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SRT DIVISION ALGORITHMS AS DYNAMICAL SYSTEMS∗

MARK MCCANN† AND NICHOLAS PIPPENGER†

Abstract. Sweeney–Robertson–Tocher (SRT) division, as it was discovered in the late 1950s,
represented an important improvement in the speed of division algorithms for computers at the
time. A variant of SRT division is still commonly implemented in computers today. Although
some bounds on the performance of the original SRT division method were obtained, a great many
questions remained unanswered. In this paper, the original version of SRT division is described
as a dynamical system. This enables us to bring modern dynamical systems theory, a relatively
new development in mathematics, to bear on an older problem. In doing so, we are able to show
that SRT division is ergodic, and is even Bernoulli, for all real divisors and dividends. With the
Bernoulli property, we are able to use entropy to prove that the natural extensions of SRT division
are isomorphic by way of the Kolmogorov–Ornstein theorem. We demonstrate how our methods and
results can be applied to a much larger class of division algorithms.
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1. Introduction. Since the discovery of the first radix-2 Sweeney–Robertson–
Tocher (SRT) division algorithm, the use of the term “SRT division” has expanded
to include a wide variety of higher radix nonrestoring division algorithms that are
loosely based on the original. For example, there is the infamous implementation
of a radix-4 SRT division algorithm in the first release of the Pentium CPU that
has become widely known as the “Pentium Bug.” One major difference between
this implementation of radix-4 SRT division and the original radix-2 SRT division
is that the former produces a constant number of quotient bits per step, while the
latter produces a variable number. Modern implementations of SRT division use
carry-save adders to perform additions and subtractions in constant time. Earlier
implementations, however, used carry-propagate adders with delays that grow with
the word length. Therefore, the primary goal of the early investigators was to reduce
the number of uses of the costly adder. In the late 1950s, Sweeney [3], Robertson
[17], and Tocher [21] independently made the observation that whenever a partial
remainder is in the range (− 1

2 ,
1
2 ), there will be one or more leading zeros that can be

shifted through in a very short amount of time (usually one cycle) thereby reducing
the use of the adder. Although the aforementioned have received most of the credit for
the algorithm named after them, it can be argued that Nadler described an equivalent
algorithm in a 1956 paper [13]. The description of higher radix SRT division, which
is the basis for modern SRT division, is generally attributed to Atkins [1], but this is
not the version of division that we will be concerned with in this paper.
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Although what is considered to be “costly” for a division algorithm has changed,
it is still interesting to study and important to understand the behavior of successive
partial remainders on average for a given divisor. Surprisingly, some of the most
basic questions that one might have concerning the behavior of partial remainders for
even simple radix-2 SRT division have remained unanswered for over 40 years. The
difficulty that early investigators experienced in answering such questions was mainly
due to a lack of necessary mathematical tools and results. During that past 30 years,
the field of “dynamical systems theory” or “ergodic theory” has come into existence
in mathematics and has been greatly developed. In this paper we show how to apply
some of what is now known in dynamical systems theory to the earliest version of SRT
division. In doing so, we are able to prove several previously unknown properties for
simple SRT division. The results are quite general and can be adapted to other
division algorithms. We view the value of these results as lying in the establishment
of a connection between a well-developed area of mathematics and digital division,
rather than in any practical consequences for division algorithms. For the remainder of
this paper, the term SRT division will refer to the original algorithm unless otherwise
stated.

The SRT division algorithms analyzed by Freiman [5] and Shively [20] are the
same, but the authors differ in what they take to be a step of the algorithm: Freiman
defines a step to be the operations from one use of the adder to the next, while Shively
defines it to be the operations from one normalizing shift (of a single place) to the
next. The following definitions are consistent with Shively’s:

1. n represents the number of iterations performed in the algorithm.
2. p0 is the dividend (or initial partial remainder) normalized so that p0 ∈ [ 12 , 1).
3. pi ∈ (−1, 1), i ∈ N, is the partial remainder after the ith step.
4. D is the divisor normalized to [12 , 1).
5. qi ∈ {−1, 0, 1} (i ∈ {0, . . . , n− 1}) is the quotient digit generated by the ith

step.
6. Qn =

∑n−1
i=0

qi
2i is the “rounded off” quotient generated after n steps of the

algorithm.
Given the above definitions, after n steps of the division algorithm, we would like

it to be true that

p0 = DQn + ε(n),

where ε(n) is a term that goes to zero as n goes to infinity.
A recurrence relation for the SRT division algorithm can be stated as

(pi+1, qi) =

⎧⎪⎨
⎪⎩

(2pi, 0) : |pi| < 1
2 ,

(2(pi −D), 1) : |pi| ≥ 1
2 and pi ≥ 0,

(2(pi + D), −1) : |pi| ≥ 1
2 and pi < 0.

By observing that

pi+1 =

⎧⎪⎨
⎪⎩

2(pi − (0)D) : |pi| < 1
2 ,

2(pi − (1)D) : |pi| ≥ 1
2 and pi ≥ 0,

2(pi − (−1)D) : |pi| ≥ 1
2 and pi < 0,

we can rewrite the definition of pi+1 as

pi+1 = 2(pi − qiD) .
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After n steps have been completed, we have

pn = 2np0 − 2nq0D − 2n−1q1D − · · · − 21qn−1D ,

and then after dividing by 2n and solving for p0 we find that

p0 =
pn
2n

+
q0D

20
+

q1D

21
+ · · · + qn−1D

2n−1

= D

n−1∑
i=0

qi
2i

+
pn
2n

= DQn +
pn
2n

.

Now let ε(n) = pn/2
n and let Q∗ = limn→∞ Qn. Since |pn| < 1, in the limit as n goes

to infinity,

p0 = DQ∗ .

The generated quotient bits (−1, 0, +1 valued) are not in a standard binary
representation, but it is a simple matter to convert the answer back to standard
binary without using any expensive operations. Table 1 shows an example of using
the SRT division algorithm to divide 0.67 by 0.75. The steps that produce nonzero
quotient bits have been shown. In this example, after six uses of the adder, the
quotient (0.893) has been determined to four digits of precision.

Table 1

SRT division where p0 = 0.67 and D = 0.75.

p0 = 0.67 = 0.67
p1 = 2(0.67 −D) = −0.16 q0 = 1 Q0 = 1
p4 = 2(22(−0.16) + D) = 0.22 q3 = −1 Q3 = 0.875
p7 = 2(22(0.22) −D) = 0.26 q6 = 1 Q6 = 0.890625
p9 = 2(21(0.26) −D) = −0.46 q8 = 1 Q8 = 0.89453125
p11 = 2(21(−0.46) + D) = −0.34 q10 = −1 Q10 = 0.8935546875
p13 = 2(21(−0.34) + D) = 0.14 q12 = −1 Q12

.
= 0.8933105469

Now, with this simple system of division in hand, we might want to ask certain
questions about its performance. For example, we could ask, “How many bits of
precision are generated per iteration of the algorithm on average?” To answer this
question, we must look at the magnitude of |Q∗ −Qn| = |pn/2n|. The number of
bits of precision on the nth step is then n − log2 pn. In the worst case, pn is close
to 1, and therefore we get at least one bit of precision per iteration of the algorithm,
regardless of the values of D or p0. Of course, a designer of actual floating-point
hardware probably wants to know the expected performance based on the expected
values of pn. To answer the many variants of this type of question, it is clear that
we must know something about the distribution of partial remainders over time. The
remainder of this paper is devoted to extending what is known about the answer to
this type of question as it relates to SRT division and its variants.

