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Abstract

This senior thesis project explores and generalizes some fundamental ma-
chine learning algorithms from the Euclidean space to the statisticalmanifold,
an abstract space in which each point is a probability distribution. In this
thesis, we adapt the optimal separating hyperplane, the k-means clusteringmethod,
and the hierarchical clustering method for classifying and clustering probability
distributions. In these modifications, we use the statistical distances as a mea-
sure of the dissimilarity between objects. We describe a situation where the
clustering of probability distributions is needed and useful. We presentmany
interesting and promising empirical clustering results, which demonstrate
the statistical-distance-based clustering algorithms often outperform the
same algorithms with the Euclidean distance in many complex scenarios. In
particular, we apply our statistical-distance-based hierarchical and k-means
clustering algorithms to the univariate normal distributions with k � 2 and
k � 3 clusters, the bivariate normal distributions with diagonal covariance
matrix and k � 3 clusters, and the discrete Poisson distributions with k � 3
clusters. Finally, we prove the k-means clustering algorithm applied on the
discrete distributions with the Hellinger distance converges not only to the
partial optimal solution but also to the local minimum.
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Chapter 1

Background

By the end of 1970s, many techniques for extracting information from data
had been available. However, many of them are linear models. By the 1980s,
computing technology had improved sufficiently so that non-linear methods
became feasible computationally. In mid 1980s, classification and regression
trees were introduced, and many model selection methods including cross-
validation were explored. In 1986, Hastie and Tibshirani coined the term
generalized additivemodels for a class of non-linear extensions to generalized
linear models, and provided a practical software implementation. Since
that time, inspired by the advent of machine learning and other disciplines,
statistical learning has emerged as a new subfield in statistics.

In particular, focus has been given to supervised and unsupervised
modeling and prediction, and three broad class of algorithms: regression,
classification, and clustering have been widely explored and applied to our
everyday life.

Many applications seek to extract information and produce learning
algorithms for observations in the Euclidean space, represented by a vector,
or an n-tuple. A common practice under such circumstances is to extract
certain features from the objects we are interested in and consider these
features as vectors in the Euclidean space.

In some cases, extracting features from objects is very difficult, and the
distance in the feature space may not best represent the similarity between
two objects we are interested in.

In this senior thesis project, the object we are interested in is known as
the probability distribution. Just like vectors reside in the Euclidean space, the
set of probability distributions resides on the statistical manifold.



2 Background

To the knowledge of the author, classification on statistical manifold has
not been discussed in literature.

On the other hand, the idea of clustering on statistical manifold has
been mentioned in many different contexts. For example, in a conference
proceedings by Lee et al. (2007), clustering a set of multinomial distributions
is discussed and implemented by applying a simple k-means algorithm
with an appropriate distance measure. However, not much effort has been
put into systematically studying the clustering problem on the statistical
manifold.

The primary aim of this senior thesis project is to generalize some
classification algorithms and formalize some clustering algorithms from the
Euclidean space to the statistical manifold. The goal of such algorithms is to
classify and cluster probability distributions.



Chapter 2

Introduction

2.1 Manifolds

An n-dimensional manifold M is a set of points such that each point has
n-dimensional extensions in its neighborhood. Such a neighborhood is
topologically equivalent to an n-dimensional Euclidean space. Because a
manifold M is locally equivalent to an n-dimensional Euclidean space, we
introduce a local coordinate system ξ � (ξ1 , ξ2 , ..., ξn). Each point on the
manifold is uniquely specified by this induced coordinate system.

A two-dimensional Euclidean space is the most straightforward example
of a manifold. It is convenient to use an orthonormal Cartesian coordinate
system ξ � (x , y), or a polar coordinate ξ � (r, θ).

2.2 Probability Distributions

In this section, we briefly review probability distributions, the major objects
we are interested in in this project.

2.2.1 Discrete Distributions

The mathematical definition of a discrete probability function p(x) is a
function that satisfies the following properties.

• The probability that a random variable X takes satisfies

P(X � x) � p(x) (2.1)

• p(x) is non-negative for all real-valued x.
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• The sum of p(x) over all possible x is equal to 1:∑
x

p(x) � 1 (2.2)

A discrete probability function is often called a probability mass function.
It takes a discrete number of values, but not necessarily finite. In fact, it can
take countably infinite discrete values. Each of the discrete values has a
certain probability of occurrence that is between zero and one. The condition
that the probabilities sum to one means that at least one of the values has to
occur. A typical example of a discrete distribution is a histogram. Figure 2.1
illustrates a discrete probability mass function.

Figure 2.1 An Illustration of a Probability Mass Function

2.2.2 Continuous Distributions

Similarly, the mathematical definition of a continuous probability function
f (x) is a right-continuous function that satisfies the following properties.

• The probability that a random variable X takes value between a and b
is given by

P(a ≤ X ≤ b) �
∫ b

a
f (x)dx (2.3)

• f (x) is non-negative for all real-valued x.



Statistical Manifolds 5

• The integral of f (x) is equal to 1:∫ ∞

−∞
f (x)dx � 1 (2.4)

A continuous distribution function is referred to as a probability density
function. Note for a probability density function, the probability at a single
point is always zero. Probabilities are measured over intervals, not at single
points. The area under the curve between two distinct points defines the
probability for that interval. The property that the integral must equal one
is equivalent to the property for discrete distributions that the sum of all the
probabilities must equal one. A univariate normal distribution is a typical
example of a continuous probability density function. Figure 2.2 illustrates
a standard normal distribution.

Figure 2.2 An Illustration of a Probability Density Function

2.3 Statistical Manifolds

A statisticalmanifold is a differentiablemanifoldwhere each point represents
a probability distribution. The set of all probability measures consists of
an infinite-dimensional statistical manifold. Typically, we work with some
finite-dimensional sub-manifolds. Note the statistical manifold associates
each location in parameter space to a probability density function. Figure
2.3 illustrates this pictorially.
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Figure 2.3 An Illustration of a Statistical Manifold

It is important to keep in mind that we always have two spaces: a param-
eter space where the parameters live and a manifold on which probability
distributions reside. This duality allows us to generalize many concepts from
the Euclidean space to the statistical manifold. In the rest of this chapter, we
briefly review twomost important statistical manifolds, namely the manifold
of discrete distributions and the manifold of univariate normal distributions.

2.3.1 Manifold of Discrete Distributions

Let x take values from X � (0, 1, 2, ..., n). A distribution for x is specified by
n + 1 probabilities

pi � P(x � i), i � 0, 1, 2, ..., n (2.5)

Hence, a probability distribution is given by the vector

p � (p0 , p1 , p2 , ..., pn) (2.6)
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where
∑n

i�0 pi � 1, and each pi > 0. The set of all such probability vectors p
form a statistical manifold, and the coordinate system is given by

ξ � (p1 , p2 , ..., pn) (2.7)

Note here p0 is not a free variable because of the constraint
∑n

i�0 pi � 1. Such
a statistical manifold is called a probability simplex, and denoted by Sn
Amari (2013). Figure 2.4 illustrates the case of S2 and S3.

Figure 2.4 Probability Simplex

2.3.2 Manifold of Gaussian Distributions

The probability density function of a univariate Gaussian random variable
is given by:

f (x; θ) � 1
√

2πσ
exp(
−(x − µ)2

2σ2 ) (2.8)

Note the natural parametrization of a univariate normal distribution is θ �

(µ, σ), where µ is the mean of the distribution, and σ2 is the variance. Hence,
the set of all the univariate Gaussian distributions is a two-dimensional
manifold, where a point denotes a probability density function and

ξ � (µ, σ) σ > 0 (2.9)

is the coordinate system. Note since σ is always positive, the parameter
space corresponds to the upper half plane of R2.
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Other coordinate systems also work. For example, Let us consider the
first and second moments of x, m1 and m2, given by

m1 � µ; m2 � µ2
+ σ2 (2.10)

In this case, ξ � (m1 ,m2) forms another coordinate system Amari (2013).



Chapter 3

Approach

3.1 Overview

In this section, we discuss some most widely-used machine learning algo-
rithms in the Euclidean space Rn and discuss the approaches to generalize
these algorithms to statistical manifold.

