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Abstract

Many quantum information protocols rely on the ability to distinguish be-

tween entangled quantum states known as Bell states. However, theoretical

limits exist on the maximal distinguishability of these entangled states us-

ing linear evolution and local measurement (LELM) devices. In the case of

two particles entangled in multiple qubit variables, the maximum number

of distinguishable Bell states is known. However, in the more general case

of two particles entangled in multiple qudit variables, only an upper bound

is known under additional assumptions. I have written software in Matlab

andMathematica to explore computationally the maximum number of Bell

states that can be distinguished in the case of two particles entangled in a

qutrit variable, and the case of two particles entangled in both a qutrit and

qubit variable. Using code I have written in Mathematica, I have reduced

the number of cases to check for sets of 9 qubit⊗qutrit Bell states from

94, 143, 280 to 10, 365. Further work needs to be done to computationally

check these cases for distinguishability by an LELM apparatus.
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Chapter 1

Introduction

One of the key differences between quantum physics and classical physics

is the existence of situations where a group of particles is in a perfectly

defined state, but the individual states of each particle are undefined. This

phenomenon, known as entanglement, has applications to many quantum

information protocols, such as teleportation [1], dense coding [2, 3], quan-

tum repeaters [4], and entanglement swapping [5? ]. These protocols take

advantage of the properties of quantum states to encode information more

securely and efficiently than can be achieved using classicalmethods. A key

component of each of these protocols is the ability to distinguish between

entangled states. Thus, limitations on the number of entangled states that

can be distinguished also limit the effectiveness of these quantum informa-

tion protocols.

Of particular interest is the measurement of maximally entangled states

known as Bell states using only linear evolution and local measurement

(LELM) devices since these devices are simple to construct and are reliable

at detection compared to non-linear devices. Linear evolution means that

the evolution of each particle does not depend on any other particle, and

local measurement means that detection of each particle is registered as a

"click" that occurs locally at a detector in the device. Previous theoretical

upper bounds have been established [6, 7]. However, for some of these

results it is not known whether the upper bounds are achievable.

This thesis describes work to explore the achievable upper limit on the

maximum number of Bell states that can be distinguished using LELM de-

vices in the case of two particles entangled in either a two-state variable, a

three-state variable, or both a two-state and three-state variable. Most of

the work involves computational approaches using code written in Matlab
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and Mathematica. This work builds heavily upon the computational work

of Julien Devin [8] and Lucas Brady [9] who worked on similar projects

for their summer research. Chapter 2 will describe the mathematical foun-

dation of entanglement as well as previous results on maximal Bell state

distinguishability. Chapter 3 will explain the concept of equivalence classes

and how this mathematical idea can be applied to make computational

approaches to determining maximal Bell state distinguishability more effi-

cient. Chapter 4 will focus on attempts to computationally determine the

number of maximal Bell states that can be distinguished for two particles

entangled in a three-state variable. Chapter 5 will conclude the thesis by

summarizing the work done in my research and the current state of the

problem of maximal Bell state distinguishability.



Chapter 2

Background

2.1 Introduction

First, we shall provide an overview of the mathematics involved in entan-

gled states, as well as definitions of Bell states for two particles entangled

in multi-state variables. We will also discuss previous theoretical results on

the maximal distinguishability of Bell states using an LELM apparatus for

n qubit and qudit variables, as well as the mathematical formalism behind

the distinguishability conditions that allows us to check whether a given

set of Bell states is distinguishable.

2.2 Quantum States

In quantum mechanics, information about particles can be encoded in vec-

tors known as quantum states. These states are usually represented in braket

notation, where a ket such as

�
φ

�
is a vector signifying a quantum state

φ while the corresponding bra



φ

�
is the co-vector to the vector

�
φ

�
. The

magnitude squared of the inner product



ψ

�
φ

�
between a bra and a ket de-

notes the probability that a particle in the state

�
φ

�
will be measured in the

state

�
ψ

�
. The inner product



ψ

�
φ

�
is referred to as the probability amplitude.

The vector space generated by the ket vectors forms a Hilbert space whose

dimension is the number of mutually orthogonal states in a particular vari-

able. These mutually orthogonal states form a basis for the Hilbert space

that spans the entire space of states for the particle. For example, in the

case of a two-variable system whose basis states are the spin up and down

states {|↑〉 , |↓〉} of spin angular momentum, any state

�
φ

�
in the system can
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be described as �
φ

�
� a |↑〉 + b |↓〉 , (2.1)

where a and b are complex coefficients whose amplitude squared signifies

the probability of a particle in the state

�
φ

�
to be in the state |↑〉 or |↓〉, respec-

tively. All quantum states must be normalized so that the total probability

of being in any single state is 1, which can be described in this example by

the condition that |a |2 + |b |2 � 1.

These states can also be represented inmatrix notation in a suitable basis,

where quantum states are denoted by column vectors and their co-vectors

are denoted by row vectors corresponding to the conjugate transpose of

the column vector. For example, the vector

�
φ

�
in Equation 2.1 can also be

written as the column vector

�
φ

�
�

(
a
b

)
, (2.2)

where the basis is given by {|↑〉 , |↓〉}, and the corresponding co-vector is

given by the row vector 

φ

�
�

�
a∗ b∗

�
, (2.3)

where a∗ and b∗ are the complex conjugate to a and b, respectively. The inner
product in matrix notation is just given by matrix multiplication between

column and row vectors.

Thequantumstateswehave just been exposed to are singleparticle states

of one variable. To write quantum states of multiple particles, we take the

direct product of the basis states of each particle in order to determine the

joint-particle basis states of the multi-particle Hilbert space. For example,

if we were to write the state of two particles

�
ψ

�
, both of whose basis

states are the spin up and down states, the corresponding basis is given

by {|↑〉 |↑〉 , |↑〉 |↓〉 , |↓〉 |↑〉 , |↓〉 |↓〉}, which we shall denote as the joint-particle
basis. The most general two-particle quantum state in braket notation can

be written as

�
ψ

�
� a |↑〉L |↑〉R + b |↑〉L |↓〉R + c |↓〉L |↑〉R + d |↓〉L |↓〉R , (2.4)

where a , b , c , d ∈ C and |a |2 + |b |2 + |c |2 + |d |2 � 1. The subscripts L and

R denote whether the state belongs to the left or right particle. The corre-

sponding column vector in the basis {|↑〉L |↑〉R , |↑〉L |↓〉R , |↓〉L |↑〉R , |↓〉L |↓〉R}
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is given by

�
ψ

�
�

*....
,

a
b
c
d

+////
-

. (2.5)

Entanglement between two particles occurs when a joint-particle state

cannot be written as the direct product of two single-particle states. These

states are called entangled states. Entanglement can also occur in more than

two particles, but for our purposes it is sufficient to restrict entanglement

to 2−particle systems. For example, consider the state

�
ψ

�
�

1

√
2

(|↑〉L |↑〉R + |↑〉L |↓〉R) . (2.6)

We can rewrite this state as

�
ψ

�
� |↑〉L ⊗

1

√
2

(|↑〉R + |↓〉R) , (2.7)

which is a direct product of two single-particle states. Thus, the state in

Equation 2.6 is not an entangled state. However, the state

�
Φ+

�
�

1

√
2

(|↑〉L |↑〉R + |↓〉L |↓〉R) (2.8)

cannot be separated into the direct product of two single-particle states, so

|Φ+〉 is an entangled state.