2. SRT division as a dynamical system. The example in Table 1 makes it
clear that keeping track of the signs of successive partial remainders is irrelevant in
determining how many times the adder will be used for a particular calculation. For
this reason, we need only consider the magnitudes of successive partial remainders.
We now give a reformulation of SRT division that will allow us to look at division as
a dynamical system.
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Definition 1 (SRT division transformation). For D ∈ [ 12 , 1), we define the
function TD : [0, 1) → [0, 1) as

TD(x) =

⎧⎪⎨
⎪⎩

2x : 0 ≤ x < 1
2 ,

2(D − x) : 1
2 ≤ x < D,

2(x−D) : D ≤ x < 1.

This transformation of the unit interval represents the successive partial remainders
that arise as SRT division is carried out by a divisor D on a dividend x. D is
normalized to [ 12 , 1). The dividend x is normalized to [ 12 , 1) initially, while each of the
successive partial remainders Tn

D(x) (n ∈ N) subsequently ranges through [0, 1).
By using the characteristic function for a set Δ defined as

1Δ(x) =

{
1 : x ∈ Δ,

0 : x �∈ Δ,

we can rewrite TD as

TD(x) = 2x · 1[0, 12 )(x) + 2(D − x) · 1[ 12 ,D)(x) + 2(x−D) · 1[D,1)(x) .(1)

If we plot (1) on the unit interval, we obtain a very useful visualization of our
transformation. Figure 1 shows the plot of T0.75(x) combined with a plot of the
successive partial remainders that arise while dividing 0.67 by 0.75. This is the same
system that was presented earlier in Table 1. Notice that a vertical line in the interval
[ 12 , D) corresponds to a subsequent flip in the sign of the next partial remainder.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

T
0
.7

5
(x

)

|p0|

|p3| |p6||p8|

|p10|

Fig. 1. Graphic representation of partial remainder magnitudes for D = 0.75 and p0 = 0.67.

Figure 1 shows an example of following the trajectory of a single partial remainder
for a particular divisor. In this figure, the heavy solid lines represent the transfor-
mation T0.75, while the abscissa of the thin vertical lines represents successive partial
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remainder magnitudes. After 10 applications of the T0.75, there is not any obvious
regular pattern, although we expect to see one eventually since the quotient is rational
in this case.1 Of course, most numbers are not rational and we can deduce that for
most numbers, the transformation will never exhibit a repeating pattern. In Figures
2 and 3, we see that a very small change in the value of the initial partial remainder
quickly produces large differences in the observed behavior of the subsequent partial
remainders. As we show in the appendix, our system is actually chaotic, and there-
fore we will gain little understanding by studying the trajectories of individual partial
remainders. The logical next step is to study the behavior of distributions of points
over the whole interval.

0 20 40 60 80 1000

0.25

0.5

0.75

1

n

T
n 4
/
5
(x

)

Fig. 2. The result of applying T4/5 to x = π
7

one hundred times.
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0.25

0.5

0.75

1

n

T
n 4
/
5
(x

)

Fig. 3. The result of applying T4/5 to x = π
7

+ 0.00001 one hundred times.

Understanding the behavior of ensembles of points under repeated transforma-
tion is in the realm of dynamical systems theory. For the remainder of this paper,
we assume a certain amount of familiarity with the fundamentals of dynamical sys-
tems theory (or ergodic theory), which requires some basic understanding of measure
theory. We will include a few helpful background material definitions as they are
needed, but mostly we will provide references. A very good introduction to the study
of chaotic systems is Lasota and Mackey’s book [8]. For a more detailed introduction
to ergodic theory (along with the necessary measure theory needed to understand this
paper), Walters’s book [22] and Petersen’s book [16] are highly recommended.

1With redundant representations, rational numbers can have aperiodic representations, though
we do not expect this to happen.



1284 MARK MCCANN AND NICHOLAS PIPPENGER

Definition 2 (probability space). If B is a σ-algebra on subsets of a set X
and if m is a measure on B, where m(X) = 1, then the triple (X,B,m) is called a
probability space. (See [22, pp. 3–9] and [8, pp. 19–31] for a good overview of basic
measure theory and Lebesgue integration.)

Definition 3 (Perron–Frobenius operator). For a probability space (X,B,m),2

the Perron–Frobenius operator P : L1 → L1 associated with a nonsingular transfor-
mation T : X → X is defined by∫

B

Pf(x) dm =

∫
T−1(B)

f(x) dm for B ∈ B .

For a piecewise monotonic C2 transformation3 T with n monotonic pieces, we can
give an explicit formula for the Perron–Frobenius operator. Let A = {A1, A2, . . . , An}
be the partition of X which separates T into n pieces. For i ∈ {1, . . . , n}, let ti(x)
represent the natural extension of the ith C2 function T (x)|Ai . The Perron–Frobenius
operator for T is then

Pf(x) =

n∑
i=1

∣∣∣∣ d

dx
t−1
i (x)

∣∣∣∣ f(t−1
i (x)) · 1ti(Ai)(x) .

In particular, for TD (as in (1)),

Pf(x) = 1
2f( 1

2x) · 1[0,1)(x) + 1
2f(D − 1

2x) · 1(0,2D−1](x) + 1
2f(D + 1

2x) · 1[0,2−2D)(x).

(2)

With (2) we can show precisely what happens to an initial distribution of points
(described by an integrable function) after they are repeatedly transformed under
TD. Figures 4 and 5 show what happens to two different initial distributions of points
after five applications of the Perron–Frobenius operator associated with T3/5(x). By
the fifth application, the distributions look remarkably similar. One might guess that
they are both approaching the same final distribution. This situation is in marked
contrast to chaotic behavior observed in Figures 2 and 3.

Definition 4 (stationary distribution). Let (X,B,m) be a probability space,
let P be the Perron–Frobenius operator associated with a nonsingular transformation
T : X → X, and let L1 denote the L1 space of (X,B,m). If f ∈ L1 is such that
Pf = f a.e.,4 then f is called a stationary distribution of T .

A practical use of the Perron–Frobenius operator is in deriving and verifying the
equations of stationary distributions for given divisors. As an example of this, we
verify the correctness of a previously known stationary distribution for D ∈ [ 34 , 1).
An exact equation was first given by Freiman [5] and is restated by Shively [20] as

f(x) =
1

D
1[0,2D−1)(x) +

1

2D
1[2D−1,1)(x) .(3)

This relation can be verified by applying the Perron–Frobenius operator as given in
(2) to (3). Such exact equations are not known in general for all D ∈ [ 12 ,

3
4 ). This

issue is discussed further in the conclusion.

2For a probability space (X,B,m), the L1 space of (X,B,m) is the set of f : X → R satisfying∫
X |f(x)| dm < ∞.

3C2 denotes the set of all functions with two continuous derivatives.
4a.e. indicates that the given relation holds almost everywhere, that is, everywhere except possibly

on a set of measure zero.
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Fig. 4. The result of applying the Perron–Frobenius operator P associated with T3/5 to f(x) = 1
six times.
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Fig. 5. The result of applying the Perron–Frobenius operator P associated with T3/5 to
f(x) = (1/x loge 2) · 1

[
1
2
,1)

(x) six times.

In the case of variable quotient-bits-per-cycle algorithms such as the original SRT
division, one of the primary uses of a formula for the distribution of partial remainders
is for calculating the shift average for a given divisor. (Note that higher shift averages
are desirable.) The shift average is the average number of uses of the shift register (sin-
gle shift or multiplication by two) between uses of the adder. Under the assumption
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that a register shift is a much faster operation than using the adder, the shift average
gives a useful characterization of the expected performance of our algorithm for a
given divisor. With (3), we know the fraction of bits which require the use of the
adder. To calculate the average number of zero bits generated between nonzero bits
(bits requiring use of the adder), we take the reciprocal of the fraction of bits which
do not require the adder. For D ∈ [ 34 , 1), the shift average function is

s(D) =

(
1 − 1

2D

)−1

=
2D

2D − 1
.(4)

Unfortunately, since we have not proven that the stationary distributions from
SRT division are unique, we have no way of knowing whether or not a shift average
calculation in (4) is correct for all initial probability distributions. To prove that
all stationary distributions are unique, we need to show that TD is ergodic for all
D ∈ [ 12 , 1).