A rough classification of machine learning algorithms consists of super-
vised learning and unsupervised learning. Supervised learning is where we
have input variables x and an output variable y and learn the best mapping
function from the input to the output. It is called supervised learning
because the process of learning from the training dataset can be thought of
as being supervised by the correct answers. The algorithm iteratively makes
predictions on the training data and is corrected using the correct answers
available. Classification algorithms, in particular, are among the supervised
learning algorithms.

Unsupervised learning is where we only have input data x but no
corresponding output variables. The goal for unsupervised learning is to
model the underlying structure or distribution in the data in order to learn
more about the data. They are called unsupervised learning algorithms
because there are no correct answers available to supervise the learning
process. Clustering algorithms are among the unsupervised algorithms.

In the following sections, we are going to review some of themost popular
classification and clustering algorithms. First, we present two important
classification algorithms, known as the optimal separating hyperplane and the
support vector machine.
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3.2 Classification

The goal of classification is to learn a mapping from the input x to output y,
where the input x is a feature vector in Euclidean space Rn and the output
y ∈ {1, 2, ..., k}. Note here k denotes the number of classes. If k � 2, we
say this is a binary classification problem, and we often assume y ∈ {0, 1}.
If k ≥ 3, we say this is a multi-class classification problem. Classification
problem is everywhere in our daily life and has numerous applications.
Notably, classification algorithms are widely used in spam detection and
filtering, handwriting recognition, and face recognition.

3.2.1 Optimal Separating Hyperplane in Euclidean Space

We first consider an optimal separating hyperplane between two perfectly
separate classes. This is usually used as amotivating example for introducing
the more general technique called the support vector machine. Suppose we
have a training set (x1 , y1), (x2 , y2), ..., (xN , yN), where xi is a vector of features
and yi is either −1 or 1, representing two classes. Let us denote a hyperplane
by β0 + βTx � 0. Using elementary linear algebra knowledge, we observe
the signed distance from each training data point (xi , yi) to this hyperplane
is given by

Di �
1
‖β‖ ∗ (β0 + β

Txi) (3.1)

To get rid of the sign, wemultiply the signed distance Di by yi . Assuming
two classes can be perfectly separated, we solve the following optimization
problem:

max
β0 ,β,‖β‖�1

M (3.2)

subject to
yi(β0 + β

Txi) ≥ M for i � 1, 2, ...,N (3.3)

Note here the constraint forces all the points are at least a distance M
from the decision boundary defined by β and β0, and we seek the largest
such M and the associated parameters. Figure 3.1 gives an illustration of
this algorithm.

However, the above optimization problem is not convex because of the
constraint ‖β‖ � 1. Some algebraic manipulations get rid of this constraint
and yield the following equivalent convex optimization problem:
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Figure 3.1 An Illustration of the Optimal Hyperplane

min
β0 ,β

1
2 ‖β‖

2 (3.4)

subject to

yi(β0 + β
Txi) ≥ 1 for i � 1, 2, ...,N (3.5)

Note this optimal separating hyperplane algorithm requires the training
data to be perfectly separable, while in practice, this is often not the case. In
the next section, we generalize this algorithm to the more general situation
where the training data is not necessarily separable.

3.2.2 Support Vector Machine

In many cases, the training data is not perfectly separable and the optimal
separating hyperplane algorithm does not apply. Moreover, in the presence
of outliers, it is not clear if finding a separating hyperplane is exactly what
we want to do. Therefore, we need to make modifications to the optimal
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separating hyperplane algorithm to accommodate these more general cases.
We reformulate the algorithm as follows:

max
β0 ,β,‖β‖�1,εi

M (3.6)

subject to

yi(β0 + β
Txi) ≥ M(1 − εi) for i � 1, 2, ...,N

n∑
i�1

εi ≤ C

εi ≥ 0

(3.7)

where C is the tuning parameter and εi is the slack variable that allows the
ith observation to violate the margin or the boundary.

If εi � 0, then the corresponding data xi is on the correct side of the
margin; if εi > 0, then the corresponding ix is on the wrong side of the
margin, andwe say that the ith observation xi has violated themargin. When
εi < 1, the corresponding xi lies on the correct side of the hyperplane; when
εi > 1, xi might lie on the wrong side of the hyperplane.

The tuning parameter C measures how much the algorithm is tolerant of
violations to the margin. If C increases, the algorithm becomes more tolerant
of violations to the margin, and the margin M will widen. Conversely, as
C decreases, we become less tolerant of violations to the margin and the
margin narrows. If C � 0, no violation of the margin is allowed and this is
the case of optimal separating hyperplane.

Again, we need to make some algebraic manipulations to convert the
above support vector machine algorithm into a convex optimization problem.
After the modification, the algorithm becomes:

min
β0 ,β

1
2 ‖β‖

2
+ λ

n∑
i�1

εi (3.8)

subject to

yi(β0 + β
Txi) ≥ 1 − εi for i � 1, 2, ...,N

εi ≥ 0 for i � 1, 2, ...,N
(3.9)
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3.3 Clustering

Unlike classification, clustering is an unsupervised learning algorithm.
Its aim is to group similar objects together, so that we can extract more
information from the data. Below, we are going to review two clustering
algorithms, known as the k-means clustering and the hierarchical clustering.

3.3.1 K-Means Clustering

The main idea of the k-means Clustering is to first define k centroids, one for
each cluster. Then the algorithm associates each point in a given dataset to
the nearest centroid. When no point is pending, the first step is completed
and one groupage is done. At this point we need to re-calculate k new
centroids as barycenters of the clusters resulting from the previous step.
After we have these k new centroids, we associate each point to the nearest
centroid again. This process is repeated until convergence. This iterative
process is illustrated in Figure 3.2.

Figure 3.2 An Illustration of K-Means Clustering
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3.3.2 Hierarchical Methods

One potential disadvantage of the k-means clustering is that it requires
us to pre-specify the number of clusters K. Hierarchical clustering is an
alternative approach which does not require a pre-specified k. Moreover,
hierarchical clustering produces an attractive tree-based representation of the
observations, called dendrogram,which largely facilitates our understanding
of the structure of data.

The key to the hierarchical methods is twofold. First, a distance function,
or a similarity measure, is required. Second, an internal quality criteria is
needed to evaluate the compactness of the clusters. It usually measures the
intra-cluster homogeneity, the inter-cluster separability or a combination
of these two. Typically, a hierarchical method constructs the clusters from
bottom to top by successively merging the clusters, until the desired cluster
structure is achieved according to some quality criterion.

The algorithm proceeds by first creating a matrix whose (i , j)th entry is
the similarity measure between ith and jth object, and each object initially
represents a cluster of its own. Next the algorithm merges the two objects
with the highest similarity and replaces the two original objects with this
new pair. Accordingly, we update the matrix by recomputing the similarity
between the merged pair and the rest. Note when computing the similarity
between two clusters, we can either use a shortest distance (largest similarity),
or largest distance (smallest similarity), from any member of one cluster to
any member of the other cluster. We may stop the algorithm when some
pre-specified quality criterion is met. Figure 3.3 illustrates this process.
The dashed line indicates the quality criterion is met and the algorithm
terminates at that point.

3.4 Discussion and Generalization to Statistical Mani-
fold

Note all the four algorithms discussed in this chapter have a geometric flavor
associated with them. The key idea in the optimal separating hyperplane
and support vector machine algorithms is the notion of a decision boundary
and a distance measure from each observation to the decision boundary.
The key idea in the k-means clustering and hierarchical clustering is the
notion of a centroid, a similarity measure, and an internal quality criterion.

To generalize these algorithms to the statistical manifold, we will need to
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Figure 3.3 An Illustration of Hierarchical Clustering

define the analogies of these geometrical ideas on the statistical manifold.
Recall an element in the Euclidean space is a vector, while an element on
the statistical manifold is a probability distribution. To define geometrical
objects on the statistical manifold, we first need to define a notion of distance
to quantify the difference between two probability distributions. In the next
chapter, we are going to introduce some widely used statistical distance
measures.





Chapter 4

Statistical Distance

In this chapter, we record some most acclaimed and widely used statistical
distances that quantify the difference between two probability measures.

4.1 Total Variation Distance

Total variation distance is sometimes referred to "the" statistical distance. For
two probability measures P and Q on a sigma-algebra F ,

TV(P,Q) � supA∈F |P(A) −Q(A)| (4.1)

This definition is analogous to the sup norm, and is simply the largest
difference that two probability measures assign to the same event.