We can extend our description of quantum states to states in more than

one variable, which involves taking a separate direct product for each of

the basis states for each variable. To make the direct product between

variables distinct from the direct product between separate particles, we

usually denote a multiple variable state for a single particle by a linear

combination of vectors of the form

�
φ1 , φ2 , . . . , φn

�
, where each φi denotes

a basis state for the ith variable. Hyper-entangled states are 2−particle states

that are entangled in multiple variables.

For example, consider two particles entangled in both a two-state spin

up and down variable and a three-state orbital angular momentum variable

whose basis is given by the states {|−~〉 , |0〉 , |~〉}. An example of a hyper-

entangled state φ between these two particles is given by

�
φ

�
� a |↑, ~〉L |↓,−~〉R + b |↓, 0〉L |↑, ~〉R , (2.9)

where a , b ∈ C and |a |2 + |b |2 � 1.
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2.3 Qubit and Qudit Bell States

A qudit is a quantum system with d basis states. These states are usually

eigenstates of an observable property such as spin or orbital angular mo-

mentum. For example, a qubit variable has two possible eigenstates while

a qutrit variable has three possible eigenstates. Bell states are special quan-

tum states that are formed by entangling two or more particles in one or

more qudit variables. We shall focus on Bell states for two particles entan-

gled in either a qubit or qutrit variable. Since each two-particle quantum

state can bewritten as a superposition of Bell states, these Bell states form an

orthonormal basis that spans the entire Hilbert space for the two-particle

quantum states. Hence, working in either the joint-particle basis or the

Bell-state basis is just a matter of convenience.

For the qubit case, where the basis states are given by {|0〉 , |1〉}, the
canonical Bell states in Dirac notation are given by the four vectors

�
Φ+

�
�

1

√
2

(|0〉L |0〉R + |1〉L |1〉R) (2.10a)

|Φ−〉 � 1

√
2

(|0〉L |0〉R − |1〉L |1〉R) (2.10b)

�
Ψ+

�
�

1

√
2

(|0〉L |1〉R + |1〉L |0〉R) (2.10c)

|Ψ−〉 � 1

√
2

(|0〉L |1〉R − |1〉L |0〉R) , (2.10d)

where L and R refer to the left and right particles, respectively. We shall

refer to these Bell states as qubit Bell states. The symbolsΦ andΨ distinguish

between the correlation of the two particles in the {|0〉 , |1〉} basis, and the

superscripts + and − distinguish the relative phase between the first and

second term of each Bell state.

For the qutrit case, where the basis states are given by {|0〉 , |1〉 , |2〉}, we
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use the following entangled basis of Bell states given in [10]:

�
ψ00

�
�

1

√
3

(|0〉L |0〉R + |1〉L |1〉R + |2〉L |2〉R) (2.11a)

�
ψ01

�
�

1

√
3

�|0〉L |0〉R + e2πi/3 |1〉L |1〉R + e−2πi/3 |2〉L |2〉R
�

(2.11b)

�
ψ02

�
�

1

√
3

�|0〉L |0〉R + e−2πi/3 |1〉L |1〉R + e2πi/3 |2〉L |2〉R
�

(2.11c)

�
ψ10

�
�

1

√
3

(|0〉L |1〉R + |1〉L |2〉R + |2〉L |0〉R) (2.11d)

�
ψ11

�
�

1

√
3

�|0〉L |1〉R + e2πi/3 |1〉L |2〉R + e−2πi/3 |2〉L |0〉R
�

(2.11e)

�
ψ12

�
�

1

√
3

�|0〉L |1〉R + e−2πi/3 |1〉L |2〉R + e2πi/3 |2〉L |0〉R
�

(2.11f)

�
ψ20

�
�

1

√
3

(|0〉L |2〉R + |1〉L |0〉R + |2〉L |1〉R) (2.11g)

�
ψ21

�
�

1

√
3

�|0〉L |2〉R + e2πi/3 |1〉L |0〉R + e−2πi/3 |2〉L |1〉R
�

(2.11h)

�
ψ22

�
�

1

√
3

�|0〉L |2〉R + e−2πi/3 |1〉L |0〉R + e2πi/3 |2〉L |1〉R
�
. (2.11i)

We shall refer to these Bell states as qutrit Bell states. The first index of

each qutrit Bell states distinguishes the correlation between the three par-

ticles in the {|0〉 , |1〉 , |2〉} basis, while the second index distinguishes the

relative phases between the joint-particle states. Thus, we can divide the

qutrit Bell states into the three classes {�
ψ0i

�}, {�
ψ1i

�}, {�
ψ2i

�} based on

their correlation properties, or we can divide them into the three classes

{�
ψi0

�}, {�
ψi1

�}, {�
ψi2

�} based on the relative phases between the joint-

particle states.

For two particles hyper-entangled in a qubit and qutrit variable, such

as spin and orbital angular momentum, an entangled basis can simply be

generated by taking the tensor product of each of the qubit Bell states |Ψi〉
with the qutrit Bell states

�
ψ j

�
, yielding the state |Ψi〉⊗ �

ψ j
�
. Since there are

four qubit Bell states and nine qutrit Bell states, this tensor product results

in a total of 4×9 � 36 hyper-entangled Bell states for two particles entangled

in both a qubit and qutrit variable, which we shall denote as qubit⊗qutrit

Bell states.
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Case Maximum Number of Distinguishability Classes

D ≡ 0 (mod 2) 2D − 1

D ≡ 1 (mod 2), fermions 2D − 2

D ≡ 1 (mod 2), bosons 2D − 3

D � 3, bosons 4

Table 2.1 Upper bounds on Bell state distinguishability for two particles en-
tangled in n qudit variables, assuming disjoint detection signatures. D is the
number of possible single particle input states for each particle.

2.4 Previous Results

Neal Pisenti [6, 11] showed that for two particles entangled in n qubit vari-

ables, it is only possible to distinguish at most 2
n+1
− 1 of the 4

n
possible

Bell states using an LELM apparatus. Neal and Philip Gaebler also showed

that this upper bound is achievable [11], proving that the maximal distin-

guishability of Bell states for n qubit variables is exactly 2
n+1
− 1.

Forhyperentanglementbetween twoparticles in n variableswith d1 , . . . , dn
states, respectively,more recent groupworkbyAndrewTurner [7] has estab-

lished upper bounds for hyper-entangled Bell state distinguishability using

an LELM apparatus under the assumption that certain projections called

detection signatures are disjoint. However, we do not know if these upper

bounds are achievable, and we also do not know whether the assumption

of disjoint detection signatures holds. Thus, the exact upper bound for

the case of n qudits is unknown. The results are given in Table 2.1, where

D � d1d2 · · · dn .

