2 lie inside Γ1 and lie in that order along the real
axis. Let Γ2 be a contour taken counterclockwise around a circle |z− ζ2| = ε centered
at ζ2 and having radius ε sufficiently small to exclude all other singularities of the
integrand, and let Γ3 be a contour taken counterclockwise around a circle |z− ζ3| = ε
centered at ζ3 and having radius ε sufficiently small to exclude all other singularities
of the integrand. Since the integral of an analytic function around a contour depends
only on the homology class of the contour in the domain of analyticity of the function,
and since Γ0 is homologous to Γ1 − Γ2 − Γ3 (indeed, Γ0 is homotopic to a contour
that joins a forward traversal of Γ1 with reverse traversals of Γ2 and Γ3 by canceling
traversals of segments [ζ3 + ε, ζ2 − ε] and [ζ2 + ε, ζ1] of the real axis), from (2.2) we
have

ϕl(q) =
1

2πi

∮
Γ1

A(z)

B(z)

dz

zl+1

− 1

2πi

∮
Γ2

A(z)

B(z)

dz

zl+1

− 1

2πi

∮
Γ3

A(z)

B(z)

dz

zl+1
.(2.6)

The first integral in (2.6) has already been estimated in (2.3). The remaining
integrals circle just one singularity of the integrand, and thus they can be evaluated
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by Cauchy’s formula. If ζ is a simple pole of the integrand, and if Γ is a contour taken
clockwise around just this singularity of the integrand, then we have

1

2πi

∮
Γ

A(z)

B(z)

dz

zl+1
= Res

z=ζ

A(z)

B(z)

1

zl+1

=
A(ζ)

B′(ζ)

1

ζl+1
.

For the integral around Γ2, we have A(ζ2) = −(bq − 1) + O(qk) and B′(ζ2) = (bq −
1) + O(k qk) so that

− 1

2πi

∮
Γ2

A(z)

B(z)

dz

zl+1
= 1 + O(l qk).(2.7)

For the integral around Γ3 we have A(ζ3) = (b − 1)2(bq − 1) bk+1 + O(k/b2k) and
B′(ζ3) = −(bq − 1) + O(k/bk) so that

− 1

2πi

∮
Γ3

A(z)

B(z)

dz

zl+1
=

(
b− 1

bq − 1

)2

bl−k ql+1 + O(l bl−2k ql).(2.8)

Substituting the estimates (2.3), (2.7), and (2.8) into (2.6) completes the proof of the
proposition.

We observe that by extending the asymptotic expansions in (2.4) and (2.5), it is
possible to extend the expansions in (2.7) and (2.8) and thus reduce their contributions
to the error terms in Proposition 2.4. The error term in (2.3), however, cannot be
improved without taking account of the zeros of B(z) outside the circle |z| = 1/q,
which will in general contribute oscillatory terms to the expansion of ϕl(q).

Proof of Theorem 1.1. By Corollary 2.3, we may take X to be the number of idle
paths from v∗ = 0k to w∗ = 0k. We then have

Ex[X2] =
∑

u′:v∗→w∗

∑
u:v∗→w∗

Pr[u idle, u′ idle]

=
∑

u′:v∗→w∗

Pr[u′ idle]
∑

u:v∗→w∗

Pr[u idle | u′ idle],(2.9)

where the sums are over all paths from v∗ to w∗. For each path u′, we can find by
Lemma 2.1 an automorphism ϑ that carries u′ to the path u∗ in which all links are
labeled 0∗. Applying this automorphism to both u and u′ gives Pr[u idle | u′ idle] =
Pr[ϑ(u) idle | u∗ idle], since the probability distribution on states of the graph is
invariant under automorphisms. Furthermore,∑

u:v∗→w∗

Pr[u idle | u′ idle] =
∑

u:v∗→w∗

Pr[ϑ(u) idle | u∗ idle]

=
∑

u:v∗→w∗

Pr[u idle | u∗ idle],

since both right-hand sides sum the same terms in different orders. Thus the inner
sum in (2.9) is independent of u′, and we have

Ex[X2] =
∑

u′:v∗→w∗

Pr[u′ idle]
∑

u:v∗→w∗

Pr[u idle | u∗ idle]
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so that Ex[X2] factors as the product of two sums. The first sum is just Ex[X]. To
evaluate the second sum, we observe that Pr[u idle | u∗ idle] is just qj , where j is the
number of links on u that are not labeled 0k. Thus the second sum is ϕl(q), and the
theorem follows from Proposition 2.5.

