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ENUMERATION OF MATCHINGS IN THE INCIDENCE GRAPHS
OF COMPLETE AND COMPLETE BIPARTITE GRAPHS∗

NICHOLAS PIPPENGER†

SIAM J. DISCRETE MATH. c© 2002 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, pp. 47–64

Abstract. If G = (V,E) is a graph, the incidence graph I(G) is the graph with vertices V ∪ E
and an edge joining v ∈ V and e ∈ E when and only when v is incident with e in G. For G equal to
Kn (the complete graph on n vertices) or Kn,n (the complete bipartite graph on n+ n vertices), we
enumerate the matchings (sets of edges, no two having a vertex in common) in I(G), both exactly
(in terms of generating functions) and asymptotically. We also enumerate the equivalence classes of
matchings (where two matchings are considered equivalent if there is an automorphism of G that
induces an automorphism of I(G) that takes one to the other).
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1. Introduction. One goal of this paper is the enumeration of matchings in the
incidence graphs of certain graphs. There are of course many standard combinato-
rial results that can be interpreted as counting matchings in a graph. Indeed, for
the graphs we consider, the method of inclusion-exclusion yields a summation from
which the asymptotic behavior can be obtained by elementary means. We shall also
be interested, however, in enumerating equivalence classes of matchings (where two
matchings are considered equivalent if there is an automorphism of the underlying
graph that induces an automorphism of the incidence graph that takes one matching
into the other). For this problem, these standard methods do not serve, and we have
had to adopt a different strategy, using Pólya’s theory of enumeration [P2, P3] to
derive generating functions, and in the bipartite case an analytic method for diago-
nalizing a bivariate power series introduced by Pippenger [P1]. This new strategy,
however, works only for certain highly symmetric graphs. For reasons we will explain
later, we are particularly interested in the incidence graphs of complete graphs and
of complete bipartite graphs.

We shall denote by Kn the complete graph on n vertices, and by Kn,m the com-
plete bipartite graph on n+m vertices. If G = (V,E) is a graph, the incidence graph
I(G) is the graph with edges V ∪ E and an edge joining v ∈ V and e ∈ E when and
only when v is incident with e in G. If G is a graph, we shall denote by M(G) the set
of matchings in G. (These matchings need not be maximum, or even maximal. Thus
M(G) is never empty, since G always has an empty matching. All of the enumerations
we present can easily be extended to enumerate matchings by cardinality, simply by
inserting an additional indeterminate into the generating functions.)

In section 2 we shall enumerate the matchings M
(
I(Kn)

)
in the incidence graph

I(Kn) of the complete graph Kn. We first do this by inclusion-exclusion, then (as
background to what will follow) in a more cumbersome way by Pólya’s method.

In section 3 we shall enumerate the equivalence classes M̃
(
I(Kn)

)
of matchings
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48 NICHOLAS PIPPENGER

in the incidence graph I(Kn) of the complete graph Kn. Here, only Pólya’s method is
applicable. The result is closely related to the enumeration of “functional digraphs”
by Harary [H] and Read [R].

In section 4 we shall enumerate the matchings M
(
I(Kn,n)

)
in the incidence graph

I(Kn,n) of the complete bipartite graph Kn,n. Again we use both inclusion-exclusion
and Pólya’s method. To obtain the asymptotic behavior from the generating function,
we use the method of Pippenger [P1].

In section 5 we shall enumerate the equivalence classes M̃
(
I(Kn,n)

)
of matchings

in the incidence graph I(Kn,n) of the complete bipartite graph Kn,n. This result
requires combining almost all the techniques introduced in earlier sections.

Most of the methods used in this paper were also used by Pippenger [P1], and
many of the calculations done here are along lines similar to ones in that paper.
Accordingly, we shall give fewer details for such calculations, referring the reader to
that paper when appropriate.

The problems considered in this paper originally arose from the study of “con-
centrators” for communication switching (see Beneš [B1, B2]). Here, the vertices of
I(G) representing edges of G model “clients,” while those representing vertices of G
model “servers.” A “state” of the system, in which some clients are connected in a
one-to-one fashion to some servers, then corresponds to a matching in I(G). Enumer-
ation of the matchings thus gives information about the amount of storage required to
keep track of the state of the system, while enumeration of the equivalence classes of
matchings gives information about the number of essentially different situations that
must be considered in formulating a control policy for the system. The 12 elements
of M̃

(
I(K4)

)
are listed by Beneš [B1, B2].

2. Enumerating M
(
I(Kn)

)
. Let An denote the cardinality of M

(
I(Kn)

)
.

Theorem 2.1. We have

An =
∑
j≥0

(n)2j
2j j!

(−1)jnn−2j .

(Here (n)k = n(n− 1) · · · (n− k + 1).)
Proof. Consider a matching X ∈ M

(
I(Kn)

)
. For each edge {e, v} ∈ X (where

e ∈ E is an edge of Kn = (V,E) and v ∈ V is a vertex incident with e), we shall direct
the edge e = {v, w} out of v and into w. In this way we direct some of the edges of Kn.
These directed edges form the graph of a map σ : D → V from a subset D of V to V .
Furthermore, this map does not have any fixed points (σ(v) = v) or exchanged pairs
of points (σ(v) = w and σ(w) = v). Conversely, every map σ : D → V with D ⊆ V
having no fixed points or exchanged pairs arises in this way from unique matching in
M

(
I(Kn)

)
.