Inparticular, themaximumnumberofdistinguishablequtrit andqubit⊗qutrit

Bell states is unknown. Since previous experimental work on implementing

detection schemes using LELM devices has been done for qubit and qutrit

Bell states[12, 13, 14, 15], determining themaximumnumber of distinguish-

able qutrit and qubit⊗qutrit Bell states would improve our understanding

of the fundamental limits to current quantum information protocols. As

a result, this thesis will describe computational work towards determin-

ing the achievable limit in Bell state distinguishability for the qutrit and

qubit⊗qutrit case.
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2.5 Conditions for Distinguishability

One approach to determining the actual maximum number of distinguish-

able Bell states is to systematically check all possible k−subsets of the Bell

states computationally to see if they are distinguishable based on the follow-

ing conditions outlined in [16]: let the vector ~a � (â1 , â2 , . . . , âd)T represent

the annihilation operators of the single-particle input modes, and let the

vector ~c � (ĉ1 , ĉ2 , . . . , ĉd)T � U~a represent the annihilation operators of the

detectormodes of the LELMapparatus, whereU is a d×d unitarymatrix. In

order for a given set of Bell states {�
ψ1

�
, . . . ,

�
ψn

�} to be distinguishable, the
left-over states after the first detection by the LELM apparatus must remain

orthogonal. Thus, for a system of two particles the set of Bell states

�
ψi

�
are

distinguishable if and only if the following condition is satisfied: [16]



ψk

�
ĉ† ĉ

�
ψl

�
� 0 ∀k , l ,∀j � 1, . . . , d (2.12)

In other words, a set of Bell states is distinguishable by an LELM ap-

paratus if and only if there exists a d × d unitary matrix whose coefficients

satisfy Equation 2.12. If we treat the coefficients of this d × d unitary matrix

as free variables, then Equation 2.12 generates a systemof equations in these

variables that has a complex solution if and only if the set of Bell states that

generated these equations are distinguishable using an LELM apparatus.

Since we can search for solutions to a system of equations using compu-

tational methods, we can use Equation 2.12 to computationally determine

whether a set of Bell states is distinguishable by an LELM apparatus.

This set of conditions turns out to be sufficient for distinguishability of

the Bell states

�
ψi

�
. In particular, if the system of equations for a particular

ĉ j has no solutions, no first detector ‘click’ will leave the Bell states orthog-

onal, so the Bell states

�
ψi

�
cannot be completely distinguished. Hence, the

equation above must be satisfied for a particular detector ĉ j as a necessary

condition. Julien [8] and Lucas [9] implemented an algorithm in Mathe-

matica developed in [17] based which imposes this necessary condition on

the distinguishability of a given set of Bell states. My work expands on the

work of Lucas and Julien by improving the efficiency of the code as well as

implementing the full set of conditions outlined in [16].





Chapter 3

Equivalence Classes

3.1 Introduction

For a pair of entangled particles with a total of n Bell states, there are

�n
k

�

sets of k Bell states to check for distinguishability. As n increases, checking

all possible k−subsets quickly becomes computationally unfeasible. To

reduce the number of cases to check, Julien Devin and Lucas Brady used

the concept of equivalence classes. This mathematical concept allows us to

define certain sets of Bell states as ‘equivalent’ to each other, which means

that the sets of Bell states are distinguishable if and only if each of the

other equivalence sets of Bell states are also distinguishable. By defining

an equivalence relation between sets of Bell states, we can then simplify the

problem of checking each set of Bell states to checking one representative

set of Bell states from each equivalence class that we have defined. This

method turns out to reduce the number of cases to check drastically in the

qutrit and qubit⊗qutrit case.

3.2 Definition

An equivalence relation ∼ on a set X is a binary operation that is reflexive,

symmetric, and transitive. In other words, for all a , b , c ∈ X, we have a ∼ a,
a ∼ b if and only if b ∼ a, and if a ∼ b and b ∼ c, then a ∼ c. One of the

most common equivalence relations is the ‘�’ relation, which satisfies all of

the properties above. The set of elements A ⊂ X that are all equivalent to

an element a ∈ X is called an equivalence class, denoted by [a]. For example,

under the relation ‘�’ in the set of real numbers, the elements 4 and 2
2
fall
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under the same equivalence class [4]. Thus, elements of a single equivalence

class are identical in the sense that they can be treated as the same element

when considering operations on the element and their properties, such as

the fact that both 4 and 2
2
are even numbers.

In the case of Bell states, since any unitary operator on a single particle’s

state can be realized using linear optics [18], we can compose any LELM

apparatus with single-particle unitary operators on the left and/or right

particles to create another LELM apparatus, as in Figure 3.1. Thus, if a

set of Bell states is distinguishable using an LELM apparatus, then any set

of states resulting from a unitary transformation on the left and/or right

particles must be distinguishable using an LELM apparatus constructed

by composing the original distinguishing apparatus with the unitary op-

erators. Since all unitary matrices are invertible, any set of Bell states that

can be transformed into a set of distinguishable Bell states by left and/or

right particle unitary transformations is also distinguishable using anLELM

apparatus.

These properties allow us to define an equivalence relation between sets

of Bell states, where two sets of Bell states are equivalent if and only if there

exist single-particle unitary operations on the left and/or right particles that

transforms one set of Bell states into the other. Since all the sets of Bell states

in a given equivalence class have the same distinguishability characteristic,

we only need to check one member from each distinguishability class in

order to check for all the possible k−subsets.
To determine these equivalence classes, we use a base set of unitary

matrices in the Bell state basis corresponding to single-particle unitary op-

erations on the left and/or right particles. Since the composition of unitary

operations is also unitary, we can find more unitary matrices correspond-

ing to single-particle unitary operations on the left and/or right particles

by multiplying the matrices in our base set together. Once we have found

all the possible unitary matrices that can be generated by our base set, we

can apply these unitary matrices all at once to a particular set of Bell states

to generate an entire equivalence class for that set of Bell states. The larger

the equivalence classes generated, the better of a reduction in the number

of cases we need to check. Thus, it is important for us to generate large sets

of unitary matrices with our base set in order to simplify the number of

cases to check as much as possible.
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Figure 3.1 If a set of n Bell states {|Bi〉} are distinguishable and there exists
a single-particle unitary transformation from {|Bi〉} to another set of n Bell
states {|Bk〉}, then {|Bk〉} is also distinguishable. This defines an equivalence
relation.