4.2 Hellinger Distance

Hellinger distance is another widely used statistical distance. For two proba-
bility measures P and Q, with corresponding density f (x),g(x), the squared
Hellinger Distance is defined to be

H2(P,Q) � 1
2

∫
(
√

f (x) −
√

g(x))2dx (4.2)

Hellinger distance is related to the so-called Bhattacharyya Coefficient by
the following equation Cieslak et al. (2012):

H2(P,Q) � 1 − BC(P,Q) (4.3)
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where,
BC(P,Q) �

∫ √
f (x)g(x)dx (4.4)

By taking the negative logarithm of the Bhattacharya Coefficient, we
obtain the Bhattacharyya Distance, yet another statistical distance measure.

4.3 Kullback-Leibler Divergence

Kullback-Leibler divergence is yet anotherwell-knownmeasure of the difference
between two probability measures. For probability measure P and Q with
density f(x) and g(x), the KL divergence, or the relative entropy is defined as
follows:

DKL(P | |Q) �
∫

f (x) ∗ lo g
f (x)
g(x)dx (4.5)

Note the KL divergence is not a distance since it is not symmetric. However,
we could define a distance based upon it as follows Lin (2006):

JS(P,Q) � 0.5KL(P | |T) + 0.5KL(Q | |T) (4.6)

where T � 0.5P + 0.5Q, and Equation 4.6 is known as the Jensen-Shannon
divergence and it is in fact a proper statistical distance.

4.4 Fisher-Rao Metric

Another proper distance measure arises from the Fisher information matrix,
which is a measure of the amount of information of the location parameter.
For univariate distributions parametrized by n-dimensional parameter space,
the (i , j)th entry of Fisher information matrix is calculated as the expectation
of a product involving partial derivatives of the logarithm of the PDF’s:

gi j(θ) �
∫

f (x; θ)
∂ ln f (x; θ)

∂βi

∂ ln f (x; θ)
∂β j

dx (4.7)

The Fisher information matrix G � (gi j) defines an inner product as
follows:

〈u , v〉G � uT Gv , and | |u | |G �

√
〈u , v〉G (4.8)

The distance between two points on the statistical manifold, i.e. the
distance between two distributions, is given by the minimum of the lengths
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of all the piecewise smooth paths that connect these two points. Recall the
length of a path γ is calculated by

Length of γ �

∫
γ

ds �

∫
γ
| |(γ′(t))| |Gdt (4.9)

and
dG(P,Q) � min{Length of γ} (4.10)

It has been shown in Costa et al. (2015) that in the case of univariate
normal distribution, the Fisher-Rao distance between P � p(x; µ1 , σ1) and
Q � p(x; µ2 , σ2) is given by

dF(θ1 , θ2) �
√

2 ln(
F (θ1 , θ2) + (µ1 − µ2)2 + 2(σ2

1 + σ
2
2)

4σ1σ2
) (4.11)

where F (θ1 , θ2) �
√
((µ1 − µ2)2 + 2(σ1 − σ2)2)((µ1 − µ2)2 + 2(σ1 + σ2)2).

Another special case is the multivariate normal distribution with a
diagonal covariance matrix Σ � dia g(σ2

1 , σ
2
2 , ..., σ

2
p). Consider two multi-

variate normal distribution with parameters θ1 � (µ11 , σ11 , ..., µ1p , σ1p) and
θ2 � (µ21 , σ21 , ..., µ2p , σ2p). The Fisher-Rao Metric between them is given by

dF(θ1 , θ2)

�

√√√√
2

p∑
i�1
(ln
‖(µ1i√

2
, σ1i) − (µ2i√

2
,−σ2i)‖ + ‖(µ1i√

2
, σ1i) − (µ2i√

2
, σ2i)‖

‖(µ1i√
2
, σ1i) − (µ2i√

2
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Chapter 5

Results: Classification on
Statistical Manifold

5.1 Overview

In Chapter 3, we review two classification algorithms, namely the optimal
separating hyperplane and the support vector machine. In this chapter,
we formulate an analogous optimal separating hyperplane algorithm on a
statistical manifold.

First, we draw some analogies between the Euclidean space and the
statistical manifold. In the traditional n-dimensional Euclidean space, each
point is a vector, an n-tuple. On a statistical manifold, each point represents
a probability distribution. In the Euclidean space, we have a measure of the
distance between two points, namely the Euclidean distance; on a statistical
manifold, we are also able to quantify the distance between two probability
distributions, as discussed in Chapter 4.

Now we apply the idea of the optimal separating hyperplane to the
statistical manifold. We do so for two different settings. First, our statistical
manifold consists of just discrete distributions, and we do not assume any
parametric form of them. Rather, we consider these discrete probabilitymass
functions as mere histograms, and regard them as discrete distributions by
partitioning them into a same number of intervals. Under this circumstance,
the total variation distance, or the Hellinger distance can be used to define the
distance.

Second, our statistical manifold consists of a family of distributions
parametrized by a set of parameters θ. For instance, we may consider the
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family of all univariate normal distributions parametrized by µ and σ. In
this case, we may use some standard Riemannian metrics on this statistical
manifold, such as the Fisher-Rao Metric.

5.2 Classification of Discrete Distributions

We start by considering the most straightforward case: a statistical manifold
of discrete distributions endowed with the Hellinger distance. Recall
the discrete version of the Hellinger distance between two distributions
P � (p0 , p1 , ..., pk) and Q � (q0 , q1 , ..., qk) is given by

H2(P,Q) � 1
2

k∑
i�0
(√pi −

√
qi)2 (5.1)

Note in order to define the Hellinger distance between two discrete
probability distributions, the probability vectors need to have the same
length. To do this, we may partition the support of P and Q into k bins
of equal length, with endpoints (x0 , x1 , ..., xk) and mesh size xi+1 − xi � µ.
Now we define our analogy of a hyperplane on the statistical manifold.

Let us associate each interval [xi , xi+1] with a probability pi . Each
probability measure of the following form gives a point on the manifold of
our interest:

P � {(p0 , p1 , ..., pk) |
k∑

i�0
pi � 1 and P(x ∈ [xi , xi+1]) � pi} (5.2)

Next, we want to define a hyperplane on the statistical manifold. To
begin with, we want to define a line on a statistical manifold. Recall a line
connects two points in Euclidean space is given by

x(t) � (1 − t)x1 + tx2 (5.3)

We cannot apply this technique directly on a statistical manifold, but
we can certainly do this on the parameter space. In the case of discrete
distributions, each distribution is parametrized by θ � (p1 , p2 , ..., pk). Note
here p0 � 1 −∑k

i�1 pi , and hence irrelevant. Define

θ(t) � (1 − t)θ1 + tθ2 (5.4)

This is the geodesic connecting two distributions p(x; θ1) and p(x; θ2)Amari
(2013). Note the corresponding family of distributions on the statistical
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manifold is p(x; θ(t)). This can be our definition of an analog of a line on
the statistical manifold.

It is worth noting in the case of discrete distribution, we have much
simplicity:

p(x; θ(t)) � (1 − t)p(x , θ1) + tp(x , θ2) (5.5)

However, this is in general not true, as we will discuss more complicated
cases later.

Let us fix two points p(x , θ1) and p(x , θ2) on the manifold and consider
the line p(x; θ(t)) connecting them. The Hellinger distance from the ith

discrete distribution Qi � (qi0 , ..., qik) to this hypothetical line is given by

Di � min

√√√√
1
2

k∑
j�0
(√p j −

√
qi j

2 (5.6)

where the minimization is taken over all (p0 , p1 , ..., pk) ∈ p(x; θ(t)), or
equivalently over t.

Eventually, we define a collection of observed distributions, parametrized
by θ and labeled by either +1 or −1, as separable if there exists a hyperplane
separating one class from the other in its parameter space.

From all of our above discussion, we conclude the following:

• For a parametrized statistical manifold, we should think of both the
abstract space of p(x; θ) and the associated parameter space

• An optimization algorithm involves both spaces. The parameter space
tells us the separability of distributions and helps define the decision
boundary, while the abstract space of distributions introduces the
measure of distance between two distributions.