The number of maps from a subset of V to V is (n + 1)n. We can count the
number of these having no fixed points or exchanged pairs by using the principle of
inclusion-exclusion. There are n possible fixed points, and the fraction of maps having
k of them is

(
n
k

)
(n + 1)−k. There are

(
n
2

)
possible exchanged pairs, and the fraction

of maps having j of them is

1

j!

(
n

2

)(
n− 2

2

)
· · ·

(
n− 2j + 2

2

)
=

(n)2j
2j j!

.

Thus, by inclusion-exclusion, we have
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An =
∑
j≥0

∑
k≥0

(n)2j
2j j!

(
n− 2j

k

)
(−1)j+k(n+ 1)n−2j−k.

By the binomial theorem,
∑

k≥0

(
n−2j

k

)
(−1)k(n+ 1)n−2j−k = nn−2j . Thus

An =
∑
j≥0

(n)2j
2j j!

(−1)jnn−2j .

This last formula can be interpreted by considering vertices of Kn unmatched in X
to be represented by fixed points, rather than undefined points, of f , so that An is
the number of maps from V to V with no exchanged pairs.

Corollary 2.2. As n → ∞,

An ∼ nn

e1/2
.

Proof. The result of Theorem 2.1 can be rewritten as

An = nn
∑
j≥0

(n)2j
n2j

(−1)j
2j j!

.

Thus it will suffice to show that

∑
j≥0

(n)2j
n2j

(−1)j
2j j!

→ 1

e1/2

as n → ∞. Using

(n)2j
n2j

=
∏

0≤i<2j

(
1− i

n

)

=

{
1 +O

(
j2

n

)}

for j ≤ log2 n and

∣∣∣∣ (n)2jn2j

(−1)j
2j j!

∣∣∣∣ = O

(
1

n2

)

for j > log2 n, we obtain

∑
j≥0

(n)2j
n2j

(−1)j
2j j!

=
1

e1/2

{
1 +O

(
(log n)2

n

)}
,

since
∑

j≥0(−1)j/2j j! = e−1/2.
Let

A(z) =
∑
n≥1

An zn

n!

be the exponential generating function for the sequence {An}n≥1. Let Rn denote the
number of rooted labelled trees on n vertices. Cayley [C] showed that Rn = nn−1.
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Let

R(z) =
∑
n≥1

Rn zn

n!

=
∑
n≥1

nn−1 zn

n!

be the exponential generating function for rooted labelled trees. Pólya [P2] and Pólya
and Read [P3] showed that R(z) satisfies the functional equation

R(z) = z expR(z).

Theorem 2.3. We have

A(z) =
exp

(− 1
2R(z)

2
)

1−R(z)
.

Proof. Using the interpretation at the end of the proof of Theorem 2.1, we enu-
merate maps from V (the vertices of Kn) to V having no exchanged pairs. The graph
of such a map comprises a number of components. Each component contains a di-
rected cycle, where each vertex of the cycle is the root of a tree in which all edges are
directed toward the root. If R(z) is the exponential generating function for labelled
rooted trees, then R(z)m/m is the exponential generating function for components
containing a cycle of length m. Since exchanged pairs correspond to cycles of length
2, the exponential generating function for components is

C(z) =
∑
m≥1

R(z)m

m
− 1

2R(z)
2

= log
1

1−R(z)
− 1

2R(z)
2.

Applying Pólya’s component principle (if the exponential generating function U(z)
enumerates labelled components, then the exponential generating function expU(z)
enumerates labelled structures comprising zero or more components), we obtain

A(z) = expC(z)

=
exp

(− 1
2R(z)

2
)

1−R(z)
,

which completes the proof of the theorem.
We note that Theorem 2.3 can be used to provide an alternative derivation of

Corollary 2.2. The singularity of R(z) closest to the origin is at z = 1/e, and R(z)
has a branch point of order 2 with the expansion

R(z) = 1− 21/2(1− ez)1/2 +O(1− ez)

about this point (see Pippenger [P1, p. 96]). Furthermore, we have

|R(z)| ≤
∑
n≥1

Rn |z|n
n!

<
∑
n≥1

Rn e−n

n!
= R(1/e) = 1
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for |z| < 1/e. Thus A(z) also has z = 1/e as its singularity closest to the origin, with
the expansion

A(z) =
(e

2

)1/2 1

(1− ez)1/2
+O(1)

about this point. Applying Darboux’s lemma (see Darboux [D] or Knuth and Wilf
[K]), we obtain

An

n!
∼

(e

2

)1/2

(−1)n
(− 1

2

n

)
en.

Since n! ∼ (2πn)1/2e−nnn and (−1)n(− 1
2

n

)
=

(
2n
n

)
/4n ∼ 1/(πn)1/2, we obtain Corol-

lary 2.2.