3.3 Unitary Matrices

The unitarymatrices used for the qubit case, in the basis given by Equations

2.10a through 2.10d, are given by [8]

QB1 �

*....
,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+////
-

, (3.1)

QB2 �

*....
,

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

+////
-

, (3.2)

QB3 �

*....
,

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

+////
-

, (3.3)

QB4 �

*....
,

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

+////
-

. (3.4)
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These matrices represent unitary transformations on the left and right

qubit particles that Julien developed. QB2 represents the transformations

|1〉L → i |1〉L and |1〉R → i |1〉R. This transformation takes |Φ+〉 to |Φ−〉,
|Φ−〉 to |Φ+〉, and leaves the states |Ψ+〉 and |Ψ−〉 unchanged, which is

represented by swapping the first two columns of QB1. Similarly, QB1

represents the identity transformation, QB3 represents the transformation

|0〉L →
1
√

2

(|0〉L + i |1〉L), |0〉R →
1
√

2

(|0〉L + i |1〉L), |1〉L →
1
√

2

(|0〉L − i |1〉L), and
|1〉L →

1
√

2

(|0〉L − i |1〉L), while QB4 represents the transformation |0〉L →

(1+i)
2

|0〉L +
(1−i)

2
|1〉L, |0〉R →

(−1+i)
2

|0〉L +
(1+i)

2
|1〉L, |1〉L →

(1−i)
2

|0〉L +
(1+i)

2
|1〉L,

and |1〉R →
(−1−i)

2
|0〉L +

(1−i)
2

|1〉L.

The unitary matrices used for the qutrit case, in the basis given by 2.11a
through 2.11i, are given by [9]

QT1 �

*................
,

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

+////////////////
-

, (3.5)

QT2 �

*................
,

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

+////////////////
-

, (3.6)
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QT3 �

*................
,

0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

+////////////////
-

, (3.7)

QT4 �

*................
,

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

+////////////////
-

, (3.8)

QT5 �

*................
,

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0

+////////////////
-

, (3.9)

QT6 �

*................
,

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

+////////////////
-

. (3.10)

These matrices represent unitary transformations on the left and right
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qutrit particles that Julien developed, in addition to thematrix QT6 that Lu-

cas developed. QT1 represents the identity transformation, QT2 represents

the transformation |0〉R → |1〉R, |1〉R → |2〉R, and |2〉R → |0〉R, QT3 repre-

sents the transformation |1〉L → e2πi/3 |1〉L and |2〉R → e−2πi/3 |2〉R, QT4

represents the transformation |0〉L → e2πi/3 |0〉L and |0〉R → e−2πi/3 |0〉R, and

QT5 represents the change of basis transformation |0′〉 � 1
√

3

(|0〉 + |1〉 + |2〉),
|1′〉 � 1

√
3

(|0〉+e2πi/3 |1〉+e−2πi/3 |2〉), and |2′〉 � 1
√

3

(|0〉+e−2πi/3 |1〉+e2πi/3 |2〉),
followed by the transformation performed in QT4.

Lucas did not specify the unitary transformations for the matrix QT6,

so I wrote code in the Mathematica notebook QT6.nb in order to try to

determine the exact unitary transformations that it represented. However,

I was unable to find valid single-particle unitary transformations on the

left and/or right particles that would results in a matrix of the form QT6,

and it has been recently discovered by another student in our group that

these unitary transformations cannot exist. However, I have included the

matrixQT6 as part of the set of qutrit unitarymatrices for comparison’s sake

between my code and previous work done by Julien and Lucas. Thus, the

code described in Section 3.6 must eventually be re-run in order to see if not

including QT6 increases the number of cases to check for the qubit⊗qutrit

case.

Notice that for both the qubit and qutrit unitary matrices, we have

ignored overall phase factors for each individual Bell states. Since overall

phases do not matter when characterizing each individual Bell state, we

have simplified each unitary matrix in Equations 3.1-3.10 so that the overall

phases for each Bell state is 0.

We can change the basis of these matrices into the joint-particle state

basis with the following transformation matrices:

TB→S �
1

√
2

*....
,

1 1 0 0

0 0 1 1

0 0 1 −1

1 −1 0 0

+////
-

, (3.11)
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TT→S �
1

√
3

*................
,

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 0 1 0 0 0 1 e2πi/3 e−2πi/3

1 e2πi/3 e−2πi/3
0 0 0 0 0 0

0 0 0 1 e2πi/3 e−2πi/3
0 0 0

0 0 0 1 e−2πi/3 e2πi/3
0 0 0

0 0 0 0 0 0 1 e−2πi/3 e2πi/3

1 e−2πi/3 e2πi/3
0 0 0 0 0 0

+////////////////
-

.

(3.12)

ThematrixTB→S transforms amatrix from the qubit Bell state basis to the

2⊗ 2 joint-particle state basis while the TT→S matrix a matrix from the qutrit

Bell state basis to the 3 ⊗ 3 single-particle state basis. These matrices were

used to generate equivalence classes in VictorBellEquivalences.nb, which

will be explained in more detail later.

Since the unitary matrices are given in the Bell state basis, each unitary

matrix is simply a permutation matrix of the Bell states. Hence, in order to

generate an equivalence class for a particular set of Bell states, we just have

to use matrix multiplication to multiply the unitary matrix by a column

vector which represents the set of Bell states being used to generate the

equivalence class. Since this matrix multiplication is being done in the

Bell state basis, the vector for a set of Bell states simply consists of a column

vector {e1 , e2 , . . . , en}, where ei � 1 if the ith Bell state is a part of the set and

ei � 0 otherwise. For example, the set of qubit Bell states {|Φ+〉 , |Ψ+〉 , |Ψ−〉}
can be represented in the qubit Bell state basis as

{�
Φ+

�
, |Φ−〉 , |Ψ−〉} �

*....
,

1

0

1

1

+////
-

. (3.13)

The set of Bell states that results from the transformation given by QB2 is

then given by

*....
,

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

+////
-

·

*....
,

1

0

1

1

+////
-

�

*....
,

0

1

1

1

+////
-

, (3.14)

which is the set {|Φ−〉 , |Ψ+〉 , |Ψ−〉}.
The unitary matrices given in 3.1-3.10 are by nomeans an exhaustive set

of matrices that generates the largest equivalence class possible. However,
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since additional basis unitary matrices were difficult to find, and for ease

of comparison between my code and previous code, I decided to stick with

the unitary matrices given in Equations 3.1-3.10.

For the base set of unitary matrices for the qubit⊗qutrit case, we include

the non-identity qubit unitarymatrices 3.2-3.4 tensoredwith the qutrit iden-

tity matrix 3.5, the qubit identity matrix 3.1 tensored with the non-identity

qutrit matrices 3.6-3.10, and the 36 × 36 identity matrix corresponding to

the identity transformation on the qubit⊗qutrit Bell states.

3.4 Qubit and Qutrit Equivalence Classes

Since the unitary matrices given by Equations 3.1 through 3.4 are permuta-

tion matrices of the Bell states, we can represent the qubit unitary matrices

in cycle notation, where 1 corresponds to |Φ+〉, 2 corresponds to Φ−, 3 cor-

responds to |Ψ+〉, and 4 corresponds to |Ψ−〉. For example, the cycle form

of QB2 is given by (1 2) since QB2 swaps |Φ+〉 and Φ− while leaving |Ψ+〉
and |Ψ−〉 unchanged. Under this notation, the unitary matrices given by

Equations 3.1 through 3.4 are a subset of the symmetric group S4, which is

the group of all permutations of four elements. Thus, any combination of

QB1 through QB4 will result in another permutation matrix whose cycle

form is an element of S4.