Now we are ready to formalize our analog of the separable hyperplane
algorithm on themanifold of discrete distributionswith theHellinger distance.
Consider a sequence of distributions {Qi}, each of which is labeled yi �

+1/−1. Suppose {Qi � (qi0 , qi1 , ..., qik)} are perfectly separable. We find the
best separating hyperplane using the following algorithm:
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max
θ1 ,θ2 ,β0 ,βT

Di

Di � min
t

√
1
2

∑
j

(√pt j −
√

qi j)2 for each i

(pt0 , pt1 , ..., ptk) � (1 − t)p(x , θ1) + tp(x , θ2)
yi(β0 +

∑
j

β j qi j) ≥ 0 for each i

β0 + βTθ1 � 0
β0 + βTθ2 � 0

(5.7)

5.3 Classification of Univariate Normal Distributions

Consider the univariate Gaussian distribution with probability density
function:

f (x; θ) � 1
√

2πσ
exp(
−(x − µ)2

2σ2 ) (5.8)

Note the natural parametrization of univariate normal distribution is θ �

(µ, σ). The parameter space is 2-dimensional. Note since σ is always positive,
the parameter space corresponds to the upper half plane of R2.

A most common Riemannian metric for normal distribution is Fisher-
Rao Metric. Given two univariate normal distributions with parameter
θ1 � (µ1 , σ1) and θ2 � (µ2 , σ2), the Fisher-Rao Metric, or Fisher information
distance is given by:

dF(θ1 , θ2) �
√

2 ln(
F (θ1 , θ2) + (µ1 − µ2)2 + 2(σ2

1 + σ
2
2)

4σ1σ2
) (5.9)

where F (θ1 , θ2) �
√
((µ1 − µ2)2 + 2(σ1 − σ2)2)((µ1 − µ2)2 + 2(σ1 + σ2)2).

Themanifold of normal distributions is more interesting in that the linear
interpolation of two points in the parameter space does not translates directly
into a linear interpolation of distributions. Now we derive the correct form
of p(x; θ(t)), where θ(t) � (1 − t)θ1 + tθ2.

First, we show the univariate normal distribution is in exponential family.
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In fact, one can see:

1
√

2πσ
exp(
−(x − µ)2

2σ2 )

�
1
√

2π
exp(− log σ − x2

2σ2 +
µx
σ2 −

µ2

2σ2 )

�
1
√

2π
exp(αT T(x) − log σ − µ2/2σ2)

�
1
√

2π
exp(αT T(x) − φ(θ))

(5.10)

where T(x) �
( x
x2

)
, α �

(
µ/σ2

−1/(2σ2)

)
, and φ(θ) � log σ + µ2/2σ2. As a result,

we have:

p(x; θ(t))
� p(x; (1 − t)θ1 + tθ2)

�
1
√

2π
exp(t(α2 − α1)TT(x) − φ(t))

(5.11)

where α1 �

(
µ1/σ2

1
−1/(2σ2

1)

)
, α2 �

(
µ2/σ2

2
−1/(2σ2

2)

)
, φ(t) � log σt + µ2

t /2σ2
t , and(µt

σt

)
� (1 − t)

(µ1
σ1

)
+ t

(µ2
σ2

)
.

Equation 5.11 is a line on the statistical manifold of normal distributions.
To conclude, we have found a metric on the statistical manifold, as well as
an analog of a line on the manifold. Note in the case of univariate normal
distributions, the separability condition is even more intuitive. Since the
parameter space is two-dimensional, we only need a line separating the
two classes. Let the training data be a sequence of normal distributions
parametrized by x1 , x2 , ..., xn, where xi �

(µi
σi

)
, and each comes with a label

yi ∈ {+1,−1}. Let DF(p1 , p2) be a metric defining the distance between two
probability densities p1 and p2. Nowwe are ready to state the corresponding
optimization algorithm:
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max
θ1 ,θ2 ,β0 ,βT

D

Di ≥ D
Di � min

t
DF(p(x; xi), p(x; θ(t)) for each i

p(x; θ(t)) � p(x; (1 − t)θ1 + tθ2)
yi(β0 + βT xi) ≥ 0 for each i
β0 + βTθ1 � 0
β0 + βTθ2 � 0

(5.12)

Note here p(x; θ(t))was given analytically in Equation 5.11, and when
we take the metric DF to be the Fisher-Rao metric defined in Equation 5.9,
the problem can be further simplified:

max
θ1 ,θ2 ,β0 ,βT

D

min
t

dF(xi , θ(t)) ≥ D for each i

θ(t) � (1 − t)θ1 + tθ2

yi(β0 + βT xi) ≥ 0 for each i
β0 + βTθ1 � 0
β0 + βTθ2 � 0

(5.13)

Note in the case of univariate normal distributions, the Fisher-Rao metric
is given analytically in the terms of the parameters. In general, this is not
true and the more general system, i.e., Equation 5.12 is desired.



Chapter 6

Results: Clustering on
Statistical Manifold

6.1 Overview

In this chapter, we discuss the application of the hierarchical clustering methods
and the k-means clustering to the clustering problems on a statistical manifold.
Recall in Chapter 3, we introduce these two algorithms and observe that the
key idea in the k-means clustering and hierarchical clustering is the notion of
a centroid, a similarity measure, and an internal quality criterion. Recall in
Chapter 4, we introduce several statistical distances to measure the similarity
between two distributions, and they can serve as our similarity measures on
statistical manifold.

Now, we focus on defining an analogy for a centroid on the statistical
manifold, which is essential in k-means clustering and and helps to define
the quality criteria in hierarchical clustering model.

6.2 Centroid on Statistical Manifold

Suppose we are in Rn . A centroid of a sequence of vectors x1 , x2 , ..., xn in
the standard Euclidean space is defined by

x∗ � 1
n

n∑
1

xi (6.1)

Note the situation is different on a statistical manifold. Consider a
sequence of continuous probability distributions p1 , p2 , ..., pn from a general
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statistical manifold. Note p∗ � 1
n
∑n

1 pi is still a probability distribution
because ∫

p∗ �
∫

1
n

n∑
1

pi �
1
n

n∑
1

∫
pi � 1 (6.2)

Therefore, we see a straightforward analogy of the centroid on the
statistical manifold yields another point on the statistical manifold.

However, the same is not true when we are restricted to a sub-manifold.
Consider the manifold of univariate normal distributions. We can similarly
apply Equation 6.2 and obtain p∗ � 1

n
∑n

1 pi, where each pi is a univariate
normal distribution. However, this only yields a mixture of normal distri-
butions, which is not itself a normal distribution and does not fall on this
sub-manifold. Therefore, this formulation fails when we restrict ourselves
to this sub-manifold, because the set of univeriate normal distributions is
not a vector space.

Instead of directly taking average of normal distributions themselves,
we can take the average of parameters in the two-dimensional Euclidean
parameter space, and then map this centroid in parameter space back to our
manifold. Note under this construction, the corresponding distribution is
necessarily on the manifold. Mathematically, we have:

θ∗ �
1
n

n∑
1
θi;

p(x; θ∗) ∈ M;
(6.3)

where θi � (µi , σi),M denotes the manifold of univariate normal distribu-
tions, and p(x; θ∗) is our centroid on this manifold. Wemay define a centroid
similarly for other parametrized families of distributions.

6.3 K-Means Clustering on Statistical Manifold

Now we can formulate the k-means algorithm to cluster distributions on
statistical manifolds. Let p(x; θ) be a continuous probability distribution
parametrized by θ. Suppose we have observed a sequence of distributions
p(x; θ1), p(x; θ2), p(x; θ3), ..., p(x; θn). We propose the following algorithm
to cluster the distributions.

1. Fix k probability distributions on the statistical manifold, where k
represents k clusters. These k distributions represent centroids for
each of the k cluster.
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2. Assign each p(x; θi) to the nearest centroid using a proper statistical
distance, like the Fisher-Rao metric.

3. Recalculate each of the k centroids as described in subsection 6.2.

4. Repeat step 2 and 3 until the centroids no longer move.

6.4 Hierarchical Methods on Statistical Manifold

Recall in the hierarchical methods, we start by construct a matrix whose
(i , j)th entry measures the similarity between ith and jth object. By using a
proper statistical distance, we can apply this method to cluster distributions
on a statistical manifold. It suffices to identify an internal quality criterion.

A simplest and most widely used internal quality criterion for clustering
in the Euclidean space is sum of squared error (SSE):

SSE �

k∑
1

∑
xi∈Ck

(xi − µk)2 (6.4)

where Ck denotes each cluster our algorithm specifies and µk is the centroid
of each cluster.