3. The linking probability. Our goal in this section is to prove Theorem 1.2.
Thus in this section we shall always assume that b ≥ 2 and 0 < q < 1 are fixed and
that k → ∞ and l = ck for some fixed rational c > 1. Thus the constants in O-terms
may depend on c as well as on b and q, but not on k or l. We shall also assume that
k is even; the case of odd k requires only that k/2 be replaced with �k/2
 and �k/2�
in appropriate ways.

Lemma 3.1. Let G∗
b,k,l be the graph obtained from Gb,k,l by reversing the direc-

tion of its edges and exchanging the roles of its inputs and outputs. Then G∗
b,k,l is

isomorphic to Gb,k,l.
Proof. The isomorphism takes the vertex with label a1 · · · ak in rank m of Gb,k,l

to the vertex with label a∗1 · · · a∗k in rank l − m of G∗
b,k,l, where a∗i = aj with j ≡

l + 1 − i (mod k) (and, conversely, as it is an involution).
Lemma 3.1 establishes a symmetry between Gb,k,l and G∗

b,k,l, which we shall
invoke by use of the term “dually.” (When l is even, Gb,k,l is in fact isomorphic
to a graph with manifest bilateral symmetry, as is shown in the appendix of Pip-
penger [P3].)

Lemma 3.2. Let 〈Gb,k,l〉m,n, with 0 ≤ m ≤ n ≤ l, be the subgraph of Gb,k,l

comprising the vertices in ranks m (now considered inputs) through n (now considered
outputs) and the edges in stages m + 1 through n. Then 〈Gb,k,l〉m,n is isomorphic to
Gb,k,n−m.

Proof. The isomorphism takes the vertex with label a1 · · · ak in rank h of Gb,k,n−m

to the vertex with label a′1 · · · a′k in rank m + h of 〈Gb,k,l〉m,n, where a′i = aj with
j ≡ i + m (mod k).

Corollary 3.3. Between any given input and any given output of 〈Gb,k,l〉m,n,
there are bn−m−k paths if n−m ≥ k, and there is either one path or none if n−m < k.

Proof. The proof is immediate from Lemma 3.2 and Corollary 2.2.
We begin with the upper bound to Q. For 0 < q < qc, where qc = 1/b(c−1)/c,

we have Q → 0 by (1.2). For qc < q < 1, we shall use the following lemma from
Pippenger [P3, Cor. 4.2].

Lemma 3.4. Let Tr be a complete balanced b-ary tree of depth r, and let each
vertex of Tr (except for the root) be considered idle with probability q independently.
Let the random variable Zr denote the number of leaves (vertices at depth r) for which
every vertex on the path from the root (exclusive) to the leaf (inclusive) is idle. Then
we have

Pr[Zr = 0] = ξ + O(ηr)

as r → ∞ with b ≥ 2 and 1/b < q < 1 fixed, where ξ is the unique solution of the

equation
(
1− q(1− ξ)

)b
= ξ in the range 0 < ξ < 1, and η = b

(
1− q(1− ξ)

)b−1
< 1.

Now set r = k/2 and s = l− k/2. The paths from an input v to links in rank r of
Gb,k,l form a tree isomorphic to Tr (if we ignore the directions of the edges), and the
paths from links in rank s to an output w form a disjoint tree isomorphic to Tr. Thus
the number of links u in rank r for which all the links on the path from v to u are idle
is a random variable U with the same distibution as Zr. Dually, the number of links
u in rank s for which all the links on the path from u to w are idle is an independent
random variable U ′ with the same distribution as Zr. If v and w are linked, then we
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must have U ≥ 1 and U ′ ≥ 1, so by Lemma 3.1 we have

Q ≤ Pr[U ≥ 1, U ′ ≥ 1] = (1 − ξ)2 + O(ηr).

This completes the upper bound for Theorem 1.2.
We now turn to the lower bound for Theorem 1.2. Since this result has been

proved for c ≤ 2 in Pippenger [P3], we shall assume that c > 2. (This assumption could
of course be avoided, but it would require a more complicated choice of parameters and
consideration of cases.) For 0 < q < qc, there is nothing to prove, since Q is certainly
nonnegative. For qc < q < 1, we shall use the following lemma from Pippenger [P3,
Lem. 8.1].