3. Enumerating M̃
(
I(Kn)

)
. Let an denote the cardinality of M̃

(
I(Kn)

)
. Let

a(z) =
∑
n≥1

an zn

be the ordinary generating function for the sequence {an}n≥1. Let rn denote the
number of rooted unlabelled trees on n vertices. Let

r(z) =
∑
n≥1

rn zn

be the ordinary generating function for rooted unlabelled trees. Otter [O] showed
that r(z) satisfies the functional equation

r(z) = z exp
∑
h≥1

r(zh)

h
.

Theorem 3.1. We have

a(z) =
∏
m≥1

exp
(− 1

2m

(
r(zm)2 + r(z2m)

))
1− r(zm)

.

Proof. We proceed as in the proof of Theorem 2.3, with three differences. First,
we are enumerating unlabelled, rather than labelled, structures, so we use the ordinary
generating function r(z), rather than the exponential generating function R(z), for
trees. Second, we use the cycle index 1

m

∑
ij=m φ(j) r(zj)i (where φ(j) is Euler’s

function, the number of elements of {0, 1, . . . , j − 1} relatively prime to j), rather
than R(z)m/m, to enumerate unlabelled cycles of length m. This gives

c(z) =
∑
m≥1

1

m

∑
ij=m

φ(j) r(zj)i − 1
2

(
r(z)2 + r(z2)

)

=
∑
j≥1

φ(j)

j

∑
i≥1

r(zj)i

i
− 1

2

(
r(z)2 + r(z2)

)

=
∑
j≥1

φ(j)

j
log

1

1− r(zj)
− 1

2

(
r(z)2 + r(z2)

)
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for the ordinary generating function enumerating unlabelled components. Third, we
use Pólya’s component principle for unlabelled, rather than labelled, structures. (If
the ordinary generating function u(z) enumerates unlabelled components, then the
ordinary generating function exp

∑
h≥1

1
hu(z

h) enumerates unlabelled structures com-
prising zero or more components.) Using

∑
j|m φ(j) = m we obtain

a(z) = exp


∑

h≥1

1

h


∑

j≥1

φ(j)

j
log

1

1− r(zhj)


− 1

2

(
r(zh)2 + r(z2h)

)

= exp


∑

m≥1

log
1

1− r(zm)
− 1

2

(
r(zm)2 + r(z2m)

)

=
∏
m≥1

exp
(− 1

2m

(
r(zm)2 + r(z2m)

))
1− r(zm)

,

which completes the proof of the theorem.
We note that the generating function given in Theorem 3.1 differs merely by the

factor of
∏

m≥1 exp
(− 1

2m

(
r(zm)2 + r(z2m)

))
from the generating function

v(z) =
∏
m≥1

1

1− r(zm)

derived by Read [R] for the number of unlabelled functional digraphs.
Our next result requires the definition of some constants associated with the

generating function r(z) =
∑

n≥1 rn zn for rooted unlabelled trees. We define the
function

Ψ(z) =
∑
h≥2

r(zh)

h

=
∑
n≥1

rn

(
log

1

1− zn
− zn

)
.

The singularity of r(z) closest to the origin is at z = z0, where z0 is the unique
positive real solution of the equation z = exp−(1 + Ψ(z)

)
. Numerical computation

yields z0 = 0.3383 . . . . We also define the constant A = 1 + znΨ
′(z0). Using the

expansion

zΨ(z) =
∑
n≥1

nrn

(
zn

1− zn
− zn

)
,

numerical computation yields A = 1.215 . . . .
Corollary 3.2. As n → ∞,

an ∼ c

n1/2

(
1

z0

)n

,

where

c =
exp

(− 1
2r(z

2
0)
)

(2Aπe)1/2

∏
h≥2

exp
(

1
2h

(
r(zh0 )

2 + r(z2h
0 )

))
1− r(zh0 )

.
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Proof. The singularity of r(z) closest to the origin is at z = z0, and r(z) has a
branch point of order 2 with the expansion

r(z) = 1− (2A)1/2(1− z/z0)
1/2 +O(1− z/z0)

about this point (see Pippenger [P1, p. 104]). Furthermore, we have

|r(z)| ≤
∑
n≥1

rn |z|n <
∑
n≥1

rn z−n
0 = r(z0) = 1

for |z| < z0. Thus a(z) also has z = z0 as its singularity closest to the origin, with
the expansion

a(z) =
exp

(− 1
2r(z

2
0)
)

(2Ae)1/2(1− z/z0)1/2

∏
h≥2

exp
(

1
2h

(
r(zh0 )

2 + r(z2h
0 )

))
1− r(zh0 )

+O(1)

about this point. Applying Darboux’s lemma, we obtain

an ∼ (−1)n
zn0

(− 1
2

n

)
exp

(− 1
2r(z

2
0)
)

(2Ae)1/2

∏
h≥2

exp
(

1
2h

(
r(zh0 )

2 + r(z2h
0 )

))
1− r(zh0 )

.