On a statistical manifold, we have µk � p(x; θ∗), where θ∗ is the average
over all parameters of cluster k. Instead of the Euclidean distance, we adopt
a proper statistical distance dF and SSE becomes:

SSE �

k∑
1

∑
p(x;θi)∈Ck

dF(p(x; θi) − µk)

where µk � p(x; θ∗)

θ∗ �
1
n

∑
p(x;θi)∈Ck

θi

(6.5)

We will make use of the concept of a centroid and the SSE later.





Chapter 7

Implementation and
Generating Clusters

In this chapter, we discuss the effective implementation of our clustering
algorithms and how to generate the clusters for clustering.

7.1 Implementation

The implementation of clustering algorithms is achieved in R, a widely-used,
open-source statistical software. The clustering code consists of the following
functions.

• Compute several statistical distances including the Hellinger distance
for discrete distributions, and the Fisher-Rao metric for univariate and
bivariate normal distributions.

• Perform hierarchical clustering based on the Euclidean distance.

• Perform hierarchical clustering based on the statistical distance.

• Compute the internal quality criterion for hierarchical clustering meth-
ods.

• Perform k-means clustering based on the Euclidean distance.

• Perform k-means clustering based on the statistical distance.

• Visualize the clustering.
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• Compute and compare different clustering statistics.

• Generate simulated clusters.

Note all the clustering functions apply to the cases of univariate normal
distributions, bivariate normal distributions, and Poisson distributions. The
code is modularized and users may adapt the code to meet their specific
demands.

7.2 Generating Clusters

First, we propose a situation where clustering methods applied to statis-
tical manifold are useful. We consider the manifold of univariate normal
distributions below and other statistical manifolds follow similarly.

Consider k distinct groups of objects. Each of these groups has an
underlying, unknown univariate normal distribution which is parametrized
by (µk , σk). In practice, each distribution may represent, for instance, the
overall height distribution of citizens in k different countries, or the average
SAT score of k different colleges. However, often in practice, each of the
underlying distribution (µk , σk) cannot be directly obtained; rather it is
estimated using samples.

Imagine a situation where we are able to obtain samples many times.
For each underlying (µk , σk), We use t batches of samples to reconstruct
and estimate the underlying distribution (µk , σk) t times. However, since
these are merely estimates, we will not obtain precisely the underlying
distributions. Rather, our estimated distributions will scatter around the
true one on the statistical manifold. In the associated parameter space,
one can imagine observing k cohorts of points, with each cohort centering
around (µk , σk).

We summarize the above discussion below. To generate clusters on
the statistical manifold of univariate normal distributions, we adopt the
following steps:

1. Select k pairs of parameters (µk , σk).

2. For each k, do the following t times:

(a) Generate n samples from the univariate normal distribution
f (x; µk , σk).
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(b) Reconstruct f (x; µk , σk) from these n samples andobtain unbiased
estimates (µ̃k , σ̃k).

Figure 7.1 Generating Clusters for k = 2, 3

7.1 and 7.2 are graphs illustrating this cluster-generating process for
k � 2, 3, 4, 5, with parameters t � 60 and n � 50.

Note each graph represents the parameter space for the statistical mani-
fold of univariate normal distributions. Each point represents one univariate
normal distribution. The mean and standard deviation associated with each
point are the empirical mean and empirical standard deviation, which are
estimates of the true underlying mean and standard deviation. Different
colors represent different true underlying distributions from which samples
are drawn and used to reconstruct the distribution.

Note parameter t controls how many elements each cluster has and n
controls how tight each cluster is. When we reconstruct the distribution
and estimate parameters using a very small n, the resulting estimates can
deviate from the true underlying parameters by a lot. For example, when
we take n � 10, the resulting graph is much loosely clustered. See Figure 7.3
for an example.
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Figure 7.2 Generating Clusters for k = 4, 5

To implement the clustering algorithm, we are given an object consisting
of an unknown number of clusters of points, as shown in Figure 7.4. Our goal
is to cluster this object using algorithms discussed in the preceding chapters
and compare our results with the true result. Note clustering is in general
an unsupervised learning problem. But because of our way of generating
these data, we can compare our clustering results with the ground truth.
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Figure 7.3 Generating Clusters for k = 5 and n = 10

Figure 7.4 An Example of an object to be clustered





Chapter 8

Empirical Results: Clustering
Univariate and Bivariate
Normal Distributions

Now we discuss the empirical results obtained using clustering algorithms
discussed in the previous chapters. This chapter focuses on clustering
univariate normal distributions with k � 2, k � 3, and bivariate normal
distributions with k � 3. Empirical results using the statistical distance are
compared with the results using the Euclidean distance.

8.1 Univariate Normal Distribution with k � 2

First, we consider the case of univariate normal distributions with 2 clusters.
As an illustrative example, consider (µ1 , σ1) � (1, 1.5) against (µ2 , σ2) �
(2, 1.5). We let n � 30 and t � 100. Figure 8.1 provides an illustration of the
parameter space under this set of parameters.

First we look at the results using the hierarchical clustering based on the
statistical distance. In this case, we use the Fisher-Rao metric as the specific
statistical distance and we use the internal quality criterion as defined in
Section 6.4 to determine the number of clusters. Ideally, SSR reveals this
information when we plot SSR against different number of clusters k. Figure
8.2a provides an illustration of such a plot. Note SSR strictly decreases as
the number of clusters increases. However, it is the most abrupt drop that
we are interested in. In this case, one can observe that when we move from 1
cluster to 2 clusters, SSR drops dramatically, indicating strong evidence for
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Figure 8.1 (µ1 , σ1) � (1, 1.5) against (µ2 , σ2) � (2, 1.5)

k � 2 clusters.
After identifying the number of two clusters, we perform the hierarchical

clustering upon this object. Figure 8.2b illustrates one such clustering.
Compare this figure to Figure 8.1 and we can obtain the accuracy of this
one-run of the algorithm. In this run, 193 out of 200 distributions are
clustered correctly. 7 out of 200 distributions are clustered into the other
family.

Then we test the k-means clustering based on the statistical distance.
Using the same example, k-means achieves a lower mis-clustering rate (or a
higher accuracy). Only 3 out of 200 elements are mis-clustered. Figure 8.3
illustrates the clustering result.

Finally, we perform the k-means clustering and hierarchical clustering
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a. SSR against di�erent number of clusters b. Hierarchical Clustering based on Fisher-Rao Metric

Figure 8.2 Hierarchical Clustering

using the Euclidean distance. The graphs are omitted because they look
similar to those using the statistical distance.

Using the idea from the Monte Carlo methods, we run the above ex-
periments multiple times and record the clustering accuracy, defined as
1 − numbero f mis−clustedelements

numbero f totale lements . We report both the mean and the standard
error. Table 8.2 summarizes this information for various methods. Note
we use k � 2, t � 100, n � 30, (µ1 , σ1) � (1, 1.5), (µ2 , σ2) � (2, 1.5), and we
repeat the experiments 100 times for each method. As one can observe from
the table, in this low-dimensional case and with minimal k value, k-means
algorithms based on different metrics perform better than the hierarchical
methods. However, the same method using different metrics performs quite

Table 8.1 Results: Clustering when k = 2

Algorithm Clustering Accuracy
Hierarchical Clustering with Fisher-Rao Metric 0.904 ± 0.006
Hierarchical Clustering with Euclidean Metric 0.922 ± 0.006
K-Means Clustering with Fisher-Rao Metric 0.965 ± 0.001
K-Means Clustering with Euclidean Metric 0.965 ± 0.01
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Figure 8.3 K-Means Clustering based on Fisher-Rao Metric

similarly.

8.2 Univariate Normal Distribution with k = 3

Next we analyze the case of univariate normal distribution when k � 3. This
is the situation when clusters become more complicated and the Euclidean
distance may not suffice. We illustrate again using a concrete example.
Consider (µ1 , σ1) � (1, 1), (µ2 , σ2) � (1.5, 1.5), (µ3 , σ3) � (2, 1). We run
through a similar analysis as in the case of k � 2. Figure 8.4a illustrates the
parameter space with the specified parameters.

First, we plot SSR against different k values to determine the number of
clusters, as shown in Figure 8.4b. Again, the correct number of clusters is
successfully identified, as indicated by the sharp drop at k � 3.