Lemma 3.5. With Zr as in Lemma 3.4 and 1 ≤ H ≤ (bq)r, we have

Pr[Zr ≤ H] ≤ ξ + O
((
H/(bq)r

)α)
as r → ∞ with b ≥ 2 and 1/b < q < 1 fixed, where α = log(1/η)

/
log(bq) and η is as

in Lemma 3.4.
Supposing that qc < q < 1, we shall define

q∗ = qc−1 q
1/(c−1)2 .

We observe that q < 1 implies q∗ < qc−1 and that qc < q implies q∗ < q.
Lemma 3.6. Let k → ∞ and l = ck, with b ≥ 2, qc < q < 1, and c > 2 all fixed.

Then for all sufficiently large k, we have

ψh(q∗) ≤ k

for all 0 ≤ h ≤ l − k.
Proof. From Proposition 2.4 we have

ϕh(q∗) =

(
b− 1

bq∗ − 1

)2

bh−kqh+1
∗ + 1 + O(hbh−2kqh∗ ) + O(hqk∗ ) + O(hqh∗ ).

Since q∗ < qc−1 and h ≤ l−k, each term is O(1), and thus at most k for all sufficiently
large k.

Let

H = �(bq∗)r�.

We observe that v and w will be linked if the following three events occur:
I. The input v is joined by paths containing only idle links to all the links in a

set V containing at least H idle links in rank r.
II. All the links in a set W containing at least H idle links in rank s are joined

by paths containing only idle links to the output w.
III. There is at least one path containing only idle links from some link in V to

some link in W .
By Lemma 3.5, we have

Pr[I] ≥ 1 − ξ + O
((
q∗/q

)r)
,

and since q∗ < q we have Pr[I] → 1 − ξ. Dually, we have by Lemma 3.5

Pr[II] ≥ 1 − ξ + O
((
q∗/q

)r)
,
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and thus also Pr[II] → 1 − ξ. Since events I and II are independent, we have
Pr[I, II] → (1− ξ)2. Thus to complete the proof of the lower bound for Theorem 1.2,
it will suffice to show that

Pr[III | I, II] → 1.

Event III depends on events I and II through the sets V and W . We can avoid having
to consider this dependence by showing that Pr[III] → 1 for any sets V and W each
containing at least H links. Thus it will suffice to prove the following propostion.

Proposition 3.7. Let V and W be any sets of links in ranks r and s, respectively,
each containing at least H links. Then

Pr[III] → 1

as k → ∞ with l = ck, and with b ≥ 2, c > 2, and qc < q < 1 all fixed.
Proof. Since Pr[III] can only increase if links are added to V or W , we may

assume that V and W each contain exactly H links. Also, since Pr[III] can only
increase if q is increased, it will suffice to estimate Pr[III], assuming the vacancy
probability to be q∗ < q rather than q.

Let the random variable Y be the number of paths containing only idle links
joining some link in V (exclusive) to some link in W (exclusive). Then event III is
equivalent to Y ≥ 1 and thus it will suffice to show that Pr[Y = 0] → 0. To do this,
we shall use Chebyshev’s inequality:

Pr[Y = 0] ≤ Var[Y ]

Ex[Y ]2
.

Each path from a link in rank r (exclusive) to a link in rank s (exclusive) contains
s − r − 1 = l − k − 1 links. Since each of these links is independently idle with
probability q∗, the probability that such a path contains only idle links is ql−k−1

∗ . By
Corollary 3.3, the number of such paths joining a given link in rank r with a given
link in rank s is bs−r−k = bl−2k. Since there are H links in each of V and W , we have

Ex[Y ] = H2 bl−2k ql−k−1
∗ .

Next we must estimate Var[Y ]. We have

Var[Y ] =
∑

u′:V→W

∑
u:V→W

(
Pr[u, u′ idle] − Pr[u idle] Pr[u′ idle]

)
=

∑
u′:V→W

Pr[u′ idle]
∑

u:V→W

(
Pr[u idle | u′ idle] − Pr[u idle]

)
.