Since (−1)n(− 1
2

n

) ∼ 1/(πn)1/2, we obtain Corollary 3.2.
The argument used to prove this corollary can also be used to derive the asymp-

totic behavior of the number vn of unlabelled functional digraphs on n vertices:

vn ∼ 1

(2Aπen)1/2zn0

∏
h≥2

1

1− r(zh0 )
.

4. Enumerating M
(
I(Kn,n)

)
. Let Bn denote the cardinality of M

(
I(Kn,n)

)
.

Theorem 4.1. We have

Bn =
∑
j≥0

(−1)j j!
(
n

j

)2

(n+ 1)2n−2j .

Proof. Consider a matching X ∈ M
(
I(Kn,n)

)
. For each edge {e, v} ∈ X (where

e = {v, w} ∈ E is an edge of Kn,n = (V,W,E) and v ∈ V ∪W is a vertex incident with
e), we shall direct the edge e = {v, w} out of v and into w. In this way we direct some
of the edges of Kn,n. These directed edges form the graph of a map σ : D → V ∪W
from a subset D of the vertices of V ∪W to V ∪W . This map exchanges V and W .
(That is, it takes vertices in V to vertices in W , and vertices in W to vertices in V .)
Furthermore, this map does not have any exchanged pairs of points (σ(v) = w and
σ(w) = v). Conversely, every map σ : D → V ∪W with D ⊆ V ∪W that exchanges
V and W and has no exchanged pairs arises in this way from unique matching in
M

(
I(Kn,n)

)
.

The number of maps from a subset of V ∪ W to V ∪ W that take vertices in V
to vertices in W , and vertices in W to vertices in V , is (n + 1)2n. We can count
the number of these having no exchanged pairs by using the principle of inclusion-
exclusion. There are n2 possible exchanged pairs, and the fraction of maps having j
of them is

j!

(n+ 1)2j

(
n

j

)2

.
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Thus, by inclusion-exclusion, we have

Bn =
∑
j≥0

(−1)j j!
(
n

j

)2

(n+ 1)2n−2j ,

which completes the proof of the theorem.
Corollary 4.2. As n → ∞,

Bn ∼ e n2n.

Proof. The result of Theorem 4.1 can be rewritten as

Bn = (n+ 1)2n
∑
j≥0

(−1)j
j!

(n)2j
(n+ 1)2j

.

As in the proof of Corollary 2.2, we have

(−1)j
j!

(n)2j
(n+ 1)2j

=
(−1)j
j!

{
1 +O

(
j2

n

)}
,

so that

∑
j≥0

(−1)j
j!

(n)2j
(n+ 1)2j

=
1

e

{
1 +O

(
(log n)2

n

)}
.

Using (n+ 1)2n ∼ e2 n2n, we obtain the result of the corollary.
Let

B(z) =
∑
n≥1

Bn zn

n!

be the exponential generating function for the sequence {Bn}n≥1. Let Bn,m denote
the cardinality of M

(
I(Kn,m)

)
. Let

B(x, y) =
∑

n,m≥1

Bn,m xn ym

n!m!

be the exponential generating function for the sequence {Bn,m}n,m≥1. Our strategy
will be to derive the bivariate generating function B(x, y) and then obtain B(z) from
it by a method of diagonalization.

Let Rn,m denote the number of bicolored rooted labelled trees (that is, the number
of rooted labelled trees that, when bicolored, have n vertices with the color of the root
and m vertices with the other color). Austin [A] showed that Rn,m = nm mn−1. Let

R(x, y) =
∑

n≥1,m≥0

Rn,m xn ym

n!m!

=
∑

n≥1,m≥0

nm mn−1 xn ym

n!m!

be the exponential generating function for the sequence {Rn,m}n,m≥1. Austin [A]
showed that R(x, y) satisfies the functional equation

R(x, y) = x expR(y, x).
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Proposition 4.3. We have

B(x, y) =
exp

(
R(x, y) +R(y, x)−R(x, y)R(y, x)

)
1−R(x, y)R(y, x)

.

Proof. Using the interpretation in the proof of Theorem 4.1, we enumerate maps
σ from subsets D ⊆ V ∪ W to V ∪ W that exchange V and W and have no ex-
changed pairs. The graph of such a map comprises a number of components. Each
component either is a rooted tree (where the root is a vertex in (V ∪ W ) \ D at
which σ is undefined) or contains a directed cycle of even length, where each vertex
of the cycle is the root of a tree in which all edges are directed toward the roots. If
R(x, y) is the exponential generating function for bicolored rooted labelled trees, then
R(x, y)+R(y, x) is the exponential generating function for components that are trees,
and R(x, y)m R(y, x)m/m is the exponential generating function for components that
contain a cycle of length 2m. Since exchanged pairs correspond to cycles of length 2,
the exponential generating function for components is

C(x, y) =
∑
m≥1

R(x, y)m R(y, x)m

m
+R(x, y) +R(y, x)− 1

2R(x, y)R(y, x)

= log
1

1−R(x, y)R(y, x)
+R(x, y) +R(y, x)− 1

2R(x, y)R(y, x).