Next, we perform hierarchical clustering based on the Fisher-Rao metric
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a. An object with parameters (1, 1), (1.5, 1.5), and (2, 1) b. SSR against di�erent number of clusters

Figure 8.4 Object and SSR

as well as the Euclidean metric. The result is shown in Figure 8.5. Note in
this k � 3 case, hierarchical clustering based on the Fisher-Rao metric and
Euclidean metric yields very different results. In fact, as one can tell, at least
in this run, the Euclidean Metric yields a bad clustering result.

Finally, we perform k-means clustering based on the Fisher-Rao metric
and the Euclidean metric. Figure 8.6 illustrates the result.

Similarly, we run the experiment 100 times and report the statistics. Note
we use k � 3, t � 100, n � 30, (µ1 , σ1) � (1, 1), (µ2 , σ2) � (1.5, 1.5), and
(µ3 , σ3) � (2, 1).

Table 8.2 Results: Clustering when k = 3

Algorithm Clustering Accuracy
Hierarchical Clustering with Fisher-Rao Metric 0.905 ± 0.005
Hierarchical Clustering with Euclidean Metric 0.858 ± 0.007
K-Means Clustering with Fisher-Rao Metric 0.961 ± 0.001
K-Means Clustering with Euclidean Metric 0.940 ± 0.001

At first sight, using the same clustering methods, we see the Fisher-Rao
metric in both cases (hierarchical clustering and k-means) yields better result.
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In k-means clustering, we can see this improvement is significant in the sense
that the difference is more than two standard errors. In the hierarchical
methods, one can see the Euclidean-based method yields results with lower
mean accuracy and higher standard error, while the same algorithm based
on the Fisher-Rao metric gives higher accuracy and less variation.

When we look more closely into the results, the hierarchical method
based on the Fisher-Rao metric outperforms the same method based on the
Euclidean metric 70/100 times. More astoundingly, the k-means clustering
based on the Fisher-Rao metric outperforms the Euclidean-based k-means
clustering algorithm 98/100 times. These are good evidence that as the
clustering becomes more complicated (number of clusters from 2 to 3),
algorithms based on the statistical distance become more favorable.

a. Fisher-Rao Metric b. Euclidean Metric

Figure 8.5 Hierarchical Clustering when k = 3

8.3 BivariateNormalDistribution inThree-Dimensional
Parameter Space

Next, we want to explore the algorithms in a higher-dimensional setting. We
use the bivariate normal distribution as an illustrative example. In particular,
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a. Fisher-Rao Metric b. Euclidean Metric

Figure 8.6 K-Means Clustering when k = 3

we consider the case where (µ1 , µ2) � (µ, µ) and the covariance matrix is
diagonal:

Σ �

[
σ2

1 0
0 σ2

2

]
(8.1)

Hence, we parameterize each bivariate normal distribution with a triple
(µ, σ1 , σ2). Note we adopt this seemingly restrictive setting because the
parameter space (µ, σ1 , σ2) is three-dimensional and therefore can be visu-
alized. In general, we do not need to assume µ1 � µ2, or the correlation
between x1 and x2 is 0. Here we adopt this setting just for the purpose of
visualization.

First, we generate an object for clustering in the similar fashion as in the
univariate normal distribution case. An example of such an object in the
parameter space is illustrated in Figure 8.7. Note in Figure 8.7, k � 3, t � 100,
n � 30, and (µ, σ1 , σ2) � (1, 1, 2), (1.5, 1.5, 2.5), (2, 2, 3), respectively for the
distribution underlying each cluster.

The Fisher-Rao metric between two bivariate normal distribution with
diagonal covariance matrix is a special case of the formula given in 8.2, with
p � 2, θ � (µ, σ1 , σ2), and µki � µk :
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Figure 8.7 Clusters Generated for Bivariate Normal Distribution k = 3

dF(θ1 , θ2)

�

√√√√
2

2∑
i�1
(ln
‖( µ1√

2
, σ1i) − ( µ2√

2
,−σ2i)‖ + ‖( µ1√

2
, σ1i) − ( µ2√

2
, σ2i)‖

‖( µ1√
2
, σ1i) − ( µ2√

2
,−σ2i)‖ − ‖( µ1√

2
, σ1i) − ( µ2√

2
, σ2i)‖

)2
(8.2)

Equipped with a closed form Fisher-Rao metric, we can now perform the
hierarchical clustering based on both the Euclidean distance and the Fisher-
Rao metric as before. We can likewise formulate the k-means clustering
based on these two different metrics. Figure 8.8 and 8.9 give illustrations of
a sample output from each algorithm.

To gain further insight into the algorithm performances, we run experi-
ments on a larger scale. Here, we record the result obtained from replicating
the experiment 100 times, with parameters k � 3, t � 100, n � 30, and
(µ, σ1 , σ2) � (1, 1, 2), (1.5, 1.5, 2.5), (2, 2, 3), respectively for each cluster.
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a. Fisher-Rao Metric b. Euclidean Metric

Figure 8.8 Hierarchical Clustering when k = 3

Table 8.3 Bivariate Normal Distribution Results: Clustering when k = 3

Algorithm Clustering Accuracy
Hierarchical Clustering with Fisher-Rao Metric 0.860 ± 0.008
Hierarchical Clustering with Euclidean Metric 0.716 ± 0.012
K-Means Clustering with Fisher-Rao Metric 0.937 ± 0.001
K-Means Clustering with Euclidean Metric 0.877 ± 0.003

The results mimic those for the case of the univariate normal distribution
with k � 3. However, we do observe that as the dimension gets higher,
the same algorithms with the Fisher-Rao metric have further improved
performance compared to those with the Euclidean distance. Also, the
k-means clustering has overall better performance than the hierarchical
methods. In fact, the k-means clustering equipped with the Fisher-Rao
metric outperforms other alternative algorithms by a large margin.
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a. Fisher-Rao Metric b. Euclidean Metric

Figure 8.9 K-Means Clustering when k = 3



Chapter 9

Empirical Results: Clustering
Discrete Poisson Distributions

In this chapter, we discuss the empirical results from clustering algorithms
applied on discrete Poisson distributions.

9.1 Discrete Poisson Distribution with the Hellinger
Distance

Next, we delve into the realm of discrete distributions. Recall in the cases
of univariate and bivariate normal distributions, the statistical distance is
given as a closed-form expression of the parameters. This is not the case
in general. Here we look at the case where the statistical distance is given
as an expression of two probability distributions, instead of a closed form
expression of the parameters.

We use the Poisson distribution as our running example here. Recall the
Poisson distribution has the following probability mass function:

P(x � k) �
λk exp(−λ)

k! (9.1)

where λ is the mean and variance of the distribution. Figure 9.1 gives an
illustration of Poisson distributions with different λ.

Note the Poisson distribution is parametrized by one parameter λ. One
thingwe cando is to estimate this parameter λ anduse the estimates to cluster.
Alternatively, we canmeasure the distance between two empirical probability
mass functions using theHellinger distance and run the clustering algorithms
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Figure 9.1 Poisson Distribution with Di�erent Parameter

on them. The formula for the Hellinger distance is given in Equation 5.1.
Again, we will compare the Hellinger-distance-based algorithms with the
Euclidean-distance-based algorithms.

We use a concrete example to have a feeling of the difference between two
metrics. Figure 9.2a and 9.2b illustrate two empirical Poisson distributions,
one with λ � 6 and the other λ � 6.5. After normalizing them appropriately,
we can calculate the distance between them. According to the Hellinger
distance, these two histograms have a distance of 0.167, while the Euclidean
distance between them is 0.990.

Now we introduce another empirical distribution, again with λ � 6,
as shown in Figure 9.3. We compare Figure 9.3 with Figure 9.2a and 9.2b
respectively using both the Hellinger and the Euclidean distance. In fact the
Hellinger distance between 9.2a and 9.3 is 0.143, while the Hellinger distance
between 9.2b and 9.3 is 0.152. As we can see, in this case, the Hellinger
distance does capture the nuance and yields the expected result. On the
other hand, the Euclidean distance between 9.2a and 9.3 is 0.114, while that
between 9.2b and 9.3 is 0.0970. According to the Euclidean distance, the
empirical distributions with different λ are closer, which is counterintuitive.