It is well known that any n−cycle and a 2−cycle of adjacent elements in

the n−cycle is a generator for Sn , the symmetric group of n elements. Thus,

since the cycle form of QB4 is (1 2 3 4) and the cycle form of QB2 is (1 2), the
permutations QB2 and QB4 generate all of S4. Hence, every permutation

of the qubit Bell states represents single-particle unitary operations on the

left and/or right particles, so every set of qubit Bell states is equivalent

to any other set of qubit Bell states. Therefore, for any k, there is only

one equivalence class of k qubit Bell states, so one only needs to check

one particular set of k qubit Bell states to determine if k qubit Bell states

are distinguishable by LELM devices. It has been well-established by the

no-go theorem that the maximum number of qubit Bell states that can be

distinguished using an LELM apparatus is three [19, 1].

3.5 Matlab Code

In the case of the qutrit and qubit⊗qutrit Bell states, it was not immediately

obvious which permutations were generated. In addition, previous code
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written by Lucas Brady in Mathematica [9] could generate equivalence

classes for sets of 7 and 8 qubit⊗qutrit Bell states within a week, but failed

for the case of sets of 9 qubit⊗qutrit Bell states. Thus, I decided to write

my own code to generate the equivalence classes for both the qutrit and

qubit⊗qutrit cases. Since generating equivalences classes involved many

matrix operations, Matlab seemed like a good place to start. The scripts

that actually generated the equivalence classeswere FindAllEquivalences.m

and FindAllEquivalences2.m. Pseudocode for both scripts are shown in

Figures 3.2 and 3.3.

Since Lucas’s code already generated equivalence classes for sets of 7

and 8 qubit⊗qutrit Bell states, I initially focused my efforts on determining

the equivalence classes for sets of 9 qubit⊗qutrit Bell states. In FindAllE-

quivalences, the basic idea was to represent sets of 9 qubit⊗qutrit Bell states

as a vector of 9 ones and 36 − 9 zeroes, where the ones corresponded to

the qubit⊗qutrit Bell states included in the set and the zeroes corresponded

to qubit⊗qutrit Bell states left out of the set. By looping through 9 in-

dices that were appropriately spaced apart, I could loop through all

�
36

9

�

sets of 9 qubit⊗qutrit Bell states to apply the unitary matrices generated by

QT1 − QT6 and generate the equivalence classes for sets of 9 qubit⊗qutrit

Bells states.

The rate at which Matlab was able to pass through loop statements be-

came a limiting factor in generating equivalence classes for the qubit⊗qutrit

case. For example, by testing my code, I estimated FindAllEquivalences.m

function FindAllEquivalences(Matrices)

FirstStates � {}
i � 0

for i1 � 1 : 28, i2 � i1 + 1 : 29, . . . , i9 � i8 + 1 : 36 do
CurrentStates = Multiply vector(i1, i2, i3, i4, i5, i6, i7, i8, i9) by

Matrices

if member(FirstStates,CurrentStates) �� 0 then
FirstStates[end+1] = CurrentStates[1]

end if
i + +

end for
return FirstStates

end function

Figure 3.2 Pseudocode for the Matlab script FindAllEquivalences.m
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function FindAllEquivalences2(Matrices,nchoosek)

FirstStates � {}
i � 0

for n � 1 :length(nchoosek) do
CurrentStates =Mutiply vector2(nchoosek[end],nchoosek[n , :]) by

Matrices

if member(FirstStates,CurrentStates) �� 0 then
FirstStates[end+1] = CurrentStates[1]

end if
i + +

end for
return FirstStates

end function

Figure 3.3 Pseudocode for the Matlab script FindAllEquivalences2.m

to take over 100 days to generate equivalence classes for sets of 9 Bell states

in the qubit⊗qutrit case. Thus, I decided to write FindAllEquivalences2.m

in an attempt to speed up FindAllEquivalences.m using a different method

of generating equivalence classes. FindAllEquivalences2 takes in a list of

unitary matrices and an

�n
k

�
matrix and generates an equivalence class by

applying the list of unitary matrices to n × 1 vectors with k ones and n − k
zeros generated by the

�n
k

�
matrix in order to find all equivalence classes of

sets of k out of n Bell states. This method avoids the problem of looping

through 9 indices, while also being generalizable to the general qudit case.

Both these scripts involved helper functions in order to make the pro-

cess more efficient. These helper functions were SetMatrices.m, Generate-

Group.m, GenerateTransform.m, member.m, vector.m, and vector2.m Set-

Matrices.m defines the sets of unitary matrices given by 3.1 through 3.10,

and the transformation matrices TB→S and TT→S for the other functions to

use. It also defines the set of qubit or qutrit Bell states that I want to generate

an equivalence class for in both the Bell states basis and the single-particle

state basis using the transformation matrices. GenerateGroup.m takes in

our FullTransform list of unitary matrices and finds all possible unitary

matrices that can be generated by them. We can then immediately find the

entire equivalence class for a set of Bell states by hitting it with the entire

group. GenerateTransform.m takes in two d × d unitary matrices repre-

senting linear transformations on the left and right single particle d−qudit
states and a d2

× d2
change of basis matrix from the single particle basis to
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the qudit bell state basis, and returns the transformation matrix associated

with the kronecker product of the two matrices in the qudit bell state basis.

member.m takes in two list of matrices, Matrices1 and Matrices2, and re-

turns 1 if any element ofMatrices1 is inMatrices2 and 0 otherwise. vector.m

takes in a list of 9 coordinates and inserts a 1 into a vector of 36 zeros at

each of the coordinates given. This function allows us to store the sets of

Bell states as a smaller list of coordinates rather than a large vector of size

36. vector2.m takes in a positive integer n and a rowmatrix of k coordinates

and returns a vector with a 1 at each of the n coordinates and 0 elsewhere.

FindAllEquivalences2.m also failed to produce equivalence classes for

sets of 9 qutrit states in a timely manner as its runtime was not signifi-

cantly different from FindAllEquivalences.m. Thus, I decided to move onto

Mathematica since Mathematica is far more efficient than Matlab at run-

ning through loops. Mathematica also contained a large variety of built-in

functions that I could implement to make my code more efficient.

3.6 Mathematica Code

Mywork inMathematica directly expands upon Lucas’s summerwork. Lu-

cas had previously developed a probabilistic algorithm to generate equiv-

alence classes for the qutrit⊗qutrit case, which was able to successfully

generate equivalence classes for sets of k � 7 and k � 8 qubit⊗qutrit Bell

states within a period of a week. However, the k � 9 case proved too

inefficient for his algorithm to halt within a reasonable time frame. I devel-

oped a new algorithm that not only improves the run time of calculating

equivalence classes significantly, but also generates them using a determin-

istic method. The code for the algorithm is contained in the Mathematica

notebook VictorBellEquivalences.nb.