Definition 5 (ergodic; see [8]). Let (X,B,m) be a probability space and let a
nonsingular transformation T : X → X be given. Then T is ergodic if for every set
B ∈ B such that T−1(B) = B, either m(B) = 0 or m(X \B) = 0.

Freiman [5] shows that TD is ergodic for rational D, but we extend this result to
real D. In the next section we show that all TD are Bernoulli and it is known that
having the Bernoulli property implies ergodicity.

3. Bernoulli property. Our central result, which we present in this section, is
that the class of transformations of the interval that characterizes SRT division for all
real divisors D has the property that each transformation TD is Bernoulli. Although
the basic concept of a Bernoulli shift (the things to which transformations having
the Bernoulli property are isomorphic) is not difficult, a complete definition requires
enough auxiliary concepts from measure theory (concepts not used anywhere else in
this paper) that we refer the interested reader to [15, 16, 19, 22]. Neither an under-
standing of Bernoulli shifts nor a formal definition of what it means to be Bernoulli
is required to follow the proofs in this section. Having said this, we should mention
informally the connection between Bernoulli shifts and transformations having the
Bernoulli property.

The transformation TD is a noninvertible endomorphism of the unit interval. This
means that from a given partial remainder we can predict all future partial remainders,
but we cannot uniquely predict past partial remainders. There is a natural way (called
the natural extension) to make our transformation invertible (an automorphism) on a
larger space. Specifically, each noninvertible transformation TD having the Bernoulli
property has an extension to an automorphic transformation, isomorphic to a two-
sided Bernoulli shift [16, pp. 13, 276]. From the way that entropy for a transformation
is defined, the entropy for an automorphic Bernoulli transformation associated with a
noninvertible Bernoulli transformation is the same as the entropy for the noninvertible
Bernoulli transformation. By proving that all transformations TD are Bernoulli, and
by proving that the entropy of each TD is the same, we will be able to conclude that
the natural extensions of SRT division algorithms are isomorphic to each other for all
divisors.

Definition 6 (expanding; see Bowen [2]). We will say that a transformation
T on an interval is expanding if it has the property that supn>0 μ(TnU) = 1 for all
open intervals U with μ(U) > 0, where μ is any normalized measure that is absolutely
continuous with respect to Lebesgue measure.
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Definition 7 (straddle). Let U be an interval of reals (either open, closed, or
half open) and let p ∈ R

+. If p ∈ U◦,5 then we say that U straddles p.

Theorem 8. The SRT division transformation is expanding for all real divisors.

Proof. Let (X,B,m) be a probability space, where X = [0, 1), B is the Borel
σ-algebra on X, and m is the Lebesgue measure on B.6 Let TD : X → X be the SRT
division transformation for a given normalized divisor D as defined in (1).

Let us define an infinite sequence of intervals U = {Ui}i∈N as

U1 = U and

Ui+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TD(Ui) : U◦
i ⊆ [0, 1

2 ) or U◦
i ⊆ [ 12 , 1),

TD(Ui ∩ [0, 1
2 )) : U◦

i �⊆ [0, 1
2 ) and U◦

i �⊆ [ 12 , 1) and

m(Ui ∩ [0, 1
2 )) ≥ m(Ui ∩ [ 12 , 1)),

TD(Ui ∩ [ 12 , 1)) : U◦
i �⊆ [0, 1

2 ) and U◦
i �⊆ [ 12 , 1) and

m(Ui ∩ [0, 1
2 )) < m(Ui ∩ [ 12 , 1)) .

Property 1. For all Ui such that 1
2 �∈ U◦

i and D �∈ U◦
i , m(Ui+1) = 2m(Ui).

Proof. If a U◦
i is a subset of either [0, 1

2 ), [12 , D), or [D, 1), then we are in the first
case of the U definition and we apply TD directly. Since each of the three cases of the
TD expands an interval by a factor of two, it is clear that m(TD(Ui)) = m(Ui+1) =
2m(Ui).

Property 2. For all Ui where D �∈ Ui, m(Ui+1) ≥ m(Ui).

Proof. Assume that D �∈ Ui. If 1
2 �∈ Ui, then according to Property 1, Ui+1

doubles. Otherwise, 1
2 ∈ Ui, and therefore, to find Ui+1, we must consider the second

and third cases of the U sequence. In the worst case, m(Ui ∩ [0, 1
2 )) = m(Ui ∩ [ 12 , D)),

and regardless of which half we choose, m(Ui ∩ [0, 1
2 )) = m(Ui ∩ [ 12 , D)) = 1

2m(Ui).
By applying TD to this truncated interval, we double what we halved so that m(Ui) =
m(Ui+1).

By way of contradiction, let us assume that there exists an initial U such that
the sequence U never expands to fill X. Such a sequence can never include the point
D; if it did, there would be a small interval about D that would be mapped to [0, ε)◦,
and this interval would quickly expand to fill the whole interval. We can show that
the following property will hold.

Property 3. There exists N such that for all i ≥ N ,

(a) m(Ui ∩ [0, 1
2 )),m(Ui ∩ [ 12 , 1)) > 0 (in other words, all subsequent intervals

must straddle 1
2 ), and

(b) m(Ui∩ [0, 1
2 )) < m(Ui∩ [ 12 , 1)) (in other words, all subsequent Ui must be such

that the right half of Ui is not discarded by the definition of U).

Proof of Property 3(a). Property 1 says that the only way not to double is to
straddle 1

2 . Therefore, at a minimum, it must be the case that 1
2 is eventually included

every time or else the interval will double a sufficient number of times to include D,
which would be a contradiction.

Proof of Property 3(b). If m(Ui ∩ [0, 1
2 )) ≥ m(Ui ∩ [ 12 , 1)), then we have Ui =

( 1
2 − ε, 1

2 + ε′), where ε > ε′. Now Ui+1 = TD(Ui) = TD( 1
2 − ε, 1

2 ) = (1 − 2ε, 1). But,

5The symbol ◦ as the exponent of an interval denotes an open version of the interval.
6For an interval [a, b], the Lebesgue measure is defined as m([a, b]) = b− a.
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since D is not in Ui+1,
1
2 cannot be in Ui+1 and Property 3(a) fails, resulting in a

contradiction.
By Property 3(a), we will eventually be in a situation where Ui = ( 1

2 − ε′, 1
2 + ε),

ε′ < ε, and Property 3(a) will hold for every subsequent interval. So then

Ui+1 = TD( 1
2 − ε′, 1

2 + ε) = TD[ 12 ,
1
2 + ε) = (2D − 1 − 2ε, 2D − 1]

by Property 3(b). But again by Property 3(a),

Ui+2 = TD(2D − 1 − 2ε, 2D − 1] = TD[ 12 , 2D − 1] = [2 − 2D, 2D − 1] .

It is now clear that 1
2 is at the midpoint of Ui+2 and that we must now pick the left

half of the interval, which contradicts Property 3(b). Therefore, D will eventually be
included in an interval and the sequence will expand to fill all of X.

We can now prove that the SRT division process is weak-mixing, and therefore
Bernoulli, by two theorems of Bowen [2].

Theorem 9 (see Bowen [2]). Let T be a piecewise C2 map of [0, 1], μ be a smooth
T -invariant probability measure, and λ = inf0≤x≤1 |f ′(x)| > 1. If the dynamical
system (T, μ) is weak-mixing, then the natural extension of (T, μ) is Bernoulli.