Here each sum is over all H2 paths joining a link in V to a link in W , so there are H4

terms in all. If u is a path from a link in rank r to a link in rank s, let �(u) denote the
link in rank r and σ(u) the link in rank s. By Lemma 2.1, we may assume (as in the
proof of Theorem 1.1) that u′ = u∗ is part of a path from v∗ = 0k through �(u′) = 0k

and σ(u′) = 0k to w∗ = 0k, in which all the links have label 0k. Thus we have

Var[Y ] = H2 bl−2k ql−k−1
∗

∑
u:V→W

(
Pr[u idle | u∗ idle] − Pr[u idle]

)
.

The factor H2 bl−2k ql−k−1
∗ multiplying the sum is Ex[Y ], so to show that

Var[Y ]/Ex[Y ]2 → 0,
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it will suffice to show that J/Ex[Y ] → 0, where

J =
∑

u:V→W

(
Pr[u idle | u∗ idle] − Pr[u idle]

)
.

We now partition the paths u into four classes as follows:
i. those for which �(u) = σ(u) = 0k;
ii. those for which �(u) �= 0k but σ(u) = 0k;
iii. those for which �(u) = 0k but σ(u) �= 0k; and
iv. those for which �(u) �= 0k and σ(u) �= 0k.

We shall denote the contributions to J over these four classes by Ji, Jii, Jiii, and Jiv,
respectively, and estimate them in turn.

For Ji, we have

Ji ≤
∑

u:0k→0k

Pr[u idle | u∗ idle]

= ϕs−r(q∗)

≤ k

by Lemma 3.6. Thus we have

Ji

Ex[Y ]
≤ k

H2 bl−2k ql−k−1
∗

≤ k

bl−k ql∗
→ 0,

since q∗ > qc.
For Jii, we have

Jii ≤
∑

V \{0k}→0k

Pr[u idle | u∗ idle].

To estimate Pr[u idle | u∗ idle], let i be the first rank for which a link in u has
label 0k. Since there are two distinct paths in 〈Gb,k,l〉0,i from v∗ through �(u∗) = 0k

and �(u) �= 0k to this link, we must have i ≥ k + 1 by Corollary 3.3. Thus we have

Jii ≤ (H − 1)

⎛
⎝ ∑

k+1≤i≤k+r

qi−r−1
∗ ϕs−i(q∗) +

∑
k+r+1≤i≤s

bi−r−kqi−r−1
∗ ϕs−i(q∗)

⎞
⎠

≤ (H − 1)k

⎛
⎝ ∑

k+1≤i≤k+r

qi−r−1
∗ +

∑
k+r+1≤i≤s

bi−r−kqi−r−1
∗

⎞
⎠,

where the factor of H − 1 accounts for the choice of �(u) ∈ V \ {0k}, the factors
preceding ϕs−i(q∗) in the sums account for the probability that all the links on u
between ranks r (exclusive) and i (exclusive) are idle, the factors of ϕs−i(q∗) account
for the probability that all the links of u between ranks i and s that are not labeled 0k

are idle, and we have bounded ϕs−i(q∗) using Lemma 3.6. Bounding the sums by the
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number of terms (at most s− r = l − k) times the largest term (the first for the first
sum, and the last for the second), we have

Jii ≤ (H − 1)k (l − k)(q
k/2
∗ + bl−2kql−k−1

∗ ).

Thus we have

Jii

Ex[Y ]
≤ k(l − k)(q

k/2
∗ + bl−2kql−k−1

∗ )

H bl−2k ql−k−1
∗

≤ k(l − k)

(
1

bl−3k/2 ql−k
∗

+
1

(bq∗)k/2

)
→ 0,

since bc−3/2qc−1
∗ > bc−3/2qc−1

c = b−1/2q−1
c > b−1/2q−1

2 = 1 (because q∗ > qc, b
c−1qcc =

1, qc < q2, and bq2
2 = 1) and bq∗ > 1 (because q∗ > q∞ = 1/b).