The main work of the code is contained in the function FindEquiv,

which takes in a list of matrices representing an equivalence class and

finds equivalence classes of sets of k out of n Bell states represented by

vectors of length n with k ones and n − k zeros. It returns a list whose

first element is a list of a representative set from each equivalence class and

whose second element is a list of the size of each equivalence class. The

matrices used in the argument of FindAllEquiv were imported from the

text file GenerateMatrices.txt, which contained the unitary matrices for the

qubit⊗qutrit Bell states generated by the Matlab script GenerateGroup.m.

The pseudocode for FindEquiv is shown in Figure 3.4.
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function FindAllEquiv(matrices,n,k)

statesToCheck = List of

�n
k

�
1’s

i � 0

for i <
�n

k

�
do

subset = UnrankKSubset(i , k ,Table(p , {p , n}))
currentState = MakeState(subset, n)
equivClass = Apply matrices to currentState

Append currentState to outputStates

Append length(equivClass) to outputLengths

Get equivIndex for equivClass

Set statesToCheck[equivIndex[j]] = 0 for all j �

1, . . . ,length(equivIndex)
end for
return outputStates and outputLengths

end function

Figure 3.4 Pseudocode for the Mathematica function FindAllEquiv, found in
VictorBellEquivalences.nb

One of the main issues I encountered while trying to generate equiva-

lence classes for the qubit⊗qutrit case using a deterministic algorithm was

the need to store the Bell states that I already checked in some sort of list.

Since the Bell states for the qubit⊗qutrit case are vectors of length 36, stor-

ing

�
36

k

�
of these Bell states directly was unfeasible with the memory I had

available. Thus, I decided to order the Bell states and store them in a list of�
36

k

�
boolean values, with which I would mark the boolean value of the ith

element of the list as 1 if the ith Bell state had been checked and 0 otherwise.

In this way, I could keep track of which Bell states I had checked already so

that my algorithm did not rely on randomly generating and checking Bell

states like previous code from Lucas’s work.

In order to convert between the position of a boolean value on a list

and a specific qubit⊗qutrit Bell state, FindAllequiv uses two helper func-

tions MakeState and GetSubset. MakeState takes in a k−subset of the list of
integers from 1 to N representing the coordinates of a state and creates a

corresponding vector of length N with a 1 at each coordinate and 0 every-

where else. We use MakeState to generate the vectors being multiplied in

FindEquiv. GetSubset takes in a state of length n with k ones and n−k zeros

and returns a list of the coordinates of the ones in the state corresponding to

a particular k− subset of the list of integers from 1 to N . We useGetSubset to
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transform from the vector form of the state to the subset form in FindEquiv.

Using FindEquiv, I was able to generate equivalence classes for sets of 8

qubit⊗qutrit Bell states in a couple hours on my Windows 8 laptop, which

took a week with Lucas’s code, and I was also able to generate equivalence

classes for sets of 9 qubit⊗qutrit Bell states in about half a day, which Lu-

cas’s code was unable to generate. For the k � 9 case, FindEquiv was able

to reduce the number of cases to check from

�
36

9

�
� 94, 143, 280 to 10, 365

using Lucas’ matrix QT6. The equivalence classes are stored in the text

file All9Classes.txt as vectors of 1’s and 0’s. These vectors were converted

to Bell state representations using Mathematica code found in LucasCon-

vertEquivalence.nb, which had been previously created by Lucas to convert

between vector and Bell state notations. The result of this conversion is

stored in the text file InitialStates9.txt. Now that I had successfully written

code to generate equivalence classes for the qubit⊗qutrit case, I was ready

to move on to checking members from each equivalence class in order to

determine the maximal number of Bell states that could be distinguished in

the qutrit and qubit⊗qutrit case.





Chapter 4

Qutrit Bell State
Distinguishability

4.1 Introduction

Julien in his summer work had previously determined that sets of 3 qutrit

Bell states were distinguishable using LELM apparatuses and that sets of 5

were not[8]. For the n � 4 case, Julien was able to separate the sets of Bell

states into two equivalence classes using only thematrices QT1−QT5. One

equivalence class had no solutions to the necessary conditions in Equation

2.12 for a particular detector, but Julien found a solution to Equation 2.12 in

one detector for the other equivalence class, which is represented by the set

of Bell states {ψ00 , ψ01 , ψ02 , ψ10}. However, Julien was unable to rule out

if the equivalence class given by the set {ψ00 , ψ01 , ψ02 , ψ10} satisfied all the

necessary conditions outlined inEquation 2.12 for all sixdetectors. I decided

to explore this issue in greater detail in order to determine if the maximal

distinguishability of qutrit Bell states was 3 or 4. All tests of runtime were

completed on aWindows 8 laptop with an Intel Core i7-4810MQ processor,

2.80 GHz processing speed, and 16.0 GB of RAM.

4.2 Initial Approaches

I began by implementing the full set of distinguishability conditions in

the Mathematica notebook QutritBellStates.nb. Using this notebook, I can

generate the full system of Equations given by Equation 2.12 using the

function EquationSystem. EquationSystem takes in a list of Bell states and
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function EquationSystem(StateList)

for i , j � 1 :length(StateList) do
if i < j then

Equation = {WriteEquation0(StateList[i],Statelist[ j]),. . .,
WriteEquation5(Statelist[i],Statelist[ j]}

EqRe = Real part of Equation

EqIm = Imaginary part of Equation

System = UnitaryCondition + EqRe + EQIm

end if
end for
return System

end function

Figure4.1 Pseudocode for theMathematica functionEquationSystem, found
in QutritBellStates.nb

returns a list of equations corresponding toEquation 2.12,where |Φk〉 are the
Bell states in the list given to EquationSystem. I can then useMathematica’s

built-in function Solve in order to attempt to determine whether the system

of equations produced by EquationSystem has a solution. The pseudocode

for EquationSystem is shown in Figure 4.1.

I began QutritBellStates.nb by defining the qutrit Bell states in the list

BellList. For the qutrit case, there are total of 2× 3 � 6 single-particle states,

so we require 6 detectors corresponding to a 6 × 6 unitary matrix. Thus,

I defined a unitary condition for a general 6 × 6 matrix by first defining

the 6 × 6 matrix {UnitaryMatrix}kl �akl+bkl · i, where both akl and bkl
are real coefficients. Then, the unitary condition is given by the Equation

UnitaryMatrix·UnitaryMatrix
† � I6, where UnitaryMatrix

†
is the conjugate

transpose of UnitaryMatrix and I6 is the 6 × 6 identity matrix. To make

the code more efficient, I restricted the solution search space to the real

numbers by separating the unitary condition into its real and imaginary

parts, which results in 72 individual equations from the condition that

UnitaryMatrix·UnitaryMatrix
† � I6 which I stored in UnitaryConditions.