We mention here that the natural extension of (T, μ) is the associated automorphic
transformation that we alluded to at the beginning of this section. See Petersen [16,
p. 13] for an exact definition.

Theorem 10 (see Bowen [2]). With T and μ as in Theorem 9, (T, μ) will be
weak-mixing if T is expanding.

Theorem 11 (see Lasota and Yorke [9]). Let (X,B,m) be a probability space
and let T : X → X be a piecewise C2 function such that inf |T ′| > 1. If P is
the Perron–Frobenius operator associated with T , then for any f ∈ L1, the sequence
( 1
n

∑n−1
k=0 P

kf)∞n=1 is convergent in norm to a function f∗ ∈ L1. The limit function
f∗ has the property that Pf∗ = f∗ and, consequently, the measure dμ∗ = f∗ dm is
invariant under T .

Having established that TD is expanding, we now use the above three theorems
to prove the central result of this paper.

Theorem 12. TD is Bernoulli.
Proof. From the definition of TD, we see that TD is C2 and that

inf
0≤x≤1

∣∣TD
′(x)

∣∣ = 2 > 1

since
∣∣TD

′(x)
∣∣ = 2 for all x, for which the derivative is defined. Since

inf
0≤x≤1

∣∣TD
′(x)

∣∣ > 1,

by Theorem 11 there exists at least one μ such that μ is a smooth TD-invariant
probability measure. By Theorem 8, we see that Theorem 10 holds. Hence, (TD, μ)
is weak-mixing, and by Theorem 9 (TD, μ) is Bernoulli.

That all TD are Bernoulli is a very useful property because we can use entropy
as a complete invariant to show isomorphism among the two-sided Bernoulli shifts
associated with TD that have the same entropy. This comes from the contribution of
Ornstein to the Kolmogorov–Ornstein theorem.

Theorem 13 (see Kolmogorov [6, 7] and Ornstein [14]). Two Bernoulli shifts
are isomorphic if and only if they have the same entropy.
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Before we calculate the entropy, we review the definition of entropy for a transfor-
mation along with some supporting definitions that follow the development presented
by Walters [22, pp. 75–87].

Definition 14 (partition). A partition of (X,B,m) is a disjoint collection of
nonempty elements of B whose union is X.

Definition 15 (join). Let P and Q be finite partitions of (X,B,m). Then
P ∨ Q = {P ∩Q : P ∈ P and Q ∈ Q} \ {∅} is called the join of P and Q. Note that
P ∨Q is also a finite partition of (X,B,m).

Definition 16 (entropy of a partition). Let (X,B,m) be a probability space and
let P = {P1, . . . , Pk} be a finite partition of (X,B,m). The entropy of the partition
is defined as

H(P) = −
k∑

i=1

m(Pi) logm(Pi) .

Definition 17 (entropy of a transformation with respect to a partition). Suppose
T : X → X is a measure-preserving transformation of the probability space (X,B,m).
If P is a finite partition of (X,B,m), then

h(T,P) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iP
)

is called the entropy of T with respect to partition P.
Definition 18 (entropy of a transformation). Let T : X → X be a measure-

preserving transformation of the probability space (X,B,m) and suppose h(T ) =
suph(T,P), where the supremum is taken over all finite partitions P of (X,B,m).
Then h(T ) is called the entropy of T .

In general it can be very difficult to calculate the entropy for a class of transforma-
tions directly from the definition of entropy. Even with the many standard formulas
that have been derived for calculating entropy, a great number of systems found in
practice are not covered. Simple SRT division is one such dynamical system for which
it is not easy to calculate the entropy from results found in standard textbooks on
ergodic theory. Fortunately, a result by Ledrappier does allow us to calculate the
entropy for simple SRT division.

The following definitions and theorems involving C-maps and PC-maps are taken
from a paper of Ledrappier [10] and have been streamlined for our argument.

Definition 19 (C-map; see Ledrappier [10]). A real function f defined on an
interval [a, b] is said to be a C-map if f is continuously differentiable and its derivative
f ′ has the following properties:

(a) f ′ satisfies a Hölder condition7 of order ε > 0.
(b) There are only a finite number of points x ∈ [a, b] where f ′(x) = 0. We denote

them by a ≤ a1 < a2 · · · < an ≤ b with f ′(ai) = 0 for 0 < i ≤ n.
(c) There exist positive numbers k−i (k+

i ) such that∣∣∣∣∣log
|f ′(x)|

|x− a|k
−(+)
i

∣∣∣∣∣
is bounded in a left (right) neighborhood of ai.

7A function f(x) defined on an interval [a, b] satisfies a Hölder condition of order ε ∈ R
+ if there

exists c ∈ R
+ such that for any two points p1, p2 ∈ [a, b], |f(p1) − f(p2)| ≤ c |p1 − p2|ε.
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Definition 20 (PC-map; see Ledrappier [10]). A map f : [0, 1) → [0, 1) is called
a PC-map if there exists a finite partition 0 < b1 < b2 · · · < bm < 1 such that f is a
C-map from [bj , bj+1] into [0, 1) for any j.

Theorem 21 (see Ledrappier [10]). Let f be a PC-map. If μ is an a.c.i.m. (ab-
solutely continuous invariant measure), then

h(f) =

∫
log |f ′| dμ.(5)

This formula was shown by Rohlin [18] to hold for a smaller class of transforma-
tions, which does not include the TD associated with SRT division.

Theorem 22. The entropy h(TD) of TD for D ∈ [ 12 , 1) is equal to
∫

log
∣∣TD

′∣∣ dμ =
log 2.

Proof. By the definition of a PC-map, TD is a PC-map if each of the three
functions TD|

[0,
1
2 )

, TD|[ 12 ,D), and TD|[D,1) is a C-map.

Trivially, each TD restricted to any of the three domains [0, 1
2 ), [12 , D), and [D, 1)

satisfies a Hölder condition of order ε = 1 because each piece of TD is just a line of
slope two. Thus condition (a) of Definition 19 is satisfied. Conditions (b) and (c) are
satisfied because there are no points for which the derivative is equal to zero within
a given line segment. Thus each of the three segments of TD are C-maps and, by
Definition 20, TD is a PC-map.

Now, since each TD is Bernoulli, there exists a unique a.c.i.m. (call it μ) for each
TD. By Theorem 21, we can use (5) to calculate the entropy:

h(TD) =

∫
log

∣∣TD
′∣∣ dμ = log 2

∫
dμ = log 2.

With the proof of Theorem 22 we have established isomorphism among the auto-
morphic transformations (or natural extensions) associated with simple SRT division
transformations by an application of the Kolmogorov–Ornstein theorem. The key to
obtaining this result was being able to show that TD has Bowen’s expanding prop-
erty. In the following section, we extend these results to a more general type of SRT
division.

4. Multithreshold SRT division. A simple optimization to the original SRT
division algorithm, at least with the historical concern of avoiding additions and sub-
tractions in mind, is the inclusion of additional divisors to increase the shift average.
In this section, we prove that all such division algorithms with reasonable assump-
tions on the separation of the divisor multiples have the expanding property. It will
be useful to precisely define a class of “multithreshold” SRT transformations.