Applying Pólya’s component principle (if the exponential generating function U(x, y)
enumerates labelled components, then the exponential generating function expU(x, y)
enumerates labelled structures comprising zero or more components), we obtain

B(x, y) = expC(x, y)

=
exp

(
R(x, y) +R(y, x)−R(x, y)R(y, x)

)
1−R(x, y)R(y, x)

,

which completes the proof of the theorem.
Theorem 4.4. We have

B(z) =
1

2π

∫ 3π/2

−π/2

exp
(
Rϑ(z) +R−ϑ(z)−Rϑ(z)R−ϑ(z)

)
1−Rϑ(z)R−ϑ(z)

dϑ,

where

Rϑ(z) = R(zeiϑ, ze−iϑ).

Proof. Each term of the form xn yn in B(x, y) contributes a term of the form z2n

to B(z), whereas each term of the form xn ym (with n �= m) in B(x, y) contributes
nothing to B(z).

We note that Theorem 4.4 can be used to provide an alternative derivation of
Corollary 4.2. Following Pippenger [P1, pp. 97–102], we define

Cϑ(z) =
Rϑ(z) +R−ϑ(z)

2
.

From the functional equation

Rϑ(z) = z exp
(
iϑ+R−ϑ(z)

)
,
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we have

Rϑ(z)R−ϑ(z) = z2 exp
(
2Cϑ(z)

)
.

This allows the integrand in Theorem 4.4 to be written as

Tϑ(z) =
exp

(
2Cϑ(z)− z2 exp

(
2Cϑ(z)

))
1− z2 exp

(
2Cϑ(z)

) .

As before, the singularities of the integrand are those of Cϑ(z). There are two such
singularities. One of these, at

Z+
ϑ = exp−cyc ϑ,

is closest to the origin when ϑ is near 0, and we have the expansion

Cϑ(z) = cyc ϑ− (1 + cyc ϑ)1/2(1− z/Z+
ϑ )

1/2 +O(z − Z+
ϑ )

about this point. Here cyc ϑ denotes a cycloid function having the expansion cyc ϑ =
1− ϑ2/8 +O(ϑ4) for ϑ near 0. The other singularity, at

Z−
ϑ = − exp−cyc(ϑ− π),

is closest to the origin when ϑ is near π, and we have the expansion

Cϑ(z) = cyc(ϑ− π)− (
1 + cyc(ϑ− π)

)1/2
(1− z/Z−

ϑ )
1/2 +O(z − Z−

ϑ )

about this point. From Theorem 4.4 we have

Bn

n!2
=

1

2π

∫ 3π/2

−π/2

[z2n]Tϑ(z) dϑ.

We set

ε(n) =

(
48 log n

n

)1/2

and break the interval I = [−π/2, 3π/2) into three parts: J+ = [−ε(n), ε(n)],
J− = [π − ε(n), π + ε(n)], and K = I \ (J+ ∪ J−). For ϑ in K, Cauchy’s theo-
rem yields

[z2n]Tϑ(z) = O

(
e2n

n3

)
,

and the integral over K satisfies the same estimate. For ϑ in J+, Darboux’s lemma
yields

[z2n]Tϑ(z) =
e2n+1

4(πn)1/2

{
1 +O

(
(log n)2

n

)}{
1 +O

(
ϑ2

)}
exp−(nϑ2/4).

Thus for the integral over J+ we have

1

2π

∫
J+

[z2n]Tϑ(z) dϑ =
e2n+1

4πn

{
1 +O

(
(log n)2

n

)}
.

The integral over J− satisfies the same estimate, and thus we obtain

Bn

n!2
=

e2n+1

2πn

{
1 +O

(
(log n)2

n

)}
.

Since n! ∼ (2πn)1/2e−nnn, we obtain Corollary 4.2.
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5. Enumerating M̃
(
I(Kn,n)

)
. Let bn denote the cardinality of M̃

(
I(Kn,n)

)
.

Let

b(z) =
∑
n≥1

bn zn

be the ordinary generating function for the sequence {bn}n≥1. Let bn,m denote the

cardinality of M̃
(
I(Kn,m)

)
. Let

b(x, y) =
∑

n,m≥1

bn,m xn ym

be the ordinary generating function for the sequence {bn,m}n,m≥1. Our strategy will
be to derive the bivariate generating function b(x, y) and then obtain b(z) from it by
a method of diagonalization.

Let rn,m denote the number of bicolored rooted unlabelled trees (that is, the
number of rooted unlabelled trees that, when bicolored, have n vertices with the color
of the root and m vertices with the other color). Let

r(x, y) =
∑

n≥1,m≥0

rn,m xn ym

be the ordinary generating function for the sequence {rn,m}n,m≥1. Pippenger [P1]
showed that r(x, y) satisfies the functional equation

r(x, y) = x exp
∑
h≥1

r(yh, xh)

h
.

A positive integer m can be factorized as m = v(m) · w(m), where v(m) is an
integral power of 2 and w(m) is an odd integer.