As in the cases of continuous distributions, we run hierarchical clustering
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a. Empirical Poisson Distribution λ � 6 b. Empirical Poisson Distribution λ � 6.5

Figure 9.2 Two Empirical Poisson Distributions

and k-means clustering algorithms with both the Hellinger and Euclidean
distances on simulated clusters. The cluster generating process is very similar
to the process described in Section 7.2. Again, we replicate the experiment
100 times and record the results in Table 9.1. In this experiment, we have
k � 3 underlying Poisson distributions, each with λ1 � 6, λ2 � 8, and
λ3 � 10. Each cluster contains 100 empirical distributions and each empirical
distribution contains 30 data points. The similar pattern as in the continuous
cases occurs. This time, the hierarchical method with the Hellinger distance
outperforms that with the Euclidean distance by a very large margin. K-
means clustering with the Hellinger distance also outperforms that with the
Euclidean distance in a statistically significant way.

Table 9.1 Results: Clustering of Empirical Poisson Distributions

Algorithm Clustering Accuracy
Hierarchical Clustering with Hellinger distance 0.792 ± 0.010
Hierarchical Clustering with Euclidean distance 0.674 ± 0.008
K-Means Clustering with Hellinger distance 0.922 ± 0.004
K-Means Clustering with Euclidean distance 0.901 ± 0.004

We can also look at the above statistics in greater details. 83 out of 100
runs, the hierarchical method with the Hellinger distance outperforms that
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Figure 9.3 Another Empirical Poisson Distribution λ � 6

with the Euclidean distance. For k-means clustering, this statistic is 76 out of
100.

Unlike continuous distributions, we cannot visualize the clustering
directly. To give readers a sense of the result, we pick some elements
from each cluster determined by the k-means clustering with the Hellinger
distance (See Figure 9.4, 9.5a, and ??). Here, we use 100 data points in each
empirical Poisson distribution. Other parameters are the same as before.

Figure 9.4 Representatives from the First Cluster
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a. Representatives from the Second Cluster b. Representatives from the Third Cluster

Figure 9.5 Representatives from the Clusters

9.2 Multidimensional Scaling

A technique closely related to our clustering algorithms is known as the
multidimensional scaling, or MDS. Multidimensional scaling (MDS) is a
technique that creates a map displaying the relative positions of a number
of objects, given the dissimilarity matrix. The map may consist of one,
two, three, or more dimensions. Note the goal of MDS is to preserve the
between-object distance as well as possible.

In general, we consider a collection of objects (in our cases probability
distributions) and form the dissimilarity matrix ∆ where each entry δi j
represents the dissimilarity between ith and jth object. The goal of MDS is
to find vectors x1 , x2 , ..., xn in Rd such that each vector xi represents the ith

object and the following is true:

‖xi − xj‖ ≈ δi j

In other words, MDS tries to find a lower-dimensional embedding from
the statistical manifold to the Euclidean space Rd . Note it is important to
notice here it is often impossible to preserve all the between-object distances
exactly. However, the advantage is obvious. By choosing the dimension to
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be 2 or 3, we can visualize the distance between objects.
The connectionbetweenMDSand the statistical-distance-based clustering

algorithms we proposed is clear. Running a k-means clustering using
the statistical distance is approximately applying MDS algorithm to the
probability distributions first and then running a Euclidean-distance-based
k-means clustering algorithm on the lower-dimensional embedding.

The advantage of running a statistical-distance-based k-means algorithm
directly is also easy to see. MDS algorithm only creates a lower-dimensional
approximation that does not capture all the nuance of the between-object
dissimilarities. Moreover, as we will prove in the next chapter, statistical-
distance-based k-means algorithm can converge to the local minimum
directly and is convenient to implement.

However, in the case of clustering discrete Poisson distributions, the
problem is of very high dimension and MDS can help us visualize. Figure
9.6 gives such an example. Note each point in the figure represents a discrete
Poisson distribution. The Euclidean distance between each pair of points
numerically is approximately equal to the Hellinger distance.

Figure 9.6 MDS with Discrete Poisson Distributions with λ = 6, 8, 10



Chapter 10

Results: Convergence and
Optimality

In this section, we analyze the convergence property of the k-means al-
gorithms proposed in Section 6.3. K-means-type algorithms are usually
formulated as a mathematical program in the following way Selim and
Ismail (1984):

P : minimize P(W, Z) �
k∑

i�1

m∑
j�1

wi jD(x j , zi)

subject to
k∑

i�1
wi j � 1, j � 1, 2, ...,m

wi j � 0 or 1, j � 1, 2, ...,m; i � 1, 2, ..., k

(10.1)

where x1 , x2 , ..., xm are objects to be clustered, z1 , z2 , ..., zk are centroids of
each cluster, wi j assigns each x j to each cluster with centroid zi , and D(·, ·)
is the measure of dissimilarity. We will refer to the mathematical program
10.1 as Problem P from this point.

Using the above notation, k-means algorithm can be interpreted in the
following way Selim and Ismail (1984):

1. Start with initial cluster centers z1
i , i � 1, 2, ..., k. Set l � 1.

2. Assign each x j , j � 1, 2, ...,m to its nearest cluster center, which is
equivalent to fixing wi j .
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3. Recompute the centers z l
i by minimizing F(·, Z). If z l−1

i � z l
i , that is,

the centers are fixed, then stop. Otherwise go to the last step.

To facilitate our later discussion, we make the following definition.

Definition 1 (Partial Optimal Solution). Apoint (W?, Z?) is a partial optimal
solution of P if it satisfies the following:

P(W?, Z?) ≤ P(W, Z?) for all W
P(W?, Z?) ≤ P(W?, Z) for all Z

(10.2)

Note a partial optimal solution satisfies the famous Kuhn-Tucker Con-
ditions of Problem P, but it may not be a local minimum Selim and Ismail
(1984).

It has been shown in Selim and Ismail (1984) that the usual k-means
algorithm converges to a partial optimal solution of Problem P in a finite
number of iterations. Therefore, we know k-means algorithm necessarily
converges and it will always converge to a partial optimal solution. In the
rest of this chapter, we will try to make the link between the partial optimal
solution and the local minimum.

We record here a very important theorem proved in Selim and Ismail
(1984). First, we give a useful definition.

Definition 2 (A(W?)).

A(W?) � {Z : Z minimizes f (W?, Z)} (10.3)

Equipped with the above definition, we are ready to state the theorem
that connects the partial optimality and local optimality.

Theorem 1 (Partial Optimality and Local Optimality). Suppose (W?, Z?) is
a partial optimal solution for Problem P and A(W?) is a singleton, then W?

is a local minimum for Problem P.

Now we may explore the relationship between the dissimilarity measure
D(·, ·) and the local optimality. In the rest of this chapter, we show the
k-means clustering with the Hellinger distance applied on the empirical
Poisson distributions converges to a local minimum. The discrete version of
the Hellinger distance was defined in Equation 5.1. We reproduce it below
for the sake of completeness.



55

Definition 3 (Discrete Hellinger Distance). The Hellinger distance between
P � (p0 , p1 , ..., pk) and Q � (q0 , q1 , ..., qk) is given by

H2(P,Q) � 1
2

k∑
i�0
(√pi −

√
qi)2 (10.4)

Recall we want to minimize

P(W, Z) �
k∑

i�1

m∑
j�1

wi jD(x j , zi) (10.5)

Let

fi(Wi , Zi) �
m∑

j�1
wi jD(x j , zi) (10.6)

where Wi is the ith row of W and zi is the centroid of the ith cluster.
We want to show A(W?) is a singleton. First we define

Ai(W?
i ) � {zi : zi minimizes fi(W?

i , zi)} (10.7)

It is obvious to see that A(W?) is a singleton if and only if each Ai(W?
i )

is a singleton Selim and Ismail (1984). For the simplicity of the following
analysis, we simplify the subscript a little bit. We fix an i and let wi j � a j ,
zi � z. Therefore, Equation 10.7 becomes:

Ai(W?
i ) � {z : z minimizes

m∑
j�1

a jD(x j , z)} (10.8)

We want to show each Ai(W?
i ) is a singleton, or equivalently, there is a

unique centroid z that minimizes
∑m

j�1 a jD(x j , z). We begin to search for the
minimizer z. First we plug in the expression for the Hellinger distance and
obtain the following equivalences:
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minimize
m∑

j�1
a j

∑
t

(√x jt −
√

zt)2

� minimize
m∑

j�1

∑
t

a j(
√

x jt −
√

zt)2

� minimize
m∑

j�1

∑
t

a j(x jt + zt − 2√x jt
√

zt)