Definition 23. Let α ∈ R
n be such that

(a) 0 < α1 < α2 < · · · < αn, and
(b) for all x,D ∈ [ 12 , 1), there exists i ∈ {1, . . . , n} such that |αiD − x| < 1

2 .
We define An to be the set of all α ∈ R

n satisfying conditions (a) and (b). Also,
A =

⋃
n∈N

An.
Definition 24 (peaks and valleys). Given an α ∈ An≥2, the point of intersection

between two lines f(x) = 2(x − αiD) and g(x) = 2(αi+1D − x) will be called a peak
and is denoted by ψi = ( 1

2D(αi+1 +αi), D(αi+1−αi)). For convenience, we will refer
to the abscissa as ψx

i = 1
2D(αi+1 + αi) and to the ordinate as ψy

i = D(αi+1 − αi).
The point of intersection of the two lines f(x) = 2(αiD − x) and g(x) = 2(x− αiD)
is (αiD, 0) and will be called a valley.
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Definition 25. For a D ∈ [ 12 , 1) and an α ∈ A, define the transformation
TD,α(x) : [0, 1) → [0, 1). For α ∈ A1, we get the familiar transformation

TD,α(x) =

{
2x : 0 ≤ x < 1

2 ,

|2(D − x)| : 1
2 ≤ x < 1 .

For α ∈ A2,

TD,α(x) =

⎧⎪⎨
⎪⎩

2x : 0 ≤ x < 1
2 ,

|2(α1D − x)| : 1
2 ≤ x < ψx

1 ,

|2(α2D − x)| : 1
2 ≤ x and ψx

1 ≤ x < 1 .

For α ∈ An≥3,

TD,α(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2x : 0 ≤ x < 1
2 ,

|2(α1D − x)| : 1
2 ≤ x < ψx

1 ,

|2(αiD − x)| : 1
2 ≤ x and ψx

i ≤ x < ψx
i+1,

|2(αnD − x)| : 1
2 ≤ x and ψx

n−1 ≤ x < 1 .

Definition 26. Define Mn = {TD,α : D ∈ ( 1
2 , 1], α ∈ An} and define M =⋃

n∈N
Mn. We call Mn the set of all n-threshold SRT division transformations and

call M the set of multithreshold SRT division transformations.
Table 2 shows an example of dividing 0.67 by 0.75 using multithreshold SRT

division with α = (0.75, 1, 1.25). This is the same example calculation as in Table
1, but here the dividend has been computed to twice as many digits of precision
with the same effective number of uses of the adders. We say “effective” because in
multithreshold SRT division, there are several adders working in parallel. In a real
implementation of multithreshold SRT division, the values for α must be carefully
chosen so that not too much overhead is required to select a good partial remainder.
There is also a tradeoff between the amount of overhead in choosing a good partial
remainder and the precision to which a good partial remainder is selected.

Table 2

An example of multithreshold SRT division.

p0 = 0.67 = 0.67
p1 = 2(0.67 − α2D) = −0.16 q0 = α2 Q0 = 1
p4 = 2(22(−0.16) + α1D) = −0.155 q3 = −α1 Q3 = 0.90625
p7 = 2(22(−0.155) + α1D) = −0.115 q6 = −α1 Q6 = 0.89453125
p11 = 2(23(−0.115) + α3D) = 0.035 q10 = −α3 Q10

.
= 0.8933105469

p16 = 2(24(0.035) − α1D) = −0.005 q15 = α1 Q15
.
= 0.8933334351

p24 = 2(27(0.005) + α1D) = −0.155 q23 = −α1 Q23
.
= 0.8933333456

Condition (b) in Definition 23 guarantees that the division algorithm generates a
new quotient bit at every step. Although the condition makes sense intuitively, it is
not immediately obvious just by inspection if an α satisfies the condition. Lemma 28
below provides an easier way to check.

Lemma 27. If α = (α1), then condition (b) of Definition 23 is satisfied if and
only if α1 = 1.

Proof. If α1 = 1, then maxD,x∈[1/2,1) |α1D − x| < 1
2 . Now consider the cases

when α1 �= 1 and ε ∈ R
+. If α1 = 1 + ε, then when D = 1

1+ε and x = 1
2 , |α1D − x| =



1292 MARK MCCANN AND NICHOLAS PIPPENGER

1 − 1
2 = 1

2 �< 1
2 . On the other hand, if α1 = 1 − ε, then when D = 1

2 and x = 1 − ε
2 ,

|α1D − x| = 1 − ε
2 − (1 − ε) 1

2 = 1
2 �< 1

2 .

Lemma 28. An α ∈ An that satisfies condition (a) of Definition 23 also satisfies
condition (b) if and only if for some i, j ∈ {1, . . . , n} (possibly i = j) either

(i) αi ∈ (0, 1
2 ] and αj ∈ [1, 1 + αi], or

(ii) αi ∈ [ 12 , 1] and αj ∈ [1, 3αi].

Proof (sketch). Lemma 27 has shown that a single component α of α with α = 1
is sufficient to ensure that the range of f(x) = 2 |αD − x| is equal to [0, 1) as x and
D range over [12 , 1). It is easy to see, based on the proof of Lemma 27, that if there
does not exist i ∈ {1, . . . , n} such that αi = 1, then there must exist i, j ∈ {1, . . . , n}
(i < j), where αi < 1 and αj > 1.

Let us assume that i is the largest value, where αi < 1, and let us assume that j
is the smallest value, where αj > 1 (therefore j = i+ 1). We make these assumptions
because no other scalars of D will have an influence on whether or not condition (b)
is satisfied. Consider the case when αi ∈ (0, 1

2 ]. In this case, when D is close enough
to 1, some of the line f(x) = 2(x − αiD) appears in the region (denoted R), when
1
2 ≤ x < 1, 0 ≤ Tα(x) < 1. When a portion of the line f(x) appears in region R, we
must put restrictions on αj in terms of αi so that the peak ψ1 is always in R. ψy

i is
greatest when D = 1. We find the maximum allowable value of αj by setting D = 1
and solving ψy

i = 1 for αj :

ψy
i = 1 ⇒ D(αj − αi) = 1 ⇒ αj = αi + 1 .

Therefore, if αi ∈ (0, 1
2 ], then αj ∈ [1, 1 + αi].

In the case when αi ∈ [ 12 , 1], for large enough values of D, the line f(x) =
2(x−Dαi) crosses the line x = 1 in the range [0, 1). Because of this, we must loosen
the restriction that αj ∈ [1, 1+αj ]. It is straightforward to calculate that f(x) begins
to cross the line x = 1 in the range [0, 1) when D = 1

2αi
. By solving ψy

i = 1 for αj

when D = 1
2αi

we can ensure that as D becomes smaller, the peak ψi will always be
in region R:

ψy
i = 1 ⇒ D(αj − αi) = 1 ⇒ 1

2αi
(αj − αi) = 1 ⇒ αj = 3αi .

Therefore, if αi ∈ [ 12 , 1], then αj ∈ [1, 3αi].

Definition 29 (separation). For α ∈ An, we define the separation in α as

sep(α) = max
i∈{1,...,n−1}

αi+1

αi
.

Limiting the separation is a convenient way to restrict the subset of A being considered.
If sep(α) = r, we say that “the divisor multiples in α are separated by at most a factor
of r.”

We are now ready to show that all multithreshold SRT division transformations
are Bernoulli, given a necessary restriction on the multiples of the divisor. As in the
case for a single divisor, it will be useful to define a sequence of intervals that are
subsets of the sequence of sets that would arise from repeatedly applying TD,α to an
initial open interval. Unless otherwise noted, assume that the function m denotes the
Lebesgue measure.

Definition 30. Given an initial open interval U ⊂ [0, 1) and TD,α ∈ M, we
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define the infinite sequence of intervals U = {Ui}i∈N as

U1 = U and

Ui+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TD,α(Ui) : U◦
i ⊆ [0, 1

2 ) or U◦
i ⊆ [ 12 , 1),

TD,α(Ui ∩ [0, 1
2 )) : U◦

i �⊆ [0, 1
2 ) and U◦

i �⊆ [ 12 , 1) and

m(Ui ∩ [0, 1
2 )) ≥ m(Ui ∩ [ 12 , 1)),

TD,α(Ui ∩ [ 12 , 1)) : U◦
i �⊆ [0, 1

2 ) and U◦
i �⊆ [ 12 , 1) and

m(Ui ∩ [0, 1
2 )) < m(Ui ∩ [ 12 , 1)) .