Proposition 5.1. We have

b(x, y) =
f(x, y) + g(x, y)

2
,

where

f(x, y) =
∏
m≥1

exp
(

1
m

(
r(xm, ym) + r(ym, xm)− r(xm, ym) r(ym, xm)

))
1− r(xm, ym) r(ym, xm)

and

g(x, y) =
∏
m≥1

exp
(

1
2m

(
r(x2m y2m)− r(xm ym)2

))
1− r(xm ym)

.

Proof. Using the interpretation in the proof of Theorem 4.1, we enumerate equiv-
alence classes of maps σ from subsets D ⊆ V ∪W to V ∪W that exchange V and W
and have no exchanged pairs, where now two maps σ and τ are considered equivalent
if there is permutation π of V ∪ W that is (1) either part-preserving (that is, such
that π(V ) = V and π(W ) = W ) or part-exchanging (that is, such that π(V ) = W
and π(W ) = V ), and (2) such that π

(
τ(v)

)
= σ

(
π(v)

)
for all v ∈ V ∪ W (which
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means, in particular, that τ(v) is defined if and only if σ
(
π(v)

)
is defined). We shall

start by considering only part-preserving permutations. Let fn,m denote the number
of equivalence classes of matchings in I(Kn,m) under part-preserving automorphisms
of Kn,m and I(Kn,m). Let

f(x, y) =
∑

n,m≥1

fn,m xn ym

be the ordinary generating function for the sequence {fn,m}n,m≥1. We shall show
first that f(x, y) is as given in the statement of the theorem.

Next we shall consider part-exchanging permutations. If a matching has no part-
exchanging automorphism, then it, together with its mate obtained by exchanging V
and W , are counted twice in f(x, y). If, on the other hand, it has a part-exchanging
automorphism (which can happen only when n = m), then it is counted just once. Let
gn,m denote the number of equivalence classes (under part-preserving automorphisms)
of matchings in I(Kn,m) that have at least one part-exchanging automorphism. Let

g(x, y) =
∑

n,m≥1

gn,m xn ym

be the ordinary generating function for the sequence {fn,m}n,m≥1. (We have gn,m = 0
whenever n �= m, so g(x, y) is actually a power series in the product xy.) We shall
show that g(x, y) is as given in the statement of the theorem.

Finally, it follows that b(x, y) = f(x, y)/2+ g(x, y)/2, since a matching without a
part-exchanging automorphism is counted with weight 1 by the first term, while one
with a part-exchanging automorphism is counted with weight 1/2 by the first term,
and again with weight 1/2 by the second term.

To derive f(x, y), we proceed as in the proof of Proposition 4.3, with three differ-
ences. First, we are enumerating unlabelled, rather than labelled, structures, so we
use the ordinary generating function r(x, y), rather than the exponential generating
function R(x, y), for trees. Second, we use the cycle index

1

m

∑
ij=m

φ(j) r(xj , yj)i r(yj , xj)i,

rather than R(x, y)m R(y, x)m/m, to enumerate unlabelled cycles of length 2m. This
gives

c(x, y) =
∑
m≥1

1

m

∑
ij=m

φ(j) r(xj , yj)i r(yj , xj)i + r(x, y) + r(y, x)− r(x, y) r(y, x)

=
∑
j≥1

φ(j)

j

∑
i≥1

r(xj , yj)i r(yj , xj)i

i
+ r(x, y) + r(y, x)− r(x, y) r(y, x)

=
∑
j≥1

φ(j)

j
log

1

1− r(xj , yj) r(yj , xj)
+ r(x, y) + r(y, x)− r(x, y) r(y, x)

(where we have added the terms r(x, y) + r(y, x) for the components that are trees)
for the ordinary generating function enumerating unlabelled components. Third, we
use Pólya’s component principle for unlabelled, rather than labelled, structures. (If
the ordinary generating function u(x, y) enumerates unlabelled components, then the
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ordinary generating function exp
∑

h≥1
1
hu(x

h, yh) enumerates unlabelled structures
comprising zero or more components.) We obtain

f(x, y) = exp
∑
h≥1

1

h


∑

j≥1

φ(j)

j
log

1

1− r(xhj , yhj) r(yhj , xhj)




+
r(xh, yh) + r(yh, xh)− r(xh, yh) r(yh, xh)

h
= exp
∑

m≥1

log
1

1− r(xm, ym)
+

r(xm, ym) + r(ym, xm)− r(xm, ym)r(ym, xm)

m




=
∏
m≥1

exp
(

1
m

(
r(xm, ym) + r(ym, xm)− r(xm, ym) r(ym, xm)

))
1− r(xm, ym) r(ym, xm)

,

which completes the derivation of f(x, y).
To derive g(x, y) we proceed as for f(x, y), but we observe that components that

do not themselves have a part-exchanging automorphism must come in pairs, along
with their mate obtained by exchanging V and W . Our goal then is to derive an
ordinary generating function for components that have a part-exchanging automor-
phism. Such a component cannot be a tree, since a tree has its root in one part or
the other. Thus it must contain a cycle of even length 2m, and its part-exchanging
automorphism must rotate this cycle by an odd number of vertices. This odd number
of vertices is relatively prime to v(2m), so the component must comprise w(m) sets of
trees, each of which contains v(m) trees along with their v(m) mates. The ordinary
generating function for a tree along with its mate is r(xy, xy) = r(xy). Thus the
ordinary generating function for such components is

1

w(m)

∑
ij=w(m)

φ(j) r(xjv(m) yjv(m))i.