Dually, we have Jiii/Ex[Y ] → 0.
Finally, for Jiv we have

Jiv =
∑

u:V \{0k}→W\{0k}

(
Pr[u idle | u∗ idle] − Pr[u idle]

)

=
∑

u:V \{0k}→W\{0k}
u∩u∗ 
=∅

(
Pr[u idle | u∗ idle] − Pr[u idle]

)

≤
∑

u:V \{0k}→W\{0k}
u∩u∗ 
=∅

Pr[u idle | u∗ idle],

since if u ∩ u∗ = ∅, the events “u idle” and “u∗ idle” are independent, and the sum-
mand Pr[u idle | u∗ idle] − Pr[u idle] vanishes. Given a path u with u ∩ u∗ �= ∅, let i
be the first rank in which u has a link with label 0k, and let j ≥ i be the last such
rank. As in case ii, we have k+1 ≤ i, and dually we have j ≤ l−k−1. Thus we have

Jiv ≤ (H − 1)2

⎛
⎜⎜⎝ ∑

k+1≤i≤k+r

∑
l−k−r≤j≤l−k−1

i≤j

qi−r−1
∗ ϕj−i(q∗)q

s−j−1
∗

+
∑

k+1≤i≤k+r

∑
r≤j≤l−k−r−1

i≤j

qi−r−1
∗ ϕj−i(q∗)b

s−j−kqs−j−1
∗

+
∑

k+r+1≤i≤s

∑
l−k−r≤j≤l−k−1

i≤j

bi−r−kqi−r−1
∗ ϕj−i(q∗)q

s−j−1
∗

+
∑

k+r+1≤i≤s

∑
r≤j≤l−k−r−1

i≤j

bi−r−kqi−r−1
∗ ϕj−i(q∗)b

s−j−kqs−j−1
∗

⎞
⎟⎟⎠ .

Here we have broken the sum into four parts, according to whether k + 1 ≤ i ≤ k + r
or k + r + 1 ≤ i ≤ s, and also according to whether l − k − r ≤ j ≤ l − k − 1 or
r ≤ j ≤ l−k−r−1. (We note that the second and third double sums will vanish unless



158 NICHOLAS PIPPENGER

c > 5/2, and the fourth double sum will vanish unless c > 3.) The factor of (H − 1)2

accounts for the choice of �(u) ∈ V \ {0k} and σ(u) ∈ W \ {0k}, the factors preceding
ϕj−i(q∗) in the summands account for the probability that the links of u in ranks less
than i are idle, the factors of ϕj−i(q∗) account for the probability that the links of
u between i and j and not labeled 0k are idle, and the factors following ϕj−i(q∗) in
the summands account for the probability that the links of u in ranks greater than j
are idle. Bounding the factors ϕj−i(q∗) using Lemma 3.6, and bounding each double
summation by the number of terms (at most (l − k)2) times the largest term (which
occurs for i = k + 1 and j = l− k− r in the first sum, and for i = j in the remaining
three sums), we obtain

Jiv ≤ (H − 1)2k(l − k)2
(
qk∗ + 2bl−5k/2−1ql−k−2

∗ + bl−3kql−k−2
∗

)
.

Thus we have

Jiv

Ex[Y ]
≤ k(l − k)2

(
1

(bq∗)l−2k
+

2

q∗bk/2+1
+

1

q∗bk

)
→ 0,

since bq∗ > 1, c > 2, and b ≥ 2. This completes the proof of the proposition, and with
it the proof of Theorem 1.2.

4. Conclusion. We have determined the limiting value of the linking probability
in spider-web networks with scale k and depth l when l = ck with c > 1. The same
method could be used when l/k → ∞ but

(
log(l + 1)

)
/(k + 1) → 0. In this case,

the phase transition would be less abrupt: the limiting value of Q, and even its first
derivative with respect to q, would be continuous at the critical value q∞ = 1/b,
but the second derivative would be discontinuous. Little would be gained by such
networks, however, over those with a large fixed value of c: Their great cost would
decrease the critical vacancy probability through only a small interval [q∞, qc], and
would provide only a small linking probability in this interval.

Another extension of our results would be to consider, instead of the “indepen-
dent” probability distribution on states introduced by Lee [L1] and Le Gall [L2, L3],
the “coherent” distribution introduced by Pippenger [P1]. (The similar distribution
introduced by Koverninskĭı [K] does not have an obvious generalization for c > 2, and
in any case it does not seem likely that the additional independence in Koverninskĭı’s
model would have much effect on its tractability for c > 2.)

Yet another line of inquiry would be to consider the computational complexity of
path-search problems for spider-web networks with c > 2, using the link-probe model
introduced by Lin and Pippenger [L4]. Such results were obtained by Pippenger [P4]
for c = 2 (and these results are easily extended to the case 1 < c < 2), but even for
c = 2 the known results are far from definitive.
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