Definition 31 (critical points). For a given TD,α where α ∈ An, define the set

C = {ci : i ∈ {1, . . . ,m}, ci ∈ B ∪ {0, 1
2 , 1}}

where B = {b : 1
2 < b < 1 and b ∈ {α1D, . . . , αnD} ∪ {ψx

1 , . . . , ψ
x
n−1}} and c1 < c2 <

· · · < 1. C is called the set of critical points for TD,α.
Lemma 32 (doubling). Given TD,α ∈ M, let the sequence of intervals U be

defined as in Definition 30 and let Ui be some interval in the sequence. Furthermore,
let C = {c1, . . . , cm} be the set of critical points for TD,α. If Ui ⊆ [cj , cj+1] for some
j ∈ {1, . . . ,m− 1}, then m(Ui+1) = 2m(Ui).

Proof. Since Ui ⊆ [cj , cj+1] for some j ∈ {1, . . . ,m − 1}, because we are in the
first case of the definition of U , either U◦

i ⊆ [0, 1
2 ) or U◦

i ⊆ [ 12 , 1). By simple inspection
of the individual cases that define TD,α, it is apparent that all of Ui, except possibly
the points cj and cj+1, fall within the same case of TD,α. Therefore, the resulting
interval Ui+1 will be double the length of Ui.

Definition 33 (active valleys). Given TD,α ∈ Mn, define

V = {αiD : i ∈ {1, . . . , n} and 1
2 < αiD < 1} .

V is called the set of active valleys for TD,α.
Definition 34 (active peaks). Given TD,α ∈ Mn, define

P = {ψx
i : i ∈ {1, . . . , n− 1} and 1

2 < ψx
i < 1} .

P is called the set of active peaks for TD,α.
Lemma 35 (nonshrinking). Given TD,α ∈ Mn with sep(α) ≤ 5

3 , let the sequence
of intervals {Ui}i∈N be defined as above and let V denote the set of active valleys for
TD,α. For any interval Ui ∈ U such that V ∩ Ui = ∅, either m(Ui+1) ≥ m(Ui) or
m(Ui+2) ≥ m(Ui).

Proof. sep(α) ≤ 5
3 implies that αi+1 ≤ 5

3αi. For a given separation, the value of
ψy
i is maximized when ψx

i = 1. This implies that αi = 3
4D . We calculate the value of

ψy
i with the assumption that ψx

i = 1 to get a bound on ψy
i for D < 1:

ψy
i ≤ D( 5

3αi − αi) = D( 2
3αi) = D( 2

3
3

4D ) = 1
2 .

Case 1. Consider when Ui ⊆ [0, 1
2 ]. In this case, m(Ui+1) = 2m(Ui).

Case 2. Consider when Ui ⊆ [ 12 , 1). The interval Ui can span at most one peak.
Therefore, m(Ui+1) ≥ m(Ui). A further observation is that since Ui+1 ⊆ [0, 1

2 ],
m(Ui+2) = 2m(Ui).
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Case 3. Consider when Ui �⊆ [0, 1
2 ] and Ui �⊆ [ 12 , 1). In this case, Ui straddles 1

2 .
From the definition of U , we see that in the worst case we might throw away up to half
of Ui. Call the part not thrown away Ui

′ and observe that m(Ui
′) ≥ 1

2m(Ui). Now,
either Ui

′ ⊆ [0, 1
2 ] or Ui

′ ⊆ [ 12 , 1). If Ui
′ ⊆ [0, 1

2 ], then m(Ui+1) = 2m(Ui
′) ≥ m(Ui).

If Ui
′ ⊆ [ 12 , 1), then m(Ui+2) = 2m(Ui

′) ≥ m(Ui).
Lemma 36. A multithreshold SRT division transformation TD,α ∈ M is expand-

ing when sep(α) ≤ 5
3 .

Proof. Let V be the set of active valleys (as defined in Definition 33) for a
TD,α. Let P be the set of active peaks (as defined in Definition 34) for a TD,α. Let
U = {Ui}i∈N be the sequence of intervals associated with a TD,α and an initial interval
U .

By way of contradiction, assume that a TD,α is not expanding. This means that
for some TD,α, there does not exist an interval Ui where any of the points in V are
contained in Ui. This is true because if any of the valley points are in Ui, then
Ui+1 = [0, ε) or Ui+1 = [0, ε], and after a finite number of steps, Ui will have grown
to include all of [0, 1).

If there is a sequence U that avoids all points in V , then by Lemma 35 it must
be true that the intervals in the sequence can double only a finite number of times.
Let i ∈ N be the first index for which there is no j > i such that m(Uj) ≥ 2m(Ui).
It now follows that Ui straddles 1

2 . The proof for Lemma 35 reveals that this is
the only situation where it is not necessarily the case that either m(Ui+1) = 2m(Ui)
or m(Ui+2) = 2m(Ui). In fact, Ui must straddle both 1

2 and minP . If minP is
not straddled and m(Ui ∩ [0, 1

2 )) < m(Ui ∩ [ 12 , 1)), then either m(Ui+2) ≥ 2m(Ui)
or m(Ui+3) ≥ 2m(Ui). In the other possibility, where minP is not straddled and
m(Ui ∩ [0, 1

2 )) ≥ m(Ui ∩ [ 12 , 1)), we find that m(Ui+2) ≥ 2m(Ui).
Assuming that Ui straddles both 1

2 and minP , we also observe that there can
be no j > i such that m(Uj ∩ [0, 1

2 )) ≥ m(Uj ∩ [ 12 , 1)) because this quickly leads to
doubling. In other words, the right side must be larger than the left side whenever
we straddle 1

2 . Therefore, we must be in the situation where

Ui = ( 1
2 − ε′, 1

2 + ε), ε′ < ε

⇒ Ui+1 = (min{2( 1
2 − αiD), 2(αi+1D − ( 1

2 + ε))}, ψy
i )

⇒ Ui+2 = (2 min{2( 1
2 − αiD), 2(αi+1D − ( 1

2 + ε))}, 2ψy
i )

⇒ Ui+3 = (min{2( 1
2 − αiD), 2(αi+1D − 2ψy

i )}, ψy
i )

⇒ Ui+4 = (2 min{2( 1
2 − αiD), 2(αi+1D − 2ψy

i )}, 2ψy
i )

⇒ Ui+5 = (min{2( 1
2 − αiD), 2(αi+1D − 2ψy

i )}, ψy
i ) = Ui+3 .

It is apparent that the interval represented by Ui+4 will re-occur every other
interval ad infinitum. We now use this interval to show that in fact such a sequence
of nonexpanding intervals is not possible.

Since Ui+4 straddles 1
2 , we can compare the length of the left and right sides

of Ui+4. Let R = [ 12 , 2ψ
y
i ) denote the right side and let L = (4( 1

2 − αiD), 1
2 ) and

L′ = (4(αi+1D − 2ψy
i ), 1

2 ) denote the two possibilities for the left side. The length of
the right side is

m(R) = 2ψy
i − 1

2 ,

while the length of the left side is the larger of two possible lengths

m(L) = 1
2 − 4( 1

2 − αiD)
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and

m(L′) = 1
2 − 4(αi+1D − 2ψy

i ) .

We then compare the differences between the right side and each of the two possible
left sides. The first possibility is

m(R) −m(L) = 2ψy
i − 1

2 − ( 1
2 − 4( 1

2 − αiD))

= 2D(αi+1 − αi) − 1 + 2 − 4αiD

= 2αi+1D − 6αiD + 1 ,

while the second possibility is

m(R) −m(L′) = 2ψy
i − 1

2 − ( 1
2 − 4(αi+1 − 2ψy

i ))

= 2D(αi+1 − αi) − 1 + 4(αi+1D − 2D(αi+1 − αi))

= −2αi+1D + 6αiD − 1 .