I thenwrote the helper function FindEquation, which takes in two states

and generates the equations in Equation 2.12 by following themethod in the

Lutkenhaus simple criteria paper [19]. The helper functionsWriteEquationi
for i � 0, . . . , 5 converts the equations given by FindEquation into symbolic

form for the i−th detector mode. To do this, FindEquation utilizes the

Switch function in Mathematica, which replaces certain characters such as
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function FindUnitaryMatrix(StateList)

distinguishable = false

while distinguishable = false do
RR = random real number between 0 and 1

RC = RR + RR·i

unitaryMatrix = Orthogonalize(6 × 6 matrix of RC)

unitarySystem = UnitaryEquationSystem(StateList, unitaryma-

trix)

if unitarySystem does not contain false then
distinguishable = True

apparatus = unitaryMatrix

end if
end while
return apparatus

end function

Figure 4.2 Pseudocode for the Mathematica function EquationSystem,
found in QutritBellStates.nb

0, 1, and 2 with the appropriate variables corresponding to detection of the

Bell states at the detection modes.

After applyingEquationSystem to the set ofBell states {ψ00 , ψ01 , ψ02 , ψ10},
I obtained a system of 144 equations of second degree polynomialswith real

coefficients. After saving the resulting system of equations in the variable

SystemFour, I ran Mathematica’s built-in method Solve on SystemFour in

order to try to determine if there existed a solution to SystemFour. If a

solution exists to a given system of equations, Solve will return a specific

solution satisfying the system, and Solve will return null if Mathematica

cannot find a numerical solution. However, Mathematica was unable to

return a result after running for several days. Thus, I decided to attempt

to solve SystemFour using another approach in the Mathematica notebook

FindUnitaryMatrix.nb, which contained the function FindUnitaryMatrix.

The pseudocode for FindUnitaryMatrix is shown in Figure 4.2.

FindUnitaryMatrix attempts to find a 6×6 unitary matrix whose entries

represent the coefficients for the detector modes of an apparatus that can

distinguish a given set of Bell states. It does this by generating random 6×6

unitary matrices and testing the elements of the resulting matrix with the

necessary and sufficient conditions as outlined in Equation 2.12. Unfortu-

nately, if the set of Bell states are not distinguishable, FindUnitaryMatrix
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will run forever. Thus it can only be used to verify sets of Bell states that are

distinguishable. It turned out that FindUnitaryMatrix was unable to find a

unitary matrix for a set of detector modes that could distinguish the set of

Bell states {ψ00 , ψ01 , ψ02 , ψ10} after running for several days.

The Mathematica notebook QutritBellStates2.nb was a third attempt at

finding a unitary matrix representing an LELM apparatus that could dis-

tinguish the set of Bell states {ψ00 , ψ01 , ψ02 , ψ10}. The main idea was that

instead of solving for the full system of equations outlined in Equation 2.12

for each detector simultaneously, it would be computationally simpler to

solve for a particular detector, which had been accomplished by Julien [8].

However, in order to ensure the unitary condition outlined in [19]wasmain-

tained, the six rows of UnitaryMatrix corresponding to the coefficients of

the six detector modes must be pairwise orthogonal. Thus, I decided to test

this method in the simpler case for the qubit Bell states in the Mathematica

notebook QubitBellStates.nb, where I wrote the function FindAllSolutions

in order to find four orthogonal detectors to construct a qubit Bell State dis-

tinguishability apparatus. The pseudocode for FindAllSolutions is shown

in Figure 4.3.

FindAllSolutions first attempts to find an individual detector mode sat-

isfying Equation 2.12 for one particular detector, then finds another detector

that was orthogonal to the first detector. FindAllSolutions would halt once

coefficients for UnitaryMatrix corresponding to four pairwise orthogonal

detector modes were found. However, if no solution existed to the set of

conditions produced by the set of Bell states {ψ00 , ψ01 , ψ02 , ψ10}, FindAllSo-

lutions would halt. For the qubit case, FindAllSolution was able to success-

fully find solutions for sets of distinguishable states and return no solutions

for indistinguishable sets of states in less than a second. Hence, I decided to

scale up the method for the qutrit case in the notebook QutritBellStates2.nb

in order to see if this method could resolve the issue of maximal qutrit

Bell state distinguishability. However, after running QutritBellStates2.nb

for several days, FindAllSolution did not halt. At this point, I began to look

for other methods for determining whether a solution existed to the system

of equations produced by EquationSystem.

4.3 Gröbner Bases

Since the distinguishability of a set of Bell states depends only on the exis-

tence of a solution to the set of equations in 2.12, and not the exact solution
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function FindAllSolutions(StateList)

AllSolutions = 0 and Solutions = {}
while AllSolutions �� 0 and length(Solutions) < 4 do

FullEquationSystem = EquationSystem(StateList)

for i � 1 :length(Solutions) do
Apply orthogonality conditions to states in StateList

Separate orthogonality conditions into real and imaginary

components EqRe and EqIm

FullEquationSystem = FullEquationSystem + EqRe + EqIm

end for
Result = FindInstance(FullEquationSystem)

if Result �� {} then
AllSolutions = 1

Append Result to Solutions

end if
end while
return Solutions

end function

Figure 4.3 Pseudocode for the Mathematica function FindAllSolutions,
found in QubitBellStates.nb
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itself, I decided to look into computational methods that could determine

if a system of equations had a solution without having to solve for the sys-

tem directly. A key feature of the equations generated by EquationSystem

was that each one was a second-degree polynomial equation with real co-

efficients of the form f1(a00, a01, . . . , b54, b55) � f2(a00, a01, . . . , b54, b55).
Since this equation is equivalent to the equation f1 − f2 � 0, the solutions

to the system of equations { fi1 � fi2} given by EquationSystem is just the

set of common complex zeroes of the set of second-degree polynomials

{ fi1 − fi2}. Hence, the problem of whether a set of qutrit Bell states are

distinguishable reduces to the problem of whether a common zero exists

between a set of second-degree polynomials with real coefficients.

One way this can be done computationally is to use the concept of a

Gröbner basis. The idea of Gröbner bases was created by Bruno Buchberger

in his 1965 Ph.D. thesis, where he not only developed the theory of Gröbner

bases but also described an algorithm to compute one [20]. In order to define

what a Gröbner basis is, we must first define a fewmathematical terms. Let

K be a field, such as the real numbers R, and consider the polynomial ring

K[x1 , . . . , xn] whose elements are polynomials in the variables x1 , . . . , xn
with coefficients lying in K. If F � { f1 , . . . , fk} is a finite set of polynomials,

then the ideal generated by F is the set given by

〈F〉 � {
k∑

i�1

pk fk |g1 , . . . , gk ∈ K[x1 , . . . , xn]}. (4.1)

In otherwords, the ideal 〈F〉 is just the set of linear combinations of elements

in F, where the coefficients are polynomials in the ring K[x1 , . . . , xn]. Before
we can define a Gröbner basis, we must first give a term ordering to the ring

K[x1 , . . . , xn], which is a total order ≺ on the monomials xa � xa1 · · · xan
of

K[x1 , . . . , xn] that satisfies the following properties:

1. xa
≺ xb

implies xa+c
≺ xb+c

for all a , b , c ∈ N.