Thus the ordinary generating function for all such components (except those associ-
ated with exchanged pairs) is

d(x, y) =


∑

m≥1

1

w(m)

∑
ij=w(m)

φ(j) r(xjv(m) yjv(m))i


− r(xy)

=


 ∑

v=2t≥1

∑
odd w≥1

1

w

∑
ij=w

φ(j) r(xjv yjv)i


− r(xy)

=


 ∑

v=2t≥1

∑
odd j≥1

φ(j)

j

∑
odd i≥1

1

i
r(xjv yjv)i


− r(xy)

=


 ∑

v=2t≥1

∑
odd j≥1

φ(j)

2j
log

(
1 + r(xjv yjv)

1− r(xjv yjv)

)− r(xy).

The ordinary generating function for components that do not have a part-exchanging
automorphism is thus c(x, y)− d(x, y), and for pairs of these components along with
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their mates is
(
c(xy, xy)− d(xy, xy)

)
/2. Thus we obtain g(x, y) by applying Pólya’s

component principle to
(
c(xy, xy)−d(xy, xy)

)
/2+d(x, y). For the first term, we have

∑
h≥1

c(xhyh, xhyh)

2h
=

∑
h≥1

1

2h

∑
j≥1

φ(j)

j
log

1

1− r(xjh yjh)2

+
r(xh yh)

h
− r(xh yh)2

2h

=
∑
m≥1

1

2m

∑
j|m

φ(j) log
1

1− r(xm ym)2

+
r(xm ym)

m
− r(xm ym)2

2m

=
∑
m≥1

1

2
log

1

1− r(xm ym)2

+
r(xm ym)

m
− r(xm ym)2

2m
.

For the last two terms, we have

∑
h≥1

d(xm, ym)

h
− d(xhyh, xhyh)

2h

=
∑
h≥1

1

h

∑
u=2t≥1

∑
odd j≥1

φ(j)

2j
log

1 + r(xhuj yhuj)

1− r(xhuj yhuj)
− r(xh yh)

h

−
∑
h≥1

1

2h

∑
u=2t≥1

∑
odd j≥1

φ(j)

2j
log

1 + r(x2huj y2huj)

1− r(x2huj y2huj)
+

r(x2h y2h)

2h

=
∑
m≥1

1

m

∑
u=2t≥1

∑
odd j|m

φ(j)

2
log

1 + r(xmu ymu)

1− r(xmu ymu)

−
∑
m≥1

1

2m

∑
u=2t≥1

∑
odd j|m

φ(j)

2
log

1 + r(x2mu y2mu)

1− r(x2mu y2mu)
−

∑
odd k≥1

r(xk yk)

k

=
∑
m≥1

1

v(m)

∑
u=2t≥1

1

2
log

1 + r(xmu ymu)

1− r(xmu ymu)

−
∑
m≥1

1

v(vm)

∑
u=2t≥1

1

2
log

1 + r(x2mu y2mu)

1− r(x2mu y2mu)
−

∑
odd k≥1

r(xk yk)

k

=
∑

odd k≥1

∑
u=2t≥1

1

2
log

1 + r(xku yku)

1− r(xku yku)
−

∑
odd k≥1

r(xk yk)

k

=
∑
m≥1

1

2
log

1 + r(xm ym)

1− r(xm ym)
−

∑
odd k≥1

r(xk yk)

k
,
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since
∑

odd j|m φ(j) = w(m). Combining these results, we obtain

g(x, y) = exp
∑
h≥1

c(xh yh, xh yh)− d(xh yh, xh yh) + 2d(xh, yh)

2h

=
∏
m≥1

exp
(

1
2m

(
r(x2m y2m)− r(xm ym)2

))
1− r(xm ym)

,

which completes the derivation of g(x, y), and thus the proof of the proposition.
Theorem 5.2. We have

b(z) =
1

2π

∫ 3π/2

−π/2

b(zeiϑ, ze−iϑ) dϑ.

Proof. Each term of the form xn yn in b(x, y) contributes a term of the form z2n

to b(z), whereas each term of the form xn ym (with n �= m) in b(x, y) contributes
nothing to b(z).

Our next result requires the definition of some constants associated with the
generating function r(x, y) =

∑
n≥1,m≥0 rn,m xn ym for bicolored rooted unlabelled

trees. Define the power series q(z) =
∑

n≥1 qn zn by

q(z) =
∑

n≥1,m≥0

(n−m) rn,m zn+m

and then define

B = 1−
∑
n≥1

qn

(
zn0

1− zn0
− zn0

)
.

Numerical computation yields B = 0.8269 . . . . Next define the power series p(z) =∑
n≥1 pn zn by

p(z) =
∑

n≥1,m≥0

(n−m)2 rn,m zn+m

and then define

C = −
∑
n≥1

pn

(
zn0

(1− zn0 )
2
− zn0

)
.