It is now clear that

m(R) −m(L) = − (m(R) −m(L′)) .

But this means that the length of the left side is always greater than or equal to the
length of the right side, which contradicts our assumption that the right side must be
bigger than the left side whenever the interval straddles 1

2 .
Theorem 37. TD,α ∈ M is Bernoulli when sep(α) ≤ 5

3 .
Proof. Let T = TD,α. From the definition of T , we see that TD,α is C2 and that

inf0≤x≤1 |T ′(x)| = 2 > 1 since |T ′(x)| = 2 for all x for which the derivative is defined.
Since inf0≤x≤1 |T ′(x)| > 1, by Theorem 11, there exists at least one μ such that μ is
a smooth T -invariant probability measure. By Lemma 36 we see that Theorem 10
holds when sep(α) ≤ 5

3 . Hence, (T, μ) is weak-mixing and, by Theorem 9, (T, μ) is
Bernoulli when sep(α) ≤ 5

3 .
The calculation for entropy in multithreshold SRT division follows the same

method used for single divisor SRT division. We begin by showing that TD,α is a
PC-map.

Lemma 38. TD,α ∈ M is a PC-map (as defined in Definition 20).
Proof. By inspection, each TD,α is a finite collection of line segments, each with

slope 2. Each of these line segments is a C-map by the same argument used in the
proof for Theorem 22. Therefore, by definition, each TD,α is a PC-map.

Theorem 39. The entropy of any TD,α ∈ M with sep(α) ≤ 5
3 is log 2.

Proof. By Lemma 38, all TD,α ∈ M are PC-maps. By Theorem 37, TD,α is
Bernoulli when sep(α) ≤ 5

3 , and hence there exists a unique a.c.i.m. μ. Theorem 21
says that Rohlin’s formula for the entropy is true, and therefore

h(TD,α) =

∫
log

∣∣TD,α
′∣∣ dμ = log 2

∫
dμ = log 2.

5. Some restrictions on α for multithreshold division. In section 4, we
showed that for all TD,α ∈ M, if sep(α) ≤ 5

3 , then TD,α is Bernoulli. In this section,
we construct examples of T ∈ Mn, for every n, that fail to be Bernoulli when the
restriction that sep(α) ≤ 5

3 is relaxed.
Theorem 40. For TD,α ∈ Mn≥4, if sep(α) > 5

3 , then for each D ∈ [ 12 , 1), there
exist uncountably many α for which TD,α is not ergodic.
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Proof. We begin this proof by considering T ∈ Mn=4.

Assume that we relax the restrictions on α by ε > 0. This means that sep(α) ≤
5
3 + ε and that no peak can be above the line f(x) = 4+6εx

8+3ε . With this relaxation,
we can define α = (α1, α2, α3, α4) with respect to a given D so that a subset of
[0, 1) is nonexpanding. We let α1 = 30+27ε

80D+48Dε , α2 = 50+57ε
80D+48Dε , α3 = 30−9ε

40D+24Dε , and

α4 = 50+21ε
40D+24Dε . For our constructed α to be valid, we must be careful that conditions

(a) and (b) of Definition 23 hold. Condition (a) requires that the components of α
remain in ascending order. This is satisfied when ε ∈ (0, 2

15 ]. Since ordering is main-
tained, sep(α) < 3, and minD∈[1/2,1), ε∈(0,2/15] α4 = 1.2 ≥ 1, to verify that condition
(b) of Definition 23 holds, it is sufficient to show (by Lemma 28) that for all values of
D and ε, either α1, α2, or α3 ∈ [ 12 , 1]. By maximizing and minimizing over ε and D,
we find that α1 ∈ [0.375, 0.7] and α2 ∈ [0.625, 1.3]. Figure 6 provides a visual proof
that as ε is varied over [0, 2

15 ] and D is varied over [12 , 1], it is never the case that both
α1 ≤ 1

2 and α2 ≥ 1. Therefore, it is always the case that either α1 or α2 ∈ [ 12 , 1].

Having verified that our defined α satisfies Definition 23, we calculate that peak
ψ1 = ( 20+21ε

40+24ε ,
10+15ε
40+24ε ) and peak ψ3 = ( 20+3ε

20+12ε ,
10+15ε
20+12ε ). With this definition for α,

and our assumption that ε ∈ [0, 2
15 ), the point ψ3 will always touch the line f(x)

while remaining above the line g(x) = 1
2 , and the point ψ1 will always be slightly

below f(x) while remaining above the line g(x) = 1
4 . All of the definitions have been

chosen so that 1−ψx
3 = ψy

3 − 1
2 = 2(ψx

1 − 1
2 ) = 2(ψy

1 − 1
4 ). Another important feature

in this construction is the interval between α2D and α3D. Since ψ2 is not used in our
construction, it is possible to insert an arbitrary number of divisor multiples between
α2D and α3D. Thus, the results in this proof apply to T ∈ Mn for arbitrarily large
n.

We are now in a position to show that there exists a set of points A with 0 <
m(A) < 1, for which TD,α(A) = A. This is the definition of a transformation being
nonergodic [8, p. 59]. Define A = A1∪A2∪A3, where A1 = [ 14−(ψx

1 − 1
2 ), 1

4 +(ψx
1 − 1

2 )],
A2 = [ 12 − 2(ψx

1 − 1
2 ), 1

2 + 2(ψx
1 − 1

2 )], and A3 = [1− 2(1−ψx
3 ), 1]. It can be shown by

calculation that TD,α(A1) = A2, TD,α(A2) = A1∪A3, and TD,α(A3) = A2. Therefore,
TD,α(A) = A, and by definition, TD,α is nonergodic or nonexpanding.
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DD

εε
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Fig. 6. Combined plot of the regions where α1 ≤ 1
2

and α2 ≥ 1.

Figure 7 illustrates the type of transformation that we have constructed in the
proof of Theorem 40. In this figure, n = 4, D = 11

16 , α = ( 37
66 ,

21
22 , 1,

59
33 ), and sep(α) =

5
3+ 5

51 . The thick lines represent TD,α. The coarse dashed line represents the necessary
separation restriction on α to guarantee that TD,α is ergodic. In this case, partial
remainders in the set A = [ 1148 ,

13
48 ] ∪ [ 2248 ,

26
48 ] ∪ [ 4448 , 1) are mapped back to A by TD,α.
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Fig. 7. An example of a nonergodic system for TD,α ∈ Mn≥4.

Theorem 41. For TD,α ∈ M3, if sep(α) ≥ 9
5 , then for each D ∈ [ 12 , 1), there

exists an α for which TD,α is not ergodic.
Proof. The proof for this theorem comes as a special case from the proof for

Theorem 40. Consider α = (α1, α2, α3, α4) as defined in the proof for Theorem 40.
When sep(α) = 9

5 = 5
3 + 2

15 , we are in the special situation where α2 = α3. Since
all of the results for the proof of Theorem 40 still hold, we now have an example
transformation T with only three unique multiples of D, and this T has been proven
to be nonergodic.

Figure 8 gives an example of a nonergodic transformation for D = 7
12 and α

= (2
3 ,

8
7 ,

44
21 ). In this case, partial remainders in the set A = [ 4

18 ,
5
18 ]∪ [ 8

18 ,
10
18 ]∪ [ 1618 , 1)

are mapped back to A by TD,α.
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Fig. 8. An example of a nonergodic system for TD,α ∈ M3.