2. 1 ≺ xa
for all a ∈ Nn

\{0}, where 1 is the constant monomial.

Then, for a polynomial f ∈ F, the initial term, denoted by in≺( f ), is
defined as the largest monomial xa

that occurs in f under the term order ≺

with a non-zero coefficient. A Gröbner basis of an ideal I is a finite subset

G ⊂ I such that

〈{in≺(g)|g ∈ G}〉 � 〈{in≺( f )| f ∈ I}〉 (4.2)
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In other words, a Gröbner basis is a finite set of polynomials from I whose

initial terms generate the same ideal as the ideal generated by all the initial

terms of I.
The most convenient property of Gröbner bases to my work is the fact

that aGröbner basis of an ideal I � 〈F〉under any termorderinghas the same

set of common zeroes as the set of polynomials F that generated the ideal I.
This property is due to the fact that the set of common zeroes to F depends

only on the ideal generated by F. Hilbert’s Nullstellensatz then implies that

F has no common zeroes if and only if G contains the polynomial 1. Thus,

we can determine whether a common zero exists between a set of second-

degree polynomials with real coefficients by computing a Gröbner basis of

the set of polynomials. Then, 1 is contained in the Gröbner basis if and only

if no solution exists to the systemof equations produced by EquationSystem

for a particular set of Bell states, which reduces the problem of checking the

distinguishability of Bell states to computing a Gröbner basis.

4.4 Application of Gröbner Bases inMathematica and
Singular

Since Mathematica had a built-in method GroebnerBasis for computing

a Gröbner basis, I decided to use Mathematica’s implementation of the

Gröbner basis algorithm instead of creating my own. I created the Math-

ematica notebook QutritGroebnerBasis.nb in order to test the efficiency of

Mathematica’s implementation. The main modification was in the function

PolynomialSystem, where instead of generating a system of equations to be

solved for, PolynomialSystem in QutritGroebnerBasis.nb instead produced

a list of polynomials whose common zeroes corresponded to the solution

set to the original system of equations generated by EquationSystem. The

output of PolynomialSystem was then passed onto the method Groebner-

Basis with the ordering a00 ≺ a01 ≺ . . . ≺ a54 ≺ a55 ≺ b01 ≺ . . . ≺ b55.

Under this ordering, GroebnerBasis did not halt after running for several

days.

To test the efficiency of Mathematica’s implementation on a smaller

scale, I created theMathematica notebook QubitGroebnerBasis.nb. Most of

the functions were carried over from QutritBellStates, with the Bell states

and helper functions appropriately redefined for use in the qubit case.

After testing both GroebnerBasis and FindInstance, a built-in method for

finding a particular solution to a system of equations, for the qubit case,
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both methods failed to halt after several hours of run-time. Therefore, it

seemed that Mathematica’s implementation of the Gröbner basis algorithm

was too inefficient to resolve the issue of Bell state distinguishability for the

qutrit case.

After a bit of research, I discovered that themost state of the art Gröbner

basis algorithms were the Faugère’s F4 and F5 algorithms, both of which

were developed by Jean-Charles Faugère [21, 22]. The F5 algorithm hap-

pened to be implemented in the SINGULAR computer algebra system, so

I decided to try to compute a Gröbner basis for the polynomials produced

by PolynomialSystem for the set of Bell states {ψ00 , ψ01 , ψ02 , ψ10} in SIN-

GULAR. However, in order to do this, I had to convert the coefficients of

the polynomials into numerical values since I was unable to define exact

values such as

√
3 in SINGULAR. After converting the polynomials from

PolynomialSystem into numerical formandpassing them into SINGULAR’s

Gröbner basis function, SINGULAR returned the set {1} almost instanta-

neously, which means that the set of Bells states {ψ00 , ψ01 , ψ02 , ψ10} cannot
be completely distinguished by anLELMapparatus. However, after passing

in small subsets of the full system of polynomials generated by Polynomial-

System, SINGULAR generated large sets of polynomials after many hours

of run-time. Thus, I had reason to suspect that the result of SINGULAR’s

Gröbner basis function on the full set of polynomials was inaccurate since it

seemed improbable that SINGULAR computed a Gröbner basis for a set of

144 polynomials nearly instantly while SINGULAR was unable to compute

a Gröbner basis for a subset of 15 of these polynomials within a few hours.

Thus, though preliminary results in SINGULAR naively suggest that

there exists no solution to the set of polynomials given by PolynomialSys-

tem for the set of Bell states {ψ00 , ψ01 , ψ02 , ψ10}, these SINGULAR results

cannot be fully trusted due to the approximation of exact coefficients in

the polynomials given to SINGULAR as well as SINGULAR’s own erratic

behavior for large systems of polynomials.
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Conclusion

In order to simplify the problem of computing the maximal number of Bell

states in the qutrit and qubit⊗qutrit case, I have written code in Mathe-

matica that can successfully generate equivalence classes for sets of n < 36

qubit⊗qutrit Bell states deterministically and with much higher efficiency

than previous iterations of the code. This code has simplified the number of

cases to check for sets of 9 qubit⊗qutrit Bell states from
�
36

9

�
� 94, 143, 280 to

10, 365. I have also attempted to investigate the maximal distinguishability

of qutrit Bell states using Mathematica code written in QutritBellStates.nb,

FindUnitarymatrix.nb, QutritBellStates2.nb, andQutritBellStates3.nb along

with the assistance of the SINGULAR computer algebra system. Though

preliminary results in SINGULAR suggest that 3 is the maximum number

of Bell states that can be distinguished in the qutrit case, more work needs

to be done to verify that the results in SINGULAR are valid given the fact

that the polynomials used to check the distinguishability of Bell states in

the qutrit case were numerical approximations of the exact distinguishabil-

ity conditions, as well as the fact that SINGULAR’s Gröbner basis function

may have unintended behavior for large systems of polynomials. The code

outlined in Sections 3.5 and 3.6 also need to be re-run without the use of

QT6 as one of the qutrit unitary matrices in order to see if the number of

qubit⊗qutrit cases to check increases.

Future avenues of research include verifying the results in SINGULAR

for the qutrit case, as well as determining ways to simplify the system of

equations given in 2.9 so that it is more computationally feasible to solve for

the distinguishability conditions. Another area of development would be

to generalize the method for calculating equivalence classes in VictorBellE-

quivalences for the qubit⊗qutrit case to two particles hyper-entangled in
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multiple qudit variables. It is my hope that the work described in this thesis

can guide future computational work on the problem of maximal Bell state

distinguishability in the general case of hyper-entangled qudits.
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