� minimize
m∑

j�1

∑
t

a j x jt +

m∑
j�1

∑
t

a j zt −
m∑

j�1

∑
t

2√x jt
√

zt a j

(10.9)

Note in Equation 10.9, t indexes the length of each vector x j and the
centroid z. Note a j and x jt are fixed and let

√
zt � yt . Equation 10.9 further

simplifies to

minimize
m∑

j�1

∑
t

a j x jt +

m∑
j�1

∑
t

a j zt −
m∑

j�1

∑
t

2√x jt
√

zt a j

� minimize
m∑

j�1

∑
t

a j zt −
m∑

j�1

∑
t

2√x jt
√

zt a j

� minimize
m∑

j�1

∑
t

a j y2
t −

m∑
j�1

∑
t

2a j
√

x jt yt

� minimize
∑

t

(
m∑

j�1
a j)y2

t − 2
∑

t

(
m∑

j�1
a j
√

x jt)yt

(10.10)

Let Q �
∑

t(
∑m

j�1 a j)y2
t − 2

∑
t(
∑m

j�1 a j
√x jt)yt . To minimize Q, it suffices

to take partial derivative with respect to each yt and set it to 0:

0 �
∂Q
∂yt

� (
m∑

j�1
a j)yt − 2(

m∑
j�1

a j
√

x jt) (10.11)

Hence, we obtain the optimal y?t :

y?t �

2
∑m

j�1 a j
√x jt∑m

j�1 a j
(10.12)
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Accordingly, the optimal z?t � (y?t )2:

z?t � (
2
∑m

j�1 a j
√x jt∑m

j�1 a j
)2 (10.13)

Technically, zt � zit as we fixed i to simplify the derivation. Knowing zit
for each i and t, we can recover Z � (z1 , z2 , ..., zk), where zi � (zi1 , zi2 , ..., zit).
Indeed, the minimizer is unique and we have shown using the k-means
clustering with the Hellinger distance not only converges to the partial
optimal solution, but also to the local minimum.





Chapter 11

Discussion and Conclusion

In this thesis, we generalize some most widely-used machine learning
algorithms to the statistical manifold. Instead of classifying and clustering
vectors in the Euclidean space, we develop algorithms to classify and cluster
the probability distributions.

We first study the problem of classifying probability distributions by
formulating an analogous optimal separating hyperplane algorithm on the
statistical manifold. The key of this generalization is to define a decision
boundary on the statistical manifold. We do so by finding the line connecting
two points in the parameter space and using the corresponding family of
distributions as the decision boundary on the statistical manifold. We also
utilize the parameter space to specify our separability conditions. However,
when we calculate the margin, we do so using the statistical distance. We
draw two important conclusions. First, we should always think about the
statistical manifold and the associated parameter space when formulating
the problem. Second, the optimization algorithm should always involve both
spaces and the connection between two spaces is captured by our definition
of the separating line on the statistical manifold.

Next, we focus on clustering the probability distributions. We first
make a distinction between a centroid on a manifold and a centroid on a
sub-manifold. Whenworking with a sub-manifold of the statistical manifold,
say the set of univariate normal distributions, we define a centroid on
the sub-manifold by computing the centroid on the parameter space and
then map it back to the sub-manifold. This notion of a centroid is directly
applicable in the k-means clustering algorithm and is also used when we
compute the internal quality criteria in hierarchical methods.

The generalization of the k-means clustering and the hierarchicalmethods
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to the statistical manifold is straightforward to implement. We first propose a
situation where clustering distributions is useful. Underlying each cluster of
probability distributions lies a true, prescribed distribution. Each probability
distribution in the cluster is one empirical distribution, created by drawing
samples from the underlying true distribution. We can visualize the clusters
by looking at the associated parameter space.

We generate artificial clusters to test our algorithms and compare them
with some alternatives. We summarize the results from the empirical studies
here. First we look at the clustering of univariate normal distributions.
Algorithms we test and compare include the hierarchical method with
Fisher-Rao and Euclidean metric and the k-means clustering with Fisher-
Rao and Euclidean metric. When the problem is indeed simple, with only
k � 2 clusters, there is no evidence that statistical-distance-based methods
outperform the methods with Euclidean distance. In fact, all algorithms
give very similar output.

Things becomemore interestingwhenwe have k � 3 clusters. We test and
compare the same algorithms and we have found there is evidence that both
hierarchical and k-means methods with the Fisher-Rao metric outperform
the same algorithms with the Euclidean metric. Moreover, this increase
in the average performance is statistically significant. When we look more
closely at the results, 70 out of 100 times the hierarchical method with the
Fisher-Raometric outperforms the same algorithmwith the Euclideanmetric
and 98 out of 100 times we observe the same pattern in k-means algorithms.
We conclude there is evidence suggesting the clustering algorithms based
on the Fisher-Rao metric is superior to the same algorithm based on the
Euclidean distance in the case of univariate normal distributions with k � 3
clusters. Moreover, we conjecture this is generally the case for more than 3
clusters.

Next, we explore the higher-dimensional parameter space. We study
empirically the bivariate normal distributions with the one dimensional
mean vector and the diagonal covariance matrix. The associated parameter
space in this setting is three-dimensional. Using the same set of algorithms,
we find the difference between the same algorithmwith the different distance
ismuch larger now. Hierarchical methodwith the Fisher-Raometric achieves
0.860 ± 0.008 accuracy, compared to a 0.716 ± 0.012 using the Euclidean
metric. Similarly, the k-means method with the Fisher-Rao metric achieves
0.937 ± 0.001, a large boost compared to the 0.877 ± 0.003 accuracy using the
Euclidean metric. Again, we conjecture this is generally true for parameter
space with higher dimensions.
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In both the univariate and bivariate normal cases, the statistical distance
is given as a closed form expression of the parameters of the probability
distribution. However, in general, this does not need to be the case. In the
last part of the empirical study, we apply our algorithms to the discrete
Poisson distributions. Note the Poisson distribution is parametrized by one
parameter λ. We use the Hellinger distance to quantify the distance between
two empirical Poisson distributions. Note here the Hellinger distance is not a
function of λ; instead, it makes use of the probability vector directly. Again,
in this case, we observe the similar pattern: algorithms using the statistical
distance (the Hellinger distance) outperforms the Euclidean-distance-based
algorithms.

The last part of the paper establishes one convergence result. We have
shown the k-means algorithm applied on the discrete distributions using
the Hellinger distance converges not only to the partial optimal solution but
also to the local minimum.





Chapter 12

Future Work

This thesis project can be taken in many possible directions. For one
thing, although we propose an analog of an optimal separating hyperplane
algorithm to classify the probability distributions, we have not implemented
it. The main difficulty we encounter in the implementation is that our
proposed optimization problem is complicated and not necessarily convex.
To continue in this direction, one may try to investigate when the algorithm
is convex, if at all. Also, the optimization problem depends on the statistical
distance one uses and this choice of distance can affect the convexity of the
problem.

Another direction of the future work is to conduct the empirical study
more systematically. An accompanying code base has been developed
for the purpose of clustering using the statistical distance. In this thesis,
empirical results with univariate normal and bivariate normal distributions
are presented. However, we compare the algorithms using one fixed set
of parameters. In particular, the underlying true distributions are picked
arbitrarily. It is meaningful to repeat the experiments on different parameter
values and analyze whether or not the obtained results are sensitive to the
changes in one or more parameters.

In particular, parameter n is the number of samples we use to construct
the empirical distribution and it has a profound impact on the separability
of the clusters. Intuitively, the more compact clusters are, the easier it is
for algorithms to cluster. Hence, it is meaningful to study the algorithm
performance with respect to the separability of the clusters generated.
Moreover, one may conduct further empirical studies to verify or reject our
two conjectures, namely:
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• In the univariate normal case, when k ≥ 2, the statistical-distance-based
clustering algorithms on average outperform the Euclidean-distance-
based ones.

• The statistical-distance-based clustering algorithms on average outper-
form the Euclidean-distance-based oneswhen the associatedparameter
space has higher dimension than 2.

Finally, one may try to prove more convergence results regarding our
k-means-like algorithms. In this thesis, we have shown k-means-algorithm
applied on the discrete distributions with the Hellinger distance converges
to the local minimum. On can try to show the similar results for the same
algorithm with different statistical distance, for instance, the Fisher-Rao
metric. One may also be interested in proving our k-mean-like algorithms
not only converge to the local minimum, but also the global minimum.
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