Numerical computation yields C = −0.4450 . . . .
Corollary 5.3. As n → ∞,

bn ∼ d

n

(
1

z0

)2n

,

where

d =
e

4π(B2 − 4C)1/2

∏
m≥2

exp
(

1
m

(
2r(zm0 ) + r(zm0 )2

))
1− r(zm0 )2

.
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Proof. As before, we shall apply Darboux’s lemma to the integrand in Theorem
5.2, and thus we shall be concerned with singularities closest to the origin. Following
Pippenger [P1, pp. 104–114], we define

cϑ(z) =
cϑ(z) + c−ϑ(z)

2
.

From the functional equation

rϑ(z) = z exp


iϑ+

∑
h≥1

r−hϑ(z
h)

h


 ,

we have

rϑ(z) r−ϑ(z) = z2 exp


2

∑
h≥1

chϑ(z
h)

h


 .

As before, the singularities of

tϑ(z) =
1

1− rϑ(z) r−ϑ(z)

are those of cϑ(z). One of these, at

z+
ϑ = z0

(
1 +

B2 − 4C

8A
ϑ2 +O(ϑ4)

)
,

is closest to the origin when ϑ is near 0, and we have the expansion

cϑ(z) =
(
1 +O(ϑ2)

)− (2A)1/2
(
1 +O(ϑ2)

)
(1− z/z+

ϑ )
1/2 +O(z − z+

ϑ )

about this point. Another singularity, at

z−ϑ = −z0

(
1 +

B2 − 4C

8A
ϑ2 +O(ϑ4)

)
,

is closest to the origin when ϑ is near π, and we have the expansion

cϑ(z) =
(
1 +O(ϑ2)

)− (2A)1/2
(
1 +O(ϑ2)

)
(1− z/z−ϑ )

1/2 +O(z − z−ϑ )

about this point.
Let us now estimate

tn =
1

2π

∫ 3π/2

−π/2

[z2n] tϑ(z) dϑ.

We set

ε(n) =

(
48 log n

n

)1/2

and break the interval I = [−π/2, 3π/2) into three parts: J+ = [−ε(n), ε(n)],
J− = [π − ε(n), π + ε(n)], and K = I \ (J+ ∪ J−). For ϑ in K, Cauchy’s theo-
rem yields

[z2n] tϑ(z) = O

(
z−2n
0

n3

)
,
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and the integral over K satisfies the same estimate. For ϑ in J+, Darboux’s lemma
yields

[z2n] tϑ(z) =
z−2n
0

4(Aπn)1/2

{
1 +O

(
(log n)2

n

)}{
1 +O

(
ϑ2

)}
exp−

(
nϑ2(B2 − 4C)

4A

)
.

Thus for the integral over J+ we have

1

2π

∫
J+

[z2n] tϑ(z) dϑ =
z−2n
0

4πn(B2 − 4C)1/2

{
1 +O

(
(log n)2

n

)}
.

The integral over J− satisfies the same estimate, and thus we obtain

tn =
z−2n
0

2πn(B2 − 4C)1/2

{
1 +O

(
(log n)2

n

)}
.

Let us now estimate

fn =
1

2π

∫ 3π/2

−π/2

f(zeiϑ, ze−iϑ) dϑ.

Writing f(x, y) as

f(x, y) =
exp

((
r(x, y) + r(y, x)− r(x, y) r(y, x)

))
1− r(x, y) r(y, x)

×
∏
m≥2

exp
(

1
m

(
r(xm, ym) + r(ym, xm)− r(xm, ym) r(ym, xm)

))
1− r(xm, ym) r(ym, xm)

,

we see that the asymptotic behavior of fn is determined by that of the denominator
of the first factor, which we have already analyzed as tn, whereas the numerator of
the first factor and all of the remaining factors merely contribute constant factors to
the result. Thus we have

fn ∼ etn
∏
m≥2

exp
(

1
m

(
2r(zm0 ) + r(zm0 )2

))
1− r(zm0 )2

∼ e z−2n
0

2πn(B2 − 4C)1/2

∏
m≥2

exp
(

1
m

(
2r(zm0 ) + r(zm0 )2

))
1− r(zm0 )2

.

Let us now estimate

gn =
1

2π

∫ 3π/2

−π/2

g(zeiϑ, ze−iϑ) dϑ.

Every term of g(x, y) is of the form xn ym, so that we have g(zeiϑ, ze−iϑ) = g(z, z), so
that no integration is necessary. Furthermore, g(z, z) has no singularity closer to the

origin than z
1/2
0 > z0, so that we have gn = O(z−n

0 ), which is negligible as compared
with fn.

Thus we have

bn =
fn + gn

2

∼ e z−2n
0

4πn(B2 − 4C)1/2

∏
m≥2

exp
(

1
m

(
2r(zm0 ) + r(zm0 )2

))
1− r(zm0 )2

,

which completes the proof of the theorem.
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[P2] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Ver-

bindungen, Acta Math., 68 (1937) pp. 145–254.
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