Theorem 42. For TD,α ∈ M2, if sep(α) > 3, then for some D ∈ ( 1
2 , 1), there

exist uncountably many α for which TD,α is not ergodic.
Proof. Assume that sep(α) ≤ 3 + ε and D ∈ ( 1

2 ,
2+ε
4 ). First, we choose α1 = 1

4D
so that α1D = 1

4 and α2 = 1+α1. Our restriction on D in terms of ε has been chosen
so that α2/α1 < 3 + ε when α2 = 1 + α1. Since α2 > α1, condition (a) of Definition
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23 is satisfied. Since α1 ∈ ( 1
4 ,

1
2 ) and α2 ∈ (1, 1 + α1] by Lemma 28, condition (b) of

Definition 23 is satisfied. Thus, our defined α is always valid. Define A = [ 12 , D]. We
now apply T = TD,α to A:

T [ 12 , D] = [min{2( 1
2 − α1D), 2(α2D −D)}, ψy

1 ]

= [min{2( 1
2 − D

4D ), 2(D + 1
4 −D)}, D(α2 − α1)]

= [min{ 1
2 ,

1
2}, D(1 + 1

4D − 1
4D )]

= [ 12 , D] .

Now, since 1
2 < D < 1, 0 < m(A) < 1, and TD,αA = A, by definition TD,α is not

ergodic.
Figure 9 shows an example of a nonergodic system for TD,α ∈ M2. In this

example, D = 3
5 and α = ( 5

12 ,
17
12 ). Partial remainders within the interval [12 ,

3
5 ] map

back to [12 ,
3
5 ].
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Fig. 9. An example of a nonergodic system for TD,α ∈ M2.

6. Conclusions. The original question that inspired this paper was, “Is simple
SRT division ergodic for all real divisors?” In pursuing the solution to this problem,
we discovered that not only is simple SRT division ergodic for all divisors, but it
is also Bernoulli. Having established a Bernoulli property, and having calculated
the entropy for our transformations, we were able to use the Kolmogorov–Ornstein
theorem to conclude that our transformations are equivalent to each other in the sense
that their natural extensions are isomorphic. In proving these important properties
for simple SRT division, we made extensive use of more general results from dynamical
systems theory. Consequently, our results were shown to be easily extensible to more
general division systems. In general, it is difficult to prove that a particular class of
transformations is ergodic or Bernoulli. Our results have provided an effective means
of proving both of these properties for a large class of SRT-like division algorithms.

From the standpoint of understanding an algorithm’s expected performance, it is
necessary to know that when a stationary distribution is found, it is unique. Having
established the uniqueness of stationary distributions, the next step is to find the
actual stationary distribution for as wide a class of transformations as possible. In
section 2, we gave the stationary distribution function for TD, where D ∈ [ 34 , 1). Many
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of the stationary distribution functions have been classified by Shively and Freiman
for D ∈ [ 35 ,

3
4 ], although the derivations are not nearly as simple as for D ∈ [ 34 , 1). It

turns out that things become very complicated when D ∈ [ 12 ,
3
5 ]. In his thesis [20],

Shively shows many interesting properties for the stationary distribution functions in
this region. For example, he shows that there are many different intervals of D, where
there are an infinite number of different stationary distribution equations. As such,
the graph of the shift average for D ∈ [ 12 ,

3
5 ] is far from complete and appears to have

a complex pattern (from the few points that have been plotted in this region). This
is surprising, considering the simplicity of the underlying transformation. A better
understanding of this final region of simple SRT division would be an interesting goal
to pursue.

In the work of Freiman [5], it was first shown that the shift average for D ∈ [ 35 ,
3
4 ]

is constantly 3, which can be easily shown to be the maximum possible shift average.
This property was then used by Metze [12] to obtain a version of SRT division that
has an expected shift average of 3 for all divisors. Another area to pursue would be
to explore shift averages for multithreshold SRT division and, if other plateaus are
found, they could possibly be used to obtain higher expected shift averages for all
possible divisors. Undoubtedly, obtaining a complete understanding of the stationary
distribution functions for multithreshold division would be even more difficult than
it is for simple SRT division. It is possible that such results in this area could lead
to improvements in modern SRT division. Related to this, it would be interesting to
attempt to extend the results of this paper to modern SRT division.

Appendix. SRT division is chaotic. In section 2 we mentioned that SRT
division is chaotic, and we prove this fact here for SRT division with the expansion
property (see Definition 6). Simple SRT division was shown to be expanding for
all divisors (see Theorem 8). Multithreshold SRT division, of which simple SRT
division is a special case, was shown to be expanding when there is a restriction on
the separation of the divisor multiples (see Lemma 36).

Although there are several definitions for what it means to be “chaotic,” the one
given by Devaney [4] is commonly used. The following definitions are taken from [4,
pp. 49, 50].

Definition 43 (sensitivity). A transformation f : X → X has sensitive depen-
dence on initial conditions if there exists δ > 0 such that, for any x ∈ X and any
neighborhood N about x, there exists y ∈ X and n ≥ 0 such that |fn(x) − fn(y) > δ|.

Definition 44 (topological transitivity). A transformation f : X → X is topo-
logically transitive on X if, for any pair of open sets U , V ⊂ X, there exists n such
that fn(U) ∩ V �= ∅.

Definition 45 (chaotic). Let f : X → X be a transformation of the set X. f is
said to be chaotic on X if

(a) f has sensitive dependence on initial conditions;
(b) f is topologically transitive;
(c) periodic points are dense in X.
Theorem 46. Every multithreshold SRT division transformation with the expan-

sion property is chaotic.
Proof. Let T be a multithreshold SRT division transformation on [0, 1) having

the expansion property.
To prove sensitivity to initial conditions, we notice, by the expansion property,

that for any open neighborhood N about a point x, the successive images of N under
T expand to be arbitrarily close to filling the entire interval densely after a finite
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number n of steps. In particular, since fn(x) must be at least distance 1
2 away from

either 0 or 1, for any 1
2 > δ > 0, there is y ∈ N such |fn(x) − fn(y)| > δ. Therefore,

T is sensitive to initial conditions on [0, 1).
Again, by the expansion property of T , the successive images of any two open

intervals will intersect within a finite number of steps. Therefore, T is topologically
transitive on [0, 1).

The expansion property alone is not sufficient to ensure that periodic points are
dense. However, the existence of a particular sequence U of nonempty subintervals as
given in Definition 30 is sufficient, in general, for dense periodic points.

Let V1 be an open interval on part of the domain where T is continuous. In the
proof of Lemma 36, we showed that sequence {T i(V1)}∞i=1 necessarily expands after
a finite number of steps to fill the unit interval by proving that another sequence
U = {Ui} of intervals expands to fill the unit interval where Ui ⊆ Vi for i ≥ 0. For a
given Ui, Ui+1 is chosen to be the largest subinterval of T (Ui) on a continuous part
of T ’s domain. In the event of equal-length subintervals, we choose the left half to
be Ui’s successor. U induces another (possibly not unique) sequence of intervals {Ii},
where Ii is any subinterval of Ui, where T (Ii) = Ui+1. In any situation where part
of T (Ui) is discarded, there exists at least one interval Ii ⊂ Ui, where T (Ii) = Ui+1

because Ui is chosen such that T is continuous on Ui. Note that T |Ii : Ii → Ui+1

is a continuous onto map. Eventually, by the expansion property, it must be true
that Un ⊇ U1 = V1 for some n. We now have a sequence of continuous onto maps
T |U1

: I1 → U2, T |U2
: I2 → U3, . . . , T |Un−1

: In−1 → Un and it follows that there is a

nonempty interval U ′ ⊆ U1 such that Tn−1(U ′) = T|Un−1
◦T|Un−2

◦· · ·◦T|U1
(U ′) = Un.

Since Tn−1|U ′ is continuous, there exists x ∈ V1 such that Tn−1(x) = x.
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